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Abstract
Locating the propagation source is one of the most important strategies to control the harmful diffusion process on complex
networks. Most existing methods only consider the infection time information of the observers, but the diffusion direction
information of the observers is ignored, which is helpful to locate the source. In this paper, we consider both of the diffusion
direction information and the infection time information to locate the source. We introduce a relaxed direction-induced search
(DIS) to utilize the diffusion direction information of the observers to approximate the actual diffusion tree on a network.
Based on the relaxed DIS, we further utilize the infection time information of the observers to define two kinds of observers-
based similarity measures, including the Infection Time Similarity and the Infection Time Order Similarity. With the two
kinds of similarity measures and the relaxed DIS, a novel source locating method is proposed. We validate the performance
of the proposed method on a series of synthetic and real networks. The experimental results show that the proposed method
is feasible and effective in accurately locating the propagation source.

Keywords Complex networks · Propagation source locating · Direction-induced search (DIS) · Observers-based similarity
measures · Diffusion direction information · Infection time information

1 Introduction

In the modern world, the ubiquity of the diffusion phenom-
ena taking on networks has incurred huge losses to human
society. Some typical examples include computer virus prop-
agation (Wang et al. 2014a), disease spreading (Zhang et al.
2018) and rumor diffusion (Hosseini and Azgomi 2016),
etc. It is of great theoretical and practical significance to
develop effective strategies to control the harmful diffusion
process (Yu et al. 2017). As one of the significant mea-
sures, propagation source locating has attracted widespread
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attentions, many effective methods are proposed in recent
years (Jiang et al. 2017; Paluch et al. 2020). These methods
can provide effective solutions for many important issues in
reality, including locating the source(s) of SARS (Brock-
mann and Helbing 2013), COVID-19 (Tian et al. 2020),
Cholera (Li et al. 2021), identifying the source of delay
in public transportation networks (Manitz et al. 2017), esti-
mating the source of foodborne disease (Horn and Friedrich
2019), etc.

It is well known that, when a diffusion process occurs on
a network, there exists a spanning tree corresponding to the
first time each node gets infected (Shah and Zaman 2011;
Pinto et al. 2012; Tang et al. 2018). In fact, reconstruct-
ing the spanning tree is helpful to locate the propagation
source (Yang et al. 2020). However, the commonly used
breadth-first search (BFS) heuristic (Shah and Zaman 2011;
Pinto et al. 2012; Yang et al. 2016) may be not an effective
strategy (Tang et al. 2018; Yang et al. 2020). In this paper,
we introduce an effective graph traversal method termed as
relaxed direction-induced search (DIS), which is developed
in our previous work (Yang et al. 2020). By utilizing the dif-
fusion direction information of the observers, the relaxedDIS
could effectively approximate the spanning tree correspond-
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ing to the first time each node gets infected. Based on the
relaxed DIS, we further utilize the infection time informa-
tion of the observers to define two kinds of observers-based
similarity measures: (1) Infection Time Similarity, which
measures the similarity between the observation infection
time of the given observers and the measuring infection time
of the given observers. (2) Infection Time Order Similarity,
which measures the similarity between two sorted sequences
of the given observers. One sequence is the observers ascend-
ing order obtained by sorting the observation infection time
of the observers. Another sequence is the observers ascend-
ing order obtained by sorting the measuring infection time
of the observers. Further, with the two kinds of similarity
measures and the relaxed DIS, we propose a novel source
locating method. Obviously, in the proposed method, both
of the diffusion direction information and the infection time
information are considered. Experiments are performed on
a series of synthetic and real networks; the results show that
the proposed method is feasible and effective in accurately
locating the propagation source.

The rest of this paper is organized as follows. Existing
related works are briefly reviewed in Sect. 2. We introduce
the direction-induced search (DIS) in Sect. 3. Our method is
proposed in Sect. 4. The performance of the proposedmethod
is validated in Sect. 5. We conclude this work in Sect. 6.

2 Related work

For unweighted networks, a systematic method for propa-
gation source locating was pioneered by Shah et al. (2011);
they constructed a source estimator based on a novel topo-
logical quantity which is termed as Rumor Centrality (RC).
Some researchers extended the RC to more complex envi-
ronments, such as utilizing multiple observations to locate
the source (Wang et al. 2014b), locating multi-sources (Luo
et al. 2013; Wang et al. 2015) and so on. Zhu et al. (2016)

Table 1 Notation summarization

Notation Definition

G The topological graph of network

V The nodes set in G
E The edges set in G
θ The propagation delay set associated with E
O Observers set

o Observer

K The number of observers

s∗ The propagation source

β The propagation ratio of SI model

| · | Calculating the number of element

developed a sample path-based method termed as Jordan
Center (JC). Several improved methods based on the JC
were developed to locate the source(s) with sparse obser-
vations (Zhu and Ying 2014; W.Luo et al. 2014; Jiang
et al. 2018). Meanwhile, many source locating methods
based on various ideas were developed for unweighted
networks, including the Dynamic Message Passing-based
method (Lokhov et al. 2014), the Belief Propagation base
method (Altarelli et al. 2014), the Minimum Description
Length-basedmethod (Prakash et al. 2014), theMonteCarlo-
based method (Antulov-Fantulin et al. 2015), the Rationality
Observation-based method (Yang et al. 2016), the Time
Aggregated Graph-based method (Chai et al. 2021), etc.
The above methods are effective in unweighted networks.
However, in reality, we have to consider various significant
weights associated with the edges in networks, such as the
traffic, the propagation delay and so on.

For weighted networks, Brockmann et al. (2013) modeled
the Global Mobility Network as a weighted graph and pro-
posed a source locating method based on a novel effective
distance. This method is extended to more complex environ-
ments, including identifying themultiple sources (Jiang et al.
2015), identifying the source of delay in public transporta-
tion networks (Manitz et al. 2017), etc.However, the effective
distance-based methods require the complete knowledge of
nodes state. Meanwhile, there are several source locating
methods based on various ideas for weighted networks (Cai
et al. 2018; Chang et al. 2020; Feizi et al. 2019). But these
methods also require the complete knowledge of nodes state.
In reality, it is often the case that only limited nodes state
can be observed (Caputo et al. 2019). To this problem, many
methods were developed to locate the source with limited
observers. Shen et al. (2016) developed a time-reversal back-
ward spreading (TRBS) algorithm, but this algorithmmaynot
work if the locatability condition is violated. Hu et al. (2019)
proposed a greedy optimization algorithm to reduce the num-
ber of observers for TRBS. Tang and Ji et al. (2018) et al.
proposed a source estimation algorithmbased on theGromov
matrix. However, the Gromov matrix may be not the optimal
heuristic for source locating. Meanwhile, Fu et al. (2016)
proposed a backward diffusion-based method for multiple
sources locating. Wang (2019) and Xu et al. (2019) identi-
fied the diffusion source based on the Spearman’s coefficient.
Wang and Sun (2020) proposed a sequential neighbor filter-
ing (SNF) algorithm for heterogeneous propagation models.
Wang et al. (2021) proposed three source locating algorithms
by defining the estimated mean and standard deviation of
the propagation delay. However, the methods using limited
observers only considered the infection time information, but
the diffusion direction information was ignored.

