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Abstract
This paper introduces a multi-objective variant of the marine predators algorithm (MPA) called the multi-objective improved
marine predators algorithm (MOIMPA), which incorporates concepts from Quantum theory. By leveraging Quantum theory,
the MOIMPA aims to enhance the MPA’s ability to balance between exploration and exploitation and find optimal solutions.
The algorithm utilizes a concept inspired by the Schrödinger wave function to determine the position of particles in the
search space. This modification improves both exploration and exploitation, resulting in enhanced performance. Additionally,
the proposed MOIMPA incorporates the Pareto dominance mechanism. It stores non-dominated Pareto optimal solutions in
a repository and employs a roulette wheel strategy to select solutions from the repository, considering their coverage. To
evaluate the effectiveness and efficiency of MOIMPA, tests are conducted on various benchmark functions, including ZDT
and DTLZ, as well as using the evolutionary computation 2009 (CEC’09) test suite. The algorithm is also evaluated on
engineering design problems. A comparison is made between the proposed multi-objective approach and other well-known
evolutionary optimization methods, such as MOMPA, multi-objective ant lion optimizer, and multi-objective multi-verse
optimization. The statistical results demonstrate the robustness of the MOIMPA approach, as measured by metrics like
inverted generational distance, generalized distance, spacing, and delta. Furthermore, qualitative experimental results confirm
that MOIMPA provides highly accurate approximations of the true Pareto fronts.
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1 Introduction

Over the past decade, there has been a considerable surge in
the popularity and usage of evolutionary algorithms (EAs).
These algorithms have proven to be effective in solving a
wide range of real-world optimization problems in engineer-
ing and scientific research fields. Among the notable meta-
heuristic approaches, the genetic algorithm (GA) stands
out as the pioneering stochastic algorithm initially intro-
duced by John Holland in 1960 (Holland 1975). Another
important algorithm is simulated annealing (SA), which was
proposed by Kirkpatrick et al. (1983). In 1995, Kennedy
and Eberhart introduced the particle swarm optimization
(PSO) algorithm (Kennedy andEberhart 1995).Additionally,
numerous other approaches have been developed subse-
quently, such as ant bee colony (ABC) (Karaboga and
Basturk 2007), Chernobyl disaster optimizer (CDO) (She-
hadeh 2023), biology migration algorithm (BMA) (Zhang
et al. 2019), RIME algorithm (RIME) (Su et al. 2023), spi-
der wasp optimization (SWO) (Abdel-Basset et al. 2023),
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Siberian tiger optimization (STO) (Trojovský et al. 2022),
predator–prey optimization (PPO) (MohammadHasani Zade
and Mansouri 2022), Kepler optimization algorithm (KOA)
(Abdel-Basset et al. 2023), leader-advocate-believer-based
optimization (LAB) (Reddy et al. 2023), past present future
(PPF) (Naik and Satapathy 2021), artificial neural networks
(ANNs) (D’Angelo et al. 2022), genetic programming (GP)
(D’Angelo et al. 2023), and so on. Although these intelli-
gent algorithms offer benefits, they require enhancements
to accommodate the diverse characteristics of complex real-
world applications. This implies that no single approach
is capable of adequately solving the wide range of opti-
mization problems. Real-world issues often exhibit various
challenging features, such as uncertainty, dynamicity, com-
binatorial complexity, multiple objectives, and constraints.
In line with this, the no-free lunch (NFL) theorem (Wolpert
andMacready 1997) confirms that no optimization approach
can effectively address all types of problems. Alongside
the development of novel algorithms, certain researchers
have explored general improvement strategies to enhance
the performance of meta-heuristic algorithms. Examples of
these general improvement strategies include Lévy flight
(Viswanathan et al. 1996), quantum behavior (Feynman
1986), chaotic behavior (Kaplan 1979), opposition-based
learning (Tizhoosh 2005),Gaussianmutation (Liu 2012), and
so on. Driven by the researchers’ statements and the princi-
ples of the no-free-lunch theorem, in this paper, the quantum
behavior was adopted in order to enhance the performance
of the marine predators algorithm. This novel modifica-
tion enhances the marine predators algorithm to effectively
explore and exploit the search space and empowers the capa-
bility to balance between exploration and exploitation. Many
optimization approaches typically encountered are single-
objective in nature and do not adequately address the diverse
features of complex real-world applications, specifically the
ability to optimize many objectives simultaneously (Anders-
son 2000; Coello et al. 2002). This includes the challenge of
optimizing multiple objectives simultaneously, which is the
second principle focus of this paper. In fact, multi-objective
evolutionary algorithms (MOEAs) have gained significant
attention from researchers in engineering fields. These algo-
rithms have been continually developed and improved. How-
ever, solving multi-objective optimization problems (MOPs)
remains a difficult and challenging task. Among the influ-
enced multi-objective algorithms: multi-objective particle
swarm optimization (MOPSO) (Coello et al. 2004), multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) (Zhang and Li 2007), non-dominated sorting
genetic algorithm (NSGA) (Srinivas and Deb 1994), and
strength Pareto evolutionary algorithm (SPEA) (Zitzler and
Thiele 1999).

The classification of MOEAs can be divided into three
different classes: a priori (Kim and deWeck 2005), posterior

(Branke et al. 2001), and interactive (Shin and Ravindran
1991). The priori technique combines the objectives into
a single one using a set of weights by aggregation and
requires a decision-maker that furnishes some preferences
according to how important the objectives are. For a pos-
teriori technique, the Pareto optimal set is determined in
just one run antithesis the priori method that should be run
multiple times. Besides, this method benefits from maintain-
ing the multi-objective formulation, finding out all kinds
of Pareto front, and the decision-maker is required after
the optimization process. In the third class, the interac-
tive technique maintains the multi-objective formulation
and considers the decision maker during the optimization
procedure, thus, this method necessitates a higher execu-
tion time and computational cost to obtain accurate Pareto
optimal solutions. Along these lines, this work focuses on
the algorithms-based posteriori method, and most existing
multi-objective evolutionary algorithms follow this tech-
nique. Many researchers have been recently reported various
multi-objective approaches, for instance: multi-objective
slime mould algorithm (MOSMA) (Premkumar et al. 2021),
non-sorted harris hawks optimizer (NSHHO) (Jangir et al.
2021), multi-objective bonobo optimizer-based decomposi-
tion (MOBO) (Das et al. 2020), multi-objective forensic-
based investigation (MOFBI) (Chou and Truong 2022),
multi-objective thermal exchange optimization (MOTEO)
(Kumar et al. 2022), multi-objective ant lion optimizer
(MOALO) (Mirjalili et al. 2017), non-dominated sorting
manta ray foraging optimization (NSMRFO) (Daqaq et al.
2022), multi-objective multi-verse optimization (MOMVO)
(Mirjalili et al. 2017), multi-objective adaptive guided dif-
ferential evolution (MOAGDE) (Duman et al. 2021), multi-
objective backtracking search algorithm (MOBSA) (Daqaq
et al. 2021), and so on. However, the main contribution of
this paper could be summarized as:

– Introduction of MOIMPA: a multi-objective variant of
the marine predators algorithm (MPA) that incorporates
concepts from Quantum theory is presented.

