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Abstract
Many real-world problems can be naturally formulated as discrete multi-objective optimisation (DMOO) problems. We have
proposed a novel Physarum-inspired competition algorithm (PCA) to tackle these DMOO problems. Our algorithm is based
on hexagonal cellular automata (CA) as a representation of problem search space and reaction–diffusion systems that control
the Physarum motility. Physarum’s decision-making power and the discrete properties of CA have made our algorithm a
perfectly suitable approach to solve DMOO problems. Each cell in the CA grid will be decoded as a solution (objective
function) and will be regarded as a food resource to attract Physarum. The n-dimensional generalisation of the hexagonal
CA grid has allowed us to extend the solving capabilities of our PCA from only 2-D to n-D optimisation problems. We
have implemented a novel restart procedure to select the global Pareto frontier based on both personal experience and shared
information. Extensive experimental and statistical analyses were conducted on several benchmark functions to assess the
performance of our PCA against other evolutionary algorithms. As far as we know, this study is the first attempt to assess
algorithms that solve DMOO problems, with a large number of benchmark functions and performance indicators. Our PCA
has confirmed our assumption that individual skills of competing Physarum are more efficient in exploration and increase
the diversity of the solutions. It has achieved the best performance for the Spread indicator (diversity), similar performance
results compared to the strength Pareto evolutionary algorithm (SPEA2) and even outperformed other well-established genetic
algorithms.

Keywords Discrete multi-objective optimisation · Physarum · Competition · Bio-inspired algorithms · Evolutionary
algorithms

1 Introduction

Many real-world optimisation problems are multi-objective
in nature, which means that the optimal decisions need to
be taken in the presence of multiple conflicting objectives
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(Deb 2014). Most of the existing research has focused on
continuous multi-objective optimisation (CMOO) problems
(Zopounidis and Pardalos 2010). However, DMOOproblems
with discrete variables and black-box objective functions are
frequently encountered in a diverse set of disciplines such
as engineering (Han et al. 2020), network models (Bergman
et al. 2018) transportation (Ghannadpour and Zarrabi 2019),
supply chain (Dickersbach 2005), medicine (Wang and Ma
2018) and many combinatorial problems (Zouache et al.
2018). For more details, the reader is kindly requested to
go through the survey papers (Liu et al. 2020; Deb 2014;
Ehrgott 2006; Ehrgott et al. 2016). Despite the finite number
of objective functions and the relative finite search space in
these DMOO problems, efficient algorithms are still lacking.
The challenge of developing efficient algorithms arises from
the discontinuity of objective functions and the discreteness
of the optimal solution set.
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The inspiration from biology and nature has been one
of the most important and exhaustless sources to develop
novel algorithms and innovative techniques to solve decision-
making problems over the past decades (Afek et al. 2011;
Kroeker 2011; Yang 2010). Computer scientists are taking
inspiration from Physarum intelligent foraging behaviour to
come up with many novel bio-inspired models capable of
solving many NP-hard problems (Adamatzky 2010).

Swarm intelligence is oneof themost interesting approaches
for solving multi-objective optimisation (MOO) problems
(Mostaghim and Teich 2013; Nebro et al. 2009; Alaya et al.
2007;Zou et al. 2011). These approaches dealwith the collec-
tive behaviour of decentralised and self-organised systems.
Just like social insects and animals, Physarum too exhibits
swarm intelligence; it shares many features of collective
behaviour such as synchronisation, communication, positive
feedback, leadership and response thresholds (Reid andLatty
2016). Inmany optimisation problems, it is crucial to achieve
an optimal balance between social collaboration and popu-
lation diversity (Wong et al. 2010). A major issue that may
rise in some swarm intelligence algorithms is the premature
convergence as they focus on social collaboration within the
population, and they seldom pay attention to the competi-
tion among individuals (Beni and Wang 1993). We believe
that the individual skills of competitors are more efficient to
achieve a good balance between exploration and exploita-
tion and are an important approach to maintain population
diversity and the effectiveness of the search.

We have proposed a novel model to imitate the com-
plex patterns observed in Physarum generated in competition
settings (Awad et al. 2019a). This new model is based on
hexagonal cellular automata (CA) and reaction–diffusion
(RD) systems. Physarum’s decision-making power and the
discrete properties ofCAhavemade our algorithmaperfectly
suitable approach in solving DMOO problems.

Physarum certainly meets the criteria of an ideal model of
decision-maker, as it makes multi-objective foraging deci-
sions (Beekman and Latty 2015). Similar to those organisms
that have a central information processing unit like a brain,
Physarum balances its nutrient intake based on optimality
theory. Physarum is capable of choosing the source that is
high in concentration and away from dangerous environ-
ment, and it trades off risk against food quality (Latty and
Beekman 2010). For searching in a discrete space, CA was
a very successful choice. CA can represent a physical sys-
tem, in which space and time are discrete. The physical grid
quantities can take only a finite set of values and any finite
number of dimensions. This has motivated us to develop a
novel Physarum-inspired optimisation algorithm for DMOO
problems. This algorithm is based on the possible heuristics
that Physarum uses in complex foraging decisions in compe-
tition settings. Instead of using Physarum to optimise swarm
algorithms, we explore the potential of competition among

individual Physarum acting as a swarm to accelerate the algo-
rithm’s convergence, guarantee the diversity of solutions and
increase the ability to escape from local optima.

1.1 Work novelty and contributions

In this research, we proposed a novel autonomous Physarum-
inspired competition algorithm (PCA). The competition
among the different Physarum individuals has extended the
search (exploration) from a single Physarum as in previous
Physarum-inspired algorithms to a population-based search
as in swarm algorithms, but keeping individual skills. This
has facilitated global exploration and kept population diver-
sity. We have considered the n-dimensional generalisation of
the hexagonal grids to extend the solving capabilities of our
PCA from only two-dimensional to multi-dimensional opti-
misation problems. PCA has achieved the best performance
for the Spread indicator, inverted generational distance plus
(IGD+), the second-best values for the HV and Epsilon
indicators after SPEA2, and it even outperformed other well-
established genetic algorithms.Wehave implemented a novel
restart procedure which improved the overall performance as
it drives the exploitation towards the best solution based on
both personal experience and shared information. One of the
interesting points in this research is a large number of bench-
mark functions and the diverse set of performance metrics
used.

In this paper, a short overview of background concepts and
related technologies, for a better understanding of DMOO
problems, is presented in Sect. 2. We will then go further to
show howwe developed a novel Physarum competition algo-
rithm (PCA) capable of solving DMOO problems (Sect. 3).
We have conducted extensive experimental and statistical
work on several benchmark functions to assess the per-
formance of our PCA against state-of-the-art evolutionary
algorithms (Sect. 4). First, we will provide the experimen-
tal results of deep valley problem, which is a discrete 2-D
optimisation problems. Second, we will consider the n-D
generalisation of the hexagonal grids to extend the solving
capabilities of our PCA from only 2-D to n-D optimisation
problems. Finally, we will give a conclusion of this research
in Sect. 5.

2 Background concepts and related
technologies

2.1 Background concepts

The concepts of MOO problems have been defined by many
researchers (Deb et al. 2000). However, in this research, we
will focus onDMOOproblems (Fig. 1). DMOOproblems are
concerned with a class of mathematical optimisation prob-
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Fig. 1 In this DMOO problem, we are trying to maximise the perfor-
mance and at the same time minimise the cost. The red dots are the
non-dominated solution (Pareto front) while the yellow dots are exam-
ple of solutions dominated by red ones (this figure is based onBrockhoff
(2018) with some modifications)

lems with discrete variables and multiple objectives to be
optimised simultaneously. It is hard to optimise objectives
simultaneously because they are conflicting. These problems
can be mathematically formalised as follows:

minimise F(X) = ( f1(X), . . . , fm(X)),

{F : X → Rm,m ≥ 2}
subject to G(X) = (g1(X), . . . , gk(X)),

{G : X → Rk,Gk(X) ≥ 0, k ≥ 0}
H(X) = (h1(X), . . . , hl(X)),

{H : X → Rl , Hl(X) = 0, l ≥ 0}
and X = (x1, . . . , xn), {X ⊂ Zn}

(1)

In the above equation, X is an n-dimensional decision vari-
able (vector) from a discrete (Integer) space. F(X) is an
objective vector composed of m real-valued objective func-
tions which are either continuous or discrete. G(X) and
H(X) are the constraint vectors, which consist of real-valued
functions representing inequality and equality constraints,
respectively.