The Gaussian estimator (Pinto et al. 2012) first located the
source with limited observers by utilizing the diffusion direc-
tion information of the observers, and its time complexity can
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Fig. 1 Sub-Fig. 1a shows the SI model (β = 1) diffused on a given
network. The infection is initiated by node 1 (with “red” color). All the
“red” paths form a diffusion tree (rooted at node 1) of the network. The
arrows attached to the “red” paths represent the actual diffusion direc-
tion. The infection diffused along this actual diffusion tree. The nodes
with “pink” color are in the infectious state. Sub-Fig. 1b shows a relaxed
DIS spanning tree (rooted at node 1) of the network in Sub-Fig. 1a. This

tree is constructed by the edges with “red” color, which is generated by
the relaxed DIS algorithm with three observers (nodes 2, 3 and 6, with
“green” color). The nodes with “gray” color cannot be observed. The
pair of value next to each observer represents the recorded Diffusion
Direction information and Diffusion Timing information (color figure
online)

Table 2 The time complexity of Gauss, GSSI, TRBS, SNF, OSBFS
and OSDIS algorithms

Algorithm Time complexity

Gauss O
(|V|3) (Pinto et al. 2012)

GSSI O
(|V|3 + |V|K3

)
(Tang et al. 2018)

TRBS O (KN log N ) (Shen et al. 2016)

SNF O
(|V|2|D|) (Wang et al. 2022)

OSBFS O
(|V|3 + z|V|2K)

OSDIS O
(|V|3 + z|V|2K)

Table 3 The parameters for generating the synthetic networks

Networks Parameters

BA model (1) barabasi.game (200, power=1.5, m=2, directed=F)

BA model (2) barabasi.game (200, power=1.7, m=2, directed=F)

BA model (3) barabasi.game (200, power=1.9, m=2, directed=F)

BA model (4) barabasi.game (200, power=2.1, m=2, directed=F)

BA model (5) barabasi.game (200, power=2.3, m=2, directed=F)

BA model (6) barabasi.game (200, power=2.5, m=2, directed=F)

WS model (1) watts.strogatz.game (1, 200, 2, 0.2)

WS model (2) watts.strogatz.game (1, 200, 2, 0.4)

WS model (3) watts.strogatz.game (1, 200, 2, 0.6)

WS model (4) watts.strogatz.game (1, 200, 2, 0.8)

WS model (5) watts.strogatz.game (1, 200, 2, 1.0)

Software environment: R 64 × 3.3.3 + igraph R 1.2.1

be reduced by ignoring the observers with low-quality infor-
mation (Paluch et al. 2018). However, the diffusion direction

information is only used in the tree graphs. In our previous
work (Yang et al. 2020), a relaxed direction-induced search
(DIS) was proposed by utilizing the diffusion direction infor-
mation. With the relaxed DIS, the accuracy of the Gaussian
estimator on general graphs is improved. Different from the
previous work, in this paper, we first introduce the relaxed
direction-induced search (DIS) (Yang et al. 2020) to uti-
lize the diffusion direction information of the observers to
approximate the actual diffusion tree on a network. Based on
the relaxed DIS, we further utilize the infection time infor-
mation of the observers to define two kinds of similarity
measures, including the Infection Time Similarity and the
Infection Time Order Similarity. With the two kinds of sim-
ilarity measures and the relaxed DIS, we propose a novel
source locating method. Obviously, the diffusion direction
information and the infection time information are com-
bined in this method. The feasibility and effectiveness of
this method are validated on a series of synthetic and real
networks.

3 Preliminaries

A network is modeled as an undirected and weighted graph
G = (V, E, θ), where V and E represent the nodes set and
edges set, respectively. θ = {θuv}, where θuv denotes the ran-
dom propagation delay associated with an edge connecting
nodes u and v, u, v ∈ V , vu ∈ E . The random variables θvu

for different edges vu have a known, arbitrary joint distribu-
tion.
Diffusion model Similar to the references (Zhu and Ying
2016; W.Luo et al. 2014; Lokhov et al. 2014; Yang et al.
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2016), the diffusion process on G is discrete. We adopt a
simple Susceptible-Infectious (SI)model.With the SImodel,
each node in V is only in one of the two states: (1) suscep-
tible, if it has not been infected so far, or (2) infectious, if it
has been infected by any one neighbor. The diffusion process
on G is initiated by a single propagation source (denoted by
s∗) at an unknown time t∗. All nodes are susceptible except
for s∗ is infectious. A diffusion is possible from an infected
node to a susceptible node if and only if there is an edge
between them. Once infected, the node will stay the infec-
tious state forever. LetN (v) denote the neighbors set of node
v, suppose v is infected by one neighbor w at time tv , then
v will attempt to infect each susceptible neighbor u ∈ N (v)

(except for w) along the weighted edge vu with propagation

Table 4 Real networks

Networks Data source

Dolphins http://networkrepository.com/dolphins.php

Lesmis http://networkrepository.com/lesmis.php

PDZBase(LCC) http://konect.cc/networks/maayan-pdzbase/

USAirlines http://networkrepository.com/USAir97.php

NetScience(LCC) http://konect.cc/networks/dimacs10-netscience/

Celegans http://konect.cc/networks/dimacs10-
celegans_metabolic/

Euroroads(LCC) http://konect.cc/networks/subelj_euroroad/

LCC the abbreviation of largest connected component

Table 5 The topological properties of the used networks

Network |V| |E| 〈k〉 A APL

BA model (1) 200 397 3.97 −0.321 2.85

BA model (2) 200 397 3.97 −0.532 2.43

BA model (3) 200 397 3.97 −0.501 2.13

BA model (4) 200 397 3.97 −0.807 2.04

BA model (5) 200 397 3.97 −0.757 2.02

BA model (6) 200 397 3.97 −0.806 2.00

WS model (1) 200 400 4.00 0.102 4.39

WS model (2) 200 400 4.00 0.0003 4.04

WS model (3) 200 400 4.00 0.044 4.03

WS model (4) 200 400 4.00 −0.059 3.96

WS model (5) 200 400 4.00 −0.051 3.91

Dolphins 62 159 5.13 −0.044 3.36

Lesmis 77 254 6.60 −0.165 2.64

PDZBase 161 209 2.60 −0.466 5.33

USAirlines 332 2126 12.81 −0.208 2.74

Netscience 379 914 4.82 −0.082 6.04

Celegans 453 2025 8.94 −0.226 2.66

Euroroads 1039 1305 2.51 0.090 18.40

〈k〉 the average degree of G
A the assortative coefficient (Newman 2002)
APL the average path length (the number of edges)

ratio β. If there are two or more infected neighbors having a
same propagation delay to u, u can be first time infected by
only one neighbor. Without loss of generality, the diffusion
process is terminated when there are no susceptible nodes in
G.