– Enhancing exploration and exploitation: MOIMPA aims
to improve the MPA’s ability to balance between explo-
ration and exploitation by using a modified Schrödinger
wave function to determine particle positions in the
search space.

– IncorporationofPareto dominancemechanism:MOIMPA
includes a repository to store non-dominated Pareto opti-
mal solutions and utilizes a roulette wheel strategy for
solutions selected based on coverage.

– Evaluation of benchmark functions: MOIMPA is tested
on benchmark functions such as ZDT and DTLZ, as well
as the CEC’09 test suite, to assess its effectiveness and
efficiency.
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– Comparison with other optimization methods: A com-
parison is made between MOIMPA and other evolution-
ary optimization methods like MOMPA, MOALO, and
MOMVO.

– Statistical results: Statistical metrics such as inverted
generational distance (IGD), generalized distance (GD),
spacing, and delta are used to demonstrate the robustness
of MOIMPA.

– Accurate approximations of Pareto front: Qualitative
experimental results confirm that MOIMPA provides
highly accurate approximations of the true Pareto front.

The study is structured as follows: Sect. 2 reviews previous
research conducted by other researchers on themarine preda-
tors approach. Section3 presents the mathematical formula-
tions and definitions related to multi-objective optimization,
along with the basic MPA approach and the proposed MO
version, MOIMPA. Section4 presents the findings, analysis,
and discussions. Lastly, Sect. 5 concludes the paper and out-
lines potential avenues for future research.

2 Related works

As aforementioned, a new multi-objective version of the
marine predators approach (MPA) is suggested in this work
to address multi-objective problems. MPA was primarily
initiated by Faramarzi et al. (2020), and existing litera-
ture demonstrates that MPA has successfully tackled various
problems and outperformed several established approaches.
Hence, researchers have followed the No Free Lunch theo-
rem (NFL) and improved MPA based on the complexity and
nature of their specific problems, and several studies have
investigated the effectiveness of their improved approach.
Among the research studies that investigate its effective-
ness: Aydemir and Onay improved MPA by integrating and
combining the elite natural evolution, elite randommutation,
and Gaussian mutation strategies Aydemir and Kutlu Onay
(2023). In Ferahtia et al. (2022) utilized the MPA approach
to minimize the operating costs of the energy management
strategy for the microgrid. In another work (Dinh 2022), the
standard MPA was applied for medical image fusion and a
better MPA performance is proven. According to Al-qaness
et al. (2022) the MPAmu as a new variant of MPA was
introduced using additional mutation operators for the pur-
pose of improving its premature convergence, this algorithm
was used to introduce an effective prediction tool to esti-
mate wind power employing time-series datasets. A hybrid
MPAwas invented by Abdel-Basset et al. (2022), the authors
suggest a novel image segmentation algorithm according

to the HMPA, in which the approach was enhanced using
the linearly increased worst solutions improvement strategy
(LIS). Further, to find out the optimum multilevel threshold
image segmentation, the authors in Abualigah et al. (2022)
hybridized the marine predators and salp swarm algorithms
in view of improving the standard MPA. In an effort to
resolve the optimal reactive power dispatch issue integrat-
ing the uncertainties of solar and wind energy, an improved
MPA is suggested in Habib Khan et al. (2022), the IMPA is
based on enhancing the exploitation stage. Moreover, (Sun
andGao 2021) presented three concepts that were introduced
to enhance the performance of MPA. The first concept was
to construct the initial population utilizing the cubic map-
ping in order to enhance the diversity, the second was to
adapt the estimation distribution algorithm for modifying the
evolutionary direction and improving the convergence per-
formance, whereas the last was to avoid stagnation in local
optima applying the Gaussian random walk strategy. The
experiments resulted in Abd Elaziz et al. (2022) indicating
that the sine-cosine algorithm improved the MPA in terms of
the search abilitywhichworks as a local searchof theMPA. In
another study (Houssein et al. 2021), a grey wolf optimizer
with an opposition-based learning strategy was integrated
into MPAwith the aim of obtaining a faster convergence rate
and avoiding being trapped in local solutions. Furthermore,
a new MPA-based multi-group mechanism was proposed to
optimize the economic load dispatch problem (Pan et al.
2022).

However, few scholars investigate its performance on
multi-objective problems. On this basis, multi-objective
MPA (MOMPA) based on crowding distance and elitist non-
dominated sorting mechanisms was presented by Jangir et
al. in (2023), this approach was run on some constrained,
unconstrained benchmark problems and engineering design
applications. (Wang et al. 2023) introduced the concept of
quantity into the deep learning model to examine a wind
speed integrated probability predictive approach, utilizing
a multi-objective marine predators algorithm. Additionally,
according to (Hassan et al. 2022), a modified version ofMPA
including a comprehensive learning approach was inves-
tigated to handle the multiobjective combined economic
emission dispatch (CEED) optimization problem. Finally,
according to the recent study (Yousri et al. 2022), another
enhanced MPA named MOEMPA was suggested to man-
age the sharing energy in an interconnected micro-grid with
a utility network in India by optimizing the emission and
operating cost. Along these lines, the significant powerful
features of MPA and its borrowed evolutionary algorithms
mentioned above, motivated us to improve a novel multi-
objective variant of marine predators algorithm in this study,
named multi-objective improved marine predators algorithm
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(MOIMPA). The outstanding search mechanism in MPA is
kept similar to the MOIMPA approach.

3 Background

This section presents a comprehensive introduction to opti-
mization (MO) and its essential mathematical definitions,
which is a foundational problem-solving technique utilized
to discover the optimal solutions from a range of alternatives.
In the context of multi-objective optimization, the primary
aim is to concurrently optimize multiple objectives that often
conflictwith one another, a commonoccurrence in real-world
decision-making situations. To gain a deeper understand-
ing of the concepts and methods employed in this field, it
is crucial to explore the marine predators approach and its
multi-objective counterpart. Inspired by the efficient forag-
ing strategies of marine predators like sharks and dolphins,
the marine predators approach adopts a population-based
search algorithm that emulates themovement and behavior of
these creatures to solve optimization problems. By modeling
the search process based on the natural behavior of marine
predators, this approach seeks to enhance the efficiency
and effectiveness of the optimization process. Additionally,
this study also incorporates the multi-objective variant of
the marine predators approach. Multi-objective optimiza-
tion expands upon the traditional optimization framework
by incorporating multiple conflicting objectives. The goal of
the multi-objective variant is to explore and identify a set of
solutions that represent trade-offs between these objectives,
rather than finding a single optimal solution. This approach
empowers decision-makers to gain insights into the trade-
offs involved andmakewell-informed decisions based on the
available options. First, we’ll outline key mathematical def-
initions in the field of optimization (MO) before discussing
and reviewing the marine predators approach and its multi-
objective variant.