For more illustration, we have to be familiar with the fol-
lowing concepts:

Definition 1 (Decision Variables). Decision variables are
controllable options that need to be determined in order to
solve a problem. The solutions for the optimised problem are
generated from the search space of each decision variable.
The problem is solved when the best values of the decision
variables have been identified.

Definition 2 (Objective Functions). The objective function
of an optimisation problem indicates how much each deci-
sion variable contributes to the value to be optimised in the
problem.

Definition 3 (Constraints). Constraints define the possible
values that the decision variables of an optimisation problem
must be fulfilled while optimising (minimising or maximis-
ing) F(X). They typically represent resource constraints, or
the minimum or maximum levels of an activity.

Definition 4 (Pareto Dominance). From the problem defi-
nition 1, let a = (a1, . . . , am), b = (b1, . . . , bm) be two
solution vectors obtained from a decision variable (vector).
a is said to dominate b if ai ≤ bi∀i = 1, . . . ,m and a �= b

2.2 Related work

The optimal solution for MOO problems is often not a sin-
gle one, but rather a set of solutions known as the Pareto
optimal set (or Pareto frontier). In this set, no element is
superior to the others for all the objectives.Most of themulti-
objective optimisation algorithms are based on the theories
of Pareto Sort and non-dominated solutions (dominance-
based) (Hillermeier 2001). There are two main sets of
approaches for generating the Pareto frontier for a MOO
problem. The first set of approaches are the criterion-space
search methods, which rely on a combination of weighted
sums and constraints scalarisations (Kirlik and Sayin 2014;
Bektaş 2018) or the augmentedweightedTchebycheff scalar-
isation (Holzmann and Smith 2018). The second is the
decision-space search methods, which are typically based
on branch-and-bound search. These methods are developed
for mixed-integer linear programmes that operate over the
space defined by the original decision variables (Mavrotas
and Diakoulaki 1998; Adelgren and Gupte 2017).

Algorithms for solving MOO problems include weighted
sum (Audet et al. 2008), continuation methods (Schütze
et al. 2008) and evolutionary algorithms (Deb 1999). Multi-
objective evolutionary algorithms (MOEAs) are efficient
approaches for solving MOO problems (Li et al. 2015).
Two of the most well-knownMOEAs are the non-dominated
sorted genetic algorithm (NSGA-II) (Deb et al. 2000) and
the strength Pareto evolutionary algorithm (SPEA2) (Zitzler
et al. 2001). GA is based on natural selection and evolu-
tion. GA is a very powerful optimisation algorithm in many
scientific fields. A continuous genetic algorithm proved to
be an efficient solver for systems of second-order bound-
ary value problems (Arqub and Abo-Hammour 2014). It
involves initialisation, evaluation, selection, crossover,muta-
tion, replacement and termination. An elegant explanation
can be reviewed from Abo-Hammour et al. (2013). SPEA2
contains important operations such as archiving of indi-
viduals with good fitness, density estimation and fitness
assignment and is able to obtain a population with both
“precision” and “diversity”. SPEA2+ attempts to improve
the problem space exploration abilities of SPEA2 by adding
a more effective crossover mechanism and an algorithm to
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maintain diversity in the two object and variable spaces (Zit-
zler et al. 2001).

These two classical algorithms perform relatively well on
MOOproblemswhen thenumber of objective functions is not
more than three. However, their performance significantly
degrades for MOO problems when the number of objective
functions is greater than four, inwhich case it becomesmany-
objective optimisation problems (Ishibuchi et al. 2008).
More recent studies have proposed improved variants of
dominance-based MOEAs that use reference vector-based
niching selection rather than the crowding distance-based
selection. NSGA-III (Deb and Jain 2014) is an example of
such algorithms. Relaxed-dominance-basedMOEAs that are
used for the mating and/or environmental selections instead
of the exact Pareto-dominance relationship have also been
proposed. MOEAs based on ε dominance (ε-MOEAs) (Deb
et al. 2005) and differential evolution (Arunachalam 2008)
are examples of such algorithms.

Most of the above-mentioned techniques were designed
for solving CMOO problems (Zopounidis and Pardalos
2010); however, DMOO problems are frequently encoun-
tered in a diverse set of engineering and scientific domains
(Ehrgott 2006; Zhang et al. 2008). Some existing state-of-
the-art methodologies rely on parametric single-objective
reformulations of DMOO problems, employing commercial
integer programming (IP) solvers as black-box tools for their
algorithms (Audet et al. 2008). However, the Pareto frontier
cannot be fully recovered by such linear parametric methods
in general. Recent studies have tried to address the DMOO
problems without tailoring the CMOO algorithm. However,
themajority of them are specialised algorithms targeting spe-
cific types ofDMOOproblems (Dickersbach 2005;Gao et al.
2018; Wang 2015; Zouache et al. 2018; Peng et al. 2016;
Bergman et al. 2018) and can only solve discrete bi-objective
optimisation problems (Boland et al. 2015; Parragh 2018),
while only a few of them deal with more than two objective
functions (Cacchiani and D’Ambrosio 2017).

Swarm intelligence algorithms are one of the most pop-
ular and important approaches for solving multi-objective
problems. Examples of swarm-inspired algorithms include
particle swarm optimisation (PSO) (Mostaghim and Teich
2013; Nebro et al. 2009), ant colony optimisation (ACO)
(Alaya et al. 2007) and artificial bee colony (ABC) (Zou
et al. 2011). Recently, Physarum-inspired algorithms have
been used for optimising the pheromone matrix initialisation
in multi-objective ACO for solving bi-objective travelling
salesman problems (Zhang et al. 2016b). The work of
Masi and Vasile (2014) was the first attempt to introduce
a Physarum-inspired algorithm for DMOO problems. Their
algorithmstarts by transforming a givenDMOOproblem into
a graph problem, which can be solved as in multi-objective

travelling salesman and vehicle routing problems. However,
this approach cannot be generalised well when dealing with
generic search problems rather than graph optimisation prob-
lems.

3 Physarum-inspired competition algorithm
for solving DMOO problems

In this section, we present a novel Physarum-inspired com-
petition algorithm (PCA) for DMOO problems. The present
algorithm is inspired from our Physarum competition math-
ematical model (Awad et al. 2019a). This model simulates
the foraging behaviour of multiple Physarum competing for
multiple food resources, where the Physarum is presented in
a cellular automata (CA) grid and the Physarum motility is
based on reaction–diffusion (RD) system applied onCA. The
Physarum motility over a hexagonal cellular automaton will
allow a discrete and effective search. Each cell in the grid
will be decoded as a solution (objective function) and will be
regarded as a food resource to attract Physarum (Fig. 2).

The algorithm works by identifying the non-dominated
solutions for an optimisation problem using the possible
heuristics that Physarum uses in complex foraging deci-
sions. The competing Physarumwill explore the search space
according to the diffusion equations based on the chemo-
attraction forces towards food resources, and the repulsion
negative forces that competing Physarum exert on each other.
Physarumwill diffusemaximally to cells that provide the best
possible trade-offs between the objective functions.

From biology, we understand that Physarum foraging
behaviour consists of two simultaneous self-organised pro-
cesses: expansion (exploration) and contraction (exploita-
tion) (Liu et al. 2017). From the algorithm perspective, the
balance between exploration and exploitation process is fun-
damental for solving DMOO problems (Sun et al. 2018). In
the Physarum exploration phase, the competing Physarum
will explore the search space according to diffusion equa-
tions. In the Physarum exploitation phase, the protoplasmic
flow in the body of Physarum plays a great role in develop-
ing its intelligence (Tero et al. 2005; Alim et al. 2013). The
protoplasmic flux connected to high-quality food resources
(non-dominated solutions) tends to increase, while the pro-
toplasmic flux to poor-quality food resources (dominated
solutions) tends to decrease as a feedback mechanism (Reid
and Latty 2016). This behaviour can be interpreted as a nat-
ural attitude in optimising the energy required to feed the
organism. The reader can refer to Awad et al. (2021) for
more details on Physarum intelligent foraging behaviour in
competition settings.
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Fig. 2 a Physarum search space
is mapped to the b objective
space, in which each cell in the
search space is decoded as a
food resource to attract
Physarum (this figure is based
on Brockhoff (2018) with
modifications)

3.1 Rules of Physarum-inspired competition
algorithm

In order to build our algorithm for solving DMOO problems,
we have proposed the following rules:

(i) The discrete search space of the optimisation problem
will be mapped to an n-dimensional hexagonal CA to
solve multi-dimensional problems (Sect. 3.2).

