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Abstract
Deep learning algorithms developed in recent decades have performed well in prediction and classification using accu-

mulated big data. However, as climate change has recently become a more serious global problem, natural disasters are

occurring frequently. When analyzing natural disasters from the perspective of a data analyst, they are considered as

outliers, and the ability to predict outliers (natural disasters) using deep learning algorithms based on big data acquired by

computers is limited. To predict natural disasters, deep learning algorithms must be enhanced to be able to predict outliers

based on information such as the correlation between the input and output. Thus, algorithms that specialize in one field

must be developed, and specialized algorithms for abnormal values must be developed to predict natural disasters.

Therefore, considering the correlation between the input and output, we propose a positive and negative perceptron (PNP)

algorithm to predict the flow rate of rivers using climate change-sensitive precipitation. The PNP algorithm consists of a

hidden deep learning layer composed of positive and negative neurons. We built deep learning models using the PNP

algorithm to predict the flow of three rivers. We also built comparative deep learning models using long short-term

memory (LSTM) to validate the performance of the PNP algorithm. We compared the predictive performance of each

model using the root mean square error and symmetric mean absolute percentage error and demonstrated that it performed

better than the LSTM algorithms .
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1 Introduction

Deep learning technology is emerging all around us,

strengthening the technical aspects of modern society, from

time-series prediction to image analysis to natural language

processing (Ren and Xu 2015; Ciregan et al. 2012; Kriz-

hevsky et al. 2012; Bordes et al. 2012; Cireşan et al. 2012;

Mikolov et al. 2013; Hadsell et al. 2008). This technology

has been widely used recently in biological mechanisms,

helping to solve problems that have previously been diffi-

cult to solve (Asgari Taghanaki et al. 2021; Tunyasuvu-

nakool et al. 2021; Quang et al. 2015; Wang et al. 2020;

Jaganathan et al. 2019). In addition, better algorithms have

been developed for time-series prediction, such as recurrent

neural networks (RNN), long short-term memory (LSTM),

and gated recurrent units (GRU), which have shown

strength in time-series predictions using deep learning

based on big data accumulated in recent years (Oord et al.

1609; Bai et al. 1803; Borovykh et al. 1703; Mudassir et al.

2020; Li et al. 1707; Mudelsee 2019). To date, deep

learning algorithms have been developed by focusing on

the structure of the human brain, and the algorithms thus

developed have generally performed well. The learning

method of deep learning varies depending on the compo-

sition of the data because the method creates an optimal

model based on the data. In the process of acquiring data,

abnormal data may occur, such as those resulting from

errors in sensors or abnormalities in the acquisition of the
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data. These are called outliers. Deep learning models are

affected by learning performance if there is an outlier in the

learning data. Many researchers training deep learning

models remove outliers in the data to improve the learning

performance of the models (Gharaei et al. 2022; Hendrycks

et al. 1812; Pang et al. 2021). From an analyst’s point of

view in the environmental field, natural disasters are judged

to be outliers because the period of data acquisition using

sensors is much shorter than the longest patterns of the

earth. These natural disasters occurred once in 100 years in

the past, but they have occurred more frequently in recent

years due to climate change. If deep learning expert judges

natural disaster data as outliers and delete them to train

deep learning model, that cannot predict natural disasters.

Therefore, we need a wisdom which we do not treat as

outlier for natural disaster data, and we also need to

develop deep learning model to analyze and predict natural

disasters to consider the frequency and damage scale of

natural disasters. These novel deep learning model should

be designed by cause information of natural disasters and

the correlation between inputs and outputs. The deep

learning model also should not be judged as outlier even

though the data from natural disasters come in.

In addition, to predict outliers (natural disasters), deep

learning algorithms specializing in a single field and spe-

cialized algorithms for outlier values must be developed.

As the climate changes, natural disasters such as floods and

droughts occur more frequently, and these disasters seri-

ously impact cities around rivers. Climate change is one of

the major problems facing humans because the changing

climate patterns are expected to increase the frequency of

extreme weather events (Field et al. 2012; Palmer and

Räisänen 2002). In recent years, the frequency of droughts

caused by global warming has been increasing. River and

groundwater levels are declining due to the increased water

demand (Lauer et al. 2018). As a result, water shortages,

ground subsidence, and penetration into the groundwater

layer of seawater may occur (Shankar et al. 2011; Malyan

et al. 2019; Abidin et al. 2001). In addition, global warming

can add to the collision of cold and dry air currents at high

latitudes and warm and humid air currents at low latitudes,

causing frequent torrential rains and floods worldwide

(Fowler and Hennessy 1995; Papalexiou and Montanari

2019; Myhre et al. 2019; Hoegh-Guldberg et al. 2018). For

this reason, it is necessary to analyze and predict the flow

of rivers to prevent damage from water depletion and

natural disasters from floods. Therefore, in this paper, we

propose novel PNP deep learning model to predict outliers

(natural disasters) in the river flow prediction.

Since the PNP deep learning algorithm induces more

accurate flow prediction by applying the correlation

between precipitation and flow, we can apply this in the

river flow prediction.

This paper is organized as follows. Section 2 introduces

the deep learning algorithm used in time-series prediction

and the study of predicting river flow through deep learn-

ing. Section 3 describes the introduction, composition, and

formula of the PNP algorithm. Section 4 describes the

input and flow data to be used in Sects. 5 and 6. Section 5

measures the performance of the PNP algorithm, proving

that it outperforms the LSTM algorithm. Section 6 predicts

the river flow using not only the PNP algorithm but also the

LSTM based on several variables. Finally, Sect. 7 com-

ments on the predictive results and provides directions for

future research.

2 Related works

In this section, we introduce the deep learning algorithm

used in time-series prediction and the study of predicting

river flow through deep learning. The artificial neural

network (ANN), the most basic concept of deep learning,

was inspired by biological processes in the 1960s, when it

was discovered that different visual cortical cells were

activated when cats visualize different objects (Hubel and

Wiesel 1962, 1959).

The study reviewed the links between the eyes and cells

in the visual cortex and showed that information was

processed hierarchically in the visual system. The ANN

mimicked the recognition of objects by connecting artifi-

cial neurons inside layers that could extract object features

(Rosenblatt 1958).