Let O = {ok}Kk=1 ⊆ V denote the set of K observable
nodes on G, termed as observers set, whose location in G is
known. Generally, there is K � |V|. Similar to the refer-
ences (Pinto et al. 2012; Yang et al. 2020), each ok ∈ O can
provide two types of information: (1) the Diffusion Direc-
tion information in which the infection arrives to ok , (2) the
Infection Timing information at which the infection arrives
to ok .

Algorithm 1 The relaxed direction-induced search (DIS)
algorithm
Input: an arbitrary G and O
Output: TDIS,s
1: for each node s ∈ V do
2: initialize an empty set E (T ).
3: initialize an empty queue Q.
4: Q.enqueue (s) and set s as visited.
5: while Q is not empty do
6: v = Q. f ront ().
7: Q.dequeue ().
8: for each neighbor u of v do
9: if u has not been visited then
10: if u ∈ O then
11: if the Diffusion Direction information recorded in u is v then
12: Q.enqueue (u), set u as visited, E (T ) = E (T ) ∪ ev→u .
13: end if
14: else
15: Q.enqueue (u), set u as visited, E (T ) = E (T ) ∪ evu .
16: end if
17: end if
18: end for
19: end while
20: remove the edges /∈ E (T ) from G and mark the remaining part of G as T .
21: if |E (T ) | == |V | − 1 then
22: mark T as DIS spanning tree TDI S,s rooted at node s.
23: end if
24: end for
The ev→u in line 12 represents the actual diffusion direction between v and u, which
indicates that the infection is the first time diffused from v to u. The evu in line 15
represents that the diffusion direction is assumed from v to u. The TDI S,s in line 22
denotes a relaxed DIS spanning tree rooted at node s.

Direction-induced search (DIS)We introduce a graph traver-
salmethod termed as relaxed direction-induced search (DIS),
which is developed in our previous work (Yang et al. 2020).
The relaxed DIS is summarized in Algorithm 1. The E (T )

declared in line 2 is an edge set. The function of lines 3–19 is
to traverse theG with s as root, which requires O

(|V|2) com-
putations in the worst case. Here, from lines 10–16, we know
that, if a node is an observer, then the infection direction is
determined by the Diffusion Direction information recorded
in this node. If the node is a non-observer, the infection direc-
tion will be assumed to be its current parent node. From lines
20–23, a DIS spanning tree Tdis,s is generated if and only if
“|E (T ) | == |V |−1”, where line 20 requires O (|V| + |E |)
computations. Finally, taking the loop in line 1 into account,
the time complexity of Algorithm 1 is O

(|V|3). Further, by
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using Algorithm 1, a relaxed DIS spanning tree is generated
by utilizing the Diffusion Direction information recorded in
O.

Frequently used notations are summarized in Table 1.

4 The proposedmethod

Given an arbitrary G and an arbitraryO, we locate the prop-
agation source by measuring the similarity between the O
in the actual diffusion tree (corresponding to the first time
each node gets infected) and the O in a spanning tree of G,
which can be described as an estimator that maximizes the
similarity.

ŝ = argmax
s∈V

S (
OTs∗ ,OTs

)
(1)

where Ts∗ denotes the actual diffusion tree with source s∗ as
root, and Ts denotes a tree that spans all nodes in G with node
s as root. OTs∗ and OTs denote the given O in Ts∗ and Ts ,
respectively. S (

OTs∗ ,OTs
)
denotes the similarity between

OTs∗ and OTs .
Theoretically, we have to evaluate S (

OTs∗ ,OTs
)
in Eq. 1

for all spanning trees of G and then select the one with

the maximal similarity and its root is the s∗. However, the
complexity to generate all spanning trees of G will increase
exponentially with the number of nodes. Therefore, we intro-
duce an approximation by assuming that the actual diffusion
tree is a relaxedDIS spanning tree (obtained byAlgorithm 1),
and the time complexity only requires O

(|V|3). Then, Eq. 1
can be modified as follows.

ŝ = argmax
s∈V

S (
OTs∗ ,OTDIS,s

)
(2)

where TDIS,s is a relaxed DIS spanning tree of G with
a node s as root. OTDIS,s denote the given O in TDIS,s .
S (

OTs∗ ,OTDIS,s

)
denotes the similarity between OTs∗ and

OTDIS,s .
SinceK < |V|, TDIS,s may be not unique, and each TDIS,s

may not correspond to the actual diffusion tree. Thus, the
relaxed DIS is obviously a sub-optimal heuristic.

4.1 Observers-based similarity measures

In this subsection, we first define two kinds of observers-
based similarity measures by utilizing the infection time
information of observers. One is Infection Time Similarity;
another is Infection Time Order Similarity.

Fig. 2 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (1). Each sub-figure is obtained by 100 runs
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Fig. 3 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (2). Each sub-figure is obtained by 100 runs

Fig. 4 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (3). Each sub-figure is obtained by 100 runs

Definition 1 Observation Infection Time. Given an arbitrary
G = (V, E, θ) and an observers setO = {ok}Kk=1. the Obser-

vation Infection Time of O is defined as TO = {
tok

}K
k=1,
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Fig. 5 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (4). Each sub-figure is obtained by 100 runs

Fig. 6 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (5). Each sub-figure is obtained by 100 runs
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Fig. 7 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on BA model (6). Each sub-figure is obtained by 100 runs