(ii) Multiple Physarumwill be randomly deployed over the
search space using either Monte Carlo or Latin Hyper
Cube sampling techniques (Sect. 3.4).

(iii) In the exploration phase, Physarum will explore the
search space according to the diffusion mechanism
(Eq.4). We also introduced a feature that maps to real
biological behaviour, where the Physarumwill stop dif-
fusing if its mass is less than a critical value. This will
prevent the Physarum from searching the entire search
space in an overly greedy manner.

(iv) Each cell in the grid will be decoded as a solution and
will be regarded as a food resource to attract Physarum.
The chemo-attraction forces exerted on Physarum will
be a function of the quality of the food resource, which
in this case is the degree of optimality of the solution
to fulfil the objectives of the problem (Eq.8).

(v) Competing Physarum will exert repulsion forces on
each other, which will be calculated as a negative force.
When two Physarum are competing for the same cell,
the one with higher mass will occupy this cell (Eq. 9).

(vi) The cells that represent food resources engulfed by a
Physarum (decoded solutions) will be excluded from
further search using Physarum spatial memory (Reid
et al. 2012). This memory will increase the searching
efficiency and avoid visiting previously explored areas
(Reid et al. 2012, 2013; Boussard et al. 2019).

(vii) The cells that represent unfeasible solutions and do
not satisfy the constraint set, will be regarded as walls
(obstacles), and the Physarumwill stop searching these
cells.

(viii) The procedure of exploring the search space by the
competing Physarum will stop when one of the two
conditions is satisfied: first when the competing strands
of Physarum are unable to find new dominant solu-
tions due to Physarum mass exhaustion (i.e. the mass
of Physarum is less than a critical value) and second
after a predefined number of iterations is reached.

3.2 Hexagonal CA grids

We have considered the Physarum motility over a 2-D,
3-D and n-D hexagonal cellular automata (Fig. 3), where
a set of Physarum (P = p1, p2 . . . pm) are compet-
ing on a set of chemicals (food resources) (CHM =
chm1, chm2 . . . chmn). The state of a cell ct(i, j) at iteration t
is described by its type (Eq.2).

CT(i, j) = {“FREE′′, “OBSTACLE′′,
“PHYSARUM′′, “CHEMICAL′′} (2)

where CT(i, j) represents the cell type.
In the two-dimensional hexagonal CA, the grid is divided

into a matrix (X × Y ) of identical hexagonal cells, and each
cell in the grid has six neighbours. Hexagonal/face-centred
cubic (fcc) grids and hexagonal/body-centred cubic (bcc)
grids are the three-dimensional “equivalence” of the two-
dimensional hexagonal grids. For the bcc grid, the Voronoi
neighbourhoods are truncated octahedra having eight hexag-
onal and six square faces. The space volumewas dynamically
tessellated by regular truncated octahedron voxels. The
hexagonal grid has the densest packing. The truncated octa-
hedron voxels are more “sphere-like”, and they have the
highest volumetric quotient (the ratio of the polyhedron vol-
ume to the volume of its circumsphere) which is much higher
than other possible space-filling polyhedrons.

For the n-dimensional generalisation of the hexagonal and
bcc grids (Nagy and Strand 2009), the hexagonal faces neigh-
bourhood is defined as follows:
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Fig. 3 Hexagonal
neighbourhood of different
dimensions

Definition 5 Let p = (p(1), p(2), . . . , p(n)) and q =
(q(1), q(2), . . . , q(n)) be two points in Zn .
q is 1-neighbour to p if q(1) ≡ q(2) ≡ · · · ≡ q(n) (mod 2)
and |p(i) − q(i)| ≤ 1 for 1 ≤ i ≤ n and

∑n
i=1 (p(i) −

q(i))2 ≤ n.

The position vector of a Physarum in the high-dimensional
grid will be defined as follows:

Pt
i = [pti1, pti2, . . . , ptin], i = 1, 2, . . . , n p, (3)

where i represents the i th Physarum individual, t is the cur-
rent time step, n is the dimensionality of the problem space,
and n p is the population size.

3.3 Reaction–Diffusion equations (RD)

The RD equations are applied on Physarum’smass. It defines
the exploration of the available area in the search space by
the cytoplasmic material formed by the Physarum plasmod-
ium. We combined both the chemo-attraction force towards
chemicals and the repulsion negative forces that compet-
ing Physarum exert on each other. Every cell occupied by
Physarum at time step (t) uses the values of its neighbour
cells to calculate the value of the mass at time step (t + 1).
These rules are executed until a certain number of iteration
reached. The Physarum diffusion is affected by the presence
of food resources (objective functions) and other competitors
as seen in the following equation:

PMt+1
i = PMt

i +
NBPi∑

Pk

×

⎧
⎪⎨

⎪⎩

(
PF ∗ PD

)(
PMt

k − PMt
i
)

if AAPi→Pk = 1,

PMt
i > Diff_Thr

0, otherwise

⎫
⎪⎬

⎪⎭
.

(4)

The variables in Eq. (4) are explained as follows:

– PMt+1
i defines the diffusion of Physarum Pi mass for the

next iteration (t + 1);
– PMt

i is the current mass of Physarum Pi for iteration (t);
– PMt

k is the current mass of neighbouring Physarum Pk ;
– NBPi is the neighbourhood of Physarum Pi as in Defini-
tion 5;

– PF is the sum of forces affecting Physarum diffusion
(defined in Eq.6);

– PD is the Physarum diffusion coefficient (defined in
Eq.5);

– AAPi→Pk indicates whether Physarum Pi is available to
diffuse towards a neighbouring Physarum Pk (defined in
Eq.7);

– Diff_Thr is the threshold in which the Physarum mass
must exceed in order to diffuse.

Now, we define Eqs. (5)–(10) as follows:

PPD = nbSize

10n
(5)

In Eq. (5), nbSize is the neighbourhood’s size of Physarum
Pi (Definition 5) and n is the dimensionality of the problem
space.

PF = 1 + AttForcePi→Pk + RepForcePi←Pk (6)

In Eq. (6), AttForcePi→Pk defines the value of attraction
forces applied on Physarum Pi coming from its neighbouring
Physarum Pk (defined in Eq.8) and RepForcePi←Pk defines
the value of repulsion forces applied on Physarum Pi exerted
by its neighbouring Physarum Pk (defined in Eq.9).

AAPi→Pk =

⎧
⎪⎨

⎪⎩

1, if Pk is Empty

1, if P I Di = P I Dk

0, otherwise

(7)
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In Eq. (7), PIDi is the ID of Physarum Pi .

AttForcePi→Pk =
F(X)∑

fi

{
fi · Max − fi (Pk)

fi · Max − fi · Min

}

(8)

In Eq. (8), F(X) is the objective functions and fi · Min and
fi ·Max are the local minimal and maximal values obtained
byPhysarumsearch for an objective function fi , respectively.

RepForcePi←Pk

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PMopp(k⇒i)

Total_Physarum_Mass
if PIDi �= PIDopp(k⇒i)

,

PMopp(k⇒i)
> Rep_Thr

0, otherwise

(9)

In Eq. (9), PMopp(k⇒i)
is the neighbour Physarum mass at the

opposite direction of Physarum Pk with reference to the cen-
tre point ci as defined in Eq. (10) and Rep_Thr is a threshold
wherePhysarummust reach to repel neighbouringPhysarum.

opp(k⇒i) = c2i−k (10)

In Eq. (10), opp(k⇒i) is the opposite direction of cell ck with
reference to the centre point ci .

The main steps of the PCA are shown in Algorithm 1.

3.4 Physarum deployment strategy

In the Physarum exploration phase, the initial deployment of
Physarum over the CA grids may directly affect the search
performance, especially when the search space of the opti-
misation problem is huge (Liu et al. 2015). Most of the
swarm-inspired algorithms use random deployment strategy
[Monte Carlo sampling (McKay et al. 1979)]. However, in
our algorithm design, we used a random deployment strategy
(MonteCarlo sampling) and introduced a distributed regional
deployment strategy, by using Latin Hypercube sampling
technique (LHS) (Lee et al. 2006). LHS is a statisticalmethod
used to generate parameter values from a multi-dimensional
distribution. In our previous work, LHS has proven to be
an effective approach for initialising population (Tian et al.
2019; Usman et al. 2020). A square grid containing sample
positions is a Latin square if (and only if) there is only one
sample in each row and each column. By using LHS, we
ensure that the multiple Physarum are evenly distributed all
over the search space and thus maximising the coverage.

