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Abstract
One of characteristics of large-scale linguistic decision making problems is that decision information with respect to decision
making attributes is derived frommulti-sources information. In addition, the number of decisionmakers, alternatives or criteria
of decision making problems in the context of big data are increasingly large. Correlation analysis between decision making
attributes has become an important issue of large-scale linguistic decision making problems. In the paper, we concentrate
on correlation analysis between decision making attributes to deal with large-scale decision making problems with linguistic
intuitionistic fuzzy values. Firstly, we proposed a new similarity measure between two linguistic intuitionistic fuzzy sets
to formally define correlation between decision making attributes. Then we propose linguistic intuitionistic fuzzy reducible
weighted Maclaurin symmetric mean (LIFRWMSM) operator and linguistic intuitionistic fuzzy reducible weighted dual
Maclaurin symmetric mean (LIFRWDMSM) operator to aggregate linguistic intuitionistic fuzzy value decision information
of correlational decisionmaking attributes, and analyze several important properties of the two operator. Inspired by evaluation
based on distance from average solution (EDAS) method, we design a solution scheme and decision steps to deal with large-
scale linguistic intuitionistic fuzzy decision making problems. To show the effectiveness and usefulness of the proposed
decision method, we employ the choice of buying a house and the selection of travel destination to demonstrate our method
and make comparative analysis with others aggregation operators or methods.

Keywords Linguistic intuitionistic fuzzy sets · Correlational Attribute · Reducible weighted MSM operator · EDAS method ·
Multiple attribute decision making

1 Introduction

The main aim of classical multi-attributes decision making
(MADM) is to select the best alternative from a set of alter-
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natives according to decision making methods, in which the
scale of attributes is small and the complexity is not high. In
the era of big data, MADMproblems are becomingmore and
more complex than classical MADM problems. Meanwhile,
the scale of decision makers, alternatives or decision mak-
ing attributes are becoming greater in number (also called
as large-scale decision making problems), such as decision
making in building a large hydropower station (Liu et al.
2015), large groups emergency decision making (Xu et al.
2019) and decision making in social network (Wang et al.
2021). Recently, many researchers have be attracted to solve
large-scale decision making problems, such as Zhou et al.
(2020) proposed a hierarchical selection algorithm to deal
with MADM problems with large-scale alternatives. Wu and
Liu (2016) introduced clustering analysis and aggregation
operator to handle MADM problems with large-scale deci-
sion makers.

Generally, decision information with respect to decision
making attributes in a large-scale decision making prob-
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lem is derived from multi-sources information. In many
cases, several decision making attributes may be correla-
tion in the large-scale decision making problem, such as
in the green environmental behavior decision making prob-
lem (Li et al. 2020), the software trust worthiness evaluation
problem (Yang et al. 2009) and the multi-attributes emer-
gency decision making problem (Chen and Wang 2018).
In fact, correlation analysis is an important issue in multi-
sources information fusion. In large-scale decision making
problems, correlation between decision making attributes
is objective and pervasive due to multi-sources decision
information; hence, correlation analysis between decision
making attributes is necessary; otherwise, the decision mak-
ing results of large-scale decision making problems will be
affected by correlation between decision making attributes.
Based on the assumption that decision making attributes
may be correlation each other, linguistic intuitionistic fuzzy
Einstein Heronian mean operator (Liu and You 2018), lin-
guistic intuitionistic fuzzy Muirhead mean operaror (Rong
et al. 2020), linguistic intuitionistic fuzzy Maclaurin sym-
metric mean (LIFMSM) operator and linguistic intuitionistic
fuzzy weighted Maclaurin symmetric mean (Liu and Qin
2017) have been proposed to aggregate correlational decision
information and deal with multi-attributes decision making
problems. However, in real-world large-scale decision mak-
ing problems, correlation between decisionmaking attributes
is different understood by different decision makers. In other
words, several decision making attributes are correlation, but
others are independence in a large-scale decision making
problem. To our knowledge, few researches pay attention
to such correlation between decision making attributes and
the corresponding large-scale decision making problems. In
addition, because linguistic intuitionistic fuzzy sets with lin-
guisticmemberships and nonmemberships (Chen et al. 2015;
Ou et al. 2018) can be utilized to represent more uncer-
tainty information than classical fuzzy sets (Zadeh 1975),
intuitionistic fuzzy sets (Atanassov 1986) and fuzzy linguis-
tic terms (Pedrycz et al. 2011; Pei et al. 2010; Zhang and
Zhao 2020; Li et al. 2020; Liu et al. 2020; Yan and Pei 2022),
many researchers pay close attention to linguistic intuitionis-
tic fuzzy decision making methods or aggregation operators.
Compared with the TOPSIS and VIKOR decision making
method (Pei et al. 2019; Li et al. 2017), many researchers are
attracted to the EDAS method (Keshavarz Ghorabaee et al.
2015; Fan et al. 2020; Karasan and Kahraman 2018; Liang
2020; Kundakci 2019; Zhan et al. 2020; Wang et al. 2019; Li
et al. 2019; Fan et al. 2019; Mishra et al. 2020 due to only the
positive distance fromaverage alternative (PDA) and the neg-
ative distance from average alternative (NDA) are needed in
the EDASmethod. Furthermore, Feng et al. (2018) extended
the EDAS method to the extended hesitant fuzzy linguistic
environment. Li et al. (2019) designed a MAGDM proce-
dure by improving the EDAS method. Yanmaz et al. (2020)

extended the EDAS method to interval-valued Pythagorean
fuzzy environment to deal with the car selection problem.

In the paper, we propose a novel linguistic decision mak-
ing approach to aggregate correlational decision information
represented by linguistic intuitionistic fuzzy sets and deal
with large-scale multi-attributes decision making problems
inspired by the EDAS method, major contributions of the
paper are concentrated on:

1. A new similarity measure between two decision making
attributes is proposed according to linguistic intuitionistic
fuzzy set decision information in a decision matrix. Then
the correlation between two decision making attributes is
formally defined by the similarity measure. Accordingly,
LIFRWMSM and LIFRWDMSMoperators are presented
to aggregate decision information with correlation;

2. Inspired by EDAS method, a new decision procedure is
designed to deal with the large-scale linguistic decision
making problems with correlation between decisionmak-
ing attributes. The choice of buying a house and the selec-
tion of travel destination are employed to demonstrate
the proposed method and compare with LIFWA, LIFWG,
LIFHA, WLIFMM, WLIFDMM and WLIFMSM meth-
ods which are utilized in the two examples.

The rest of the paper is structured as follows: In Sect. 2,
we review some fundamental notions including linguistic
intuitionistic fuzzy sets and MSMs operators. In Sect. 3,
we define a new linguistic intuitionistic fuzzy similarity
measure, which is applied to analyze correlation between
two decision making attributes. In Sect. 4, we present
LIFRWMSMandLIFRWDMSMoperators to aggregate cor-
relational decision information and analyze their properties.
In Sect. 5, we design a novel decision procedure by com-
bining correlation analysis of decision making attributes and
EDAS method to deal with large-scale linguistic decision
making problems with correlation between decision mak-
ing attributes. In Sect. 6, we employ the choice of buying a
house and the selection of travel destination to demonstrate
the proposed decision making method and test the superi-
ority of our method by comparing with LIFWA, LIFWG,
LIFHA, WLIFMM, WLIFDMM and WLIFMSM methods.
We conclude the paper in Sect. 7.

2 Preliminaries

Linguistic terms S = {s0, s1, . . . , sh} are always uti-
lized to represent qualitative intuitionistic uncertainty of
alternatives in linguistic decision making, for example,
S={s0(extremely dissatisfied ), s1(very dissatisfied), s2 (dis-
satisfied), s3 (slightly dissatisfied), s4 (medium), s5 (slightly
satisfied), s6 (satisfied), s7(very satisfied), s8 (extremely sat-
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isfied)}. Xu (2004) have extended the discrete linguistic term
set S to a continuous and completely ordered linguistic term
set S̃ = {sα|α ∈ [0, h]} based on the 2-tuple fuzzy linguis-
tic representation model (Herrera and Martinez 2000). If the
index α of sα is a natural number from 0 to h, then sα is an
original linguistic term of S. Otherwise sα is deem to a vir-
tual linguistic term. For convenience, we use linguistic term
sα ∈ S̃ = {sα|α ∈ [0, h]} to represent continuous linguistic
decision information in the paper. The concept of linguistic
intuitionistic fuzzy set (LIFS) defined in S̃ = {sα|α ∈ [0, h]}
is formalized as follows.

Definition 1 (Zhang 2014) LetU be a discourse domain and
S̃ = {sα|α ∈ [0, h]} be a set of continuous linguistic terms.
A is called as a LIFS on U , i.e.,

A = {(x, sα(x), sβ(x))|x ∈ U } (1)

where sα(x), sβ(x) ∈ S̃ represents the linguistic member-
ship grade and linguistic non-membership grade of x ∈ A,
respectively. For any x ∈ U , sα(x) and sβ(x) always satisfy
the condition 0 ≤ α + β ≤ h, and sπ (x) denote linguistic
hesitant grade, where π = h − α − β.

The following operations are always utilized to deal
with LIFSs information (Chen et al. 2015): let ϑ1 =
(sα1 , sβ1), ϑ2 = (sα2 , sβ2), ϑ = (sα, sβ) be linguistic intu-
itionistic fuzzy values (LIFVs). For any constant δ > 0, we
have

1. ϑ1⊕ϑ2 = (sα1 , sβ1
)⊕(sα2 , sβ2

) =
(
sα1+α2− α1α2

h
, s β1β2

h

)
;

2. ϑ1⊗ϑ2 = (sα1 , sβ1
)⊗(sα2 , sβ2

) =
(
s α1α2

h
, s

β1+β2− β1β2
h

)
;

3. δϑ = δ
(
sα, sβ
) =
(
sh−h(1− α

h )δ , sh(
β
h )δ

)
;

4. ϑδ = (sα, sβ
)δ =
(
sh( α

h )δ , sh−h(1− β
h )δ

)
.