3.1 Multi-objective optimization

As its name signifies, multi-objective optimization is the sub-
ject of addressing various conflicting objectives concurrently.
Thus, the arithmetic relational operators are not efficacious in
comparing different solutions. Therefore, the Pareto optimal
dominance concept is utilized to determine which solution is
better than another.
The MOPs mathematical formulation as a minimization
problem is given as follows:

Optimize: O(�x) = {
o1(�x), o2(�x), . . . , oNobj(�x)

}

Subject to: g j (�x) ≥ 0, j = 1, 2, . . . ,m

h j (�x) = 0, j = 1, 2, . . . , p

Xmin
j ≤ x j ≤ Xmax

j , j = 1, 2, . . . , n (1)

where O(�x) is the objective function to be minimized. h j (�x)
and g j (�x) are the equality and inequality constraints. Nobj, n,
m, and p are the numbers of objective functions, variables,
inequality, and equality constraints. Xmin

j and Xmax
j are the

boundaries of the j th variable.
The essential relationships that are able to take into

account all objectives concurrently are defined as follows
(Pareto 1964; Coello Coello 2009):

Let us take two vectors �x = (x1, x2, . . . , xn) and �y =
(y1, y2, . . . , yn)

Definition 1 (Pareto dominance) �x is said to dominate �y if
and only if �x is partially less than �y (i.e., �x ≤ �y):

∀i ∈ {1, 2, . . . , Nobj} : fi (�x) ≤ fi (�y) ∧ ∃i
∈ {1, 2, . . . , Nobj}

: fi (�x) < fi (�y) (2)

Definition 2 (Pareto optimality) �x ∈ X is called a Pareto
optimal solution iff:

��y ∈ X | F(�y) < F(�x) (3)

Definition 3 (Pareto optimal set) The Pareto optimal set is
a set that comprises all Pareto optimal solutions (neither �x
dominates �y nor �y dominates �x):

Ps := {x, y ∈ X | ∃F(�y) > F(�x)} (4)

Definition 4 (Pareto optimal front) The Pareto optimal front
is defined as:

Pf := {F(�x) | �x ∈ Ps} (5)

The optimal non-dominated outputs set, which represents
the set of solutions for each multi-objective optimization
problem, plays a significant role in evaluating and comparing
different solution options. Figure1 provides a visual repre-
sentation of this concept, illustrating the relationship between
the objective space and the corresponding Pareto optimal
front. As depicted in Fig. 1, the red shapes represent the
solutions in the objective space, while their projection onto
the objective space is known as the Pareto optimal front.
The Pareto optimal front consists of solutions that are not
dominated by any other solution in terms of all the objec-
tives under consideration. In other words, these solutions
represent the best possible trade-offs between conflicting
objectives, where improving one objective would result in
a deterioration of at least one other objective. By examining
the solutions depicted in both spaces, it becomes evident that
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Fig. 1 Search and objective spaces

the star shape in Fig. 1 dominates all the other shapes. Dom-
ination refers to a solution being superior to another solution
in terms of at least one objective, without being worse in any
other objective. In this case, the star shape outperforms all
other shapes across all objectives, making it the most desir-
able solution within the given optimization problem. The
visualization provided by Fig. 1 highlights the importance of
identifying the Pareto optimal front and understanding the
dominant relationship between solutions. This knowledge
enables decision-makers to make informed choices by con-
sidering the trade-offs associated with different solutions and
selecting the most appropriate one based on their preferences
and constraints.

3.2 Marine predators algorithm

The principle phases of the MPA approach are introduced in
the following subsection.

3.2.1 Description of MPA

MPA is a population-based approach, inspired by the
widespread foraging in ocean predators, and the optimal
encounter rate in biological interaction between predator and
prey, by Faramarzi et al. (2020). Like other meta-heuristics,
in which the initial solution X0 is uniformly distributed
throughout the search area as:

X0 = Xmin + rand (Xmax − Xmin) (6)

where Xmin is the lower bound, Xmax is the upper bound for
variables, and rand is a uniform random vector in the range
of 0–1.
According to the survival of the fittest theory, top predators
in nature are better at hunting. As a result, the fittest solution
is designated as a top predator to form a matrix known as
the Elite. This matrix arrays looking for and locating prey

depending on information about the prey’s location.

Elite =
⎡

⎢
⎣

Xt
1,1 · · · Xt

1,d
...

. . .
...

Xt
n,1 · · · Xt

n,d

⎤

⎥
⎦ (7)

where
−→
Xt denotes the top predator vector, which is copied

n times to create the Elite matrix. n denotes the number of
search agents, whereas d denotes the number of dimensions.
Prey is another matrix with the same dimension as Elite, and
it is used by predators to update their locations.

Prey =
⎡

⎢
⎣

X1,1 · · · X1,d
...

. . .
...

Xn,1 · · · Xn,d

⎤

⎥
⎦ (8)

The MPA optimization method is separated into three pri-
mary phases, each of which takes into account a particular
velocity ratio while simulating the whole life of a predator
and prey as follows:

3.2.2 High velocity ratio

This situation occurs when the prey moves faster than the
predator, or during the early stages of optimization, when
exploration is important. In a high-velocity ratio (v 10) situ-
ation, the optimum predator tactic is to stay still. This rule’s
mathematical model is as follows:

iter <
1

3
itermax (9)

−−→
stepi = −→

RB ⊗
(−−−→
Elitei − −→

RB ⊗ −−→
Preyi

)
i = 1, . . . , n (10)

−−→
Preyi = −−→

Preyi + P · −→
R ⊗ −−→

stepi (11)

where RB is a vector of random integers from the Nor-
mal distribution that reflect Brownian motion. The notation
⊗ depicts entry-by-entry multiplications. Prey movement is
simulated by multiplying RB by Prey. P = 0.5 is a constant,
and R is a vector of uniform random values in the range [0,1].
This situation occurs during the first third of iterations when
the step size or velocity of movement is large, indicating a
high level of exploratory ability. i ter is the current iteration
while i termax is the maximum one.

3.2.3 Unit velocity ratio

When both the predator and the prey are running at about the
same speed, it suggests that both are seeking their prey. This
portion happens during the intermediate phase of optimiza-
tion when exploration attempts to be transiently transformed
into exploitation. Exploration and exploitation are important
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at this stage. As a result, half of the population is earmarked
for exploration and the other half for exploitation. During this
stage, the prey is in charge of exploitation while the predator
is in charge of exploration. As a result, if prey travels in Lévy,
the best predator tactic is Brownian.