Algorithm 1: Physarum-Inspired Competition Algo-
rithm

1 GPF = {} ; // Initialise empty global Pareto
front
/* Initialise Physarum (solutions)

{S = P1, P2, . . . , Pnp} */
2 foreach Physarum (Pi ) do
3 Pi .mass ← ini t_pm // Initialise Physarum

mass
4 Pi .lp f ← {} // Initialise empty local Pareto

front for Physarum
5 Randomly place Physarum (position vector) Pi in the search

space using either Monto Carlo or Latin Hypercube sampling
techniques.

6 end
7 current-i ter = 0
8 while current-i ter < max-i ter do
9 foreach Physarum (Pi ) do

10 Add Physarum Pi (solution) to it’s LPF (If not
dominated by other solutions in Physarum LPF)
// Initialise Physarum Neighbourhood

11 foreach Physarum Pk in Physarum Pi Neighbourhood ;
// Definition 5

12 do
13 if P_AA(Pi )→(Pk ) = 1 ; // Equation 7
14 then
15 Add a new Physarum (Pk) to the search space

with initial mass 0
16 end
17 end
18 end
19 foreach Physarum (Pi ) do
20 Diffuse Pt

i to the neighbouring cells ; // Equation 4
21 end
22 if USING RESTART PROCEDURE then
23 if i teration % restart-i teration = 0 then
24 Compute new GPF from each Physarum LPF .
25 Clear old Physarum (Solutions) and create others

from this new GPF (as in line 2)
26 end
27 end
28 current-i ter = current-i ter + 1
29 end
30 Compute GPF from each Physarum LPF .

3.5 External archive of the non-dominated solutions
set

In this research, each Physarum has its own external archive
to maintain its local best non-dominated solutions, i.e. local
Pareto front (LPF).We use the Pareto dominated comparison
mechanism (Reyes-Sierra and Coello 2006) to prune/update
this archive. The Pareto dominated comparison mechanism
works by comparing the newly decoded solution at tn+1 with
the archive at iteration tn using the Pareto domination rela-
tionship in order to select all non-dominated solutions. These
non-dominated solutions are saved into the new archive
at iteration tn+1 by concatenating/overwriting the previous
archive at iteration tn . In our algorithm design, the archive
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will initially contain the Physarum initial position as a
non-dominated solution. Afterwards, during the Physarum
exploration phase, each time a new solution is created (cor-
responding to a new position of Physarum); it will be added
to or discarded from the archive using the Pareto dominated
comparison mechanism.

In most of the previous studies, the performance of
the MOEAs was evaluated using bounded external archive
(BEA) based on non-dominated solutions in the final popu-
lation at the end of the search (Luong and Bosman 2012). In
this research, we have used an unbounded external archive
(UEA), which stores all non-dominated solutions found dur-
ing the search process. This method has been proved to be
more practical in real-world applications than the final pop-
ulation method (Tanabe et al. 2017).

3.6 Physarum-inspired competition algorithmwith
a restart mechanism

We introduced a new approach with a restart mechanism
(Algorithm 1, line 22). In our algorithm design, after a
predetermined number of iterations (restart-i ter ), multi-
ple Physarum will share their personal experiences (i.e.
personal bests), which can be interpreted as a commu-
nication mechanism among them (Reid and Latty 2016).
These local non-dominated solutions from each Physarum
archive will be compared together (using the Pareto dom-
inated comparison mechanism) to select the global Pareto
frontier (GPF). The cells identified as part of the global Pareto
frontier in the external archive will be selected as the new
Physarum population. These new Physarum will have their
original Physarum’smasswhichwill growand resume explo-
ration, while the others will potentially vanish. This restart
mechanism can avoid stagnation on local optima and drive
exploration towards the best solution positions based on both
personal experience and shared information.

4 Experiments

We have implemented our PCA using Java, and we have
used jMetal1 as a multi-objective optimisation framework
for our experiments (Durillo and Nebro 2011). All experi-
ments were carried out on the Maxwell high-performance
computing cluster from the University of Aberdeen.

4.1 Benchmark functions

A small number of DMOO benchmark functions have been
proposed in recent years (multiple-criteria decision-making
(MCDM), http://www.mcdmsociety.org/content/digital-library;

1 http://jmetal.sourceforge.net (version 5.5).

Mittelmann 2018), and they are only formulti-objective com-
binatorial problems.Toovercome this problem,we attempted
to get benefit from the rich pool of CMOO benchmark func-
tions and to transform them into DMOO problems.

One solution for this transformation is the direct discreti-
sation of a CMOO problem’s continuous search space. This
is achieved by partitioning the numeric continuous variables
into several sub-ranges as in Elomaa and Rousu (2004);
Riquelme et al. (2015);Abo-Hammour et al. (2014). The goal
is to find a set of cut points to partition the range into a small
number of intervals, thus transforming the continuous-valued
attributes into a finite number of intervals. As an example of
this method, assume we have a continuous search space of
a certain objective function, and the values of variables are
within the range of [0,1]. We will partition (discretise) this
search space to equal discrete intervals (DI) of 0.01 (0, 0.01,
…, 0.99, 1). By using this method, the problem will be com-
patible with the discretisedmotility of Physarum over the CA
grids as described in the Physarumcompetitionmathematical
model (Awad et al. 2019a) and in the biological experiments
of Shirakawa et al. (2015).

To generate the true Pareto frontier of our DMOO prob-
lems, we used the decision-space search method (Mavrotas
and Diakoulaki 1998; Adelgren and Gupte 2017). This
method is typically based on the branch-and-bound search
strategy developed for multi-objective integer linear pro-
gramming problems.

In our study, we have selected a wide range of 38 bench-
mark functions with different characteristics and parameter
settings such as DTLZ (Deb et al. 2002), GLT (Zhang et al.
2016a), MOP (Deb 1999) and ZDT (Zitzler et al. 2000). The
list of benchmark functions describing the parameters, upper
and lower bounds and the discretisation interval is shown in
Tables 1 and 2, where d, m and c indicate the number of
decision variables, objectives and constraints, respectively.

4.2 Performance assessment

As we are proposing a new optimisation algorithm, it is nec-
essary to compare the performance of our PCA against other
MOO algorithms. Assessing the performance of different
MOO algorithms usually requires two properties: conver-
gence and diversity. A number of quality indicators for
performance assessment have been proposed in literature
(Riquelme et al. 2015).

In our study, we have selected Epsilon (ε) (Zitzler et al.
2003), which is an indicator for measuring convergence,
Spread (�) (Li and Zheng 2009), which is an indicator
for measuring diversity, and hypervolume (HV) (Zitzler and
Thiele 1999) and inverted generational distance plus (IGD+)
(Veldhuizen and Lamont 2000; Ishibuchi et al. 2016), which
are indicators for measuring both convergence and diversity.
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Table 1 The characteristics of the selected benchmark functions

Problem ID DMOOProblems d m c Discrete variables bounds Discrete interval (DI) References