Table 6 The average error hop
of the six algorithms on
different networks

β Network Gauss GSSI TRBS SNF OSBFS OSDIS

0.25 BA model (1) 2.31 2.50 2.24 2.47 2.50 2.00

BA model (2) 2.12 2.31 2.01 2.15 2.09 1.90

BA model (3) 2.06 2.02 1.99 2.12 1.97 1.89

BA model (4) 1.92 1.98 1.86 2.28 1.84 1.80

BA model (5) 1.70 1.89 1.93 1.95 1.71 1.48

BA model (6) 1.82 1.96 1.73 1.68 1.69 1.59

WS model (1) 2.61 2.34 2.34 2.93 2.77 1.81

WS model (2) 2.60 2.26 2.10 3.08 2.84 1.78

WS model (3) 2.69 2.26 2.18 2.99 3.62 1.80

WS model (4) 2.61 2.30 2.14 2.89 3.39 1.64

WS model (5) 2.32 2.12 1.86 2.79 3.56 1.85

Dolphins 2.11 2.58 1.98 2.56 2.76 1.60

Lesmis 2.19 2.16 2.08 2.60 2.10 1.70

PDZBase 3.07 2.32 2.27 3.42 3.70 1.99

USAirlines 2.26 2.19 2.19 2.29 2.73 1.89

NetScience 3.30 2.06 2.39 2.74 3.28 1.94

Celegans 2.22 2.26 2.11 2.22 2.39 1.84

Euroroads 6.28 3.44 6.08 6.71 12.01 4.47

0.50 BA model(1) 2.01 1.63 1.50 2.39 2.24 1.38

BA model (2) 2.08 2.00 1.87 2.12 1.82 1.66

BA model (3) 1.79 2.01 1.82 2.10 1.88 1.63
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Table 6 continued
β Network Gauss GSSI TRBS SNF OSBFS OSDIS

BA model (4) 1.85 1.86 1.76 2.24 1.80 1.71

BA model (5) 1.60 1.82 1.67 1.90 1.43 1.46

BA model (6) 1.49 1.74 1.67 1.76 1.65 1.49

WS model (1) 2.12 1.35 0.98 2.97 1.76 0.88

WS model (2) 2.20 1.25 1.01 2.85 2.78 1.23

WS model (3) 2.06 1.29 1.21 2.86 3.37 1.17

WS model (4) 2.21 1.06 0.97 2.80 3.18 0.95

WS model (5) 2.17 1.30 1.35 3.03 3.49 1.10

Dolphins 2.21 2.19 1.68 2.74 2.47 1.37

Lesmis 2.10 1.51 1.66 2.70 1.77 1.39

PDZBase 2.57 1.65 1.71 3.38 3.04 1.47

USAirlines 2.21 1.83 1.84 2.06 2.31 1.80

NetScience 3.07 1.77 2.03 2.58 2.36 1.55

Celegans 1.98 1.78 1.74 2.29 2.24 1.56

Euroroads 6.52 2.56 4.22 6.69 8.14 2.53

0.75 BA model(1) 2.01 1.37 1.50 2.44 2.16 1.36

BA model (2) 2.06 1.78 1.66 2.13 1.89 1.63

BA model (3) 1.72 1.87 1.67 1.86 1.87 1.56

BA model (4) 1.83 1.84 1.77 2.16 1.79 1.71

BA model (5) 1.42 1.80 1.64 1.92 1.45 1.42

BA model (6) 1.53 1.85 1.70 1.81 1.72 1.53

WS model (1) 1.82 0.29 0.36 2.96 1.90 0.66

WS model (2) 1.90 0.37 0.29 2.68 2.28 0.79

WS model (3) 2.22 0.46 0.51 2.77 3.15 1.03

WS model (4) 1.86 0.48 0.25 2.69 3.04 1.00

WS model (5) 1.80 0.48 0.42 2.78 3.25 0.85

Dolphins 1.95 2.00 1.45 2.85 2.13 1.29

Lesmis 2.00 1.56 1.27 2.75 1.61 1.22

PDZBase 2.68 1.37 1.45 3.34 2.56 1.31

USAirlines 2.10 1.24 1.36 1.98 2.21 1.52

NetScience 3.02 1.44 1.54 2.38 1.92 1.37

Celegans 1.98 1.08 1.05 1.92 2.27 1.29

Euroroads 5.89 1.78 2.29 7.12 3.74 1.64

The values with bold font are the optimal values

where tok denotes the Infection Timing information recorded
in ok .

Definition 2 Measuring Infection Time. Given an arbitrary
G = (V, E, θ) and an observers set O = {ok}Kk=1. The Mea-
suring Infection Time of O in TDIS,s is defined as:

TTDIS,s =
{
tvok

}K

k=1
(3)

where TDIS,s is a relaxed DIS spanning tree of G with a node
s as root, s ∈ V . tvok denotes theMeasuring Infection Time of
node vok ; vok is the nodewith the node number corresponding

to the observer ok .

tvok =
{
t∗, vok = s

t∗ + ∑
j∈p

(
s,vok

)θ j , vok 
= s
(4)

where t∗ is the unknown start time. s is the root of TDIS,s .
p

(
s, vok

)
denotes the path from s to vok in the TDIS,s . θ j

denotes the propagation delay.

In fact, in the current fixed TDIS,s with s as root, the s is
assumed to be the propagation source. Thus, t∗ minimizes
the difference between TO and TTDIS,s ; t

∗ can be estimated
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Fig. 8 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and OSDIS
algorithms on the BA models
generated by different powers of
the preferential attachment. The
orange line and red line in each
box denote the median and
average error hop (also shown in
Table 6), respectively (color
figure online)
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Table 7 The average error delay
of the six algorithms on
different networks