To order LIFSs onU , Zhang (2014) provides the linguistic
score result S (ϑ) and the linguistic accuracy result H (ϑ)

of ϑ :

S (ϑ) = h + α − β

2
, H (ϑ) = α + β. (2)

Then for any two LIFVs ϑ1 = (sα1 , sβ1), ϑ2 = (sα2 , sβ2), we
have

1. IfS (ϑ1) < S (ϑ2), then ϑ1 < ϑ2;
2. IfS (ϑ1) = S (ϑ2), then,

• IfH (ϑ1) > H (ϑ2), then ϑ1 > ϑ2;
• IfH (ϑ1) = H (ϑ2), then ϑ1 = ϑ2.

To fuse n inputs with correlation derived from multi-
sources information, Maclaurin symmetric mean (MSM)
operator has been proposed as follows.

Definition 2 (Maclaurin 1729) Let ϑ1, . . . , ϑn be nonnega-
tive real numbers, then the MSM operator is

MSM(k)(ϑ1, . . . , ϑn) =

⎛

⎜⎜⎜
⎜
⎝

∑
1≤i1<···<ik≤n

(
k∏

j=1
ϑi j

)

Ckn

⎞

⎟⎟⎟
⎟
⎠

1
k

(3)

where k = 1, . . . , n, i1, . . . , ik is any k-tuple permutation of
{1, . . . , n} and Ckn = n!

k!(n−k)! .

Definition 3 (Qin and Liu 2015) Let ϑ1, . . . , ϑn be nonneg-
ative real numbers, then the DMSM operator is

DMSM(k)(ϑ1, ϑ2, . . . , ϑn)

=
∏

1≤i1<···<ik≤n

(∑k
j=1 ϑi j

) 1
Ckn

k
(4)

where k = 1, . . . , n, i1, . . . , ik is any k-tuple permutation of
{1, 2, . . . , n} and Ckn = n!

k!(n−k)! .

In decision making analysis, MSM and DMSM opera-
tors have been applied in multi-attributes decision making
problems to aggregate decision information with correlation
(Feng and Geng 2019; Li et al. 2016; Liu and Liu 2018;
Liu and Qin 2018). After then, Shi and Xiao (2019) pro-
posed the reducible weighted Maclaurin symmetric mean
(RWMSM) and reducible weighted dual Maclaurin sym-
metric mean (RWDMSM) operators to deal with MADM
problems.

Definition 4 (Shi and Xiao 2019) Let ϑ1, . . . , ϑn be non-
negative real numbers, W = (�1, . . . ,�n)

T be a vector
of weights, where �i > 0 and

∑n
i=1 �i = 1. For any

k ∈ {1, . . . , n}, the RWMSM operator is

RWMSM(k)(ϑ1, . . . , ϑn)

=

⎛

⎜⎜⎜⎜
⎝

∑
1≤i1<···<ik≤n Pik

(
k∏

j=1
ϑi j

)

Pk

⎞

⎟⎟⎟⎟
⎠

1
k

(5)

where Pik =∏k
j=1 �i j ,Pk =∑1≤i1<···<ik≤n Pik .

Definition 5 (Shi and Xiao 2019) Let ϑ1, . . . , ϑn be non-
negative real numbers, W = (�1, . . . ,�n)

T be a vector
of weights, where �i > 0 and

∑n
i=1 �i = 1. For any

k ∈ {1, . . . , n}, the RWDMSM operator is
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RWDMSM(k)(ϑ1, ϑ2, . . . , ϑn)

=
∏

1≤i1<···<ik≤n

(∑k
j=1 ϑi j

)Mik
Mk

k
(6)

where i1, . . . , ik is any k-ary arrangement of {1, . . . , n},Ckn =
n!

k!(n−k)! , andMik =∑k
j=1 �i j ,Mk =∑1≤i1<···<ik≤n Mik .

3 Correlation between decisionmaking
attributes in decisionmakingmatrix

In real-world large-scale decision making problems, cor-
relation between decision making attributes is different
understood by different decision makers, such as the correla-
tion is determined by expert judgment, information sources
correlation or semantic of decision making attributes. In the
section, we present correlation analysis between decision
making attributes based on decision information, which is
provided by decision makers according to decision mak-
ing attributes and represented by LIFSs. Intuitively, suppose
A = (A1, A2, . . . , Am) is the collection of alternatives
of a large-scale MADM problem, B = (B1, B2, . . . , Bn)

(n ≥ 20) is the collection of decision making attributes with
weights � = (�1,�2, . . . ,�n) such that 0 ≤ �i ≤ 1 and∑n

i=1 �i = 1, the set of linguistic terms is S̃ = {sα|α ∈
[0, h]}, which are used by decision makers to evaluate alter-
natives according to decision making attributes. All of LIFS
decision information provided by a decision maker can be
represented in a decision matrix � = (ϑi j )m×n , i.e.,

� =

⎛

⎜
⎜⎜
⎝

B1 B2 · · · Bn

A1 ϑ11 ϑ12 · · · ϑ1n

A2 ϑ21 ϑ22 · · · ϑ2n
...

...
... · · · ...

Am ϑm1 ϑm2 · · · ϑmn

⎞

⎟
⎟⎟
⎠

, (7)

where every ϑi j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is a
linguistic intuitionistic fuzzy value ϑi j = (sαi j , sβi j ), that is,
the decisionmaker provides (sαi j , sβi j ) to evaluate alternative
Ai ∈ A with respect to the attribute Bj ∈ B. Accordingly,
every attribute Bj ∈ B can be represented by a LIFS on
A = (A1, A2, . . . , Am), i.e.,

Bj = {(Ai , sαi j (Ai ), sβi j (Ai ))|Ai ∈ A}.

More generally, we provide the similarity measure between
twoLIFSsondiscrete discourse domainU = {x1, x2, . . . , xn}
as follows.

Definition 6 Let continuous linguistic terms be S̃ = {sα|α ∈
[0, h]}. Two LIFSs on U = {x1, . . . , xn} are A1 =

Fig. 1 The similarity measure between two decision making attributes
in a decision matrix �

{(xi , sαi1(xi ), sβi1(xi ))|xi ∈ U } and A2 = {(xi , sαi2(xi ),
sβi2(xi ))|xi ∈ U }. Then the similarity measure between A1

and A2 is defined by

S(A1, A2) = h −
[

1

2n

n∑

i=1

(|αi1 − αi2|γ + |βi1 − βi2|γ

+|πi1 − πi2|γ
)
] 1

γ

(8)

where γ is a constant such that γ > 0. The indexes αi1, βi1,
αi2 and βi2 of linguistic terms sαi1 , sβi1 , sαi2 and sβi2 are such
that 0 ≤ αi1+βi1 ≤ h, 0 ≤ αi2+βi2 ≤ h,πi1 = h−αi1−βi1

and πi2 = h − αi2 − βi2.

According to Eq. (8) of Definition 6, the following prop-
erty can be easily proved.

Proposition 1 Let continuous linguistic terms be S̃ =
{sα|α ∈ [0, h]}. For any two LIFSs A1 = {(xi , sαi1(xi ), sβi1
(xi ))|xi ∈ U } and A2 = {(xi , sαi2(xi ), sβi2(xi )) |xi ∈ U } on
U = {x1, . . . , xn}, we have

1. 0 ≤ S(A1, A2) ≤ h;
2. S(A1, A2) = h if and only if A1 = A2;
3. S(A1, A2) = S(A2, A1).

Based on the similarity measure between two LIFSs, we
can present correlation analysis between decision making
attributes. Formally, because every attribute Bj ∈ B is a LIFS
on A = (A1, A2, . . . , Am), we can calculate the similarity
measure between twodecisionmaking attributes in a decision
matrix � = (ϑi j )m×n , i.e.,

Definition 7 In anydecisionmatrix� = (ϑi j )m×n , attributes
Bi and Bk are correlation if and only if the similaritymeasure
between them is such that

S(Bi , Bk) ≥ 
, (9)
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where 0 < 
 ≤ h is a threshold determined by decision
makers.

Formally, Property 1 shows that correlation between two
attributes decided by Eqs. (9) and (8) is a similar relations
on the set of attributes B (Fig. 1), i.e., correlation between
two attributes provides a partition {C1,C2, . . . ,Ct } of B
for a fixed threshold 0 < 
 ≤ h, in which each subset
Ct ′ = {Bt ′1, . . . , Bt ′|Ct ′ |}(t ′ = 1, 2, . . . , t) of B is consisted
of decision making attributes that are correlation each other
.

Example 1 Let continuous linguistic terms be S̃ = {sα|α ∈
[0, 8]}. Assume the following decision matrix of a multi-
attributes decision making problem

� =
⎛

⎝

B1 B2 B3 B4 B5

A1 (s5, s1) (s1, s7) (s2, s6) (s5, s3) (s4, s4)
A2 (s4, s4) (s6, s1) (s5, s2) (s4, s4) (s4, s4)
A3 (s6, s2) (s6, s2) (s6, s1) (s6, s1) (s7, s1)

⎞

⎠,

Accordingly, decision making attributes B1, B2, B3, B4 and
B5 are represented by LIFSs on the set {A1, A2, A3} of
alternatives, i.e., B1 = {(s5, s1), (s4, s4), (s6, s2)}, B2 =
{(s1, s7), (s6, s1), (s6, s2)}, B3 = {(s2, s6), (s5, s2), (s6, s1)},
B4 = {(s5, s3), (s4, s4), (s6, s1)}, B5 = {(s4, s4), (s4, s4),
(s7, s1)}. In the example, we fix γ = 1, then according to
Eq. (8), we have

S(B1, B2) = 8 −
[
4 + 6 + 2 + 2 + 3 + 1 + 0 + 0 + 0

6

]

= 5.0,

Similarly, we have (B1, B3) = 5.3, S(B1, B4) = 7.0,
S(B1, B5) = 6.7, S(B2, B3) = 7.0, S(B2, B4) = 5.3,
S(B2, B5) = 5.7, S(B3, B4) = 6.3 and S(B3, B5) = 7.3.

If the threshold is fixed by 
 = 6.6, then the partition of B
is C1 = {B1, B4, B5} and C2 = {B2, B3}, i.e., decision mak-
ing attributes in C1 = {B1, B4, B5} (or C2 = {B2, B3}) are
correlation each other. If the threshold is fixed by 
 = 5, then
the partition of B is itself, i.e., C1 = {B1, B2, B3, B4, B5}.