An ANN does not provide information on the sequential

order of the input, so there are limitations in processing

time-series data with dependencies between the data.

Time-series data or strings are generally used to predict

later data by the data entered earlier. Therefore, it is dif-

ficult to accurately predict time-series data using an ANN,

which only disseminates the current input data in the order

of input, hidden, and output layers. To address these

problems, the RNN was proposed, an ANN designed to

process temporally continuous data, such as time-series

data (Elman 1990).

The RNN adds loop connections to each neuron in the

hidden layer to input the hidden layer output from previous

data back into the hidden layer neurons when predicting

data from the present time. This allows an RNN to make

predictions about current data simultaneously based on the

data entered at a previous time. However, when back-

propagation algorithms learn data covering a long period,

the gradient can be abnormally increased or reduced.

LSTM was proposed to solve the gradient problems that

occur with RNNs, and most RNN-based applications pro-

posed to date have been implemented using LSTM

(Hochreiter and Schmidhuber 1997).
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LSTM adds new elements such as a forget gate, input

gate, and output gate to each neuron in the hidden layer to

solve gradient-related problems. As the layer deepens,

LSTM causes information loss because the encoder has too

much information to compress and tends to use the infor-

mation compressed by the encoder only for the initial

prediction. Thus, bidirectional RNN (BRNN) and bidirec-

tional LSTM (BLSTM) were developed (Schuster and

Paliwal 1997).

Two-way BRNN and BLSTM add a backward pro-

cessing layer to the existing RNN and LSTM layers, where

the input data are transmitted to both forward and back-

ward learning. This does not degrade the performance,

even if the data are lengthy. LSTM has become a model

that performs well even with data with long sequences

while also solving the long-term dependence problem, but

it requires more parameters than an RNN due to its com-

plex structure. Overfitting can occur when there are not

enough learning data. GRUs have been proposed to

improve on these shortcomings (Chung et al. 2014).

DeepAR is an autoregressive RNN-based forecasting

method that learns a global model from the historical data

of all-time series in the dataset. This algorithm learns

seasonal behaviors and dependencies on given covariates

across time series; minimal manual intervention in pro-

viding covariates is needed in order to capture complex and

group-dependent behavior (Salinas et al. 2020).

Temporal Fusion Transformer (TFT) is based on deep

neural network (DNN) architecture for multi-horizon

forecasting that achieves high performance while enabling

new forms of interpretability. For multi-layer horizontal

prediction, various types of data are used as TFT input. In

addition, it was designed to consider various types of input

values by supplementing the limitations of the existing

model (Lim et al. 2021) (Table 1).

The following is a list of flow prediction studies using

machine learning.

Fathian et al. analyzed time series using self-exciting

threshold autoregressive (SETAR) and generalized

autoregressive conditional heteroscedasticity (GARCH)

models (Fathian et al. 2019). Then, they used multivariable

adaptive regression splines (MARS) and random forest

(RF) models to predict the monthly river flow of the Grand

River’s Brantford and Galt Observatory in Canada. In

addition, they developed hybrid models by combining

MARS and RF models with SETAR and GARCH models,

and they showed that the RF-SETAR models had the

highest accuracy of the hybrid models.

Musarat et al. proposed a machine learning (ML)

approach to predict water levels to prevent the devastation

caused by extreme water levels rising in the Kabul River

(Musarat et al. 2021). They used a variety of machine

learning models, among used ML model, and they showed

that ARIMA model has the highest performance.

Ghimire, S. et al. developed a new AI model based on

LSTM and Convolution neural network (CNN) for hourly

flow forecasts of the Brisbane River and Teewah Creek in

Australia (Ghimire et al. 2021). They designed a prediction

model based on six preceding values through statistical

self-analysis of the time series from time-series data for the

river flow. They also set different time intervals, such as

one week, two weeks, four weeks, and nine months.

Huang et al. proposed deep learning models for flow

prediction in astrophysics as an alternative to physically

based models because the physically based models for flow

prediction were relatively slow and costly (Huang et al.

2021). Their study used the SOBEK model which is

physically based model and three neural network models:

ANN, LSTM, and adaptive neural fuzzy inference system

(ANFIS). They showed that the LSTM model had the

highest accuracy.

Debbarma et al. utilized the gamma memory neural

network (GMN) and genetic algorithm-gamma GMN (GA-

GMN) to predict the daily flow rate (Debbarma and

Table 1 Related deep learning algorithms

Num Year Algorithm Abbreviation References

1 1958 Multi-layer perceptron MLP Rosenblatt (1958)

2 1990 Recurrent neural network RNN Elman (1990)

3 1997 Long short-term memory LSTM Hochreiter and Schmidhuber (1997)

4 1997 Bidirectional recurrent neural network

Bidirectional long short-term memory

BRNN

BLSTM

Schuster and Paliwal (1997)

5 2014 Gated recurrent unit GRU Chung et al. (2014)

6 2020 DeepAR – Salinas et al. (2020)

7 2021 Temporal Fusion Transformer TFT Lim et al. (2021)

8 2022 Positive & negative perceptron PNP This paper
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Choudhury 2020). They showed that the GA-GMN model

performed better than the GMN model.

Senent-Aparicio et al. suggested that instantaneous peak

flow (IPF) is very important for reducing flood damage and

is combined with ML models and soil and water assess-

ment tool (SWAT) simulations to suggest an approach to

estimating IPF (Senent-Aparicio et al. 2019). They applied

an ANN, ANFIS, support vector machine (SVM), and

extreme learning machine (ELM) as the ML models and

compared the performance.

Mehedi, Md Abdullah AI et al. predicted river flow in

East Branch Delaware in United States (Mehedi et al.

2022). This paper predicted discharge time series up to

7 days in advance using a LSTM neural network regression

model trained using over 80 years of daily data.

Le, Xuan-Hien, et al. constructed several models of

LSTM and have applied these models to forecast discharge

at the Hoa Binh Station on the Da River, one of the largest

river basins in Vietnam (Le et al. 2019). LSTM models

have been developed for one-day, two-day, and three-day

flowrate forecasting in advance at Hoa Binh Station.

Rainfall and flowrate at meteorological and hydrological

stations in the study area are input data of the model.