1 ConstrEx 2 2 2 10 < x0 < 100 DI (x0) = 0.01 Deb et al. (2000)

100 < x1 < 500 DI (x1) = 0.01

2 DTLZ4 5 3 0 0 < xn < 10 DI (xn) = 0.1 Deb et al. (2002)

3 DTLZ4 2 3 0 0 < xn < 100 DI (xn) =
0.01

4 DTLZ4 3 3 0 0 < xn < 50 DI (xn) =
0.05

5 Fonseca 3 2 0 −40 < xn < 40 DI (xn) = 0.1 Fonseca and Fleming (1995)

6 GLT1 2 2 0 0 < x0 < 100 DI (x0) = 0.01 Zhang et al. (2016a)

−100 < x1 < 100 DI (x1) = 0.01

7 GLT2 2 2 0 0 < x0 < 100 DI (x0) = 0.01

−100 < x1 < 100 DI (x1) = 0.01

8 GLT3 2 2 0 0 < x0 < 100 DI (x0) = 0.01

−100 < x1 < 100 DI (x1) = 0.01

9 GLT4 2 2 0 0 < x0 < 100 DI (x0) = 0.01

−100 < x1 < 100 DI (x1) = 0.01

10 GLT5 3 2 0 0 < x0 < 50 DI (x0) = 0.05

0 < x1 < 50 DI (x1) = 0.05

−50 < x2 < 50 DI (x2) = 0.05

11 Golinski 7 2 11 26 < x0 < 36 DI (x0) = 0.1 Ray (2003)

7 < x1 < 8 DI (x1) = 0.1

170 < x2 < 280 DI (x2) = 0.1

73 < x3 < 83 DI (x3) = 0.1

73 < x4 < 83 DI (x4) = 0.1

29 < x5 < 39 DI (x5) = 0.1

50 < x6 < 55 DI (x6) = 0.1

12 MOP1 5 2 0 0 < xn < 10 DI (xn) = 0.1 Deb (1999)

13 MOP2 5 2 0 0 < xn < 10 DI (xn) = 0.1

14 MOP3 5 2 0 0 < xn < 10 DI (xn) = 0.1

15 MOP4 5 2 0 0 < xn < 10 DI (xn) = 0.1

For Epsilon and IGD+ indicators, the lower the value,
the better the computed Pareto fronts, whereas for HV and
Spread indicators, the higher the value, the better the com-
puted Pareto fronts.

4.3 Experimental design

We have designed four scenarios for our Physarum compe-
tition algorithm, where a set of Physarum will be deployed
over the search space (cell automaton) using either random
sampling technique (Monte Carlo) McKay et al. (1979)) or
stratified sampling technique (Latin Hypercube) (Lee et al.
2006), and whether the restart procedure will be applied or
not. These four scenarios for our Physarum competition algo-
rithm are as follows:

(i) PCAwMC: A number of Physarum were deployed over
the cell automaton using Monte Carlo sampling tech-
nique, and the restart procedure was not applied.

(ii) PCAwLHS: A number of Physarumwere deployed over
the cell automaton using Latin hypercube sampling
technique, and the restart procedure was not applied.

(iii) PCASwMC: A number of Physarum were deployed
over the cell automaton using Monte Carlo sampling
technique, and the restart procedure was applied.

(iv) PCASwLHS: A number of Physarum were deployed
over the cell automaton using Latin hypercube sam-
pling technique, and the restart procedure was applied.
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Table 2 The characteristics of the selected benchmark functions

Problem ID DMOO Problems d m c Discrete variables bounds Discrete interval (DI) References

16 MOP1 2 2 0 0 < xn < 100 DI (xn) = Deb (1999)

0.01

17 MOP2 2 2 0 0 < xn < 100 DI (xn) =
0.01

18 MOP3 2 2 0 0 < xn < 100 DI (xn) =
0.01

19 MOP4 2 2 0 0 < xn < 100 DI (xn) =
0.01

20 MOP5 2 2 0 0 < xn < 100 DI (xn) =
0.01

21 MOP1 3 2 0 0 < xn < 50 DI (xn) =
0.05

22 MOP2 3 2 0 0 < xn < 50 DI (xn) =
0.05

23 MOP3 3 2 0 0 < xn < 50 DI (xn) =
0.05

24 MOP4 3 2 0 0 < xn < 50 DI (xn) =
0.05

25 MOP5 3 2 0 0 < xn < 50 DI (xn) =
0.05

26 MOP6 3 3 0 0 < xn < 50 DI (xn) =
0.05

27 MOP7 3 3 0 0 < xn < 50 DI (xn) =
0.05

28 NMMin 2 2 0 −1000 < x0 < DI (x0) = 10 Nebro (2014)

1000 DI (x1) = 10

−1000 < x1 <

1000

29 Srinivas 2 2 2 −200 < xn < 200 DI (xn) = 0.1 Srinivas and Deb (1994)

30 UF6 4 2 0 0 < x0 < 10 DI (x0) = 0.1 Zhang et al. (2008)

−10 < xn < 10 DI (xn) = 0.1

31 Viennet2 2 3 0 −400 < xn < 400 DI (xn) = Deb (1999)

0.01

32 Viennet4 2 3 3 −400 < xn < 400 DI (xn) =
0.01

33 ZDT1 2 2 0 0 < xn < 100 DI (xn) = Zitzler et al. (2000)

0.01

34 ZDT2 2 2 0 0 < xn < 100 DI (xn) =
0.01

35 ZDT6 2 2 0 0 < xn < 100 DI (xn) =
0.01

36 ZDT1 3 2 0 0 < xn < 50 DI (xn) =
0.05

37 ZDT2 3 2 0 0 < xn < 50 DI (xn) =
0.05

38 ZDT6 3 2 0 0 < xn < 50 DI (xn) =
0.05
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Table 3 A summary of the
parameters of the algorithms
used in the experiments

Algorithms Parameter settings

PCAwMC max-iter = 250, N = 100,PM0
i = 3000,

Diff_Thr = 50,Rep_Thr = 50

PCAwLHS max-iter = 250, N = 100,PM0
i = 3000,

Diff_Thr = 50,Rep_Thr = 50

PCASwMC max-iter = 250, restart-iteration = 10, N = 100,

PM0
i = 3000,Diff_Thr = 50,Rep_Thr = 50

PCASwLHS-RE max-iter = 250, restart-iteration = 10, N = 100,

PM0
i = 3000,Diff_Thr = 50,Rep_Thr = 50

NSGA-II max-ev = 2500, N = 100, Pc = 0.9, ηc = 20.0,

Pm = 1/d, ηm = 20.0,OPERATOR = SBXC + PM + BTS

NSGA-II-45 max-ev = 2500, N = 100, Pc = 0.9, ηc = 20.0,

Pm = 1/d, ηm = 20.0,OPERATOR = SBXC+
PM + BT S

NSGA-III max-iter = 250, N = 100, Pc = 0.9, ηc = 30.0,

Pm = 1/d, ηm = 20.0,OPERATOR = SBXC+
PM + BT S

SPEA2 max-iter = 250, N = 100, Pc = 0.9, ηc = 20.0,

Pm = 1/d, ηm = 20.0,OPERATOR = SBXC+
PM + BTS

Other MOEAs used for comparison were NSGA-II (Deb
et al. 2000), NSGA-II-45,2 NSGA-III (Deb and Jain 2014)
and SPEA2 (Zitzler et al. 2001). These four algorithms are
implemented in jMetal. The parameter settings of these algo-
rithms are shown in Table 3, where N , max-iter and max-ev
indicate the population size, maximum number of iterations
and the maximum number of function evaluations, respec-
tively. PMass, Diff_Thr and Rep_Thr indicate the Physarum
initial mass, diffusion threshold used in Eq. (4) and repulsion
threshold used in Eq. (9), respectively. OPERATOR indicates
the evolutionary operator used in MOEA, where SBX, PM
and BTS stand for simulated binary crossover using two
parent solutions (integer encoding) (Agrawal et al. 1995),
polynomial-based mutation (Coello et al. 2007) and binary
tournament selection (Miller and Goldberg 1995), respec-
tively. Pc and Pm are the crossover and mutation probability.
d is the number of decision variables. ηc and ηm are the dis-
tribution indexes of SBX and PM, respectively.

4.4 Experimental results and statistical analysis

Given an entire computed true Pareto optimal front for a
benchmark function, the obtained results were analysed on
the basis of the performance indicators as mentioned in
Sect. 4.2. In this research, exhaustive experimental studies
and extensive statistical analysis were performed to com-

2 Different implementation of NSGA-II in jMetal with different param-
eters.

pare the performance of our proposed Physarum competition
algorithms with four evolutionary algorithms. A minimum
number of 30 independent runs is usually recommended;
however, in our research 40 independent runs were executed
for each algorithm.

As our experimental results did not follow a normal dis-
tribution, the differences between the results were assessed
using the median and interquartile range (IQR). More
detailed information was obtained by printing these results
using box plots. Afterwards, we have applied a nonpara-
metric statistical test, using Kruskal–Wallis for independent
samples (also called distribution-free methods) (Kruskal
et al. 1952), to test the null hypothesis that all algorithms
have the same performance in each indicator for a certain
benchmark function. Following the rejection of Kruskal–
Wallis test and in order to find statistical significance between
each algorithm, post hoc pair-wise analysis was further per-
formed between the results of each algorithm, using theDunn
approach with the Bonferroni correction (Dunn 1964) at a
0.05 significance level.