4 Linguistic intuitionistic fuzzy RWMSM and
RWDMSM operators

In this section, we proposed linguistic intuitionistic fuzzy
RWMSM (LIFRWMSM) operator and linguistic intuition-
istic fuzzy RWDMSM (LIFRWDMSM) operator based on
correlation analysis between decision making attributes,
which can be utilized to aggregate correlational linguistic
intuitionistic fuzzy decision information and deal with large-
scale linguistic intuitionistic fuzzy MADM problems with
correlation between decision making attributes. Meanwhile,

several properties of LIFRWMSM and LIFRWDMSM oper-
ators are also analyzed.

According to the above analysis, suppose that t (t ≤ n)

correlational attributes subsets are obtained, i.e., Ct ′ =
{Bt ′1, . . . , Bt ′|Ct ′ |}(t ′ = 1, 2, . . . , t) and |Ct ′ | is the number
of correlational attributes in Ct ′ . Before LIFRWMSM and
LIFRWDMSM operators, we need to redetermine weights
of the aggregated attributes according to initial weights� =
(�1,�2, . . . ,�n) of decisionmaking attributes, here for any
correlational attribute subset Ct ′ = {Bt ′1, . . . , Bt ′|Ct ′ |}, the
weight of attribute Bt ′ j ∈ Ct ′ is redetermined by

�t ′ j = � j
∑|Ct ′ |

j=1 � j

, (10)

where � j is the initial weight of Bt ′ j in B.

Example 2 In Example 1, suppose the weight vector of
attributes be � = {0.1, 0.2, 0.3, 0.2, 0.2}, then in the corre-
lational attribute subsets C1 = {B1, B4, B5}, weights of B1,
B4 and B5 become

�11 = 0.1

0.1 + 0.2 + 0.2
= 0.2,

�12 = 0.2

0.1 + 0.2 + 0.2
= 0.4,

�13 = 0.2

0.1 + 0.2 + 0.2
= 0.4.

Similarly, in the correlational attribute subsets C2 = {B2,

B3}, weights of B2 and B3 become�21 = 0.2
0.2+0.3 = 0.4 and

�22 = 0.3
0.2+0.3 = 0.6.

Due to each Ct ′ = {Bt ′1, . . . , Bt ′|Ct ′ |}(t ′ = 1, 2, . . . , t) of
B is such that decisionmaking attributes ofCt ′ are correlation
each other, theRWMSMoperator can be utilized to aggregate
linguistic intuitionistic fuzzy evaluation values with respect
to subset Ct ′ of B.

Definition 8 For any decision matrix � = (ϑi j )m×n with
LIFVs as decision information of alternatives, let Ct ′ =
{Bt ′1, . . . , Bt ′|Ct ′ |} be a correlational attributes subset of B
by Eqs. (8) and (9). The LIFV ϑi j = (sαi j , sβi j ) is decision
information of the alternative Ai ∈ A with respect to the
attribute Bt ′ j and �t ′ = (�t ′1, . . . ,�t ′|Ct ′ |)

T be a vector of
weights decided by Eq. (10). Then the LIFRWMSMoperator
is defined by

LIFRWMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |)

=

⎛

⎜⎜⎜
⎜
⎝

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑi j

)

Pk

⎞

⎟⎟⎟
⎟
⎠

1
k

, (11)
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where t ′ = 1, 2, . . . , t , k ∈ {1, . . . , |Ct ′ |},Pik =∏k
j=1 �t ′i j

and Pk =∑1≤i1<···<ik≤|Ct ′ | Pik .

Formally, according to operations ⊕ and ⊗ on LIFVs, the
aggregation result of the LIFRWMSM operator is still a
LIFV, i.e.,

⎛

⎜⎜
⎜⎜
⎝

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑi j

)

Pk

⎞

⎟⎟
⎟⎟
⎠

1
k

=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

s

h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 αi j
hk

)Pik
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1
k
,

s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

βi j
h

))Pik
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1
k

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

(12)

Example 3 In Example 2, for the correlational attribute sub-
sets C1 = {B1, B4, B5} and weights of �11, �12 and �13,
decision information of A1 with respect to C1 is ϑ11 =
(s5, s1), ϑ12 = (s5, s3) and ϑ13 = (s4, s4), then we have

LIFRWMSM(3)(ϑ11 , ϑ12 , ϑ13 )

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

s

8∗
⎛

⎝1−
((

1− 5∗5∗4
83

)0.2∗0.4∗0.4) 1
0.2∗0.4∗0.4

⎞

⎠

1
3
,

s

8−8∗
⎛

⎝1−
((

1−
(
1− 1

8

)(
1− 3

8

)(
1− 4

8

))0.2∗0.4∗0.4) 1
0.2∗0.4∗0.4

⎞

⎠

1
3

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=
⎛

⎜
⎝

s
8∗
((

5
8

)
∗
(
5
8

)
∗
(
4
8

)) 1
3
,

s
8−8∗
((

1− 1
8

)(
1− 3

8

)(
1− 4

8

)) 1
3

⎞

⎟
⎠

= (s4.6, s2.8).

The proof of Eq. (12) is provided in Appendix 1. In addi-
tion, the following properties of the LIFRWMSM operator
can be proved according to operations ⊕ and ⊗ on LIFVs.

Theorem 1 (Idempotency) The LIFRWMSM operator
[Eq. (11)] is idempotent, i.e, if ϑi1 = · · · = ϑi|Ct ′ | = (sα, sβ),
then

LIFRWMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |) = (sα, sβ)

Theorem 2 (Monotonicity) The LIFRWMSM operator
[Eq. (11)] is monotonic, i.e, for any LIFVs ϑi j = (sαi j , sβi j )

and ϑ
′
i j

= (s
α

′
i j
, s

β
′
i j
), if sαi j ≥ s

α
′
i j
, sβi j ≤ s

β
′
i j
, then

LIFRWMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |)

≥ LIFRWMSM(k)(ϑ ′
i1 , ϑ

′
i2 , . . . , ϑ

′
i|Ct ′ |

)

Theorem 3 (Boundedness) The LIFRWMSM operator
[Eq. (11)] is bounded, i.e, for LIFVs ϑi1 = (sαi1, sβi1), . . . ,
ϑi|Ct ′ | = (sαi |Ct ′ | , sβi |Ct ′ |), let ϑ+

i j = (smaxαi j , sminβi j

)
and

ϑ−
i j = (sminαi j , smaxβi j

)
( j = 1, . . . , |Ct ′ |), then

ϑ−
i j ≤ LIFRWMSM(k)(ϑi1, . . . , ϑi|Ct ′ |) ≤ ϑ+

i j

Theorem 4 (Commutativity) The LIFRWMSM operator
[Eq. (11)] is commutative, i.e, let (ϑT

i1
, . . . , ϑT

i|Ct ′ |
) be a per-

mutation of (ϑi1 , . . . , ϑi|Ct ′ |), then

LIFRWMSM(k)(ϑT
i1 , . . . , ϑ

T
i|Ct ′ |

)

quad = LIFRWMSM(k)(ϑi1 , . . . , ϑi|Ct ′ |)

The proofs of these theorems are provided in Appendixes
2–5, respectively. In addition, based on the partition {C1,

C2, . . . ,Ct } of B of B for a fixed threshold 0 < 
 ≤ h,
the aggregation process of LIFSs decision information in the
decision matrix � = (ϑi j )m×n by using the LIFRWMSM
operator shows different cases. In some degree, the cases can
be considered as reducibility of the LIFRWMSM operator in
aggregating LIFSs in � = (ϑi j )m×n , i.e., in Eq. (12),

Case 1 If Ct ′ = 1 (it is equal to k = 1), the LIFRWMSM
operator is reduced to

LIFRWMSM(1)(ϑi1 , . . . , ϑi|Ct ′ |)

= LIFRWMSM(1)(ϑi1)

= � jϑi j = LIFWA(ϑi1)

The case also means that decision making attributes B =
(B1, B2, . . . , Bn) are independent each other, and LIFWA
aggregation operator can be directly used to aggregate LIFSs
decision information in � = (ϑi j )m×n, i.e., for each alter-
native Ai (i = 1, 2, . . . ,m), we have

LIFWA(ϑi1, . . . , ϑin) = ⊕n
j=1� jϑi j .

Case 2 If Ct ′ = |B|, i.e., decision making attributes B =
(B1, B2, . . . , Bn) are correlation each other, then the pro-
posed LIFRWMSM operator is reduced to linguistic intu-
itionistic fuzzy geometric (LIFG) operator,
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LIFRWMSM(|B|)(ϑi1, ϑi2 , . . . , ϑi|B|)

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

s

h

⎛

⎜⎜
⎝1−
⎛

⎜
⎝

∏

1≤i1<···<i|B|≤|B|

⎛

⎝1−
∏|B|

j=1 αi j
h|B|

⎞

⎠

Pk
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎠

1|B|
, s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<in≤|B|

(

1−
|B|∏
j=1

(
1−

βi j
h

))Pk
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1|B|

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝s

h
|B|∏
j=1

(
αi j
h

) 1|B|
, s(

h−h
|B|∏
j=1

(1−
βi j
h )

1|B|
)

⎞

⎟
⎠ = LIFG(ϑi1, ϑi2, . . . , ϑin).