Dodangeh, E. et al. proposed novel integrative models

by coupling the resampling algorithms with ML models (to

provide the more reliable flood susceptibility predictions

compared to the one-time splitting train-test data set) with

a case study at Ardabil province near the coastal margins of

Caspian Sea (Dodangeh et al. 2020). This paper used

random subsampling (RS) and bootstrapping (BT) algo-

rithms, integrated with machine learning models: general-

ized additive model (GAM), boosted regression tree (BTR)

and multivariate adaptive regression splines (MARS).

Kim, Donghyun, et al. used hydrological data observed

in the upper Bokha interchange of the river to predict the

flood level of Heungcheon Station located downstream of

the Bokha River (Kim et al. 2022). Data on rainfall, water

level, and discharge volume from 2005 to 2020 were col-

lected from two observation stations for each upstream and

downstream basin. In addition, we perform flood water

level predictions at downstream points using machine

learning models such as Gradient Boosting (GB), SVM,

and LSTM.

Studies on river flow prediction using deep learning

(Fathian et al. 2019; Musarat et al. 2021; Ghimire et al.

2021; Huang et al. 2021; Debbarma and Choudhury 2020;

Senent-Aparicio et al. 2019; Mehedi et al. 2022; Le et al.

2019; Dodangeh et al. 2020; Kim et al. 2022) show that the

algorithms used to predict river flow are limited in pre-

dicting outliers using data-based algorithms. Therefore, we

propose the PNP algorithm, which can predict the flow of

rivers using climate change-sensitive precipitation

(Table 2).

3 PNP algorithm

3.1 Characteristics of the PNP algorithm

On Earth, water always flows, and the process of water

completing its cycle is called water circulation. This cir-

culation is the continuous flow of water above and below

the Earth’s surface. It is usually caused by water evapo-

rating from the sea and forming clouds, which transfer the

water to land through rain. Once on land, the water flows

over the surface of the earth to a lower place on the surface,

forming a stream or a river. The stream’s water flows

downstream into the ocean, completing the water circula-

tory system. The time when water stays in this circulatory

system is called the residence time. The average residence

time in Korea is 1.5 weeks in the atmosphere and two

weeks in the river. Even in the absence of precipitation, the

river flow characteristics require a deep learning algorithm

that can identify the characteristics of the water circulation

system to predict the river flow. Therefore, we present the

PNP algorithm, a new deep learning algorithm that con-

siders the water circulation system and the residence time.

The deep learning model consists of input, hidden, and

output layers. The input data are fed into the input layer,

and the output layer produces the model value. Hidden

layers are made up of neurons composed of deep learning

algorithms. The PNP algorithm can consist of neurons in

the deep learning model, such as MLP, LSTM, and other

deep learning algorithms. Figure 1 shows the layers and

neurons of the deep learning model.

The PNP algorithm focused on river flow that we pre-

sent is divided into water entering the stream (positive

water) and water exiting to the sea (negative water). If

there is more positive water than negative water, the river

becomes too full, which causes flooding, while more neg-

ative water than positive water leads droughts. We applied

positive and negative water to the PNP algorithm, corre-

sponding to the positive and negative neurons, respec-

tively, and we also applied features from past precipitation

data to consider the residence time.

The PNP algorithm is organized in a hidden deep

learning layer, such as LSTM or RNN, consisting of pos-

itive and negative neurons in the hidden layer. Figure 2

shows the PNP algorithm concept. Both neurons receive

the precipitation as input. Positive neurons analyze the

increasing factor of the water flow in the river, while

negative neurons analyze the decreasing factor. There is a
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Table 2 Related river flow prediction using deep learning

Num Country Algorithm Description

1 Canada MARS, RF This work predicted monthly river flows using three AI approaches: ANN, MARS, and RF

Among the hybrid models developed, the RF-SETAR models were generally the most accurate,

improving the river flow modeling

2 Afghanistan ARIMA This approach used an ML tool known as an autoregressive integrated moving average for statistical

methodological analysis to predict stream flow

3 Australia CNN-LSTM CNN layers were used to extract the time-series river flow features, while LSTM networks used

these features from the CNN for river flow time-series prediction

River flow prediction was conducted for different time intervals, including one week, two weeks,

four weeks, and nine months

The results showed that the proposed CNN-LSTM model based on the novel framework yielded

more accurate predictions. Thus, CNN-LSTM has significant practical value in river flow

prediction

4 China LSTM, ANFIS,

SOBEK

This work focused on evaluating the reliability of three neural network models (ANN, LSTM,

ANFIS) and one physically based model (SOBEK) in terms of efficiency and accuracy for average

and peak streamflow simulation

LSTM models can generally compete with physically based models in flow simulations of complex

urban river systems by providing fast flow predictions with acceptable accuracy

5 India GMN,

GA-GMN

The authors showed how to predict daily river flows using a memory-based ANN. They chose two

different networks: GMN and GA-GMN

The GA-GMN model gave better results for both datasets. Therefore, it was chosen as an effective

tool to predict the flow features of the Dholai River

6 Spain ANN, ANFIS,

SVM, ELM

This work proposed an approach to instantaneous peak flow estimation by combining SWAT

simulations and ML models

The SWAT model was used to estimate the maximum average daily flow, and the ML model was

used to estimate the instantaneous peak flow based on the maximum average daily flow

7 United

States

LSTM This study contributes to a reproducible template to investigate the uniqueness of the temporal

dynamics of river discharge through extensive EDA

The hidden pattern of the distribution of discharge values through over 80 years of data is discovered

in various up-to-date data exploration tools, which is a mandatory requirement for the satisfactory

training of the LSTM algorithm

8 Vietnam LSTM This work has proposed an effective approach to flood forecasting based on the data-driven method

The LSTM neural network model was constructed and carefully assessed to forecast one-day, two-

day, and three-day flood flow at the Hoa Binh Station on the Da River

9 Iran RS,BT,

GAM,BTR,

MARS

This work proposed a novel integrated model by combining the resampling algorithm with an ML

model with a case study in Ardabil province near the Caspian coast edge

The main purpose of this work is to evaluate the performance of three ML models: GAM, BRT, and

