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Abstract
Nowadays, the number of sudden deaths due to heart disease is increasing with the coronavirus pandemic. Therefore,

automatic classification of electrocardiogram (ECG) signals is crucial for diagnosis and treatment. Thanks to deep learning

algorithms, classification can be performed without manual feature extraction. In this study, we propose a novel convo-

lutional neural networks (CNN) architecture to detect ECG types. In addition, the proposed CNN can automatically extract

features from images. Here, we classify a real ECG dataset using our proposed CNN which includes 34 layers. While this

dataset is one-dimensional signals, these are transformed into images (scalograms) using continuous wavelet transform

(CWT). In addition, the proposed CNN is compared to known architectures: AlexNet and SqueezeNet for classifying ECG

images, and we find it more effective than others. This study, which not only performed CWT but also implemented short-

time Fourier transform, examines the success in recognizing ECG types for the proposed CNN. Besides, different split

methods: training and testing, and cross-validation are applied in this study. Eventually, CWT and cross-validation are the

best pre-processing and split methods for the proposed CNN, respectively. Although the results are quite good, we benefit

from support vector machines (SVM) to obtain the best algorithm and for detecting ECG types. Essentially, the main aim

of the study increases classification results. In this way, the proposed CNN is utilized as deep feature extractor and

combined with SVM. As a conclusion of this study, we achieve the highest accuracy of 99.21% from the proposed CNN–

SVM when using CWT. Therefore, we can express that this framework can be used as an aid to clinicians for ECG-type

identification.

Keywords Convolutional neural networks (CNN) � Continuous wavelet transform (CWT) � Feature extraction �
Scalogram � Support vector machine (SVM)

1 Introduction

The qualitative processing and classification of biomed-

ical signals is very important for diagnosis and therapy.

Many methods are used to process biomedical signals.

Some important methods are discrete Fourier transform

(DFT), short-time Fourier transform (STFT), continuous

wavelet transform (CWT), and discrete wavelet trans-

form. The Fourier transformation provides a very good

frequency range for stationary signals (Haberl et al.

1989). However, the time domain is almost non-existent.

This can lead to serious problems, especially if time-

dependent characteristics are to be inferred. However,

when signals are transformed with the wavelet transform,

both frequency and time domains are distinguishable (Li

et al. 1995). In other words, wavelet transform (WT) is a

transformation technique that splits signals into different

frequency components and processes each component

with the time domain of the respective scale. In this

study, we focus on electrocardiogram (ECG) signals. The

signals resulting from the electrical activity of the heart,

the main vital organ in the human body, are called an

electrocardiogram (ECG). Sudden deaths from heart

disease with coronavirus (COVID-19) are currently on

the rise (https://www.chss.org.uk/media-release/new-nhs-

figures-show-dangerous-domino-effect-of-pandemic-on-

progress-made-with-strokes-and-heart-disease/). For this
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reason, the processing and analysis of the signals

received by the heart are very important for rapid

diagnosis and treatment. In conventional methods, a

suitable sampling method is used in the pre-processing

phase of ECG signals and the signals are cleaned of

noise. Then, the manual feature extraction phase begins,

where it is very important to seek expert opinions. This

phase is very critical as incorrect feature extraction can

lead to misclassification of signals and serious errors in

diagnosis and treatment. After all these phases are

completed, classification is done using traditional classi-

fication algorithms. However, the studies show that the

situation for deep learning algorithms has changed in

recent years (Ozaltin et al. 2022; Özaltın and Yeniay

2021; Koc et al. 2022). Thanks to deep learning algo-

rithms, successful classifications can be made automati-

cally. In this way, the state of health of patients can be

monitored with smartphones, watches, etc., even without

an expert opinion.

The aim of the study was to recognize type of ECG

efficiently via deep learning algorithm. Firstly, we collect

the dataset from PhysioNet databases (Physionet 2020).