Example 4 Based on Examples 1 and 2, whenwe fix 
 = 7.5,
the partition of B is C1 = {B1}, C2 = {B2}, C3 = {B3},
C4 = {B4} and C5 = {B5}, i.e., Ct ′ = k = 1, then for LIFSs
decision information of alternative A1 in the decision matrix
of Examples 1,

LIFWA(ϑ11, ϑ12, ϑ13, ϑ14, ϑ15)

=
(

s
8−8∗
(
1−( 58 )

)0.1∗
(
1−( 18 )

)0.2∗
(
1−( 28 )

)0.3∗
(
1−( 58 )

)0.2∗
(
1−( 48 )

)0.2 , s
8∗
(
1
8

)0.1∗
(
7
8

)0.2∗
(
6
8

)0.3∗
(
3
8

)0.2(
4
8

)0.2

)

= (s3.4, s4.2) .

when we fix 
 = 5, the partition of B is C1 = {B1, B2, B3,

B4, B5}, i.e., Ct ′ = |B|, then we have

LIFRWMSM(5)(ϑ11, ϑ12, ϑ13, ϑ14, ϑ15)

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

s

8∗
⎛

⎝1−
((

1− 5∗1∗2∗5∗4
83

)0.1∗0.2∗0.3∗0.2∗0.2) 1
0.1∗0.2∗0.3∗0.2∗0.2

⎞

⎠

1
5
,

s

8−8∗
⎛

⎝1−
((

1−
(
1− 1

8

)(
1− 7

8

)(
1− 6

8

)(
1− 3

8

)(
1− 4

8

))0.1∗0.2∗0.3∗0.2∗0.2) 1
0.1∗0.2∗0.3∗0.2∗0.2

⎞

⎠

1
5

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

=
⎛

⎜
⎝

s
8∗
((

5
8

)
∗
(
1
8

)
∗
(
2
8

)
∗
(
5
8

)
∗
(
4
8

)) 1
5
,

s
8−8∗
((

1− 1
8

)(
1− 7

8

)(
1− 6

8

)(
1− 3

8

)(
1− 4

8

)) 1
5

⎞

⎟
⎠ .

= (s2.9, s4.9) = LIFG(ϑ11, ϑ12, ϑ13, ϑ14, ϑ15).

Definition 9 For any decision matrix � = (ϑi j )m×n with
LIFVs as decision information of alternatives, let Ct ′ =
{Bt ′1, . . . , Bt ′|Ct ′ |} be a correlational attributes subset of B
by Eqs. (8) and (9). The LIFV ϑi j = (sαi j , sβi j ) is decision
information of the alternative Ai ∈ A with respect to the
attribute Bt ′ j and �t ′ = (�t ′1, . . . , �t ′|Ct ′ |)

T be a vector of
weights decided by Eq. (10). The LIFRWDMSM operator is

LIFRWDMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |)

=

⊗

1≤i1<···<ik≤|Ct ′ |

(
k⊕

j=1
ϑi j

)Mik
Mk

k
, (13)

where t ′ = 1, 2, . . . , t , k ∈ {1, . . . , |Ct ′ |}, Mik =∑k
j=1 �i j ,Mk =∑1≤i1<···<ik≤|Ct ′ | Mik .

Formally, according to operations ⊕ and ⊗ on LIFVs, the
aggregation result of the LIFRWDMSM operator is still a
LIFV, i.e.,
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⊗

1≤i1<···<ik≤|Ct ′ |

(
k⊕

j=1
ϑi j

)Mik
Mk

k
=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

s

h−h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

αi j
h

))Mik
⎞

⎠

1
Mk

⎞

⎟⎟
⎠

1
k
,

s

h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 βi j
hk

)Mik
⎞

⎠

1
Mk

⎞

⎟⎟
⎠

1
k

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(14)

Example 5 In Example 3, for the correlational attribute sub-
sets C1 = {B1, B4, B5} and weights of �11, �12 and �13,
decision information of A1 with respect to C1 are ϑ11 =
(s5, s1), ϑ12 = (s5, s3) and ϑ13 = (s4, s4), then we have

LIFRWDMSM(k)(ϑ11 , ϑ12 , ϑ13) =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

s

8−8∗
⎛

⎝1−
((

1−
(
1− 5

8

)(
1− 5

8

)(
1− 4

8

))0.2+0.4+0.4
) 1

0.2+0.4+0.4

⎞

⎠

1
3
,

s

8∗
⎛

⎝1−
((

1− 1∗3∗4
83

)0.2+0.4+0.4
) 1

0.2+0.4+0.4

⎞

⎠

1
3

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝s

8−8∗
((

1−
(
5
8

))
∗
(
1−
(
5
8

))
∗
(
1−
(
4
8

)) 1
3

), s
8∗
((

1
8

)(
3
8

)(
4
8

)) 1
3

⎞

⎟
⎠ = (s4.7, s2.3) .

Equation (14) can be similarly proved in Appendix 6.
In addition, the following properties of the LIFRWDMSM
operator can be proved according to operations ⊕ and ⊗ on
LIFVs.

Theorem 5 (Idempotency) The LIFRWDMSM operator
[Eq. (13)] is idempotent, i.e, if ϑi1 = · · · = ϑi|Ct ′ | = (sα, sβ),
then,

LIFRWDMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |) = (sα, sβ)

Theorem 6 (Monotonicity) The LIFRWDMSM operator
[Eq. (13)] is monotonic, i.e, for any LIFVs ϑi j = (sαi j , sβi j )

and ϑ
′
i j

= (s
α

′
i j
, s

β
′
i j
), if sαi j ≥ s

α
′
i j
, sβi j ≤ s

β
′
i j
, then

LIFRWDMSM(k)(ϑi1 , ϑi2 , . . . , ϑi|Ct ′ |)

≥ LIFRWDMSM(k)(ϑ ′
i1 , ϑ

′
i2 , . . . , ϑ

′
i|Ct ′ |

)

Theorem 7 (Boundedness) The LIFRWDMSM operator
[Eq. (13)] is bounded, i.e, for LIFVs ϑi1 = (sαi1, sβi1), . . . ,
ϑi|Ct ′ | = (sαi |Ct ′ | , sβi |Ct ′ |), let ϑ+

i j = (smaxαi j , sminβi j

)
and

ϑ−
i j = (sminαi j , smaxβi j

)
( j = 1, . . . , |Ct ′ |), then

ϑ−
i j ≤ LIFRWDMSM(k)(ϑi1 , . . . , ϑi|Ct ′ |) ≤ ϑ+

i j

Theorem 8 (Commutativity) The LIFRWDMSM operator
[Eq. (13)] is commutative, i.e, let (ϑT

i1
, . . . , ϑT

i|Ct ′ |
) be a per-

mutation of (ϑi1 , . . . , ϑi|Ct ′ |), then

LIFRWDMSM(k)(ϑT
i1 , . . . , ϑ

T
i|Ct ′ |

)

= LIFRWDMSM(k)(ϑi1 , . . . , ϑi|Ct ′ |)

These theorems can be similarly proved in Appendixes
2–5. The proof of Theorem 5 in Appendix 7. In addition, like
the cases of the LIFRWMSM operator, we have the follow-
ing cases of reducibility of the LIFRWDMSM operator, in
Eq. (12),

Case 3 If k = |Ct ′ | = 1, the proposed LIFRWDMSM opera-
tor is reduced to

LIFRWDMSM(1)(ϑi1 , . . . , ϑi|Ct ′ |)

= LIFRWDMSM(1)(ϑi1) = (ϑi j )
� j = LIFWG(ϑi1).

In such case, LIFSs decision information of alternative Ai

in the decision matrix � = (ϑi j )m×n can be aggregated by
LIFWG operator, i.e.,

LIFWG(ϑi1, . . . , ϑin) = ⊗n
j=1(ϑi j )

� j .

Case 4 If Ct ′ = |B|, the proposed LIFRWDMSM operator is
reduced to the LIFA operator, i.e.,
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LIFRWDMSM(n)(ϑi1 , ϑi2 , . . . , ϑi|B|)

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<i|B|≤|B|

(

1−
|B|∏
j=1

(
1−

αi j
h

))Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1|B|
, s

h

⎛

⎜⎜
⎝1−
⎛

⎜
⎝
∑

1≤i1<···<i|B|≤|B|

⎛

⎝1−
∏|B|

j=1 βi j
h|B|

⎞

⎠

Mik
⎞

⎟
⎠

1
Mk

⎞

⎟⎟
⎠

1|B|

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

=
(
s
h−h

∏

1≤i1≤|B|

(
1−

αi j
h

) 1|B|
, s

h
∏

1≤i1≤|B|

(
βi j
h

) 1|B|
)

= LIFA(ϑi1, ϑi2, . . . , ϑin)

Example 6 Similar with Example 4, for 
 = 7.5 and LIFSs
decision information of alternative A1, we have

LIFWG(ϑ11, ϑ12, ϑ13, ϑ14, ϑ15)

=

⎛

⎜⎜⎜
⎝

s
8−8∗(1−

((
1−
(
1− 5

8

))0.1(
1−
(
1− 1

8

))0.2(
1−
(
1− 2

8

))0.3(
1−
(
1− 5

8

))0.2(
1−
(
1− 4

8

))0.2)
1

0.1+0.2+0.3+0.2+0.2
,

s
8∗(1−

((
1− 1

8

)0.1(
1− 7

8

)0.2(
1− 6

8

)0.3(
1− 3

8

)0.2(
1− 4

8

)0.2)
1

0.1+0.2+0.3+0.2+0.2

⎞

⎟⎟⎟
⎠

=
⎛

⎝s
8∗
(
5
8

)0.1∗
(
1
8

)0.2∗
(
2
8

)0.3∗
(
5
8

)0.2∗
(
4
8

)0.2 , s
8−8∗
((

7
8

)0.1(
1
8

)0.2(
2
8

)0.3(
5
8

)0.2(
4
8

)0.2)

⎞

⎠ = (s2.6, s5.2) .

For 
 = 5, we have

LIFRWDMSM(k)(ϑ11, ϑ12, ϑ13, ϑ14, ϑ15)

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

s

8−8∗
⎛

⎝1−
((

1−
(
1− 5

8

)(
1− 1

8

)(
1− 2

8

)(
1− 5

8

)(
1− 4

8

))0.1+0.2+0.3+0.2+0.2
) 1

0.1+0.2+0.3+0.2+0.2

⎞

⎠

1
5
,

s

8∗
⎛

⎝1−
((

1− 1∗7∗6∗3∗4
83

)0.1+0.2+0.3+0.2+0.2
) 1

0.1+0.2+0.3+0.2+0.2

⎞

⎠

1
5

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=
(

s
8−8∗
((

1−
(
5
8

))
∗
(
1−( 18 )

)
∗
(
1−
(
2
8

))
∗
(
1−( 58 )

)
∗
(
1−( 48 )

)) 1
5
, s

8∗
((

1
8

)(
7
8

)(
6
8

)(
3
8

)(
4
8

)) 1
5

)

= (s3.7, s3.5) .