MARS for river flow sensitivity prediction, and to integrate independent ML models (GAM, BRT,

and MARS models) with new RS-GAM and RS-GARS models

10 Korea GB, SVM, LSTM This work collected rainfall, water level, and discharge data from 2005 to 2020 for each upstream

and downstream basin, and in particular, the collected rainfall data were classified into 53 rainfall

events using IETD (Interevent Time Definition) analysis of the rainfall data

In addition, flood water level forecasting at downstream point was performed using machine learning

models such as GB (Gradient Boosting), SVM (Support Vector Model), and LSTM (Long Short-

Term Memory). Also, the SFM which is a rainfall-runoff model was used for the forecasting

11 Korea PNP In the current paper, we propose an algorithm that can be applied to the water circulatory system and

water retention times

We use not only weather input variables but also upstream operating data as input variables to

predict the river flow

Deep learning algorithm development for river flow prediction: PNP algorithm 13491

123



line connected between the negative and positive neurons

called the conveyor belt, which delivers the results of each

neuron to the next node and provides past precipitation

information. Through this process, we can reflect the

amount of river emissions during the residence time. The

conveyor belt provides the calculated value from the pre-

vious neuron to the next neuron. This is similar to the cell

state in LSTM, which completely removes the cell state’s

information. However, unlike the cell state, the conveyor

belt maintains the information and transfers it to the next

neuron. Finally, when the last positive and negative

neurons finish calculating, two results are generated from

one node of the PNP hidden layer. Figure 3 shows the

positive and negative neuron configuration diagram.

The positive and negative neurons are calculated in four

steps: input, judgment, application, and transfer. The first

step of the positive neuron is the input step, which is given

to the neuron and multiplied by the weighted value w. The

second step is the judgment by applying the sigmoid

function, using the value one if the need is high and zero if

it is low. The third step is the application step, which adds

the value of the sigmoid function, the positive bias term,

Fig. 1 Layers and neurons of

the deep learning model

Fig. 2 PNP algorithm concept
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bp, and the value from the previous positive conveyor belt.

Finally, in the fourth step, we remove a negative element

by applying a rectified linear unit (ReLU) function to the

value calculated in the third step. The values removed by

the ReLU are transferred to the conveyor belt and the next

neuron. The negative neuron follows the same process

through the second computational step, but in the third

step, bn is added to the negative bias term rather than the

positive bias term, bp. The fourth step is applied to prevent

the quantity value. Equations (1)–(4) show the calculation

of positive neurons, while Eqs. (5)–(8) show the calcula-

tion of negative neurons.

fsp ¼ I � wp ð1Þ

ssp ¼ sigmoid ap
� �

� fsp ð2Þ

tsp ¼ ssp þ bp
�� ��þ PCb t�1ð Þ ð3Þ

Lsp ¼ Relu tsp
� �

ð4Þ

fsn ¼ I � wn ð5Þ
ssn ¼ sigmoid anð Þ � fsn ð6Þ
tsn ¼ ssn þ �bnj j þ NCb t�1ð Þ ð7Þ

Lsn ¼ �Relu �tsnð Þ ð8Þ

In Eqs. (1)–(8), fsp and fsn are the first step in the PNP

algorithm computational process, ssp and ssn are the second

Fig. 3 Positive and negative

neuron configuration diagram
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step, tsp, tsn are the third step, and Lsp and Lsn are the final

step. wp and wn are the positive and negative weighted

values, respectively. ap and an are the positive and negative

sigmoid functions, respectively. bp and bn are the positive

and negative bias terms, respectively. I is the input data,

PCbðt�1Þ represents the previous positive conveyor belt

value, and NCbðt�1Þ represents the previous negative con-

veyor belt value.

3.2 Deep learning configuration of PNP
algorithm

PNP algorithms can be configured as hidden ANN layers,

and the number of nodes can be adjusted, as in other deep

learning algorithms such as MLP, LSTM, and GRU. Fig-

ure 4 shows the hidden layers and internal nodes com-

prising the PNP algorithm. The input value of the PNP

Fig. 4 Hidden layers and

internal nodes comprising the

PNP algorithm
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algorithm is entered in three dimensions, as with the LSTM

algorithm. The input data dimensions consist of the data

size, variable, and time step. The data size is the amount of

data in time units used in the algorithm. The variable

represents the number of variables. The time step is the

number of past data points used, for which we must con-

sider the residence time of the river flow. We can designate

the number of neurons in positive and negative time steps

through the time step value. The neuron array is organized

in a parallel format based on the number of variables. The

neuron array has a two-dimensional structure composed in

a series according to the time step. Figure 5 shows the

algorithm structure according to the number of variables

and neurons.

4 Acquired data characteristics

To predict the river flow through deep learning, we must

consider the correlation between the target value and the

input variables. Because the river flow includes the circu-

lation process of water and the characteristic of flowing

from upstream to downstream, we should select input

variables that have such a characteristic of water or

affected. The water circulation process is largely deter-

mined by weather (water quantity, temperature, etc.) and

the upstream impact of dams, depending on how the dams

operate. Therefore, we collected river flow data, weather

observation data closest to the flow measurement point, and

upstream dam operation data to predict the river flow. In

addition, we obtained datasets from three regions (Hangang

Bridge, Yeoju Bridge, and Gangchung Bridge) to gener-

alize the performance evaluation of the algorithms.

4.1 River flow

We acquired data measured at the Hangang, Yeoju, and

Gangchung Bridges in Korea. The Hangang Bridge

(37�31003.3‘‘N, 126�57031.7’’E), located over the Han

River in Seoul, has a total length of 1,005 m. The Han

River is the second longest river in South Korea (494 km)

and the largest river in terms of flow and basin. The Han

River has hundreds of tributaries, including the Bukhan and

Imjin Rivers, across four regions: Gyeonggi, Gwandong,

Haeseo, and Hoseo. The Yeoju Bridge (37�29081.7‘‘N,
127�64081.4’’E) is located at the southern end of the

Namhan River from Sangdong to Cheonsong-dong, Yeoju-

si, Gyeonggi-do. The Gangchung Bridge (36�82016.1‘‘N,
126�93036.6’’E), which crosses the Gokgyo river in

Yeomchi, is 325 m long and 10 m wide. The blue color in

Fig. 6a indicates the Han River, and the red checkpoints

indicate the locations of the Hangang and Yeoju Bridges.