1

3
itermax < iter <

2

3
itermax (12)

For the first half of the population

−−→
stepi = −→

RL ⊗
(−−−→
Elitei − −→

RL ⊗ −−→
Preyi

)
i = 1, . . . , n/2

(13)−−→
Preyi = −−→

Preyi + P · �R ⊗ −−→
stepi

(14)

The second half of the population

−−→
stepi = −→

RB ⊗
(−→
RB ⊗ −−−→

Elitei − −−→
Preyi

)
i = n/2, . . . , n

(15)−−→
Preyi = −−−→

Elitei + P · CF ⊗ −−→
stepı (16)

CF =
(
1 − iter

itermax

)(
2 iter
itermax

)

(17)

where CF is an adjustable parameter that is used to track the
step size.

3.2.4 Low velocity ratio

During this particular phase, a low-velocity ratio occurswhen
the predator’s speed surpasses that of the prey. This situation
occurs near the end of the optimization process, which is
typically associatedwith high exploitation capability. Lévy is
the best predator approach for low-velocity ratios (v = 0.1).
This stage is depicted as:

iter >
2

3
itermax (18)

−−→
stepi = −→

RL ⊗
(−→
RL ⊗ −−−→

Elitei − −−→
Preyi

)
i = 1, . . . , n

(19)
−−−→
Preyi = −−−→

Elitei + P · CF ⊗ −−→
stepı (20)

In the Lévy method, multiplying RL and Elite mimics preda-
tor movement, whereas adding the step size to Elite position
simulates predator movement to aid in the updating of prey
location.
The additional feature of MPA is that it simulates predator
behavior, increasing the chances of escape from local optima.
This advantage stems from the fact that factors such as eddy

formation and fish aggregating devices (FADs) can influence
predator behavior. As a consequence, the predators would
jump into other locations with abundant prey 20% of the
time, while searching for their prey in the local area the rest
of the time. FADs can be made in the following way:

−−→
Preyi =
⎧
⎨

⎩

−−→
Preyi + CF

[−−→
Xmin + −→

R ⊗
(−−−→
Xmax − −−→

Xmin

)]
⊗ �U , r ≤ FADs

−−→
Preyl + [(1 − r)FADs + r ]

(−−−→
Preyr1 − −−−→

Preyr2

)
, r > FADs

(21)

where FADs = 0.2 denotes the probability of FADs influenc-
ing the optimization process.U is a binary vector containing
arrays of zero and one and built by creating a random vector
in the range [0, 1] and setting its array to zero if it is less
than 0.2 and one if it is larger than 0.2. r is the uniform ran-
dom number in the range [0,1]. The subscripts r1 and r2 are
random prey matrix indexes.
The main steps followed in MPA are demonstrated in Fig. 2.
This flow chart depicted in Fig. 2 illustrates the step-by-step
process of the MPA algorithm employed in this study. The
algorithm presents a clear and structured approach to solving
the optimization problem at hand. The flow chart provides
a visual representation of the algorithm’s structure and the
sequence of operations involved. It serves as a valuable tool
for understanding the algorithm’s inner workings and aids in
analyzing its efficiency and effectiveness in solving complex
optimization problems.

4 The proposed algorithm

In this subsection, quantum mechanics is used to develop
the original MPA technique. This quantum model of the
MPA technique is named the IMPA algorithm. Quantum
algorithm (QA) was first proposed in Benioff (1980). It was
declared that QA could solve many difficulties based on the
concepts and principles of quantum theory, including the
superposition of quantum states, entanglement, and inter-
vention. Quantum-Inspired Evolutionary Algorithm (QEA)
is one of the developing algorithmswhichwas inspired by the
concept of quantum computing (Han and Kim 2002). This
algorithm was successfully applied to solve several combi-
national optimization problems. The good performance of
the QEA algorithm for finding a global best solution in a
short time has attracted the attention of researchers to use
quantum computing to develop algorithms such as quantum
genetic algorithm (QGA) (Vlachogiannis and Østergaard
2009), multiscale quantum harmonic oscillator algorithm
(MQHOA) (Wang et al. 2018), quantum Runge Kutta algo-
rithm (QRUN) (Abd El-Sattar et al. 2022), quantum salp
swarm algorithm (QSSA) (Niazy et al. 2020), quantum chaos
game optimizer (QCGO) (Elkasem et al. 2022), Quantum
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Fig. 2 The flowchart of the
original Marine Predators
Algorithm (MPA)
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Fig. 3 The flowchart of the
proposed Improved Marine
Predators Algorithm (IMPA)

marine predators algorithm (QMPA) (AbdElaziz et al. 2021),
and Quantum Henry gas solubility optimization algorithm
(QHGSO) (Mohammadi et al. 2021). Quantum mechanics
were employed to improve the PSO algorithm in dos San-
tos Coelho (2008). In the quantum model, by employing the
Monte Carlo method, the solution Preyi is calculated as fol-

lows:

p = c1 × w × −−−→
Prey l + c2 × (1 − w) × xbest

c1 + c2
(22)

−−→
Preyi =

{
p + α × |Mbesti − −−→

Preyi | × ln
( 1
u

)
, if h ≥ 0.5

p − α × |Mbesti − −−→
Preyi | × ln

( 1
u

)
, if h < 0.5

(23)
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Where xbest denotes the best solution,α is a design parameter,
u and w represent uniform probability distribution in the
range [0,1], h is the random value ranging from 0 to 1.Mbest
is themean best of the population and it is defined as themean
of the xbest positions and it is calculated as follows:

Mbest = 1

N

N∑

i=1

xbest (24)

The flow chart of the proposed IMPA technique is shown in
Fig. 3, which showcases the flow chart depicting the revised
steps and procedures implemented to enhance the optimiza-
tion process. This modified approach aims to overcome
the limitations or shortcomings of the original algorithm,
offering improved performance, convergence, and solution
quality. The flow chart serves as a valuable reference to ana-
lyze and evaluate the efficacy of the modified algorithm in
solving multi-objective optimization problems.