The dataset consists of three different types: arrhythmia

(ARR), congestive heart failure (CHF), and normal sinus

rhythm (NSR). In this study, a novel convolutional neural

networks (CNN) architecture, which is one of the deep

learning algorithms, is proposed for automatic ECG signal

classification. This newly proposed 34-layer CNN archi-

tecture is designed for two-dimensional images. In fact, the

newly proposed CNN is considered not only ECG classi-

fication, but also other biomedical signals, images, etc.

classification. In this context, the ECG signals are naturally

transformed from one-dimensional signals into images by

using a continuous wavelet transform (CWT) in the pre-

processing phase. This wavelet transform has three differ-

ent mother wavelet functions: Amor, Bump, and Morse,

which are the most commonly used. The impact of these

functions on classification performance is also examined.

In this study, 360 Hz, 500 Hz and 1000 Hz sample lengths

are examined whether the wave characteristics become

more evident. Figure 1 shows the images (scalograms)

obtained with different sampling lengths of ECG signals,

360 Hz, 500 Hz, and 1000 Hz, respectively. Therefore, a

total of nine different datasets are obtained under these

conditions. These datasets are classified separately with the

same training options parameters using the proposed CNN,

AlexNet, and SqueezeNet. After identifying the best

wavelet function, sample length, and architecture, we

additionally investigate another pre-processing method:

STFT to measure ECG classification performance via dif-

ferent split methods: training and testing, and cross-vali-

dation. Finally, the proposed CNN is used as a deep feature

extractor from images and merged with support vector

machines (SVM) to get trusted results.

In this study, a hybrid algorithm is proposed to detect

ECG types from acquired images based on a deep learning

algorithm and a machine learning algorithm. The main

contributions and novelties of this study are as follows:

• When using CWT, 500 Hz is observed as an efficient

sample length while converting.

• Amor wavelet function has higher performance than

others while applying CWT.

• A new CNN architecture called proposed CNN is

presented and compared with AlexNet and SqueezeNet.

Eventually, the proposed CNN has the highest

performance.

• To measure the performance of the proposed CNN,

STFT is also used as pre-processing method via

different splitting methods: training and testing

(80:20, 70:30), and k-fold cross-validation (5, 10).

Finally, CWT is higher than it and cross-validation is

the best splitting method.

• To improve classification performance, the proposed

CNN is utilized as feature extractor and benefited from

both fully connected layer and maximum pooling layer.

• Reduced features are classified using SVM.

• Consequently, the highest performance to recognize

ECG types is acquired thanks to the proposed CNN–

SVM hybrid algorithm.

1.1 Related studies

Nowadays, artificial intelligence is evolving day by day,

and many studies are also being conducted to classify ECG

signals and other biomedical signals using CNN architec-

tures. Khorrami and Moavenian (2010) applied the CWT,

discrete wavelet transform (DWT), and discrete cosine

transform (DCT) to ECG signals. In addition, they com-

pared SVM with multi-layer perceptron (MLP) algorithms

in the classification phase. In particular, they found that

combinations made with MLP (CWT-MLP, DWT-MLP,

DCT-MLP) are superior to SVM. Al Rahhal et al. (2018)

transformed signals from different datasets using CWT to

identify arrhythmias in ECG signals. Also, they used the

CNN algorithm and achieved an accuracy of 99% in the

classification phase. Huang et al. (2019) converted ECG

signals with STFT and obtained two-dimensional scalo-

grams in their study. Moreover, they benefited from the

CNN architecture for classifying these scalograms and

achieved an accuracy of 99%. In addition, they also clas-

sified the one-dimensional ECG signals using CNN and

found an accuracy of 90.93%. Krak et al. (2020) trans-

formed ECG signals into the images using CWT and DWT

in their study. Furthermore, they classified the images
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using the CNN architecture and obtained an accuracy of