The blue color in (b) indicates the Gokgyo river, and the

red checkpoint indicates the location of the Gangchung

Bridge. The Hangang and Yeoju Bridges are located in the

same Han River area, but there are differences in upstream

and downstream, and the Gangchung Bridge is located in a

different basin. The Hangang Bridge is the largest by

region, followed by the Yeoju Bridge, and finally, the

Gangchung Bridge is the smallest.

The river flow data were provided by the Han River

Flow Control Office for the period 1/1/2010–12/31/2020.

The unit of the data is one day and is in the form of 4018

int. Table 3 shows the information of the acquired river

flow data, and Fig. 7 shows the obtained river flow graph.

4.2 Weather

As Korea is in the mid-latitudes of the northern hemi-

sphere, changes are evident in all four seasons, with peri-

odic characteristics throughout the year as the seasons

change. We used the weather observation data closest to

the river flow measurement area and collected data from

the Korea Meteorological Administration. Figure 8 shows

the locations of the weather station and the flow station,

and Table 4 summarizes the weather data.

Fig. 5 Algorithm structure according to the numbers of variables and

neurons
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4.3 Upstream dam hydrological data

Dams reduce the peak flood of downstream rivers during

flooding and provide water for continuous river mainte-

nance during droughts. They affect downstream changes in

spill characteristics in the short term. On the other hand,

they also increase flows in the dry season for the long term

caused by increased low flows. For this reason, we must

use upstream floodgate information as an input variable to

predict the flow of the stream. Thus, we collected upstream

dam operation data around the flow observation point. We

used hydrological data provided by the Korea Water

Resources Corporation and Korea Hydro & Nuclear Power

for the dams upstream on the Han River. Figure 9 shows

the location of the dams on the Han River, and Table 5

summarizes the data from the dam.

There are 10 dams upstream from the Hangang Bridge,

three dams upstream from the Yeoju Bridge (the Hoeng-

seong, Chungju, and Goesan Dams), and none upstream

from the Gangchung Bridge.

Fig. 6 a Map of the Han River

basin and location of the

Hangang and Yeoju Bridges;

b map of the Gokgyo River

basin and location of the

Gangchung Bridge

Table 3 Analysis of river flow

(m3=s) data obtained
Location Period Min Max Mean Std

Hangang Bridge 1/1/2010–12/31/2020 12.78 20680.17 484.188 1113.083

Yeoju Bridge 1/1/2010–12/31/2020 11.06 5493.91 231.759 418.218

Gangchung Bridge 1/1/2010–12/31/2020 4.4 696.22 55.4 41.798
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5 Performance verification of the PNP
algorithm

5.1 Algorithm performance verification pipeline
configuration

We built a pipeline to verify the algorithm performance.

The pipeline sequence is divided primarily into the data

and deep learning processes. Figure 10 indicates the con-

figuration of the algorithm performance verification pipe-

line. The first step of the data process divides the acquired

data into learning and test data in an 80:20 ratio. The

learning data are used to train the deep learning model, and

the test data are used to verify the model performance. We

also applied K-fold cross-validation to prevent data with

high noise values from being concentrated on one side

when dividing the learning and test data and overfitting to a

specific dataset. K-fold cross-validation creates K divisions

of the learning and test data. In this paper, we organized

five types of K-folds, and we also designated the same ratio

for the learning and test data. However, we designated

Fig. 7 River flow graph (2010–2020)

Fig. 8 Locations of river flow

observatories and weather

stations: a Hangang Bridge,

b Yeoju Bridge, and

c Gangchung Bridge
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Table 4 Analysis of weather

data acquired
Location Period Sort Min Max Mean Std

Hangang Bridge 1/1/2010–12/31/

2020

Temperature[�C] –14.8 33.7 13.0 10.8

Precipitation[m3=s] 0.0 301.5 3.68 14.401

Humidity[%] 17.9 99.8 59.7 15.1

Yeoju Bridge 1/1/2010–12/31/

2020

Temperature[�C] –14.8 31.6 11.9 10.7

Precipitation[m3=s] 0.0 247.5 3.5 12.9

Humidity[%] 15.6 100 65.5 15.0

Gangchung Bridge 1/1/2010–12/31/

2020

Temperature[�C] –13.7 30.8 12.3 10.4

Precipitation[m3=s] 0.0 232.7 3.3 12.1

Humidity[%] 16.3 99.3 68.7 13.4

Fig. 9 Location of the dams in the Han River basin

Table 5 Analysis of discharge

(m3=s) data of the dams

upstream from the Hangang

Bridge

Location Period Min Max Mean Std

Paldang dam 1/1/2010–12/31/2020 0.0 15870.583 422.778 932.7

Cheongpyeong dam 1/1/2010–12/31/2020 0.0 9985.75 181.625 436.982

Uiam dam 1/1/2010–12/31/2020 1.1 9948.75 142.506 344.196

Chuncheon dam 1/1/2010–12/31/2020 0.0 4118.625 68.696 202.649

Soyanggang dam 1/1/2010–12/31/2020 2.728 2423.94 62.963 97.428

Hwacheon dam 1/1/2010–12/31/2020 0.0 2945.458 49.229 202.649

Peace dam 1/1/2010–12/31/2020 0 2179.22 52.365 114.605

Hoengseong dam 1/1/2010–12/31/2020 0.036 363.322 4.467 12.463

Chungju dam 1/1/2010–12/31/2020 0.0 3960.37 136.99 235.694

Goesan dam 1/1/2010–12/31/2020 0.0 684.042 12.239 34.539
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different locations for the test data. Figure 11 illustrates the

K-fold cross-validation where K = 5.

We organized a preprocessing model for the learning

data. The preprocessing model is for standardization, using

the learning data divided between learning and validation

in a 60:20 ratio. Figure 12 shows the division of the

acquired data.