Formally, based on correlation analysis between decision
making attributes, the set B of decision making attributes is
partitioned into C = {C1,C2, . . . ,Ct }(t ≤ n), which can be
considered as t independent new attributes, i.e., the set of t
independent core attributes of B is C in the paper. By using
the proposed LIFRWMSM or LIFRWDMSM operators,
LIFV decision information of each Ct ′(t ′ ∈ {1, 2, . . . , t})
can be obtained, and weights of independent core attributes
{C1, . . . ,Ct }(t ≤ n) can be renewed as follows

θt ′ =
∏|Ct ′ |

j=1 �t ′ j
∑t

t ′=1
∏|Ct ′ |

j=1 �t ′ j
(15)

where θt ′ represents the weight of core attribute Ct ′ .

Example 7 In Example 2, for independent core attributes
C1′ = {B1, B4, B5} and C2′ = {B2, B3}, due to weights
�1′1 = 0.2, �1′2 = 0.4, �1′3 = 0.4 and �2′1 = 0.4,
�2′2 = 0.6, we have

θ1′ = 0.2 × 0.4 × 0.4

0.2 × 0.4 × 0.4 + 0.4 × 0.6
.= 0.12,

θ2′ = 0.4 × 0.6

0.2 × 0.4 × 0.4 + 0.4 × 0.6
.= 0.88.
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5 A solution scheme of large-scale linguistic
intuitionistic fuzzy decisionmaking
problems

Inspired by EDAS decision making method and correlation
analysis between decision making attributes, in the section,
we present a new solution scheme of large-scale linguistic
intuitionistic fuzzy decision making analysis, in which deci-
sion information of alternatives are represented byLIFVs and
correlation between decision making attributes are existed in
decision making process due to multi-sources decision infor-
mation. Formally, the new solution scheme is consisted by
the following steps.

Step 1. Obtaining the decision matrix � = (ϑi j )m×n

[Eq. (7)] based on multi-sources decision information, in
which each ϑi j is a LIFV.

Step 2. Analyzing correlation between decision making
attributes of � based on Eqs. (8) and (9), then obtain-
ing the partition C = {C1,C2, . . . ,Ct }(t ≤ n) of B by
the fixed threshold 
, in which each core attribute Ct ′ =
{Bt ′1, . . . , Bt ′|Ct ′ |}(t ′ = 1, 2, . . . , t) is such that decision
making attributes in Ct ′ are correlation each other.

Step 3. Constructing the new decision matrix �new =
(ϑ ′

i j )m×t , i.e.,

�new =

⎛

⎜⎜⎜
⎝

C1 C2 · · · Ct

A1 ϑ ′
11 ϑ ′

12 · · · ϑ ′
1t

A2 ϑ ′
21 ϑ ′

22 · · · ϑ ′
2t

...
...

... · · · ...

Am ϑ ′
m1 ϑ ′

m2 · · · ϑ ′
mt

⎞

⎟⎟⎟
⎠

, (16)

where each ϑ ′
i j (i = 1, . . . ,m, j = 1, . . . , t) is a LIFV, i.e.,

ϑ ′
i j = (sαi j , sβi j ) is calculated by the LIFRWMSM or LIFR-

WDMSMoperators according toLIFVsϑi j in� with respect
to Ct ′ = {Bt ′1, . . . , Bt ′|Ct ′ |}, weights of all Bt ′|Ct ′ | are deter-
mined by Eq. (10).

Step 4. Calculating the average solution ĀS j = ϑ̄ j =
(sα j , sβ j ) of each core attribute C j ( j = 1, . . . , t) in �new,
i.e.,

ĀS j = ϑ̄ j = 1

m
⊕m

i=1 ϑ ′
i j .

Step 5. Calculating the positive distance from average
PDAi j and the negative distance from average NDAi j for
each alternative Ai (i = 1, . . . ,m), i.e.,

PDAi j =
{
S (ϑ ′

i j ) − S ( ĀS j ), if ϑ ′
i j ≥ ĀS j ;

0, if ϑi j < ASj .
(17)

NDAi j =
{
S ( ĀS j ) − S (ϑ ′

i j ), if ϑ ′
i j < ASj ;

0, if ϑi j ≥ ĀS j .
(18)

where S (∗) is defined by Eq. (2).
Step 6. Determining the value of weighted summation of

the positive and negative distances from average solution for
each alternative Ai (i = 1, . . . ,m), i.e.,

SPθ
i =

t∑

j=1

PDAi jθ j , SN θ
i =

t∑

j=1

NDAi jθ j , (19)

where weight θ j of core attribute C j ( j = 1, . . . , t) is deter-
mined by Eq. (15).

Step 8. Normalizing the values of the weighted PDA and
weighted NDA, respectively.

SPN
i = SPθ

i

max{SPθ
i |i = 1, 2, . . . ,m} , (20)

SN N
i = 1 − SN θ

i

max{SN θ
i |i = 1, 2, . . . ,m} . (21)

Step 9. Computing the score AS i of each alternative
Ai (i = 1, . . . ,m), i.e.,

AS i = 1

2
(SPN

i + SN N
i )

Step 10.Ranking the alternatives according to the decreas-
ing values of the score AS i , the best alternative Ai ′ is with
the highest score AS i ′ , i.e., i ′ = ArgMaxi∈{1,2,...,m}{AS i }.

6 Case study

In this section, we consider two popular practical examples
to demonstrate the proposed decision making method.

6.1 Case analysis

With the development of the advancement in people’s living
standards, more andmore people choose to buy quality hous-
ing. Generally, the investment to buy a house is an important
financial expenditure for a family, the choice of buying a
house is a major decision making for the family.

Example 8 Suppose that an agent introduced four houses
A1, A2, A3 and A4 to a family. After careful consideration,
the family selected the following attributes to evaluate the
four houses, i.e., housing price (B1), Regional Transportation
(B2), school (B3), Commercial supermarket (B4), Hospital
(B5), Park (B6), Catering (B7), Community scale (B8), Com-
munity age (B9), Gated community (B10), Security system
configuration (B11), Developer brand (B12), Property brand
(B13), service level (B14), Community greening (B15), Park-
ing conditions (B16), architectural style (B17), Number of
rooms (B18), Living room area (B19), Unit orientation (B20).
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Table 1 Linguistic terms for evaluating alternatives with respect to
decision attributes

Linguistic terms Semantic Description

s0 Extremely disappointed

s1 Very disappointed

s2 Quite disappointed

s3 Disappointed

s4 General

s5 Satisfied

s6 Quite satisfied

s7 Very satisfied

s8 Extremely satisfied

The family comprehensively consider the relevant data pro-
vided by the agent to give linguistic assessments according
to linguistic terms listed in Table 1, and weights of decision
attributes are shown in Table 2. The LIFVs evaluation infor-
mation (decision matrix) provided by the family is displayed
in Table 3. In the example, we fix k = 2 and γ = 1.

Based on the solution scheme of large-scale linguistic
intuitionistic fuzzy decision making analysis in Sect. 5, the
decision making of Example 8 is as follows.

Step 1. Analyzing correlation between 20 decision
attributes based on Eqs. (8) and (9), then obtaining the parti-
tion C = {C1,C2, . . . ,Ct }(t ≤ n) of B by the fixed γ = 1
and threshold 
 = 6. In the example, we can obtain core
attributes C1 = {B1, B2, B3, B4, B5, B6, B7}, C1 = {B8, B9,

B10, B11, B12, B13, B14, B15, B16} and C3 = {B17, B18, B19,
B20}.

Aggregating C1 = {B1, B2, B3, B4, B5, B6, B7}, C2 =
{B8, B9, B10, B11, B12, B13, B14, B15, B16} and C3 =
{B17, B18, B19, B20} by using the LIFRWDMSM operator
[Eq. (14)], in which we fix k = 2 to obtain the aggregation
results of core attributes C1,C2, and C3, respectively. Then
the new decision matrix is as follows.

�new =

⎛

⎜⎜
⎝

C1 C2 C3

A1 (s1.3513, s6.1176) (s5.5659, s0.7413) (s7.0000, s1.0000)
A2 (s3.0854, s4.5969) (s5.2739, s1.1189) (s4.0000, s4.0000)
A3 (s5.2024, s2.6861) (s5.2558, s0.8549) (s1.0000, s7.0000)
A4 (s3.1689, s4.5815) (s5.6813, s1.2041) (s1.0000, s5.0000)

⎞

⎟⎟
⎠,

According to Eq. (15) and Table 2, weights of core
attributes C1,C2 and C3 are θ1 = 0.0071, θ2 = 0.0011
and θ3 = 0.9918, respectively.

Step 2. Calculating the average solution ĀS j = ϑ̄ j ( j =
1, 2, 3) of core attributes C1,C2 and C3, respectively,

ĀS1 = (s3.4158, s4.3132) , ĀS2 = (s4.5678, s0.9613) ,

ĀS3 = (s4.2583, s3.4398)

where ϑ̄ j =
⎛

⎜
⎝s

8−8
4∏

i=1

(
1− αi j

8

) 1
4
, s

8
4∏

i=1

(
βi j
8

) 1
4

⎞

⎟
⎠.