4.5 Experimental results on two-dimensional
optimisation problems

For illustrating our results in the discrete 2-D optimisation
problem, the deep valley bi-objective optimisation problem
was selected as its continuous counterpart MOO problem is
considered to be difficult for evolutionary algorithms (Deb
1999). The feasible set of this problem is the integer points
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Table 4 The statistical pair-wise analysis of PCAwMC VS MOEA
algorithms with respect to performance indicators (HV, Epsilon, IGD+
and Spread) in deep valley problem

PCAwMC HV Epsilon IGD+ Spread

NSGA-II � – � �
(Sig.) (0.040) (1.000) (0.005) (0.001)

NSGA-III � � � �
(Sig.) (0.001) (0.001) (0.001) (0.001)

SPEA2 � � – �
(Sig.) (0.001) (0.008) (0.087) (0.001)

Three different symbols are used: “–” indicates that there is no statistical
significance between the algorithms and “�” and “�” were used when
PCAwMC achieves statistically better or worse results, respectively,
than the MOEA algorithms

within the square [0, 100] × [0, 100], and the Pareto front
is located at the bottom of a deep valley from the domi-
nated regions. Statistical analysis was performed to compare
the performance of our proposed Physarum competition
algorithms (PCAwMC) in comparison with the three state-
of-the-art evolutionary algorithms (NSGA-II, NSGA-III and
SPEA2). The box plot (Fig. 4) of all indicators showed that
our algorithm achieved the best performance for the Spread
indicator about 1.9 compared to 0.8, 0.4 and 0.3 forNSGA-II,
NSGA-III and SPEA2, respectively. These results analyses
clearly demonstrate the ability of our algorithm to provide a
better spread of solutions with good convergence behaviour.
It has also confirmed our assumption that individual skills
of competing Physarum are more efficient in exploration,
which increases the diversity of the solutions. As regards the
other performance indicators, PCA has achieved the second-
best values for IGD+, HV and Epsilon indicators that are
only exceeded by SPEA2. The pair-wise analysis (Table 4)
showed that PCA spread performance is highly significant
(P0.001) than all other algorithms. PCA outperformed the
NSGA-II and NSGA-III for other indicators. PCA achieved
nearly similar IGD+ performance as SPEA2 with no statisti-
cal difference, it has been only exceeded by SPEA2 for HV
and Epsilon indicators.

4.6 Experimental results on n-dimensional
optimisation problems

In this subsection, we provide an extended version of our
earlier conference poster paper (Awad et al. 2019b). We have
extended the discrete search space of the Physarum from 2-D
problems as deep valley problem to n-D generalisations of
the hexagonal CA grids to solve multi-dimensional, multi-
objective optimisation problems.

Exhaustive experimental study and extensive statistical
analysis was performed to compare the performance of
four of our proposed Physarum competition algorithms (i.e.

PCAwMC, PCAwLHS, PCASwMC and PCASwLHS) in
comparisonwith the four evolutionary algorithms (NSGA-II,
NSGA-II-45, NSGA-III and SPEA2) on a benchmark suite
of 38 problems (as indicated in Sect. 4.1) ranging from two
dimensions to seven dimensions with up to 10 objectives and
5 constraints.

There are someprevious benchmarking studies forMOEAs
(Li et al. 2013; Bezerra et al. 2018); however, to the best of
our knowledge, an exhaustive benchmarking study has never
been performed. As far as we know, this study is the first
attempt to assess algorithms that solve DMOO problems,
with a large number of benchmark functions andperformance
indicators.

The complete and detailed results of the performance indi-
cators rankingwith respect to the 38 benchmark functions for
each algorithm are provided in “Appendix” (Table 7).

4.7 The overall performance of PCA versus MOEAs

We exhaustively investigate the anytime performance (over-
all performance) of our four PCAs versus four MOEAs
across all benchmark functions collectively to compare algo-
rithms using the given performance indicator values (IGD+,
HV, Epsilon and Spread) obtained in 40 runs for each algo-
rithm. For this comparison,we calculated (from the statistical
results in Table 7) the mean rank of performance indicators
for each algorithm as shown in Table 5.

In addition, we performed a nonparametric statistical test,
using Friedman for dependent samples (Friedman 1937), to
test the null hypothesis that all algorithms are having the
same performance for each indicator across all the bench-
mark functions. Following the rejection of Friedman test
and in order to find statistical significance with respect to
each performance indicator, between each algorithm, post
hoc pair-wise analysis was further performed between the
results, using the Dunn approach with the Bonferroni cor-
rection (Dunn 1964) at a 0.05 significance level. Table 6
summarises the pair-wise comparison between algorithms’
performance in terms of HV, IGD+, Epsilon and Spread indi-
cators, respectively, for all benchmark functions.

Looking at the results presented in Tables 5 and 6, it can
be seen that PCASwLHS and PCASwMC have achieved the
best performance for the Spread and IGD+ indicators and the
second-best values for the HV and Epsilon indicators after
SPEA2. Furthermore, the PCA with restart procedure algo-
rithms have been proven to outperform NSGA-II, NSGA-
II-45 and NSGA-III in terms of all performance indicators.
This good performance of the PCAs in terms of the diver-
sity (Spread indicator) has confirmed our hypothesis that the
individual skills of the competing individuals are more effi-
cient for avoiding the premature convergence and increasing
the ability of escaping from local optima. The combina-
tion of the restart procedure and LHS deployment strategy
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Fig. 4 Box plot graph of
performance indicators for our
PCAs and the four
state-of-the-art MOEAs with
respect to deep valley problem

Table 5 The mean rank of
performance indicators as sorted
from the best performance to the
worst in an up–down
arrangement with respect to all
benchmark functions
collectively

HV IGD+ Epsilon Spread

SPEA2 7.24 PCASwLHS 2.66 SPEA2 1.86 PCASwMC 6.11

PCASwLHS 5.63 PCASwMC 2.74 PCASwLHS 3.41 PCASwLHS 5.87

PCASwMC 5.51 SPEA2 3.11 PCASwMC 3.57 NSGA-II 4.95

NSGA-II-45 4.96 NSGA-II-45 4.3 NSGA-II-45 4.03 NSGA-II-45 4.84

NSGA-II 4.93 NSGA-II 4.42 NSGA-II 4.08 PCAwMC 4.33

NSGA-III 3.36 PCAwLHS 5.97 NSGA-III 5.41 PCAwLHS 4.3

PCAwLHS 2.3 PCAwMC 6.13 PCAwLHS 6.82 SPEA2 3.03

PCAwMC 2.07 NSGA-III 6.67 PCAwMC 6.84 NSGA-III 2.58

(PCASwLHS) has improved the overall performance. This
is because LHS enables well-distributed exploration cover-
ing the whole search space and the restart procedure drives
the exploitation towards the best solution based on both the
personal experience and the shared information by vanishing
unfavourable paths (i.e. dominated solutions).

One of the interesting points in this research is the large
number of benchmark functions and the diverse set of per-
formance metrics used. These makes it very challenging for
selecting appropriate statistical analysis methods to compare
the performance of different algorithms. For this reason, the

vast majority of published articles used only one or two
performance metrics and a limited number of benchmark
functions (Engelbrecht 2014). Due to the lack of research
that covers in detail how to conduct statistical analysis to
assess the performance of MOO algorithms, we intend in the
future to develop a statistical framework for performing anal-
ysis to make it easier for researchers to evaluate their newly
proposed algorithms.
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5 Conclusion and future work

Many real-world problems can be naturally formulated as
discrete multi-objective optimisation (DMOO) problems. To
the best of our knowledge, we are the first to present a
Physarum competition algorithm for solving discrete multi-
objective optimisation problems. This algorithm is based
on Physarum decision-making capabilities, and its discrete
motility over a hexagonal cellular automaton allowed effec-
tive search in discrete search space. The modelling of the
Physarum motility is based on the chemo-attraction forces
towards food resources (objective functions) and the repul-
sion negative forces that competing Physarum exert on each
other. We have considered the n-dimensional generalisation
of the hexagonal grids to extend the solving capabilities of
our PCA from only two-dimensional to multi-dimensional
optimisation problems. We have implemented a novel restart
procedure which improved the overall performance as it
drives the exploitation towards the best solution based on
both personal experience and shared information. Exten-
sive experiments were conducted on several benchmark
functions to assess the performance of our PCA against state-
of-the-art evolutionary algorithms. The statistical analysis
clearly demonstrated that our algorithm had achieved the
best performance for the Spread and IGD+ indicators and
the second-best values for the HV and Epsilon indicators
after SPEA2. Furthermore, the PCA with restart procedure
algorithms has been proven to outperform NSGA-II and
NSGA-III in terms of all performance indicators. These
results have confirmed our assumption that individual skills
of competing Physarum are more efficient in exploration,
which increases the diversity of the solutions. These results
have demonstrated that PCA is a promising algorithm for
solving DMOO problems. In addition, since our algorithm
is implemented in Java, it can be easily integrated with the
jMetal framework for providing a flexible and configurable
PCA.