We divided the acquired data into learning and testing

data and the learning data into training data and validation

data. The learning data were used to construct

preprocessing models, and the training data were used to

train the models. The validation and testing data were used

to measure the performance of the deep learning model,

with the validation data used in constructing or training the

model. Validation data were used for preprocessing and

training the deep learning model, for which the testing data

were not involved. After applying the training, validation,

and test data to the preprocessing model, we built a dataset

to fit the input of the deep learning model. We organized

the data building in three dimensions, namely, the data

Fig. 10 Performance verification of the algorithm pipeline configuration

Fig. 11 K-Fold cross-validation where K = 5

Deep learning algorithm development for river flow prediction: PNP algorithm 13499

123



size, variable, and time step, to fit the PNP algorithm input

requirements. The time step must be selected considering

the residence time in the river. The average residence time

in Korean rivers is 14 days; thus, we designated 14 days as

the time step. In this study, we designated the variable

value as one because the input value to be entered into the

PNP algorithm is one of the closest precipitation points to

the river flow observation point. The total data size is 3977

data records based on the past data considering the time

step. Therefore, the size of the input data of the training,

verification, and testing datasets was [2386, 1, 14], [795, 1,

14], [796, 1, 14].

The first stage of the deep learning process is the model

configuration. We constructed the model with the PNP and

MLP algorithms, designating 50 nodes for each algorithm.

We used the Adam optimizer and mean squared error for

error measurement. We used another deep learning which

Fig. 12 Division of acquired

data

Fig. 13 Structure of LSTM
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LSTM algorithm with excellent performance in time-series

prediction to compare the performance.

LSTM algorithm is a derivative RNN algorithm, which

consists of three gates: Input Gate, Output Gate, and Forget

Gate. If the (t-1) hidden layer of Fig. 13 is affected by the

(t) hidden layer, it adds a calculation that erases it. We

constructed a model like the PNP and MLP algorithm, and

this model is composed of the LSTM and MLP algorithm.

This model consisted of LSTM and MLP algorithms, with

the number of nodes set to 50. Figure 14 shows the con-

figuration of the model, with Fig. 14a representing the

model using the PNP algorithm and Fig. 14b showing the

model using the LSTM algorithm.

After constructing the model, we used the training and

validation data to train it. We input the trained model as

test data to predict the river flow and then applied reverse

preprocessing. We then measured the error by comparing

the reverse-prediction result with the actual river flow

Fig. 14 Model composition

using a the PNP algorithm and

b the LSTM algorithm
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value using RMSE and sMAPE for error measurement. We

compared the predictive results of the two models with two

error-measurement methods to demonstrate the PNP algo-

rithm performance. Equation (9) represents the prepro-

cessing, and Eq. (10) represents the reverse preprocessing.

Equation (11) represents RMSE, and Eq. (12) represents

sMAPE.

Preprocess ¼ ID� LDmean

LDstd

ð9Þ

Reverse preprocess ¼ PD� LDstd þ LDmean ð10Þ

RMSE ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD� RDð Þ2
q

ð11Þ

sMAPE ¼ PD� RDj j
PDj j þ RDj jð Þ=2� 100 ð12Þ

In Eqs. (9)–(12), ID is the training, verification, and test

data, while LDmean represents the average value of the

learning data and LDstd represents the standard deviation.

PD indicates the prediction value of the model using the

test data, and RD indicates the river flow data.

5.2 Verification results

Table 6 gives the RMSE and sMAPE prediction results for

the two models. E1;E2;E3;E4;E5 represent the K-fold

cross-validation in Fig. 11, respectively, while Emean rep-

resents the average value of E1;E2;E3;E4;E5. The error of

the PNP model was lower than that of LSTM for the

Hangang, Yeoju, and Gangchung Bridges. Thus, we proved

that the PNP algorithm performed better than the LSTM

algorithm in predicting the river flow using precipitation.

Table 7 represents calculation of RMSE and sMAPE

based on average value of river flow (Hangang, Yeoju,

Gangchung). Through Table 7, we can compare the pre-

diction performance of PNP and LSTM model in case of

natural disasters (flood) and non-natural disasters (daily

life).

As a result of the measurement, the prediction perfor-

mance of river flow of the PNP model was higher than

LSTM model, except for cases, the average value of the

river flow at the Hangang Bridge below.

For sMAPE, the size of river is larger; we can confirm

that the prediction performance of PNP model is relatively

higher than LSTM model when the river flow is below the

average value.

This means that as the size of a river is larger, there are

more tributaries. The more tributaries mean that there are

more areas to consider precipitation. However, in this

paper, we used one precipitation as input, so the error of the

PNP algorithm was measured to be larger than the LSTM

algorithm.

Table 8 shows sMAPE according to river flow range; we

can judge the total prediction performance according to

river flow range through Table 8. When the river flow is

above the average value, the PNP model showed 10%

lower error than the LSTM model. Also, when the river

flow is below the average value, the PNP model showed a

little higher error than LSTM model, about 3%. From this,

we can see that when the river flow is above the average

value, the prediction performance of PNP model is excel-

lent compared to LSTM model.

Figures 15, 16, and 17 show the prediction of river flow

of the PNP&LSTM algorithm for the Hangang Bridge,

Yeoju Bridge, and Gangchung Bridge, respectively.

We confirmed the overall high predictive performance

of models using the PNP algorithm. Figure 18 shows a

predictive error comparison graph of the two models where

(a) shows the RMSE and (b) shows the sMAPE. To verify

the performance of the model, we measured the prediction

errors in both models: for the Hangang Bridge, the RMSE

and sMAPE were 57.927 and 2.565, respectively; for the

Yeoju Bridge, the RMSE and sMAPE were 46.457 and

3.031, respectively; and for the Gangchung Bridge, the

RMSE and sMAPE were 19.333 and 8.901, respectively.

Table 6 Comparison of model prediction errors

Location K-fold RMSE(m3=sec) sMAPE(%)

PNP LSTM PNP LSTM

Hangang Bridge E1 332.934 367.537 24.979 25.555

E2 217.206 310.295 26.461 29.886

E3 239.045 317.881 30.888 32.239

E4 291.571 328.284 23.830 27.781

E5 431.208 477.596 25.617 29.137

Emean 302.392 360.319 26.355 28.920

Yeoju Bridge E1 136.686 166.380 25.686 26.232

E2 141.359 164.857 30.581 33.161

E3 95.066 136.162 26.861 34.055

E4 143.296 162.093 26.860 29.384

E5 174.871 294.072 24.579 26.889

Emean 138.256 184.713 26.913 29.944

Gangchung Bridge E1 31.457 47.717 32.814 41.450

E2 33.050 49.687 30.737 40.433

E3 26.550 47.430 24.989 37.393

E4 28.640 46.968 26.632 28.030

E5 34.306 58.868 29.663 42.033

Emean 30.801 50.134 28.967 37.868

Bold values indicate the emphasizes that the error values (RMSE,

sMAPE) for both the PNP and LSTM algorithms are lower compared

to the mean value of Location

13502 G. Bak, Y. Bae

123



6 Prediction of river flow

In this section, we constructed a prediction model of the

river flow using temperature, humidity, and upstream dam

hydrological data as well as precipitation. We composed

two models to compare the performance, as shown in

Fig. 19, including the PNP (a) and LSTM (b) algorithms.