Step 3. Calculating the positive distance from average
PDAi j and the negative distance from average NDAi j of

Table 2 Weights of decision
attributes in Example 8

Attribute Weight Attribute Weight Attribute Weight Attribute Weight

B1 0.100 B6 0.030 B11 0.100 B16 0.090

B2 0.050 B7 0.020 B12 0.060 B17 0.010

B3 0.040 B8 0.030 B13 0.070 B18 0.010

B4 0.040 B9 0.030 B14 0.080 B19 0.010

B5 0.030 B10 0.100 B15 0.080 B20 0.020

Table 3 The LIFVs evaluation information (decision matrix) of Example 8

Alternatives B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

A1 (s1, s7) (s1, s7) (s2, s6) (s1, s5) (s2, s5) (s2, s5) (s1, s6) (s6, s1) (s6, s1) (s5, s1)

A2 (s4, s4) (s3, s5) (s4, s4) (s3, s5) (s1, s5) (s2, s5) (s3, s5) (s5, s2) (s5, s1) (s5, s2)

A3 (s6, s2) (s5, s3) (s5, s3) (s4, s4) (s5, s3) (s6, s1) (s4, s4) (s4, s3) (s5, s1) (s5, s1)

A4 (s2, s5) (s4, s4) (s4, s4) (s4, s4) (s4, s4) (s1, s7) (s4, s4) (s6, s1) (s6, s1) (s6, s1)

B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

A1 (s6, s1) (s6, s1) (s5, s2) (s6, s1) (s5, s1) (s6, s1) (s7, s1) (s7, s1) (s7, s1) (s7, s1)

A2 (s5, s2) (s5, s2) (s5, s2) (s6, s1) (s5, s1) (s6, s1) (s4, s4) (s4, s4) (s4, s4) (s4, s4)

A3 (s5, s1) (s4, s3) (s5, s1) (s6, s1) (s6, s1) (s6, s1) (s1, s7) (s1, s7) (s1, s7) (s1, s7)

A4 (s2, s6) (s6, s1) (s6, s1) (s6, s1) (s5, s2) (s6, s1) (s1, s5) (s1, s5) (s1, s5) (s1, s5)
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Table 4 Weights of decision
attributes in Example 9

Attribute Weight Attribute Weight Attribute Weight Attribute Weight

B1 0.0400 B6 0.0300 B11 0.1000 B16 0.0500

B2 0.0800 B7 0.1000 B12 0.0400 B17 0.0200

B3 0.0400 B8 0.0300 B13 0.0500 B18 0.0200

B4 0.0200 B9 0.0400 B14 0.0600 B19 0.0100

B5 0.1000 B10 0.0400 B15 0.0600 B20 0.0200

four houses A1, A2, A3 and A4 according to Eqs. (17) and
(18), i.e.,

PDA =

⎛

⎜⎜
⎝

0.0000 0.6091 2.5907
0.0000 0.2742 0.0000
1.7068 0.3972 0.0000
0.0000 0.4353 0.0000

⎞

⎟⎟
⎠ ,

NDA =

⎛

⎜⎜
⎝

1.9345 0.0000 0.0000
0.3071 0.0000 0.4093
0.0000 0.0000 3.4093
0.2576 0.0000 2.4093

⎞

⎟⎟
⎠

Step 4.Determining the values ofweighted sumof the pos-
itive and negative distances from average solution according
to Eq. (19) and weights θ j ( j = 1, 2, 3), i.e.,

SP�
1 = 2.5701, SP�

2 = 0.0003, SP�
3 = 0.0126,

SP�
4 = 0.0005;

SN�
1 = 0.0138, SN�

2 = 0.4081, SN�
3 = 3.3813,

SN�
4 = 2.3913

Step 5. Normalizing the values of the weighted PDA and
weighted NDA according to Eqs. (20) and (21), respectively,

SPN
1 = 1.0000, SPN

2 = 0.0001, SPN
3 = 0.0049,

SPN
4 = 0.0002;

SN N
1 = 0.9959, SN N

2 = 0.8793, SN N
3 = 0.0000,

SN N
4 = 0.2928

Step 6. Computing the score AS i of four houses A1, A2,
A3 and A4,

AS1 = 0.9980, AS2 = 0.4397,

AS3 = 0.0025, AS4 = 0.1465

Step 7.Ranking four houses A1, A2, A3 and A4 according
to the scoreAS i , i.e., A1 > A2 > A4 > A3, house A1 is the
best alternative to improve housing.

With economic development and social progress, people’s
living standards continue to improve, more and more people
choose to travel freely, and the selection of travel destination
is an inevitable problem.

Example 9 Suppose four travel destinations A1, A2, A3 and
A4. Tourists select travel destination depending on the fol-
lowing 20 attributes: Household income (B1), Free time
(B2), Travelmotivation (B3), Physical condition before travel
(B4),Destination visibility and image (B5),Media promotion
status (B6), Opinions of relatives and friends (B7), Rec-
ommended by travel agencies (B8), Recommended literary
works (B9),Description or recommendation of travel forums,
blogs, personal homepages, etc. (B10), Peer demand (B11),
Play time (B12), Play budget (B13), Hotel price (B14), Safety
status of travel destinations (B15), Tourist season (B16),
Destination tourism resources (B17), Diversity of trans-
portation modes (B18), Diversity of transportation modes
(B19), Degree of direct traffic (B20). Suppose that the travel
team comprehensively consider the relevant the information
collected from multi-sources decision information and use
linguistic terms shown in Table 1 to evaluate travel des-
tinations, and weights of decision attributes are shown in
Table 4. The LIFVs evaluation information (decision matrix)
provided by the travel team is displayed in Table 5. In the
example, we fix k = 2 and γ = 1.

Based on the solution scheme of large-scale linguistic
intuitionistic fuzzy decision making analysis, the decision
making of Example 9 is as follows.

Step 1. Analyzing correlation between 20 decision
attributes and obtaining the partition C = {C1,C2, . . . ,Ct }
(t ≤ n) of B by the fixed γ = 1 and threshold 
 = 6. In the
example, we can obtain core attributes C1 = {B1, B2, B3,
B4}, C2 = {B5, B6, B7, B8, B9, B10, B11}, C3 = {B12, B13,
B14, B15, B16} and C4 = {B17, B18, B19, B20}.

Step 2.Based on the LIFRWMSM operator [Eq. (11)] and
k = 2, The LIFVs of C1,C2,C3 and C4 can be obtained as
follows:
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Table 5 The LIFVs evaluation information (decision matrix) of Example 9

Alternatives B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

A1 (s7, s1) (s7, s1) (s7, s1) (s7, s1) (s6, s1) (s5, s3) (s6, s2) (s5, s3) (s5, s1) (s5, s2)

A2 (s6, s1) (s7, s1) (s7, s1) (s7, s1) (s6, s2) (s4, s4) (s6, s2) (s5, s1) (s5, s2) (s5, s2)

A3 (s1, s7) (s1, s7) (s1, s7) (s1, s7) (s6, s1) (s5, s3) (s5, s3) (s4, s4) (s5, s3) (s6, s1)

A4 (s1, s5) (s1, s5) (s1, s5) (s1, s5) (s5, s2) (s4, s4) (s4, s4) (s4, s4) (s4, s4) (s7, s1)

B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

A1 (s5, s3) (s1, s6) (s2, s5) (s1, s6) (s1, s5) (s1, s6) (s1, s6) (s1, s7) (s1, s6) (s1, s6)

A2 (s6, s1) (s2, s5) (s2, s5) (s1, s6) (s1, s5) (s1, s6) (s7, s1) (s7, s1) (s6, s2) (s6, s2)

A3 (s4, s4) (s3, s4) (s1, s5) (s1, s6) (s1, s6) (s1, s6) (s6, s1) (s6, s2) (s5, s1) (s5, s1)

A4 (s4, s4) (s3, s5) (s1, s6) (s1, s6) (s2, s5) (s1, s6) (s2, s6) (s1, s7) (s1, s7) (s1, s7)

�new =

⎛

⎜⎜
⎝

C1 C2 C3 C4

A1 (s7.0000, s1.0000) (s5.5160, s2.0058) (s1.1799, s5.5912) (s1.0000, s6.2979)
A2 (s6.7701, s1.0000) (s5.6811, s1.8145) (s1.3404, s5.4261) (s6.5762, s1.4238)
A3 (s1.0000, s7.0000) (s5.1121, s2.5961) (s1.2889, s5.4934) (s5.5620, s1.2588)
A4 (s1.0000, s7.0000) (s4.6123, s3.2290) (s1.5148, s5.6225) (s1.2480, s6.4701)

⎞

⎟⎟
⎠.

According to Eq. (15), weights of core attributes C1,C2,C3

and C4 are θ1 = 0.8529, θ2 = 0.0005, θ3 = 0.1199 and
θ4 = 0.0267, respectively.

Step 3. Calculating the average solution ĀS j = ϑ̄ j ( j =
1, 2, 3, 4) of each core attribute, i.e.,

ĀS1 = (s5.2138, s2.4323) , ĀS2 = (s5.2601, s2.3502) ,

ĀS3 = (s1.3321, s5.5328) , ĀS4 = (s4.4211, s1.8977)

where ϑ̄ j =
⎛

⎝s
8−8

4∏

i=1

(
1− αi j

8

) 1
4
, s

8
∏4

i=1

(
βi j
8

) 1
4

⎞

⎠.

Step 4. Calculating the positive distance from average
PDAi j and the negative distance from average NDAi j of
each alternative, i.e.,

PDA =

⎛

⎜⎜
⎝

1.6093 0.3001 0.0000 0.0000
1.4943 0.4783 0.0575 1.3145
0.0000 0.0000 0.0000 0.8899
0.0000 0.0000 0.0465 0.0000

⎞

⎟⎟
⎠

NDA =

⎛

⎜
⎜
⎝

0.0000 0.0000 0.1053 3.9106
0.0000 0.0000 0.0000 0.0000
4.3907 0.1969 3.409 0.0000
3.3907 0.7633 0.0000 3.8727

⎞

⎟
⎟
⎠

Step 5. Determining the values of weighted sum of the
positive and negative distances from average solution.

SP�
1 = 1.3727, SP�

2 = 1.3167, SP�
3 = 0.0237,

SP�
4 = 0.0056;

SN�
1 = 0.1169, SN�

2 = 0.0000, SN�
3 = 3.7453,

SN�
4 = 2.9956

Step 8. Normalizing the values of the weighted PDA and
weighted NDA, respectively.

SPN
1 = 1.0000, SPN

2 = 0.9592, SPN
3 = 0.0173,

SPN
4 = 0.0041;

SN N
1 = 0.9688, SN N

2 = 1.0000, SN N
3 = 0.0000,

SN N
4 = 0.2002

Step 9. Computing the scoreAS i of each alternative, i.e.,

AS1 = 0.9844, AS2 = 0.9796, AS3 = 0.0086,

AS4 = 0.1021

Step 10. Ranking four travel destinations A1, A2, A3 and
A4 based on their score AS i , i.e., A1 > A2 > A4 > A3,
travel destination A1 is the best one.