4.1 Description of the proposed algorithmMOIMPA

Based on the mathematical emulation explained above, the
swarm behaviors of preys can be simulated clearly. When
dealing with multi-objective problems, two issues need to
be adjusted for the IMPA algorithm. First, the MOIMPA
needs to store multiple solutions as the optimal solutions for
a multi-objective problem. Second, in each iteration, IMPA
updates the preys source with the best solution, but in the
multi-objective problem, single best solutions do not exist.
In MOIMPA, the first issue is settled by equipping the IMPA
technique with a repository of preys sources. The repository
can store a limited number of non-dominated solutions. In the
process of optimization, each prey is compared with all the
residents in the repository using the Pareto dominance opera-
tors. If a prey dominates only one solution in the repository, it
will be swapped. If a prey dominates a set of solutions in the
repository, they all should be removed from the repository
and the prey should be added to the repository. If at least one
of the repository residents dominates prey in the new pop-
ulation, it should be discarded straight away. If the prey is
non-dominated in comparisonwith all repository residents, it
has to be added to the archive. If the repository becomes full,
we need to remove one of the similar non-dominated solu-
tions in the repository. For the second issue, an appropriate
way is to select it from a set of non-dominated solutions with
the least crowded neighborhood. This can be done using the
same ranking process and roulette wheel selection employed
in the repository maintenance operator. The pseudo-code
of the MOIMPA algorithm is shown in Algorithm 1: The
included Algorithm 1 provides a step-by-step framework for
the MOIMPA algorithm. Step 1: In this step, the prey posi-
tions are updated based onEqu (11). This equation defines the

update rule for the prey in the first phase of the algorithm,
which occurs during the initial one-third of the maximum
iterations.

Step 2 and Step 3: During the second phase of the algo-
rithm (between one-third and two-thirds of the maximum
iterations), the prey positions are updated differently for the
first half and the other half of the population. Step 2 involves
updating the positions of the prey in the first half of the pop-
ulation using Equation (14). Similarly, Step 3 updates the
positions of the prey in the other half of the population using
Equ (16).

Step 4: In the final phase of the algorithm (when the iter-
ation count exceeds two-thirds of the maximum iterations),
the prey positions are updated using Equ (20). This equation
defines the update rule for the prey during this phase.

Step 5: Applying the effect of eddy formation and fish
aggregation devices (FADs) on the prey positions is done in
this step. The positions of the prey are adjusted according to
Equ (21), which incorporates the influence of FADs.

Step 6: The prey positions are updated further using Equ
(23). This equation specifies the position update rule for the
prey, enhancing their exploration and exploitation capabili-
ties.

Step 7: The fitness of the new solution is calculated in
this step. The fitness represents the quality or objective value
associated with the current solution.

Step 8: Finally, the non-dominated solutions obtained are
updated in the archive, ensuring the preservation of the best
solutions throughout the iterations.

These step-by-step explanations provide a clear under-
standing of the work performed and the variables involved at
each stage of theMOIMPAalgorithmpresented inAlgorithm
1.

4.2 Performancemetrics

With a view to affirm the effectiveness of such a multi-
objective algorithm, three main principles must be proved:
convergence, distribution, and coverage. On this basis, to
compare the MOIMPA reliability and efficiency with other
competitive algorithms, four performance indicators were
considered such as generation distance (GD) (Van Veld-
huizen andLamont 1998), inverse generation distance (IGD)
(Sierra andCoello 2005), spacing (SP) (Schott 1995), and the
delta metrics. The IGD and GD indicators are employed to
evaluate the approximations to the Pareto front in relation to
diversity and convergence. The spacing indicator evaluates
the space between the non-dominated solutions (coverage). It
is worth noting that the smaller the metric output, the higher
the quality of obtained solutions. The mathematical formu-
lations of these metrics are described as follows:
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Table 1 Descriptions of the considered benchmark functions

Functions Objectives Variables Ranges Characteristics

ZDT

ZDT1 2 30 [0, 1] Cnvex

ZDT2 2 30 [0, 1] Concave

ZDT3 2 30 [0, 1] Disconnected

ZDT4 2 10 x1 ∈ [0, 1] Convex with highly multi-modal optima

xi ∈ [−5, 5]

ZDT6 2 10 [0,1] Concave with a nonuniform search space

UF

UF1 2 30 Convex with multi-modal optima

UF2 2 30 Convex with multi-modal optima

UF3 2 30 Convex with multi-modal optima

UF4 2 30 Concave with multi-modal optima

UF5 2 30 Disconnected with multi-modal optima

UF6 2 30 One isolated point and two disconnected fronts

UF7 2 30 Linear with multi-modal optima

UF8 3 30 Concave with parabolic Pareto front

UF9 3 30 Concave with two separated fronts

UF10 3 30 Concave with parabolic Pareto front

DTLZ

DTLZ1 3 7 [0, 1] Linear pareto front

DTLZ2 3 12 [0, 1] Concave

DTLZ4 3 12 [0, 1] Concave

DTLZ5 3 12 [0, 1] Degenerated curve

DTLZ6 3 12 [0, 1] Disconnected Pareto-optimal front

Table 2 Parameter of the tested
approaches

Approache Parameter Value

MOIMPA Archive size 200

Population size 300

FADs, P 0.2, 0.5

MOMPA Jangir et al. (2023) Archive size 200

Population size 300

FADs, P 0.2, 0.5

MOALO Mirjalili et al. (2017) Archive size 200

Population size 300

MOMVO Mirjalili et al. (2017) Archive size 200

Population size 300

Maximum worm hole existence probability 1

Minimum worm hole existence probability 0.2

GD =
√∑npf

i=1 d
2
i

npf
(25)

where di is the Euclidean distance between the i th Pareto
optimal solution attained and the true Pareto optimal solution

in the reference set. npf indicates the obtained Pareto optimal
solutions number.

IGD =
√∑ntpf

i=1

(
d ′
i

)2

ntpf
(26)
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Algorithm 1 Framework of MOIMPA algorithm
Require: Number of population; maximum iteration; upper and lower
bounds; eddy formation and fish aggregation effect FADs
Initialize population (Prey) using Eq. (8)
while I ter < Max_I ter do

Fitness ← Calculating Prey fitness
Front ← Perform non-dominated sorting on Fitness to obtain

non-dominated Prey
Archive  Save the non-dominated solution to the Archive
Preyold ← Prey
for i = 1 to N do

if I ter < Max_I ter
3 then

Update the prey position based on Eq. (11)
else if Max_I ter

3 < I ter < 2×Max_I ter
3 then

For the first half of the population
Update the prey position based on Eq. (14)

For the other half of the population
Update the prey position based on Eq. (16)

else if I ter ≥ 2×Max_I ter
3 then

Update the prey position based on Eq. (20)
end if

end for
Applying FADs effect and update the prey based on Eq. (21)
Update the position using Eq. (23)
Calculate the fitness for the new solution
Update Archive;  Update the non-dominated solution to the

Archive
end while

where d ′
i is the Euclidean distance between the i

th true Pareto
optimal solution and the Pareto optimal solution obtained in
the reference set. ntpf indicates the number of true Pareto
optimal solutions.

SP =
√√√√ 1

npf − 1

npf∑

i=1

(
d̄ − di

)2
(27)

where d̄ is the average of all di .