Model (a) in Fig. 19 uses the PNP algorithm, which

consists of three input layers: precipitation, weather (ex-

cluding precipitation), and upstream dam hydrological

data. The PNP uses the hidden layer connected from the

Table 7 Prediction errors

according to river flow range
Location River flow range K-fold RMSE(m3=sec) sMAPE(%)

PNP LSTM PNP LSTM

Hangang Bridge Mean� E1 1442.929 1869.447 28.906 38.985

E2 795.508 1187.133 32.151 44.240

E3 726.806 1399.42 22.525 43.105

E4 797.455 883.390 34.828 41.474

E5 1220.295 1429.923 40.400 44.812

Emean 996.599 1353.863 31.762 42.523

Mean\ E1 173.452 151.745 24.415 23.625

E2 101.022 134.133 25.317 27.002

E3 236.267 228.450 36.873 35.480

E4 170.869 147.874 43.269 23.330

E5 147.032 131.295 31.813 23.437

Emean 165.728 158.699 32.337 26.575

Yeoju Bridge Mean� E1 524.877 750.349 30.673 42.975

E2 422.226 593.469 31.460 46.572

E3 308.436 364.001 31.600 42.450

E4 406.436 446.575 37.298 43.233

E5 406.679 525.835 33.975 43.010

Emean 413.731 536.046 33.001 43.648

Mean\ E1 85.237 88.685 25.022 24.004

E2 82.093 74.416 30.396 30.332

E3 78.183 118.133 26.486 33.390

E4 62.530 74.776 23.657 25.133

E5 61.367 64.909 19.978 18.995

Emean 73.882 84.184 25.108 26.371

Gangchung Bridge Mean� E1 44.472 58.125 26.485 34.192

E2 21.7613 46.350 19.280 27.582

E3 28.391 45.431 19.797 29.168

E4 30.218 44.451 18.202 28.947

E5 50.568 72.643 29.063 38.059

Emean 35.082 53.400 22.565 31.590

Mean\ E1 24.986 42.542 35.960 45.133

E2 38.6633 52.761 36.433 52.267

E3 25.150 48.950 28.937 43.648

E4 29.193 48.911 33.143 45.043

E5 21.786 48.263 30.125 45.093

Emean 27.956 48.285 32.920 46.237

Bold values indicate the emphasizes that the error values (RMSE, sMAPE) for both the PNP and LSTM

algorithms are lower compared to the mean value of Location
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input precipitation layer, while the LSTM uses the hidden

layer connected to the weather and upstream dam hydro-

logical data input layers. Because the PNP algorithm is

based on the correlation between precipitation and river

flow, we do not use the PNP algorithm for the hidden layers

of weather and upstream dam hydrological data. There are

10 dams upstream of the Hangang Bridge and three

upstream of the Yeoju Bridge. There is no upstream dam

input layer for the Gangchung Bridge because it has no

upstream dam. We used the PNP algorithm for the hidden

precipitation layers, while we used the LSTM algorithm for

the hidden layers of the remaining weather (excluding

precipitation) and operational information regarding the

upstream dams. Finally, we organized a deep learning

model with two hidden MLP layers and one output layer.

The model in Fig. 19b used the LSTM algorithm rather

than PNP, and the remainder of the deep learning config-

uration was identical to the model in Fig. 19a. We divided

the data into a 60:20:20 ratio for training, verification, and

test data. Figure 20 shows the flow data from the Hangang,

Yeoju, and Gangchung Bridges into training, verification,

and test data. Table 9 represents the output shape of the

deep learning layer of the models in Fig. 1a and b.

Table 10 shows the model’s prediction error, and

Figs. 21 and 22 show the model’s prediction and flow

measurement.

As a result of the experiment, it can be determined that

both the PNP model and the LSTM model have p-

value\ 0.05, which means that the prediction of both

models is significant. And we concluded that the PNP

model performs better than LSTM, according to both

RMSE and sMAPE. Figure 23 shows a predictive error

comparison graph of the two models, where (a) shows the

RMSE and (b) shows the sMAPE. To verify the perfor-

mance of the model, we measured the river flow prediction

performance by constructing a model using the LSTM

algorithm and measured the prediction errors in the two

models: for the Hangang Bridge, the RMSE and sMAPE

were 18.352 and 0.13, respectively; for the Yeoju Bridge,

the RMSE and sMAPE were 6.125 and 0.628, respectively,

and for the Gangchung Bridge, the RMSE and sMAPE

were 0.382 and 0.035, respectively. We confirmed that

overall, the prediction error of the model using the PNP

algorithm was low.