For future work, we intend to explore the potential for
solving continuous MOOP. This can be achieved by parti-
tioning the numeric continuous variables in the search space
into several sub-ranges, thus transforming the continuous-
valued attributes into a finite number of discrete intervals.
Accordingly, using the CA can avoid a huge amount of
computation caused by the huge number of states selected
as continuous actions. In our (PCA) algorithm, we have
considered the n-dimensional generalisation of the hexag-
onal grids to extend the solving capabilities of our PCA
from only two-dimensional to multi-dimensional optimisa-
tion problems without the need to use multiple automata. So,
we believe that the generalisation of our algorithm to solve
both discrete MOOP, and continuousMOOP is possible with
expected good results.
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Appendix

See Table 7.

Table 7 Detailed performance results of the used algorithms across the 38 benchmark problems

Problem ID PI PCAwMC PCAwLHS PCASwMC PCASwLHS NSGA-II NSGA-II-45 NSGA-III SPEA2

1 HV 55.45 64.21 234.04 244.93 172.24 170.51 62.13 280.50

1 Epsilon 258.31 244.60 125.46 114.21 136.50 120.04 228.05 56.83

1 IGDP 261.59 254.09 83.10 70.90 152.91 154.28 265.81 41.33

1 Spread 54.54 44.29 279.58 276.71 202.59 203.13 83.30 139.88

2 HV 160.50 160.50 160.50 160.50 160.50 160.50 160.50 160.50

2 Epsilon 234.68 246.69 234.63 246.01 90.51 78.49 76.50 76.50

2 IGDP 232.94 246.49 232.80 249.78 90.48 78.53 76.50 76.50

2 Spread 75.59 80.08 81.71 84.63 272.25 244.49 194.20 251.06

3 HV 64.15 86.33 221.84 237.08 172.96 168.65 165.54 167.46

3 Epsilon 163.73 152.70 73.24 65.03 190.19 217.66 201.36 220.10

3 IGDP 164.56 151.13 81.25 73.19 185.66 219.80 184.13 224.29

3 Spread 249.15 241.25 208.55 196.06 91.24 84.95 192.30 20.50

4 HV 88.34 72.10 143.99 126.05 215.36 190.16 210.63 237.38

4 Epsilon 199.73 210.14 156.94 162.51 123.99 163.59 149.78 117.34

4 IGDP 195.78 190.00 131.84 130.99 139.74 174.40 172.83 148.44

4 Spread 196.86 193.30 226.26 237.23 111.05 114.19 176.60 28.51

5 HV 38.98 42.03 256.50 256.50 163.60 169.40 100.50 256.50

5 Epsilon 282.21 278.79 49.00 49.00 165.55 158.04 217.75 83.66

5 IGDP 281.55 279.45 65.00 65.00 160.79 147.06 220.15 65.00

5 Spread 100.69 116.83 131.99 133.93 280.03 277.31 20.53 222.71

6 HV 68.05 53.80 238.00 238.00 190.90 190.53 66.73 238.00

6 Epsilon 268.09 267.96 51.50 51.50 152.59 144.46 245.10 102.80

6 IGDP 252.78 251.33 93.00 93.00 118.00 105.50 277.40 93.00

6 Spread 198.85 202.96 222.60 248.33 146.39 135.96 31.84 97.08

7 HV 77.73 83.33 257.49 258.55 161.94 163.48 20.50 261.00

7 Epsilon 248.65 247.81 69.66 90.31 158.45 152.76 284.85 31.50

7 IGDP 243.79 237.21 64.86 61.41 157.58 159.65 300.50 59.00

7 Spread 182.93 164.19 273.21 275.35 100.25 92.59 174.99 20.50

8 HV 75.25 78.26 215.96 219.23 222.00 222.00 29.30 222.00

8 Epsilon 247.50 243.74 71.24 80.60 117.80 125.60 287.53 110.00
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Table 7 (continued)

Problem ID PI PCAwMC PCAwLHS PCASwMC PCASwLHS NSGA-II NSGA-II-45 NSGA-III SPEA2

8 IGDP 241.33 239.18 103.00 100.00 100.00 100.00 300.50 100.00

8 Spread 186.09 165.39 271.86 275.89 88.91 87.49 184.60 23.78

9 HV 72.00 80.80 233.00 233.00 205.74 197.76 28.70 233.00

9 Epsilon 253.04 266.85 52.00 52.00 148.21 151.11 261.61 99.18

9 IGDP 258.73 257.23 98.00 98.00 100.50 108.00 265.55 98.00

9 Spread 77.81 82.31 189.98 194.76 236.65 222.43 40.38 239.69

10 HV 132.93 122.03 240.99 223.03 64.01 53.31 243.00 204.71

10 Epsilon 187.59 196.44 134.68 135.04 261.14 263.00 24.00 82.13

10 IGDP 128.05 136.08 51.74 57.73 246.81 266.36 261.03 136.21

10 Spread 165.89 189.88 197.86 193.85 226.49 227.85 23.21 58.98

11 HV 158.05 191.69 187.41 150.65 164.45 212.51 37.30 181.94

11 Epsilon 189.80 165.04 176.45 210.74 111.19 81.51 260.83 88.45

11 IGDP 137.35 121.18 125.28 150.81 182.26 123.34 293.69 150.10

11 Spread 76.15 85.39 84.81 79.60 243.13 251.06 276.26 187.60

12 HV 132.74 142.96 146.33 145.24 200.09 179.33 123.04 214.29

12 Epsilon 186.85 172.35 172.50 171.84 123.75 140.75 214.58 101.39

12 IGDP 156.50 156.50 156.50 156.50 156.50 156.50 188.50 156.50

12 Spread 108.66 90.73 96.96 93.03 259.91 269.60 113.15 251.96

13 HV 89.13 79.78 93.51 82.58 229.46 209.00 261.14 239.41

13 Epsilon 216.20 231.01 217.69 231.28 105.75 121.68 67.95 92.45

13 IGDP 157.00 157.00 157.00 157.00 157.00 157.00 185.00 157.00

13 Spread 102.54 132.65 114.43 128.46 272.16 276.76 26.00 231.00

14 HV 129.69 126.50 130.13 134.83 185.48 169.36 210.85 197.18

14 Epsilon 240.05 235.95 236.80 232.75 78.34 105.56 85.59 68.96

14 IGDP 160.50 160.50 160.50 160.50 160.50 160.50 160.50 160.50

14 Spread 89.58 121.11 103.01 122.34 258.13 255.90 70.45 263.49

15 HV 90.50 84.33 77.58 91.39 227.79 228.38 241.78 242.28

15 Epsilon 218.59 231.81 239.18 220.10 90.68 92.84 120.84 69.98

15 IGDP 157.50 157.50 157.50 157.50 157.50 157.50 181.50 157.50

15 Spread 114.99 103.04 122.13 111.25 263.00 262.88 51.10 255.63

16 HV 58.25 54.63 221.70 221.15 179.50 177.88 73.14 297.76

16 Epsilon 242.55 254.21 151.85 149.69 141.00 130.78 186.30 27.63

16 IGDP 263.35 258.44 81.64 81.59 145.45 152.26 251.19 50.09

16 Spread 143.30 141.69 251.53 246.24 208.66 210.79 22.68 59.13

17 HV 70.11 73.91 224.00 220.73 170.99 171.11 60.75 292.40

17 Epsilon 223.05 217.45 138.10 136.08 152.71 151.33 233.36 31.93

17 IGDP 208.65 213.10 74.31 76.84 184.70 152.68 277.81 95.91

17 Spread 147.13 134.44 237.21 227.75 234.44 221.84 53.50 27.70

18 HV 68.33 64.88 239.78 249.25 161.75 164.50 54.63 280.90

18 Epsilon 255.43 258.93 101.36 86.68 139.21 127.64 242.23 72.54

18 IGDP 256.74 256.30 77.33 70.79 158.09 159.28 262.64 42.85

18 Spread 167.15 163.43 192.59 163.60 260.30 253.63 59.26 24.05

19 HV 51.55 54.69 237.34 256.94 171.06 167.44 84.29 260.70

19 Epsilon 264.84 258.63 78.58 59.90 146.65 158.54 249.41 67.46

19 IGDP 215.91 202.04 83.06 70.50 153.64 153.64 280.28 124.94

19 Spread 80.03 82.68 283.43 273.16 194.16 204.66 20.80 145.09
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Table 7 continued