5 Experimental results and analysis

Tovalidate the efficiencyof the suggested algorithmMOIMPA,
a set of test functions with diverse characteristics (various
forms of Pareto front) were investigated notably five bi-
objective ZDTZitzler et al. (2000), six three-objective DTLZ
(Deb et al. 2002) functions, and the CEC’09 (Zhang et al.
2008) multi-objective problem that contains ten UF func-
tions with bi- and three-objective functions, in addition to
the weld beam issue, which is listed in Table 1. Thus, four
popular indicator metrics were considered namely: genera-
tion distance (GD), spacing (SP), inverse generation distance
(IGD), spacing (SP), and the delta metrics as presented in
the "Performance Metrics" section. On the other hand, three
significant multi-objective optimization algorithms were re-
implemented for comparison with a view to affirming the

Table 3 The detailed settings of the utilized system

Experimental environment Setting

Hardware

CPU Intel Core(TM) i5-4210U

Frequency 2.4 GHz

RAM 8 GB

Hard drive 500 GB

Software

Operating system Windows 8.1

Language MATLAB R2016a

effectiveness of theMOIMPAapproach calledmultiobjective
marine predator algorithm (MOMPA) (Jangir et al. 2023),
multiobjective ant lion optimization (MOALO) (Mirjalili
et al. 2017), and multiobjective multi-verse optimization
(MOMVO) (Mirjalili et al. 2017), their control parameters
are listed in Table 2. However, these selected parameters are
the best in most of the cases in their original papers and are
kept as suggested. Thus, for ensuring fair comparison, all
multi-objective approaches were executed 20 times and the
maximum number of iterations is 300. The detailed settings
of the system utilized in this article are presented in Table 3.
The outcomes are illustrated qualitatively and quantitatively.
The experimental findings based on the average and stan-
dard deviation of the 20 runs are listed in Tables 4, 5, 6
and 7. It is worth noting here that the better approach is the
one with the lower metric value, and the optimized solu-
tions were highlighted in boldface. Further, the best Pareto
optimal fronts attained were depicted in Figs. 4, 5, 6 and
7. On all twenty benchmark test suites under consideration,
the MOIMPA reaches statistically significant values in most
case studies. Hence, this proposed approach outstrip all five
ZDT test problem, in which, four functions on IGD, three
on GD, three on SP, and four on delta out of five functions
in total. Besides, the MOIMPA also ranks first in the DTLZ
problem on four functions out of five on each IGD, GD, SP,
and delta metrics. According to the MOMVO algorithm, it
outperforms the MOIMPA on UF benchmark test suites in
all indicator metrics except the Spacing one, but it does not
show any accuracy in terms of std performance compared to
MOIMPA.However, theMOALOand theMOMPAobtained
the lowest performance. Additionally, it can be seen from
Figs. 4, 5, 6 and 7 that the MOIMPA yields better coverage,
convergence, and well spread through the true Pareto front
for all case studies. The MOMPA approach also provides a
good Pareto front on ZDT except for the ZDT6 function. By
contrast, the MOMVO and MOALO competitor approaches
show the worst Pareto front. To sum up, the suggested opti-
mizer MOIMPA managed to significantly outperform the
competitors even on its multi-objective variant MOMPA,
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Table 4 Performance metrics
comparison based on ZDT test
suites

F Performance metrics MOIMPA MOMPA MOALO MOMVO

ZDT1 IGD Ave 1.82E-02 2.50E-02 3.71E-01 9.19E-02

Std 1.55E-03 2.83E-03 9.13E-02 9.04E-03

GD Ave 1.04E-03 9.88E-04 1.94E-03 8.70E-03

Std 2.35E-03 3.52E-04 1.30E-03 1.11E-03

Metric of spacing Ave 6.59E-03 1.24E-02 6.79E-03 1.11E-02

Std 1.92E-03 4.15E-03 2.85E-03 1.95E-03

�P Ave 2.02E-02 2.50E-02 3.71E-01 9.22E-02

Std 9.08E-03 2.83E-03 9.13E-02 9.16E-03

ZDT2 IGD Ave 2.01E-02 2.38E-02 4.25E-01 2.59E-01

Std 2.12E-03 3.09E-03 1.34E-01 5.36E-03

GD Ave 6.39E-04 5.65E-04 4.75E-04 3.02E-02

Std 1.30E-03 1.49E-04 6.07E-04 1.23E-03

Metric of spacing Ave 1.17E-02 1.27E-02 2.74E-03 2.08E-02

Std 2.25E-02 4.52E-03 3.18E-03 8.59E-03

�P Ave 2.01E-02 2.38E-02 4.25E-01 2.84E-01

Std 2.12E-03 3.09E-03 1.34E-01 1.60E-02

ZDT3 IGD Ave 2.04E-01 2.09E-01 2.89E-01 1.96E-01

Std 3.30E-03 2.95E-03 5.13E-02 4.52E-03

GD Ave 2.07E-03 2.80E-03 2.81E-03 1.07E-02

Std 2.58E-03 4.91E-04 9.91E-04 1.53E-02

Metric of spacing Ave 8.12E-03 1.58E-02 1.40E-02 8.25E-02

Std 2.15E-03 6.41E-03 9.28E-03 1.59E-01

�P Ave 2.04E-01 2.09E-01 2.89E-01 1.96E-01

Std 3.30E-03 2.95E-03 5.13E-02 4.52E-03

ZDT4 IGD Ave 2.50E-02 2.50E-02 2.05E+00 8.58E-01

Std 2.82E-03 3.67E-03 2.48E+00 6.56E-01

GD Ave 7.32E-04 8.57E-04 2.06E-01 1.56E-01

Std 2.65E-04 3.71E-04 2.70E-01 2.03E-01

Metric of spacing Ave 8.56E-03 1.17E-02 4.44E-02 7.00E-01

Std 6.06E-03 5.59E-03 6.00E-02 2.11E+00

�P Ave 2.50E-02 2.50E-02 2.21E+00 1.00E+00

Std 2.82E-03 3.67E-03 2.59E+00 7.63E-01

ZDT6 IGD Ave 1.12E-02 9.86E-02 7.42E-01 2.33E+00

Std 3.44E-03 1.13E-01 1.32E+00 1.35E-01

GD Ave 1.21E-02 3.31E-02 1.93E-01 4.31E-01

Std 1.19E-02 2.71E-02 1.08E-01 7.90E-02

Metric of spacing Ave 3.12E-02 2.17E-02 5.71E-02 3.38E-02

Std 8.01E-02 1.91E-02 2.97E-02 2.87E-02

�P Ave 4.84E-02 1.73E-01 1.63E+00 2.33E+00

Std 3.56E-02 1.48E-01 1.23E+00 1.35E-01

which means that the MOIMPA diversity and convergence
are improved. The lowest values of all metrics were obtained
by MOIMPA optimizer in almost case studies, it outstrips
on 11 cases for IGD, 10 for GD, 13 for SP, and 11 for delta
metrics out of 20. These comparison results reveal that both
the convergence and coverage of the achieved outcomes by
MOIMPA toward the true PF are higher than those obtained

by its competing approaches and that the MOIMPA has sig-
nificant stability.