Table 8 sMAPE according to

river flow range
Error Location K-fold River flow range

Mean� Mean\

PNP LSTM PNP LSTM

sMAPE

(%)

Hangang bridge E1 28.906 38.985 24.415 23.625

E2 32.151 44.240 25.317 27.002

E3 22.525 43.105 36.873 35.480

E4 34.828 41.474 43.269 23.330

E5 40.400 44.812 31.813 23.437

Emean 31.762 42.523 32.337 26.575

Yeoju bridge E1 30.673 42.975 25.022 24.004

E2 31.460 46.572 30.396 30.332

E3 31.600 42.450 26.486 33.390

E4 37.298 43.233 23.657 25.133

E5 33.975 43.010 19.978 18.995

Emean 33.001 43.648 25.108 26.371

Gangchung bridge E1 26.485 34.192 35.960 45.133

E2 19.280 27.582 36.433 52.267

E3 19.797 29.168 28.937 43.648

E4 18.202 28.947 33.143 45.043

E5 29.063 38.059 30.125 45.093

Emean 22.565 31.590 32.920 46.237

Total 29.110 39.254 30.122 33.061
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Fig. 15 Prediction of deep learning algorithms (PNP & LSTM) and test data of the Hangang Bridge
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Fig. 16 Prediction of deep learning algorithm (PNP & LSTM) and test data of the Yeoju Bridge
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Fig. 17 Prediction of deep learning algorithm (PNP & LSTM) and test data of the Gangchung Bridge
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7 Conclusion

This paper presented a PNP algorithm based on an

understanding of hydrology to predict river flow. We

developed the PNP algorithm considering precipitation

with the river flow, the length of water residence time, and

other variables. The PNP algorithm consists of positive and

negative neurons that consider the water circulatory sys-

tem. We applied a conveyor belt, which uses past data to

consider the residence time in the river. The input value of

the PNP algorithm is entered in three dimensions, as with

LSTM, and the dimensions of the input data are the data

size, variable, and time step. We acquired input and output

data to train the deep learning model. The output is the

river flow data measured at the Hangang Bridge, Yeoju

Bridge, and Gangchung Bridge, and the input data use the

weather data from the near river flow measurement point

and the operational data of upstream dams. We also used

K-fold cross-validation to measure the model performance

accurately. We constructed two models to verify the per-

formance of the PNP algorithm. One was a model com-

posed of PNP algorithms, and the other was a model

composed of LSTM algorithms. We compared the average

values by measuring the performance of the models with

RMSE and sMAPE with five datasets generated by K-fold

cross-validation.

We measured and compared RMSE and sMAPE based

on the average value of river flow for three sectors (Han-

gang Bridge, Yeoju Bridge, Gangchung Bridge). As a

compared result, we can see that the prediction perfor-

mance of river flow for PNP model is superior to LSTM

model except for cases, the average value of the river flow

at the Hangang Bridge below. The greater the river flow,

the more tributaries, and the more tributaries means that

Fig. 18 Results of RMSE and

sMAPE Errors
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Fig. 19 Composition of the two

models
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Fig. 20 Training, verification, and testing precipitation data

Table 9 Type of input data and output shape of the model

Location Input layer Variable of input data Data shape

Hangang Bridge Precipitation Precipitation (4004, 1, 14)

Weather Temperature, humidity (4004, 2, 14)

Upstream dam operation Paldang dam, Cheongpyeong, and others (4004, 10, 14)

Yeoju Bridge Precipitation precipitation (4004, 1, 14)

Weather Temperature, humidity (4004, 2, 14)

Upstream dam operation Geosan dam, Chungju dam, Hoengseong dam (4004, 3, 14)

Gangchung Bridge Precipitation Precipitation (4004, 1, 14)

Weather Temperature, humidity (4004, 2, 14)

Table 10 Prediction error of the

model
Location RMSEðm3=secÞ sMAPE(%) p-value

PNP LSTM PNP LSTM PNP LSTM

Hangang Bridge 198.106 216.458 22.121 22.251 3:25� 10�295 3:61� 10�180

Yeoju Bridge 87.340 93.465 16.173 16.801 4:11� 10�221 3:02� 10�190

Gangchung Bridge 27.888 28.270 31.504 31.539 4:45� 10�55 1:67� 10�41
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there are more areas to consider the amount of precipita-

tion. However, since one amount of precipitation is input in

this study, the error of the PNP algorithm is judged to be

larger than that of the LSTM algorithm.

When the river flow is less than the average value, we

confirmed the prediction of errors for large scale of river

has a little higher error than LSTM model. Also, when we

compared the total item by using sMAPE, we confirmed

the PNP model has a 10% lower error than the LSTM

model when the river flow is above the average value. In

addition, when the river flow is below the average value,

the PNP model showed a little higher error than LSTM

model, about 3%. Through this, we confirmed that the PNP

model has better prediction performance than other deep

Fig. 21 Prediction and observation values of the training and validation data
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learning model such as LSTM. Thus, we confirmed that the

prediction performance is higher when the river flow is

high (natural disaster). Through this paper, we proved that

the performance of the PNP algorithm, which is designed

for the correlation between precipitation and flow, was

excellent compare to LSTM.

Partially, the PNP algorithm sometimes performs worse

than the LSTM algorithm because it only calculates the

precipitation in the target area. In order to solve this

problem, it is necessary to consider not only the

precipitation data at the flow prediction point but also the

precipitation data at the upper point of the river.

In the future, to upgrade the PNP algorithm, we need to

design it by considering the data upstream of the river as

well. In addition, we need to develop a deep learning

algorithm designed to correlate not only precipitation, but

also humidity, upstream dam operation, etc. like the PNP

algorithm.

Fig. 22 Prediction and observation values of the test data
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Diedhiou A, Zougmoré RB (2018) Impacts of 1.5 C global

warming on natural and human systems. Glob Warm 1.5 �C.
Huang X, Li Y, Tian Z, Ye Q, Ke Q, Fan D, Liu J (2021) Evaluation

of short-term streamflow prediction methods in urban river

basins. Phys Chem Earth Parts A/B/C 123:103027

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in

the cat’s striate cortex. J Physiol 148(3):574

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. J Physiol

160(1):106

Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF,

Knowles D, Li YI, Farh KKH (2019) Predicting splicing from

primary sequence with deep learning. Cell 176(3):535–548

Kim D, Lee J, Kim J, Lee M, Wang W, Kim HS (2022) Comparative

analysis of long short-term memory and storage function model

for flood water level forecasting of Bokha stream in NamHan

River, Korea. J Hydrol 606:127415

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification

with deep convolutional neural networks. Adv Neural Inform

Process Syst 25:1–9

Lauer S, Sanderson MR, Manning DT, Suter JF, Hrozencik RA,

Guerrero B, Golden B (2018) Values and groundwater manage-

ment in the Ogallala Aquifer region. J Soil Water Conserv

73(5):593–600

Le XH, Ho HV, Lee G, Jung S (2019) Application of long short-term

memory (LSTM) neural network for flood forecasting. Water

11(7):1387

Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting. arXiv

preprint arXiv:1707.01926.
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