β Network Gauss GSSI TRBS SNF OSBFS OSDIS

0.25 BA model (1) 8.56 9.07 8.29 8.94 9.56 7.03

BA model (2) 7.89 8.33 7.52 8.13 7.92 6.95

BA model (3) 7.68 8.01 7.59 8.39 7.63 7.20

BA model (4) 6.95 7.64 6.87 9.21 7.00 6.51

BA model (5) 5.98 7.11 7.14 7.53 6.54 5.33

BA model (6) 6.66 7.54 6.36 6.64 6.56 5.73

WS model (1) 9.61 8.80 8.57 11.34 10.40 6.73

WS model (2) 10.04 8.54 7.79 11.87 10.99 6.53

WS model (3) 10.09 8.57 8.11 11.37 13.23 6.48

WS model (4) 9.74 8.72 8.11 11.71 13.02 6.24

WS model (5) 8.75 7.89 7.04 10.92 13.49 6.81

Dolphins 7.68 9.53 7.39 9.13 9.60 5.79

Lesmis 8.22 7.82 7.53 9.68 7.86 6.36

PDZBase 12.07 8.94 8.90 13.60 14.24 7.54

USAirlines 8.01 7.82 7.70 8.09 9.95 6.74

NetScience 13.00 7.98 9.31 11.33 12.82 7.62

Celegans 7.70 7.77 7.29 7.89 8.36 6.40

Euroroads 24.93 13.59 24.48 27.00 47.75 17.93

0.50 BA model(1) 7.60 6.01 5.60 9.07 8.49 4.88

BA model (2) 7.51 7.64 7.03 8.05 6.87 5.92

BA model (3) 6.71 7.43 6.93 8.31 7.10 6.05

BA model (4) 7.20 6.90 6.47 9.04 6.92 6.05

BA model (5) 5.75 6.49 5.93 7.13 5.32 5.00

BA model (6) 5.41 6.28 5.78 6.98 6.24 5.20

WS model (1) 8.02 4.89 3.57 11.83 6.27 3.16

WS model (2) 8.17 4.69 3.87 10.89 10.48 4.52

WS model (3) 7.21 4.64 4.38 10.70 12.61 4.26

WS model (4) 8.32 4.05 3.82 11.39 12.29 3.59

WS model (5) 8.06 4.97 5.02 11.63 12.94 3.97

Dolphins 7.97 8.16 6.18 9.95 8.79 4.92

Lesmis 7.73 5.48 6.14 10.57 6.70 5.39

PDZBase 10.16 6.24 6.50 13.21 11.61 5.54

USAirlines 7.55 6.35 6.52 7.33 8.39 6.65

NetScience 12.02 6.71 7.73 10.46 9.22 6.10

Celegans 6.87 5.96 5.93 7.67 7.86 5.27

Euroroads 26.12 10.20 16.90 27.07 32.59 9.97

0.75 BA model(1) 7.62 4.89 4.58 9.34 8.04 4.84

BA model (2) 7.48 6.76 6.24 8.14 7.05 5.66

BA model (3) 6.35 6.95 6.28 7.49 7.08 5.64

BA model (4) 7.18 6.77 6.54 8.63 6.74 5.84

BA model (5) 5.10 6.38 5.86 7.58 5.29 4.98

BA model (6) 5.67 6.56 5.98 7.26 6.47 5.20

WS model (1) 6.34 0.99 1.17 11.27 6.79 2.19

WS model (2) 7.04 1.22 1.05 10.35 8.44 2.89

WS model (3) 7.84 1.66 1.74 10.53 11.56 3.55

WS model (4) 6.99 1.79 0.83 10.56 11.92 3.86

WS model (5) 6.52 1.74 1.49 10.73 12.29 3.07

Dolphins 6.98 7.32 5.42 10.10 7.73 4.85
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Table 7 continued
β Network Gauss GSSI TRBS SNF OSBFS OSDIS

Lesmis 7.27 5.78 4.65 10.61 5.81 4.29

PDZBase 10.69 5.13 5.39 13.12 9.59 4.82

USAirlines 7.31 4.40 4.91 7.21 7.96 5.53

NetScience 11.81 5.35 5.82 9.47 7.22 4.98

Celegans 6.92 3.72 3.52 6.76 7.87 4.34

Euroroads 23.77 7.31 9.32 28.66 14.91 6.67

The values with bold font are the optimal values

by the following function.

ˆt∗ = argmin
K∑

k=1

(
tvok − tok

)2

= argmin
K∑

k=1

⎛

⎜
⎝t∗ +

∑

j∈p
(
s,vok

)
θ j − tok

⎞

⎟
⎠

2 (5)

where t∗ ∈ [0, z], z ≤ ∑
θ , θ ∈ θ . tvok denotes the Measur-

ing Infection Time of vok . tok denotes the Infection Timing
information recorded of ok .

Definition 3 Infection Time Similarity is defined as:

S (
TO,TTDIS,s

) = 1

1 + D
(
TO,TTDIS,s

)

= 1

1 +
(∑K

k=1 |tvok − tok |2
)1/2

(6)

where D
(
TO,TTDIS,s

)
denotes the Euclidean distance (Rui

and Wunsch 2005) between the TO (Definition 1) and the
TTDIS,s (Definition 2). S (

TO,TTDIS,s

) ∈ (0, 1].

Definition 4 Observation Infection Time Order. Given an
arbitrary G = (V, E, θ) and an observers set O = {ok}Kk=1.
The Observation Time Order of O is defined as an ordered
observers sequence TOO = 〈oi 〉Ki=1, in which each oi is

Fig. 9 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on WS model (1). Each sub-figure is obtained by 100 runs
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Fig. 10 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied onWSmodel (2). Each sub-figure is obtained by 100 runs

Fig. 11 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on WS model (3). Each sub-figure is obtained by 100
runs
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sorted by ascending order according to the Infection Timing
information (denoted by toi ) recorded in oi . For any pair of
observers oi , oi+1 ∈ TOO, there is toi ≤ toi+1 .

Definition 5 Measuring Infection TimeOrder. Given an arbi-
trary G = (V, E, θ) and an observers set O = {ok}Kk=1. The
Measuring Infection Time Order of O on TDIS,s is defined

as an ordered nodes sequence TOTDIS,s = 〈
vok

〉K
k=1, in which

each vok ∈ TOTDIS,s is sorted by ascending order according
to the Measuring Infection Time tvok (Definition 2). For any
pair of nodes vok , vok+1 ∈ TOTDIS,s , there is tvok ≤ tvok+1

.

Definition 6 Infection Time Order Similarity is defined as:

S (
TOO,TOTDIS,s

) = 1 + τ
(
TOO,TOTDIS,s

)

2
(7)

where τ denotes the correlation coefficient defined in refer-
ence (Kendall 1938); the details can be found in Appendix A.
τ is mainly used to measure the concordance between
the TOO (Definition 4) and the TOTDIS,s (Definition 5).
S (

TOO,TOTDIS,s

) ∈ [0, 1].

The properties related to the Infection Time Similarity
(Definition 3) and the Infection Time Order Similarity (Def-
inition 6) can be found in Appendix B.

Example: In Fig. 1, Fig. 1b shows a relaxed DIS spanning
tree of the network shown in Fig. 1a.O = {o1, o2, o3}, o1, o2
and o3 correspond to nodes 2, 3 and 6, respectively. Accord-
ing to Definition 1, for TO, t2 = 4, t3 = 7, t6 = 6. When the
current root is node 1, according to Eq. 5, t∗ = 1. According
to Definition 2, for TTDIS,s , t2 = 4, t3 = 7, t6 = 6. Then,
according to Definition 3, we have S (

TO,TTDIS,s

) = 1.
According to Definition 4, TOO = 〈2, 6, 3〉. According to
Definition 5,TOTDIS,s = 〈2, 6, 3〉. Further, with Definition 6,
we have S (

TOO,TOTDIS,s

) = 1.