6 Conclusion

This study has presented a modified version of the marine
predators approach (MPA) that incorporates quantum opti-
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Table 5 Performance metrics
comparison based on UF test
suites

F Performance metrics MOIMPA MOMPA MOALO MOMVO

UF1 IGD Ave 1.57E-01 1.53E-01 1.97E-01 1.06E-01

Std 9.23E-03 1.28E-02 2.45E-02 3.89E-03

GD Ave 1.05E-02 1.65E-02 1.75E-02 2.42E-03

Std 1.59E-03 3.38E-03 4.09E-03 1.26E-03

Metric of spacing Ave 5.45E-03 8.89E-03 8.82E-03 4.27E-03

Std 1.35E-03 2.77E-03 1.24E-02 1.61E-03

�P Ave 1.66E-01 1.61E-01 1.98E-01 1.06E-01

Std 1.57E-02 2.39E-02 2.55E-02 3.89E-03

UF2 IGD Ave 8.63E-02 9.79E-02 1.03E-01 8.46E-02

Std 7.02E-03 9.89E-03 7.09E-03 6.82E-03

GD Ave 7.79E-03 1.41E-02 1.55E-02 1.17E-02

Std 3.32E-03 6.70E-03 1.13E-02 3.47E-03

Metric of spacing Ave 7.26E-03 1.57E-02 1.85E-02 1.62E-02

Std 2.11E-03 5.14E-03 6.76E-03 1.07E-02

�P Ave 9.37E-02 1.09E-01 1.31E-01 8.97E-02

Std 1.56E-02 3.20E-02 5.66E-02 1.19E-02

UF3 IGD Ave 3.18E-01 4.58E-01 6.13E-01 3.29E-01

Std 5.19E-02 1.17E-01 1.21E-01 8.44E-02

GD Ave 2.29E-02 1.94E-02 6.89E-02 9.04E-02

Std 1.43E-02 1.44E-02 3.91E-02 5.97E-02

Metric of spacing Ave 5.18E-03 4.64E-03 1.68E-02 3.45E-02

Std 2.39E-03 2.46E-03 1.46E-02 4.33E-02

�P Ave 3.48E-01 4.58E-01 7.25E-01 5.49E-01

Std 1.63E-01 1.17E-01 2.55E-01 3.21E-01

UF4 IGD Ave 1.35E-01 1.67E-01 1.94E-01 1.14E-01

Std 7.93E-03 5.05E-03 7.33E-03 7.18E-03

GD Ave 8.93E-03 1.80E-02 2.09E-02 1.48E-02

Std 2.95E-04 5.99E-04 8.45E-04 9.01E-04

Metric of spacing Ave 4.97E-03 1.52E-02 1.87E-02 6.65E-03

Std 6.93E-04 5.70E-03 4.23E-03 3.23E-03

�P Ave 1.52E-01 1.78E-01 2.07E-01 1.34E-01

Std 5.25E-03 5.81E-03 7.68E-03 1.09E-02

UF5 IGD Ave 6.46E-01 5.64E-01 1.61E+00 3.95E-01

Std 8.56E-02 1.20E-01 2.78E-01 1.56E-01

GD Ave 7.39E-02 7.96E-02 2.13E-01 4.79E-02

Std 2.34E-02 2.59E-02 7.97E-02 3.09E-02

Metric of spacing Ave 1.60E-02 1.78E-02 4.09E-02 1.82E-02

Std 6.35E-03 1.23E-02 4.62E-02 2.20E-02

�P Ave 7.84E-01 7.32E-01 1.89E+00 4.61E-01

Std 2.02E-01 2.10E-01 4.44E-01 2.28E-01

UF6 IGD Ave 4.97E-01 4.61E-01 7.78E-01 2.56E-01

Std 3.91E-02 8.97E-02 1.15E-01 5.86E-02

GD Ave 4.86E-02 7.12E-02 9.48E-02 4.66E-02

Std 6.13E-03 2.36E-02 2.21E-02 1.95E-02

Metric of spacing Ave 1.00E-02 1.74E-02 2.30E-02 2.72E-02

Std 4.17E-03 1.03E-02 1.13E-02 2.16E-02
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Table 5 continued F Performance metrics MOIMPA MOMPA MOALO MOMVO