Problem ID PI PCAwMC PCAwLHS PCASwMC PCASwLHS NSGA-II NSGA-II-45 NSGA-III SPEA2

20 HV 44.71 45.53 214.05 220.10 186.74 179.45 94.75 298.68

20 Epsilon 268.95 269.09 147.79 140.54 106.15 112.26 203.29 35.94

20 IGDP 249.50 252.84 93.53 91.85 138.73 148.60 279.06 29.90

20 Spread 196.33 187.51 253.89 238.65 160.33 166.30 26.59 54.41

21 HV 48.13 45.68 186.09 198.60 202.46 189.00 119.85 294.20

21 Epsilon 264.78 262.58 146.10 126.33 123.73 146.51 165.89 48.10

21 IGDP 250.00 262.00 138.00 126.00 126.00 126.00 130.00 126.00

21 Spread 191.51 196.54 253.61 259.41 131.96 128.45 20.55 101.96

22 HV 141.01 141.15 139.84 155.44 165.91 168.18 86.94 285.54

22 Epsilon 136.98 133.08 213.46 191.19 183.90 157.73 197.49 70.19

22 IGDP 141.31 152.56 137.88 137.88 143.56 139.38 275.31 156.13

22 Spread 206.63 198.30 279.10 270.10 111.85 109.43 20.50 88.10

23 HV 164.33 172.98 142.59 126.90 140.56 173.68 76.55 286.43

23 Epsilon 214.24 224.39 142.74 150.90 152.00 128.51 206.14 65.09

23 IGDP 179.50 183.50 159.50 171.50 187.50 171.50 187.50 43.50

23 Spread 148.20 144.53 282.58 276.14 158.28 152.43 20.81 101.05

24 HV 67.00 64.18 160.43 196.38 182.11 178.48 152.21 283.23

24 Epsilon 252.13 245.70 172.80 141.91 137.54 132.54 162.10 39.29

24 IGDP 143.00 143.00 143.00 143.00 150.95 158.90 239.28 162.88

24 Spread 194.64 200.16 281.00 278.08 116.60 121.60 20.50 71.43

25 HV 60.10 65.80 195.24 211.33 157.88 154.63 142.40 296.64

25 Epsilon 235.99 248.60 145.31 150.84 122.53 148.60 196.66 35.48

25 IGDP 216.25 218.28 130.00 122.50 141.25 145.00 240.73 70.00

25 Spread 193.33 175.44 286.31 256.16 132.56 132.73 20.50 86.98

26 HV 68.05 50.26 198.70 197.33 116.44 117.95 300.25 235.03

26 Epsilon 236.85 242.16 173.95 178.20 190.60 181.16 27.49 53.59

26 IGDP 205.00 217.50 57.05 58.31 197.55 181.30 87.25 280.04

26 Spread 235.18 252.79 236.54 237.48 118.44 121.66 51.09 30.84

27 HV 74.74 89.99 144.11 142.79 131.29 150.13 251.89 299.08

27 Epsilon 212.11 187.96 199.74 208.28 185.74 168.54 80.04 41.60

27 IGDP 230.66 245.41 82.23 81.85 95.49 87.04 174.34 286.99

27 Spread 209.08 204.58 272.76 270.26 121.54 122.91 62.38 20.50

28 HV 46.01 49.26 223.00 223.00 213.00 220.50 86.23 223.00

28 Epsilon 282.20 275.80 90.00 90.00 122.50 110.00 223.50 90.00

28 IGDP 273.61 268.80 100.50 100.50 100.50 100.50 239.09 100.50

28 Spread 183.16 185.24 278.24 279.21 121.63 114.03 20.50 102.00

29 HV 138.18 144.04 280.50 280.50 129.30 121.30 20.50 169.69

29 Epsilon 223.46 227.59 41.64 40.24 166.34 168.48 300.50 115.76

29 IGDP 174.39 169.46 40.50 40.50 210.58 204.65 300.50 143.43

29 Spread 162.25 158.54 238.91 242.05 82.31 78.89 300.50 20.55

30 HV 136.33 147.09 157.75 160.98 153.06 147.58 154.70 226.53

30 Epsilon 182.98 212.84 199.90 198.00 123.04 121.11 181.29 64.85

30 IGDP 198.68 205.18 157.49 167.15 133.06 135.44 193.84 93.18

30 Spread 70.31 85.34 88.91 83.64 247.50 251.45 186.51 270.34

31 HV 52.15 38.79 196.60 206.00 208.90 208.93 92.28 280.36

31 Epsilon 264.83 278.79 118.59 113.98 130.86 122.69 212.10 42.18
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Table 7 continued

Problem ID PI PCAwMC PCAwLHS PCASwMC PCASwLHS NSGA-II NSGA-II-45 NSGA-III SPEA2

31 IGDP 268.44 279.01 80.74 67.79 148.03 146.46 223.41 70.13

31 Spread 244.48 257.93 108.50 116.66 122.65 138.65 264.09 31.05

32 HV 46.50 65.55 182.68 186.23 177.71 171.59 173.83 279.93

32 Epsilon 239.93 223.05 131.46 114.71 180.04 189.69 166.90 38.23

32 IGDP 177.36 171.40 49.64 42.16 235.98 237.50 265.98 103.99

32 Spread 261.39 279.18 101.96 100.58 142.29 154.34 191.56 52.71

33 HV 39.55 41.45 260.50 260.50 159.58 161.43 100.50 260.50

33 Epsilon 281.18 279.83 40.50 40.50 161.56 159.44 220.50 100.50

33 IGDP 280.38 280.63 60.50 60.50 162.45 158.55 220.50 60.50

33 Spread 229.26 228.00 250.29 252.65 120.89 121.91 60.50 20.50

34 HV 41.03 39.98 261.00 256.51 160.33 162.68 101.49 261.00

34 Epsilon 278.63 281.15 40.50 46.71 140.40 144.96 219.50 132.15

34 IGDP 281.26 279.74 60.00 64.50 160.90 158.10 219.50 60.00

34 Spread 228.83 227.28 246.75 244.11 128.16 124.90 62.50 21.48

35 HV 37.85 43.15 220.50 220.50 220.50 220.50 100.50 220.50

35 Epsilon 283.36 277.64 60.50 60.50 161.61 159.39 220.50 60.50

35 IGDP 284.05 274.96 100.50 100.50 100.50 100.50 222.49 100.50

35 Spread 83.96 85.86 279.28 281.45 181.85 177.10 20.50 174.00

36 HV 40.40 40.60 219.45 214.86 219.65 222.04 102.50 224.50

36 Epsilon 281.74 279.26 47.95 53.05 141.53 135.63 215.35 129.50

36 IGDP 282.06 278.94 97.74 102.45 111.90 99.91 218.50 92.50

36 Spread 227.63 201.04 257.14 236.03 121.23 114.45 20.50 106.00

37 HV 40.71 40.29 225.50 225.50 213.06 210.94 102.50 225.50

37 Epsilon 279.39 281.55 40.50 40.50 152.95 152.91 203.20 133.00

37 IGDP 280.85 280.15 40.50 40.50 146.26 147.05 217.19 131.50

37 Spread 213.88 212.35 248.44 245.14 120.16 121.04 21.50 101.50

38 HV 41.98 39.25 217.99 217.79 221.50 221.50 102.50 221.50

38 Epsilon 276.20 284.45 94.33 94.48 115.43 110.13 218.50 90.50

38 IGDP 276.63 284.18 102.53 102.70 99.00 101.48 218.50 99.00

38 Spread 78.96 78.96 204.45 186.60 244.65 237.23 24.15 229.00
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