4.2 Locating the propagation source

By combining the Infection Time Similarity (Definition 3)
and the Infection Time Order Similarity (Definition 6), the
source estimator in Eq. 2 can be written as follows:

ŝ = argmax
s∈V

S (
OTs∗ ,OTDIS,s

)

= argmax
s∈V

(S (
TO,TTDIS,s

) × S (
TOO,TOTDIS,s

)) (8)

where S (
TO,TTDIS,s

)
and S (

TOO,TOTDIS,s

)
are defined

in Definition 3 and Definition 6, respectively.

Based on Eq. 8, we propose a novel source locating
method, termed as OSDIS algorithm, which is summarized
in Algorithm 2.

Algorithm 2 analysis: The E (T ) declared in line 2 is an
edge set. Lines 3–19 are used for traversing the G by the
relaxed DIS with current node s as root and recording the
eligible edges into E (T ). Lines 3–19 require O

(|V|2) com-
putations in the worst case. Line 20 requires O (|V| + |E |)
computations, which can be reduced to O (|E |). In lines 21–
22, the T obtained in line 20 will be marked as a relaxed DIS
spanning tree TDIS,s if and only if |E (T ) | == |V| − 1.
Line 23 requires O (K) computations. Line 24 requires
O

(|V|2 + z|V|K)
computations (z can be found in Eq. 5).

Lines 25–26 require O (|V|) and O
(
K2

)
computations,

respectively. Both lines 27 and 28 require O (K logK) com-
putations. Line 29 requires O

(
K2

)
computations. Finally,

each node s ∈ V will be used as root to construct dif-
ferent TDIS,s . Thus, the time complexity of Algorithm 2 is
O

(|V|3 + z|V|2K)
.

Algorithm 2 OSDIS algorithm
Input: an arbitrary G and O
Output: the estimated propagation source ŝ
1: for each node s ∈ V do
2: initialize an empty set E (T ).
3: initialize an empty queue Q.
4: Q.enqueue (s) and set s as visited.
5: while Q is not empty do
6: v = Q. f ront ().
7: Q.dequeue ().
8: for each neighbor u of v do
9: if u has not been visited then
10: if u ∈ O then
11: if the Diffusion Direction information recorded in u is

v then
12: Q.enqueue (u), set u as visited, E (T ) = E (T ) ∪

ev→u .
13: end if
14: else
15: Q.enqueue (u), set u as visited, E (T ) = E (T ) ∪ evu .
16: end if
17: end if
18: end for
19: end while
20: remove the edges /∈ E (T ) from G and mark the remaining part

of G as T .
21: if |E (T ) | == |V| − 1 then
22: mark T as relaxed DIS spanning tree TDIS,s .
23: obtain TO according to Definition 1.
24: estimate t∗ according to equation 5.
25: compute TTDIS,s according to Definition 2.
26: compute S (

TO,TTDIS,s

)
according to equation 6.

27: compute TOO according to Definition 4.
28: compute TOTDIS,s according to Definition 5.
29: compute S (

TOO,TOTDIS,s

)
according to equation 7.

30: compute S (
OTs∗ ,OTDIS,s

)
according to equation 8.

31: end if
32: end for
33: pick ŝ with the maximal value according to equation 8.
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Fig. 12 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied onWSmodel (4). Each sub-figure is obtained by 100 runs

Fig. 13 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied onWSmodel (5). Each sub-figure is obtained by 100 runs

123



16074 F. Yang et al.

Fig. 14 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and OSDIS
algorithms on the WS models
generated by different rewiring
probabilities. The orange line
and red line in each box denote
the median and average error
hop (also shown in Table 6),
respectively (color figure online)
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Fig. 15 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on Dolphins network. Each sub-figure is obtained by 62
runs

Fig. 16 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on Lesmis network. Each sub-figure is obtained by 77
runs
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Fig. 17 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on PDZBase network. Each sub-figure is obtained by 100
runs

Fig. 18 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on USAirlines network. Each sub-figure is obtained by
100 runs
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Fig. 19 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on NetScience network. Each sub-figure is obtained by
100 runs

Fig. 20 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on Celegans network. Each sub-figure is obtained by 100
runs
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Fig. 21 The results of Gauss, GSSI, TRBS, SNF, OSBFS and OSDIS algorithms applied on Euroroads network. Each sub-figure is obtained by
100 runs

5 Experimental evaluation

To validate the feasibility and effectiveness of the OSDIS
algorithm, it is compared with other four state-of-the-art
methods on a series of synthetic and real networks. The
four methods include the Gauss algorithm (Pinto et al. 2012),
GSSI algorithm (Tang et al. 2018), TRBS algorithm (Shen
et al. 2016) and SNF algorithm (Wang and Sun 2020).
Besides, since the OSDIS algorithm is based on the relaxed
DIS heuristic, to show its advantage, we also define an
algorithm, denoted by OSBFS, in which the relaxed DIS
heuristic is replaced by the breadth-first search (BFS) heuris-
tic. Totally, six algorithms are compared in the experiments.
Their time complexity is shown in Table 2. Similar to the
reference (Yang et al. 2020), the performance of a source
locating algorithm is mainly evaluated by the precision (the
precise locating ratio, i.e., the proportion of 0 error hop), the
average error hop and the average error delay. For the preci-
sion, the higher the value is, the better the algorithm is. For
the average error hop and the average error delay, the smaller
the value is, the better the algorithm is.
Running environment Hardware: Dell R740 with 2 Intel R©
Xeon R© gold 6254 CPU, 1T RAM. Software: Cygwin 3.0.7
+ Eclipse Cpp2019 + igraph C 0.7.1 + Eigen/Dense (used for
running algorithms). R 64 × 3.3.3 + igraph R 1.2.1 (used for
generating synthetic networks).

Datasets The six algorithms are evaluated on a series of
synthetic and real networks. The synthetic networks include
the scale-free (BA) model (Barabasi and Albert 1999) and
the small-world (WS) model (Watts and Strogatz 1998).
Totally, six BAmodels with different powers of the preferen-
tial attachment and five WS models with different rewiring
probabilities are generated, respectively. The detailed param-
eters for generating these synthetic networks are shown in
Table 3. The real networks are selected from different fields,
which can be obtained from the Koblenz Network Collec-
tion (Kunegis 2013) and theNetworkData Repository (Rossi
and Ahmed 2015) for free. All the real networks are shown
in Table 4. The topology properties of the used networks are
shown in Table 5.
Parameters setting Given an arbitrary graph G, the propaga-
tion delays set θ are independent identically distributed (i.i.d)
random variables with Gaussian distribution N