6.2 Comparison analysis

In the subsection, we compare the proposed LIFRWMSM
and LIFRWDMSM aggregation operators with WLIFMM,
WLIFMSM, WLIFDMM, LIFWA, LIFWG and LIFHA
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Table 6 The comparison with
existing MSM operator based on
diverse uncertain environment

Aggregating objects Aggregation operators Idempotency Reducibility

LIFSs WLIFMSM operator (Liu and Qin 2017) No No

LIFSs WLIFDMSM operator (Liu and Qin 2017) No No

IFSs WIFMSM operator (Qin and Liu 2014) No No

PFSs PFSMSM operator (Wei and Lu 2018) No No

PFSs PFSGMSM operator (Wei and Lu 2018) No No

HFSs WHFMSM operator (Qin et al. 2015) No No

LIFSs LIFRWMSM operator Yes Yes

LIFSs LIFRWDMSM operator Yes Yes

aggregation operators or decision making methods in Exam-
ples 8 and 9. Formally, these aggregation operators are
concentrated on aggregating correlational decision informa-
tion of alternativeswith respect to decisionmaking attributes.
However, there are differences about the aggregating objects
or the properties of operator in these aggregation operators.
In addition, the above-mentioned aggregation operators solve
different correlation between decision attributes in a real-
world decision making problem. These differences in the
aggregation operators are compared as follows.

Intuitively, we provide Table 6 to show differences about
the aggregating objects or the properties of operator in the
aggregation operators, which are used to aggregate correla-
tional decision information of alternatives with respect to
decision making attributes. From the aggregating objects
point of view, WLIFMSM and WLIFDMM aggregation
operators in Liu and Qin (2017) are utilized to aggregate
correlational decision information represented by linguistic
intuitionistic fuzzy sets (LIFSs), but WIFMSM aggregation
operator in Qin and Liu (2014) to aggregate correlational
decision information represented by intuitionistic fuzzy sets
(IFSs), PFSMSM and PFSGMSM aggregation operators in
Wei and Lu (2018) to aggregate correlational decision infor-
mation represented by Pythagorean fuzzy sets (PFSs) and
WHFMSM operators in Qin et al. (2015) to aggregate corre-
lational decision information represented by hesitant fuzzy
sets (HFSs). In the paper, LIFRWMSM and LIFRWDMSM
aggregation operators are also to aggregate correlational
decision information represented by LIFSs. From the proper-
ties of aggregation operator point of view, our LIFRWMSM
and LIFRWDMSM aggregation operators satisfy idempo-
tency and reducibility. However, the important properties of
aggregation operator are not true in the others aggregation
operators.

In real-world decision making process, there are dif-
ferences when the aggregation operators are utilized to
aggregate correlational decision information. In fact, LIFR-
WMSM and LIFRWDMSM aggregation operators are used
to aggregate decision information of alternatives with respect
to decision making attributes after correlation between

attributes is analyzed, in other words, decision information
aggregated by LIFRWMSM and LIFRWDMSM operators
are undoubted correlation each other. However, the others
aggregation operators are to aggregate decision informa-
tion of alternatives based on the assumption that decision
making attributes may be correlation each other, in other
words, independent attributes are with respect to different
parameters in the aggregation operators. In ourmethod, inde-
pendent attributes are represented by the partition C =
{C1,C2, . . . ,Ct }(t ≤ n) of decision making attributes B.
Different decision results in Examples 8 and 9 are obtained
due to different decision steps or decision making meth-
ods by using WLIFMM, WLIFMSM, WLIFDMM, LIFWA,
LIFWG, LIFHA, LIFRWMSM and LIFRWDMSM aggre-
gation operators, which are shown in Table 7. In reality,
the score function is the basis of the decision making
methods based on WLIFMM, WLIFMSM, WLIFDMM,
LIFWA, LIFWG and LIFHA aggregation operators. Differ-
ently, EDAS method is adopted in the proposed decision
making method.

7 Conclusion

Due to the fact that decision information with respect to
decision making attributes in a large-scale decision mak-
ing problem is come from multi-sources information, the
research is concentrated on dealing with MADM problems
with correlation between decision making attributes. Firstly,
a new linguistic intuitionistic fuzzy similaritymeasure is pro-
posed and applied to correlational attribute analysis. Then
the LIFRWMSM and LIFRWDMSMoperators are proposed
to aggregate decision information with respect to correla-
tional decision making attributes. Intuitively, the proposed
LIFRWMSM and LIFRWDMSM operators can reduce the
dimension of large-scale attributes and avoid the overlap
of decision information. Finally, a new solution scheme of
large-scale linguistic decisionmaking analysis is designed, in
which attribute correlation analysis and the EDAS decision
making approach are contained, and the applicability and
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Table 7 Quantitative comparisons with other aggregation operators

Exmple Methods Parameter The generalized order The best option

Example 8 WLIFMM (Rong et al. 2020) P = {1, 0, . . . , 0︸ ︷︷ ︸
20

} A3 > A1 > A4 > A2 A3

WLIFDMM (Rong et al. 2020) P = {1, 0, . . . , 0︸ ︷︷ ︸
20

} A3 > A2 > A4 > A1 A3

WLIFMSM (Liu and Qin 2017) x = 2 A3 > A1 > A4 > A2 A3

LIFWA (Chen et al. 2015) No A3 > A1 > A4 > A2 A3

LIFWG (Chen et al. 2015) No A3 > A2 > A4 > A1 A3

LIFHA (Chen et al. 2015) No A3 > A1 > A2 > A4 A3

The proposed method x = 2 A1 > A2 > A4 > A3 A1

Example 9 WLIFMM (Rong et al. 2020) P = {1, 0, . . . , 0︸ ︷︷ ︸
20

} A2 > A1 > A3 > A4 A2

WLIFDMM (Rong et al. 2020) P = {1, 0, . . . , 0︸ ︷︷ ︸
20

} A2 > A1 > A3 > A4 A2

WLIFMSM (Liu and Qin 2017) x = 2 A2 > A1 > A3 > A4 A2

LIFWA (Chen et al. 2015) No A2 > A1 > A3 > A4 A2

LIFWG (Chen et al. 2015) No A2 > A1 > A3 > A4 A2

LIFHA (Chen et al. 2015) No A2 > A1 > A3 > A4 A2

The proposed method x = 2 A1 > A2 > A4 > A3 A1

superiority of our method are demonstrated by two exam-
ples and comparative analysis with WLIFMM, WLIFMSM,
WLIFDMM, LIFWA, LIFWG and LIFHA aggregation oper-
ators.

In the future, our works can be extended. In fact, it is
worthy to research correlational attribute analysis with dif-
ferent decision information, such as q-rung orthopair fuzzy
set, probabilistic linguistic term sets and hesitant fuzzy num-
bers. In addition, our method can be utilized to solve hot
issues, such as big data analysis and cloud computing.
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Appendixes

Appendix 1

The proof of Eq. (12)

k⊗

j=1

ϑi j =
⎛

⎜
⎝s∏k

j=1 αi j
hk−1

, s
h−h

k∏

j=1

(
1−

βi j
h

)

⎞

⎟
⎠
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and

Pik

⎛

⎝
k⊗

j=1

ϑi j

⎞

⎠ =

⎛

⎜⎜
⎝s

h−h

(

1−
∏k

j=1 αi j
hk

)Pik
, s

h

(
1−∏k

j=1

(
1−

βi j
h

))Pik

⎞

⎟⎟
⎠

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

⎛

⎝
k⊗

j=1

ϑi j

⎞

⎠ =

⎛

⎜⎜
⎝s

h−h
∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 αi j
hk

)Pik
, s

h
∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

βi j
h

))Pik

⎞

⎟⎟
⎠

Then

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑi j

)

Pk
=

⎛

⎜⎜⎜⎜
⎝
s

h−h

⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 αi j
hk

)Pik
⎞

⎠

1
Pk

, s

h

⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

βi j
h

))Pik
⎞

⎠

1
Pk

⎞

⎟⎟⎟⎟
⎠

Furthermore

⎛

⎜⎜⎜⎜
⎝

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑi j

)

Pk

⎞

⎟⎟⎟⎟
⎠

1
k

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

s

h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 αi j
hk

)Pik
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1
k
, s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

βi j
h

))Pik
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1
k

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

Thus, Eq. (12) is valid, then we will test the aggregate result
is a LIFN, which just need to satisfy the following three con-
ditions.

(i) 0 ≤ h(1 − (
∏

1≤i1<···<ik≤|Ct ′ |(1 −
∏k

j=1 αi j

hk
)Pik )

1
Pk )

1
k

≤ h;
(ii) 0 ≤ h − h(1 − (

∏
1≤i1<···<ik≤|Ct ′ |(1 −

k∏

j=1
(1 − βi j

h ))Pik )
1
Pk )

1
k ≤ h;

(iii) 0 ≤ h(1 − (
∏

1≤i1<···<ik≤|Ct ′ |
(1 −

∏k
j=1 αi j

hk
)Pik )

1
Pk )

1
k +

h − h(1 − (
∏

1≤i1<···<ik≤|Ct ′ |
(1 −

k∏

j=1
(1 − βi j

h ))Pik )
1
Pk )

1
k

≤ h;

Proof (i)According toDefinition6,wehaveαi j ∈ [0, h], βi j ∈
[0, h] and αi j + βi j ∈ [0, h], then we can obtain,

αi j

h
∈ [0, 1] ⇒ 1 − αi j

hk
∈ [0, 1]

and

∏

1≤i1<···<ik≤|Ct ′ |

(
1 − αi j

hk

)Pik ∈ [0, 1]

then,

1 −
∏

1≤i1<···<ik≤|Ct ′ |

(
1 − αi j

hk

)Pik ∈ [0, 1]
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h

⎛

⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 αi j

hk

)Pik
⎞

⎠

1
Pk

⎞

⎟
⎠

1
k

∈ [0, h] 
�
(ii) The proof procedure of (ii) is same as (i), we can also get
(ii) is correct.
(iii) For the condition(iii), according to 0 ≤ αi j + βi j ≤ h,
we have 0 ≤ αi j ≤ h − βi j , then the simplified form can be
obtained as:

h

⎛

⎜⎜
⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 αi j

hk

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎟
⎠

1
k

+ h − h

⎛

⎜⎜
⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(

1 −
βi j

h

)⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎟
⎠

1
k

≤ h

⎛

⎜
⎜⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1(h − βi j
)

hk

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟⎟
⎠

1
k

+ h − h

⎛

⎜
⎜⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(

1 −
βi j

h

)⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟⎟
⎠

1
k

≤ h

Evidently, the fused result by the LIFRWMSM operator is
still a LIFV. Next, we shall research several properties of
LIFRWMSM operator.