�P Ave 5.80E-01 6.24E-01 8.89E-01 2.94E-01

Std 6.23E-02 2.01E-01 1.62E-01 1.10E-01

UF7 IGD Ave 8.03E-02 1.15E-01 1.27E-01 5.81E-02

Std 5.63E-03 8.49E-03 1.57E-02 2.76E-03

GD Ave 5.18E-03 1.27E-02 9.90E-03 3.14E-03

Std 1.09E-03 2.86E-03 2.07E-03 8.38E-04

Metric of spacing Ave 5.26E-03 1.27E-02 9.19E-03 9.57E-03

Std 1.03E-03 4.74E-03 3.21E-03 5.05E-03

�P Ave 8.30E-02 1.22E-01 1.27E-01 5.81E-02

Std 9.36E-03 1.56E-02 1.57E-02 2.76E-03

UF8 IGD Ave 1.85E-01 2.32E-01 3.50E-01 3.26E-01

Std 8.84E-03 1.89E-02 7.24E-02 2.30E-02

GD Ave 1.06E-02 7.74E-03 7.18E-03 2.63E-02

Std 6.20E-03 4.25E-03 7.29E-03 1.43E-02

Metric of spacing Ave 4.36E-02 5.89E-02 3.66E-02 5.01E-02

Std 7.21E-03 1.79E-02 1.58E-02 1.49E-02

�P Ave 1.97E-01 2.32E-01 3.50E-01 3.39E-01

Std 4.95E-02 1.89E-02 7.24E-02 5.36E-02

UF9 IGD Ave 1.88E-01 2.30E-01 2.73E-01 2.59E-01

Std 1.52E-02 1.94E-02 2.14E-02 5.50E-02

GD Ave 1.62E-02 3.07E-02 1.64E-02 3.92E-02

Std 2.68E-03 7.21E-03 4.51E-03 1.59E-02

Metric of spacing Ave 3.74E-02 5.43E-02 3.58E-02 6.21E-02

Std 1.26E-02 1.39E-02 9.20E-03 1.89E-02

�P Ave 2.46E-01 2.73E-01 2.73E-01 3.53E-01

Std 3.72E-02 5.64E-02 2.13E-02 1.46E-01

UF10 IGD Ave 2.84E-01 2.57E-01 5.08E-01 1.08E+00

Std 4.06E-02 3.16E-02 8.76E-02 3.55E-01

GD Ave 1.27E-01 8.92E-02 5.85E-02 1.65E-01

Std 4.48E-02 3.52E-02 5.22E-02 7.55E-02

Metric of spacing Ave 1.47E-01 1.47E-01 5.83E-02 1.55E-01

Std 2.52E-02 2.70E-02 2.46E-02 5.90E-02

�P Ave 1.01E+00 6.56E-01 6.25E-01 1.58E+00

Std 3.90E-01 2.95E-01 2.48E-01 6.99E-01

Table 6 Performance metrics
comparison based on DTLZ test
suites

F Performance metrics MOIMPA MOMPA MOALO MOMVO

DTLZ1 IGD Ave 2.48E-02 4.54E-02 4.72E-02 3.78E-02

Std 1.68E-03 3.45E-03 8.67E-03 3.54E-03

GD Ave 7.50E-04 1.01E-02 5.67E-02 3.92E-03

Std 1.51E-03 4.15E-02 1.59E-01 7.44E-03

Metric of spacing Ave 2.10E-02 1.27E-01 8.37E-02 5.87E-02

Std 1.81E-03 4.09E-01 6.40E-02 6.72E-02

�P Ave 2.48E-02 5.28E-02 1.69E-01 3.81E-02
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Table 6 continued F Performance metrics MOIMPA MOMPA MOALO MOMVO

Std 1.68E-03 3.23E-02 3.09E-01 3.18E-03

DTLZ2 IGD Ave 5.88E-02 1.60E-01 1.89E-01 1.44E-01

Std 2.60E-03 1.89E-02 3.75E-02 3.37E-02

GD Ave 9.13E-04 1.09E-02 7.60E-03 1.09E-03

Std 1.78E-04 2.66E-03 5.77E-03 1.98E-04

Metric of spacing Ave 4.96E-02 8.56E-02 8.64E-02 5.65E-02

Std 1.54E-03 1.07E-02 1.86E-02 1.56E-02

�P Ave 5.88E-02 1.60E-01 1.92E-01 1.44E-01

Std 2.60E-03 1.89E-02 3.93E-02 3.37E-02

DTLZ4 IGD Ave 4.73E-02 9.39E-02 2.43E-01 1.05E-01

Std 3.46E-03 1.17E-02 8.77E-02 1.56E-02

GD Ave 7.89E-04 2.55E-03 7.55E-03 9.15E-04

Std 3.94E-04 1.81E-03 4.74E-03 2.92E-04

Metric of spacing Ave 4.12E-02 7.55E-02 5.92E-02 6.02E-02

Std 2.84E-03 8.14E-03 2.42E-02 5.80E-03

�P Ave 4.73E-02 9.39E-02 2.43E-01 1.05E-01

Std 3.46E-03 1.17E-02 8.77E-02 1.56E-02

DTLZ5 IGD Ave 2.34E-02 3.72E-02 5.62E-02 2.83E-02

Std 2.60E-03 5.27E-03 3.64E-02 3.92E-03

GD Ave 1.78E-03 4.29E-03 1.62E-03 4.26E-04

Std 4.02E-04 1.07E-03 1.25E-03 1.21E-04

Metric of spacing Ave 1.08E-02 2.48E-02 1.92E-02 1.75E-02

Std 1.84E-03 5.89E-03 6.85E-03 6.13E-03

�P Ave 2.39E-02 3.89E-02 5.62E-02 2.83E-02

Std 2.82E-03 6.74E-03 3.64E-02 3.92E-03

DTLZ6 IGD Ave 2.69E-02 2.60E-02 5.49E-02 9.92E-03

Std 3.71E-03 3.35E-03 2.51E-02 1.20E-03

GD Ave 8.24E-04 1.42E-02 1.30E-01 3.25E-03

Std 1.76E-03 5.07E-02 7.90E-02 6.20E-03

Metric of spacing Ave 1.73E-02 1.82E-02 9.18E-02 2.75E-02

Std 5.44E-03 6.22E-03 1.27E-01 3.41E-02

�P Ave 2.69E-02 9.32E-02 6.95E-01 1.27E-02

Std 3.71E-03 2.87E-01 4.39E-01 7.20E-03

Table 7 Performance metrics
comparison based on weld beam
problem

Performance metrics MOIMPA MOMPA MOALO MOMVO

IGD Ave 5.45E-01 6.88E-01 7.66E-01 5.04E-01

Std 7.95E-02 1.01E-01 2.44E-01 6.66E-02

GD Ave 1.13E-02 9.87E-03 9.41E-03 1.44E-02

Std 3.39E-03 6.87E-03 1.03E-02 2.32E-02

Metric of spacing Ave 1.29E-01 2.97E-01 3.74E-01 3.06E-01

Std 5.79E-02 1.04E-01 1.92E-01 1.11E-01

�P Ave 5.45E-01 6.88E-01 7.66E-01 5.04E-01

Std 7.95E-02 1.01E-01 2.44E-01 6.66E-02
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Fig. 4 Comparison of obtained Pareto fronts on ZDT functions
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Fig. 5 Comparison of obtained Pareto fronts on UF functions
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Fig. 5 continued

mization techniques and a multi-objective strategy. While
the basic MPA is effective in solving various global and
engineering problems, it has certain limitations that affect its
optimization process and compromises the balance between
exploitation and exploration phases, as well as the con-
vergence towards the global solution. To overcome these
limitations, quantum mechanics has been integrated into
the MPA. The performance of the NSMRFO approach has
been evaluated using various test functions, including ZDT,
DTLZ, CEC’09 (Completions on Evolutionary Computa-
tion 2009), and several engineering problems, providing
a comprehensive assessment from different perspectives.
The proposed approach has undergone quantitative evalua-
tion using four performance indicators: inverted generational
distance (IGD), spacing metric (SP), generational distance

(GD), and delta metric. The evaluation was conducted over
20 runs. Comparative analysis was carried out by comparing
the results of the MOIMPA optimizer with other algorithms
such asMOMPA,MOALO, andMOMVO.Additionally, var-
ious engineering design problems were examined to assess
the efficiency of MOIMPA. The results demonstrate that the
developed optimizer is more efficient based on the outcomes
of the evaluation. In our future work, we plan to extend the
application of the proposed algorithm to solve more multi-
objective engineering problems. This includes optimizing
power flow and economic emission dispatch while consider-
ing renewable energy resources. By testing the algorithm on
these real-world engineering problems, we aim to validate its
effectiveness and practicality in solving complex optimiza-
tion challenges.
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Fig. 6 Comparison of obtained Pareto fronts on DTLZ functions

Fig. 7 Comparison of obtained Pareto fronts on weld beam function
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