(
μ, σ 2

)
, μ

and σ 2 are known (Pinto et al. 2012; Paluch et al. 2018). We
setμ/σ = 4. The diffusionmodel follows the one introduced
in Sect. 3. To investigate the impact of different propagation
ratios (denoted by β) on the performance of the source locat-
ing algorithms, we set β = 0.25, β = 0.50 and β = 0.75,
respectively. Additionally, to compare with the GSSI algo-
rithm (Tang et al. 2018), we set s∗ /∈ O. Generally, in reality,
to save the cost, the number of the observers will be far less
than the size of G. Thus, we randomly select 5% nodes as the
observers in each network.
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Table 8 The average running
time ratios between other five
algorithms and the OSDIS on
different networks

Network t(Gauss)
t(OSDIS)

t(GSSI)
t(OSDIS)

t(TRBS)
t(OSDIS)

t(SNF)
t(OSDIS)

t(OSBFS)
t(OSDIS)

BA model (1) 59.52 10.27 0.0004 0.03 0.68

BA model (2) 52.24 9.61 0.0003 0.02 0.58

BA model (3) 55.94 9.77 0.0004 0.02 0.39

BA model (4) 54.16 9.62 0.0004 0.02 0.31

BA model (5) 56.71 9.84 0.0006 0.02 0.24

BA model (6) 55.22 9.83 0.0006 0.02 0.24

WS model (1) 43.98 7.56 0.0007 0.03 1.04

WS model (2) 54.13 9.29 0.0004 0.03 1.00

WS model (3) 57.22 10.00 0.0005 0.04 0.86

WS model (4) 59.48 10.34 0.0003 0.04 0.83

WS model (5) 61.03 10.50 0.0003 0.06 0.80

Dolphins 42.52 16.81 0.0067 0.29 0.90

Lesmis 30.69 9.52 0.0100 0.11 0.83

PDZBase 60.84 11.67 0.0007 0.05 0.60

USAirlines 75.98 11.71 0.0002 0.02 0.68

NetScience 104.62 15.35 0.0001 0.02 1.18

Celegans 138.81 19.98 0.0001 0.01 0.69

Euroroads 1342.74 180.82 ≈ 0 0.02 1.06

t (·): the running time of an algorithm

5.1 Experimental results on the synthetic networks

Figures 2, 3, 4, 5, 6, 7 show the precision (the precise locating
ratio, i.e., the proportion of 0 error hop) of the six algorithms
on a series of BA models. From Figs. 2, 3, 4, 5, 6, 7, we can
see that, when β = 0.25, β = 0.5 and β = 0.75, the OSDIS
algorithm generally exposes the best precision on all the six
BAmodels, i.e., the OSDIS has a higher proportion in 0 error
hop than other five algorithms. Only when β = 0.75, the
OSDIS is inferior to theGSSI andTRBSonBAmodel (1), but
outperforms other three algorithms. From Table 6, we know
that, when β = 0.25, β = 0.5 and β = 0.75, the OSDIS is
better thanother five algorithms in the average error hopon all
the six BAmodels. Only when β = 0.5, the OSDIS is a litter
inferior toOSBFSonBAmodel (5), but superior to other four
algorithms. Meanwhile, in Fig. 8, we plot interquartile range
(IQR) to show the distribution regions of error hop of the six
algorithms on the BA models. Additionally, from Table 7,
we can see that, when β = 0.25, β = 0.5 and β = 0.75, the
OSDIS exposes a better average error delay on all the six BA
models. Onlywhen β = 0.75, theOSDIS is inferior to TRBS
on BA model (1), but outperforms other four algorithms. In
summary, on the BA models, the OSDIS is generally better
than other five algorithms in the precision, the average error
hop and average error delay.

Figures 9, 10, 11, 12, 13 show the precision (the precise
locating ratio, i.e., the proportion of 0 error hop) of the six
algorithms on a series ofWSmodels. FromFigs. 9, 10, 11, 12,
13, we can see that, when β = 0.25, the OSDIS is superior to

other five algorithms in the precision on WS models (1)–(4)
(i.e., the OSDIS has a higher proportion in 0 error hop), but
only inferior to TRBS and GSSI on WS model (5). When
β = 0.5 and β = 0.75, the OSDIS is generally inferior to
TRBS and GSSI in the precision on WS models (1)–(5), but
superior to other three algorithms. Only when β = 0.5, the
OSDIS exposes the best precision on WS model (5). From
Tables 6 and 7, we know that, when β = 0.25 and β = 0.5,
theOSDIS is generally better than other five algorithms in the
average error hop and average error delay on all the five WS
models. Only when β = 0.5, the OSDIS is inferior to TRBS
onWSmodel (2). Meanwhile, from Tables 6 and 7, we know
that, when β = 0.75, the OSDIS is always inferior to GSSI
and TRBS in the average error hop and average error delay,
but outperforms other three algorithms. In Fig. 14, we further
plot interquartile range (IQR) to show the distribution regions
of error hop of the six algorithms on the WS models. In
summary, on theWSmodels, theOSDIS is generally superior
to other five algorithms in the precision when β = 0.25 and
generally exposes a better performance in the average error
hop and average error delay when β = 0.25 and β = 0.5.
Thus, the OSDIS is better than other five algorithms in most
cases. Obviously, the performance of the OSDIS on the BA
models is better than on the WS models.

5.2 Experimental results on the real networks

In this subsection, we further validate the performance of the
six algorithms on the real networks. Figures15, 16, 17, 18,
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19, 20, 21 show the precision (the precise locating ratio, i.e.,
the proportion of 0 error hop) of the six algorithms on the
real networks. When β = 0.25, from Figs. 15, 16, 17, 18, 19,
20, 21, we can see that the OSDIS generally exposes the best
precision (i.e., the OSDIS has a higher proportion in 0 error
hop) on all the real networks, except for Euroroads network
on which the OSDIS is only inferior to GSSI, but superior to
other four algorithms. By combining with Tables 6 and 7, we
know that the OSDIS is also superior to other five algorithms
in the average error hop and the average error delay on all
the real networks, except for Euroroads network on which
the OSDIS is only inferior to GSSI, but superior to other
four algorithms. When β = 0.5, from Figs. 15, 16, 17, 18,
19, 20, 21, we know that the OSDIS exposes the best preci-
sion (i.e., the OSDIS has a higher proportion in 0 error hop)
on Dolphins, Lesmis, USAirlines and Celegans networks.
Meanwhile, the OSDIS is only inferior to GSSI in the preci-
sion on PDZBase, NetScience and Euroroads networks, but
superior to other four algorithms.BycombiningwithTables 6
and 7,we can see that theOSDIS generally outperforms other
five algorithms in the average error hop and the average error
delay on the real networks. Only on USAirlines network, the
OSDIS is inferior to GSSI and TRBS in the average error
delay. When β = 0.75, from Figs. 15, 16, 17, 18, 19, 20,
21, we know that, except for Euroroads network, the OSDIS
is generally inferior to TRBS or GSSI in the precision on
the real networks. By combining with Tables 6 and 7, we
can see that the OSDIS outperforms other five algorithms in
the average error hop and average error delay on Dolphins,
Lesmis, PDZBase, NetScience and Euroroads networks, but
is inferior to GSSI and TRBS on USAirlines and Celegans
networks. Meanwhile, in Appendix C Figs. 22, 23, 24, 25,
26, 27, 28, we plot interquartile range (IQR) to further show
the distribution regions of error hop of the six algorithms
on the real networks. In summary, on the real networks, the
OSDIS is generally superior to other five algorithms in the
precision, the average error hop and the average error delay
when β = 0.25 and β = 0.5, but inferior to GSSI and TRBS
when β = 0.75. Thus, the OSDIS is better than other five
algorithms in most cases.