Appendix 2

The proof of Theorem 1

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)

=

⎛

⎜
⎜⎜
⎜
⎝

s

h

⎛

⎜⎜
⎜
⎝
1−
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1−
∏k

j=1 αi j
hk

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎟
⎠

1
k

, s

h−h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1
(1−

βi j
k )

)Pik
⎞

⎠

1
Pk

⎞

⎟⎟
⎠

1
k

⎞

⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎝

s

h

⎛

⎜
⎜⎜
⎝
1−
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1−
∏k

j=1 α

hk

⎞

⎠
Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟⎟
⎠

1
k

, s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1
(1− β

k )

)Pik
⎞

⎠

1
Pk

⎞

⎟
⎟
⎠

1
k

⎞

⎟
⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

s

h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(
1− αk

hk

)Pik

⎞

⎠

1
Pk

⎞

⎟⎟
⎠

1
k

, s

h−h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(
1−
(
1− β

h

)k
)Pik

⎞

⎠

1
Pk

⎞

⎟⎟
⎠

1
k

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

s

h

⎛

⎜
⎝1−
((

1− αk

hk

)Pik
) 1
Pik

⎞

⎟
⎠

1
k

, s

h−h

⎛

⎜
⎝1−
((

1−
(
1− β

h

)k
)Pik

) 1
Pik

⎞

⎟
⎠

1
k

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝s

h

(
1−
(
1− αk

hk

)) 1
k

, s

h−h

(
1−
((

1−
(
1− β

h

)k
))) 1

k

⎞

⎟
⎟
⎠ = (sα, sβ ).

Appendix 3

The proof of Theorem 2 In order to test the monotonicity of
the LIFRWMSM, according to Definition 4, we will prove it
via computing their linguistic score resultS (ϑ)and S (T ),
and we can obtain ϑ ≥ T . So the process of proof is divided
into two steps as below:

Step 1:Since k ≥ 1 and sαi ≥ s
α

′
i
≥ 0, s

β
′
i
≥ sβi ≥ 0, we

have αi ≥ α
′
i , β

′
i ≥ βi , then,
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∏k
j=1 αi j

hk
≥
∏k

j=1 α
′
i j

hk
⇒ 1 −

∏k
j=1 αi j

hk
≤ 1 −

∏k
j=1 α

′
i j

hk

⇒
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 αi j

hk

)Pik
⎞

⎠

1
Pk

≤
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 α
′
i j

hk

⎞

⎠

Pik

⎞

⎟
⎠

1
Pk

⇒ 1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 αi j

hk

)Pik
⎞

⎠

1
Pk

≥ 1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 α
′
i j

hk

⎞

⎠

Pik

⎞

⎟
⎠

1
Pk

⇒ h

⎛

⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 αi j

hk

)Pik
⎞

⎠

1
Pk

⎞

⎟
⎠

1
k

≥ h

⎛

⎜⎜
⎝1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 α
′
i j

hk

⎞

⎠

Pik

⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎠

1
k

Similarly, we have

βi

h
≤ β

′
i
h

⇒ 1 − βi

h
≥ 1 − β

′
i
h

⇒
k∏

j=1

(1 −
βi j

h
) ≥

k∏

j=1

(1 −
β

′
i j

h
)

⇒
⎛

⎝1 −
k∏

j=1

(1 −
βi j

k
)

⎞

⎠

Pik

≤
⎛

⎝1 −
k∏

j=1

(1 −
β

′
i j

k
)

⎞

⎠

Pik

⇒
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
βi j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

≤
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
β

′
i j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⇒ h − h

⎛

⎜⎜
⎝1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
βi j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎠

1
k

≤ h − h

⎛

⎜
⎜⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
β

′
i j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟⎟
⎠

1
k

Step 2: Suppose

ϑ =

⎛

⎜⎜
⎜⎜
⎝
h

⎛

⎜
⎜
⎝1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 αi j

hk

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟
⎠

1
k

,

h − h

⎛

⎜
⎜
⎝1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
βi j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟
⎟
⎠

1
k
⎞

⎟⎟
⎟⎟
⎠

= (α, β)

ϑ ′ =

⎛

⎜
⎜⎜⎜
⎝
h

⎛

⎜⎜
⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
∏k

j=1 α
′
i j

hk

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎟
⎠

1
k

,

h − h

⎛

⎜⎜
⎜
⎝
1 −
⎛

⎜
⎝

∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 −
β

′
i j

h
)

⎞

⎠

Pik
⎞

⎟
⎠

1
Pk

⎞

⎟⎟
⎟
⎠

1
k
⎞

⎟
⎟⎟⎟
⎠

=
(
α

′
, β

′)

then we have α ≥ α
′
and β ≤ β

′
, with the aid of Def-

inition 4, we can make a comparison between the above
obtained results. So we easily obtain S (ϑ) = α − β ≥
S (T ) = α

′ − β
′
. Then,

(i) If S (ϑ) > S (ϑ
′
), then ϑ > ϑ

′
via the Definition 4, we

have,

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)

> LIFRWMSM(k)(ϑ
′
i1, ϑ

′
i2, . . . , ϑ

′
i |Ct ′ |)

(ii) If S (ϑ) = S (ϑ
′
), we have ϑ = ϑ

′
, consequently, we

get H (ϑ) = H (ϑ
′
), and thus,

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)

= LIFRWMSM(k)(ϑ
′
i1, ϑ

′
i2, . . . , ϑ

′
i |Ct ′ |)

Hence, we can imply that,

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)

≥ LIFRWMSM(k)(ϑ
′
i1, ϑ

′
i2, . . . , ϑ

′
i |Ct ′ |)

Appendix 4

The proof of Theorem 3 With the help of the monotonicity of
the LIFRWMSM operator, we get

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)
≤ LIFRWMSM(k)(ϑ+

i1, ϑ
+
i2, . . . , ϑ

+
i |Ct ′ |)

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)
≥ LIFRWMSM(k)(ϑ−

i1, ϑ
−
i2, . . . , ϑ

−
i |Ct ′ |)
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Moreover, in light of the idempotency of the LIFRWMSM
operator, we get,

LIFRWMSM(k)(ϑ+
i1, ϑ

+
i2, . . . , ϑ

+
i |Ct ′ |) = ϑ+

i j

LIFRWMSM(k)(ϑ−
i1, ϑ

−
i2, . . . , ϑ

−
i |Ct ′ |) = ϑ−

i j

Obviously, we can imply ϑ−
i ≤ LIFRWMSM(k)(ϑ+

i1, ϑ
+
i2,

. . . , ϑ+
i |Ct ′ |) ≤ ϑ+

i j

Appendix 5

The proof of Theorem 4 According to the above known con-
ditions, we have

⎛

⎜⎜
⎜⎜
⎝

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑi j

)

Pk

⎞

⎟⎟
⎟⎟
⎠

1
k

=

⎛

⎜⎜
⎜⎜
⎝

⊕

1≤i1<···<ik≤|Ct ′ |
Pik

(
k⊗

j=1
ϑT
i j

)

Pk

⎞

⎟⎟
⎟⎟
⎠

1
k

Thus, we have LIFRWMSM(k)(ϑT
i1, ϑ

T
i2, . . . , ϑ

T
i |Ct ′ |) =

LIFRWMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |).

Appendix 6

The proof of Eq. (14)

k⊕

j=1

ϑi j =
(
s
h−h

k∏

j=1

(
1−

αi j
h

), s βi j
hk−1

)

and

⎛

⎝
k⊕

j=1

ϑi j

⎞

⎠

Mik
Mk

=
⎛

⎝
s

h

(

1−
k∏

j=1

(
1−

αi j
h

))
MikMk

, s

h−h

(

1−
∏k

j=1 βi j
hk

)MikMk

⎞

⎠

then

⊗

1≤i1<···<ik≤|Ct ′ |

⎛

⎝
k⊕

j=1

ϑi j

⎞

⎠

Mik
Mk

=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

s

h
∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1

(
1−

αi j
h

))
MikMk

,

s

h−h
∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 βi j
hk

)MikMk

⎞

⎟
⎟⎟⎟⎟⎟
⎠

further

⊗

1≤i1<···<ik≤|Ct ′ |

(
k⊕

j=1
ϑi j

)Mik
Mk

k

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

s

h−h

⎛

⎜⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1
(1−

αi j
h )

)Mik
⎞

⎠

1
Mk

⎞

⎟⎟
⎠

1
k
,

s

h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 βi j
hk

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Furthermore,

0 ≤ h − h

⎛

⎜⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 − αi j

h
)

⎞

⎠

Mik
⎞

⎠

1
Mk

⎞

⎟⎟
⎠

1
k

≤ 1

and

0 ≤ h

⎛

⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 βi j

hk

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎠

1
k

≤ 1

Thus,

0 ≤ h − h

⎛

⎜
⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

⎛

⎝1 −
k∏

j=1

(1 − αi j

h
)

⎞

⎠

Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k

+ h

⎛

⎜
⎝1 −
⎛

⎝
∏

1≤i1<···<ik≤|Ct ′ |

(

1 −
∏k

j=1 βi j

hk

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎠

1
k

≤ 1
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Appendix 7

The proof of Theorem 5

LIFRWDMSM(k)(ϑi1, ϑi2, . . . , ϑi |Ct ′ |)

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1
(1−

αi j
h )

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k
,

s

h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 βi j
hk

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

s

h−h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
k∏

j=1
(1− α

h )

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k
,

s

h

⎛

⎜
⎜
⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(

1−
∏k

j=1 β

hk

)Mik
⎞

⎠

1
Mk

⎞

⎟
⎟
⎠

1
k

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

s

h−h

⎛

⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |
(1−(1− α

h )k)

⎞

⎠

⎞

⎠

1
k
,

s

h

⎛

⎝1−
⎛

⎝ ∏

1≤i1<···<ik≤|Ct ′ |

(
1− βk

hk

)
⎞

⎠

⎞

⎠

1
k

⎞

⎟
⎟⎟⎟⎟⎟
⎠

=
(
s
h−h((1− α

h )k)
1
k
, s

h
(
1−
(
1− βk

hk

)) 1
k

)

= (sα, sβ
)
.

The process of proof ofmonotonicity, boundedness and com-
mutativity of the proposed LIFRWDMSM operator are the
same with the process of proof of LIFRWMSM.
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