Overall, in the precision, the average error hop and average
error delay, the OSDIS outperforms other five algorithms on
theBAmodels and inmost cases is superior to other five algo-
rithms on the WS models and real networks. In a few cases,
the OSDIS is only inferior to GSSI and TRBS, but supe-
rior to other three algorithms. Thus, the OSDIS is a feasible
and effective method in accurately locating the propagation
source. Meanwhile, on the BA models, WS models and real
networks, the OSDIS obviously outperforms the OSBFS,
which indicates that the relaxed DIS heuristic outperforms
the BFS heuristic in locating the propagation source.

The average error hops of the six algorithms on different
networks are shown in Table 6. The average error delay is

shown in Table 7. The average running time ratios between
other five algorithms and the OSDIS on all networks are
shown in Table 8. FromTable 8, we can see that the efficiency
of the OSDIS is inferior to the TRBS and SNF, similar with
the OSBFS, and superior to the Gauss and GSSI.

6 Conclusion

In this paper, we locate the propagation source by utilizing
both of the diffusion direction information and the infection
time information of the observers. We introduce a relaxed
direction-induced search (DIS) to utilize the diffusion direc-
tion information of the observers to approximate the actual
diffusion tree on a network. Based on the relaxed DIS, we
further utilize the infection time information of the observers
to define two kinds of observer-based similarity measures,
including the Infection Time Similarity and the Infection
Time Order Similarity. With the two kinds of similarity mea-
sures and the relaxed DIS, a source locating method termed
as OSDIS is proposed. The feasibility and effectiveness of
the OSDIS are validated on a series of synthetic and real
networks. Meanwhile, the experimental results also show
that the relaxed DIS heuristic outperforms the BFS heuristic
in propagation source locating. The current OSDIS is only
developed for single source locating. In the future work, we
will study the OSDIS-based multi-sources locating method.
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A. Correlation coefficient

The correlation coefficient τ defined in reference (Kendall
1938) considers a set of joint ranks from two sequence X
and Y. For arbitrary xi , x j ∈ X, yi , y j ∈ Y, any pair of two-
tuples (xi , yi ) and

(
x j , y j

)
(i 
= j) are said to be concordant

if both xi > x j and yi > y j or if both xi < x j and yi < y j .
They are said to be discordant if both xi > x j and yi < y j
or if both xi < x j and yi > y j . If xi = x j or yi = y j , the
pair is neither concordant nor discordant. τ is defined as:

τ = 2 × (nc − nd)

n(n − 1)
(9)

where nc and nd denote the number of concordant and dis-
cordant pairs, respectively. τ ∈ [−1, 1].

B. Properties

Property 1 Suppose that the propagation ratio of the SImodel
is β = 1, for G = (V, E, θ) and O = {ok}Kk=1, suppose
O = V , then

S (
TO,TTDIS,s

) = 1 (10)

Proof By Eq. 6, the proof of Eq. 10 can be converted into the
proof about D

(
TO,TTDIS,s

) = 0. Firstly, since β = 1, on
the original G, each node ok is first time infected along the
weighted shortest path between s∗ and ok . Meanwhile, the

Infection Timing information can be recorded in ok , denoted
by tok (Definition 1). Secondly, since O = V , by combin-
ing with Algorithm 1, we know that the TDIS,s is the actual
diffusion tree corresponding to the first time each node in
G gets infected. Thus, for the Measuring Infection Time of
each vok (denoted by tvok , Definition 2), there is tvok = tok .

According to the D
(
TO,TTDIS,s

)
in Definition 3, there is

D
(
TO,TTDIS,s

) = 0. Property 1 is proved. ��
Property 2 Suppose that the propagation ratio of the SImodel
is β = 1, for G = (V, E, θ) and O = {ok}Kk=1, suppose
O = V , then

S (
TOO,TOTDIS,s

) = 1 (11)

Proof By Eq. 7, the proof of Eq. 11 can be converted into the
proof about τ

(
TOO,TOTDIS,s

) = 1. From Property 1, we
know that, since O = V , then we get S (

TO,TTDIS,s

) = 1.

For TO = {
tok

}K
k=1 and TTDIS,s =

{
tvok

}K

k=1
, there is

tvok = tok . Thus, the Observation Infection Time Order in
TOO is consistent with the Measuring Infection Time Order
in TOTDIS,s . According to the Definition of correlation coef-
ficient τ (Appendix A), τ

(
TOO,TOTDIS,s

) = 1. Property 2
is proved. ��

C. Supplemental material

The interquartile range (IQR) of error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and OSDIS algorithms on the real net-
works is shown in Figs. 22, 23, 24, 25, 26, 27, 28.

Fig. 22 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on Dolphins
network. The orange line and
red line in each box denote the
median and average error hop,
respectively (color figure online)
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Fig. 23 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and OSDIS
algorithms on Lesmis network.
The orange line and red line in
each box denote the median and
average error hop, respectively
(color figure online)

Fig. 24 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on PDZBase
network. The orange line and
red line in each box denote the
median and average error hop,
respectively (color figure online)

Fig. 25 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on
USAirlines network. The orange
line and red line in each box
denote the median and average
error hop, respectively (color
figure online)
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Fig. 26 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on
NetScience network. The orange
line and red line in each box
denote the median and average
error hop, respectively (color
figure online)

Fig. 27 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on Celegans
network. The orange line and
red line in each box denote the
median and average error hop,
respectively (color figure online)

Fig. 28 The IQR (box-plot) of
error hop of Gauss, GSSI,
TRBS, SNF, OSBFS and
OSDIS algorithms on Euroroads
network. The orange line and
red line in each box denote the
median and average error hop,
respectively (color figure online)
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