96% in the classification phase. Baloglu et al. (2019)

designed a 10-layer end-to-end CNN architecture for the

classification of multiclass one-dimensional ECG data and

achieved an accuracy of a 99.78%. Mahmud et al. (2020)

created a CNN architecture for multiclass one-dimensional

ECG data and obtained an accuracy rate of 99.28%. Salem

et al. (2018) utilized DenseNet architecture to classify

transformed two-dimensional ECG data and achieved an

accuracy of 97.23%. Zhao et al. (2020) proposed a CNN

containing 24 layers for classifying transformed ECG data

and achieved an accuracy of 87.1%. Xu and Liu (2020)

created a CNN architecture in order to analyze ECG data

recorded from a Holter device and achieved an accuracy of

99.4%. Rajkumar et al. (2019) suggested a CNN architec-

ture for one-dimensional ECG data by using exponential

linear unit (ELU) activation layers and achieved an accu-

racy of 93.6%. Hua et al. (2020) developed a CNN archi-

tecture for one-dimensional ECG signals and achieved an

accuracy of 97.45%. Kiranyaz et al. (2015) proposed a

CNN architecture for patient-specific real-time one-di-

mensional ECG classification and achieved an accuracy of

96.4%. Chen et al. (2020) suggested CNN ? long short-

term memory (LSTM) which can classify six kinds of ECG

fragments. They have classified two ECG databases: MIT-

BIH arrhythmia database and MIT-BIH arrhythmia

database ? Challenge2017, and achieved an accuracy of

99.32% and 97.15%, respectively, using CNN ? LSTM.

Sandeep et al. (2019) utilized the CNN architecture to

classify ECG data and also achieved an accuracy of

90.63%. Furthermore, machine learning algorithms such as

support vectors machine (SVM), K-nearest neighbors

(KNN), decision tree (DT), extreme learning machine

(ELM), ensemble learning, and multi-layer perceptron

(MLP) to classify ECG signals by many other researchers

(Alickovic and Subasi 2015; Qaisar and Subasi 2020;

Tuncer et al. 2022; Ceylan and Özbay 2007; Pławiak and

Acharya 2020). Additionally, Table 1 shows recent studies

on ECG signals classification.

The rest of the study is organized as follows: In Sec-

tion 2, we present the materials and methods. Then, we

explain the dataset, experimental setup, performance met-

rics, and experimental results in Section 3. Next, we dis-

cuss the results in Section 4. Finally, we conclude the study

and state the future works.

2 Materials and methods

In this section, we first present pre-processing methods.

Next, we introduce CNN, the proposed CNN, and pre-

trained architectures: AlexNet (Krizhevsky et al. 2012) and

SqueezeNet (Iandola et al. 2016). In the last, we present

SVM and the proposed CNN–SVM architecture for clas-

sification of ECG dataset. Figure 2 shows the framework of

this study.

2.1 Pre-processing methods

In this study, we propose a novel CNN it needs images;

therefore, we transform one-dimensional signals into two-

dimensional image datasets via continuous wavelet trans-

form (CWT) and short-time Fourier transform (STFT).

Fig. 1 227 9 227 9 3 size of

images with different sample

lengths
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2.1.1 Max–min normalization

In this study, firstly, we normalize raw one-dimensional

ECG signals using the minimum–maximum normalization

method given formula in Eq. (1) as follows:

X ¼ signal � minðsignalÞ
maxðsignalÞ � minðsignalÞ ð1Þ

where X denotes the normalized ECG signal. Besides,

minð:Þ is a minimum function, and maxð:Þ is a maximum

function.

2.1.2 Continuous wavelet transform

Continuous wavelet transform (CWT) is a transformation

method. CWT allows simple analysis of its frequency

components and can transform a one-dimensional signal

into a two-dimensional scalogram by providing a mapping

of the signal also on the time axis. The mathematical for-

mulation of the CWT and WT family is offered in Eq. (2)

and Eq. (3), respectively,

CWT a; bð Þ ¼ f ;w�
a;b

D E
¼

Z þ1

�1
f tð Þw�

a;bðtÞdt ð2Þ

wa;b tð Þ ¼ 1ffiffiffi
a

p w
t � b

a

� �
ð3Þ

where f ðtÞ is a continuous signal function received in this

study as an ECG signal function, wa;bðtÞ is the mother

wavelet function, a indicates a scale parameter, b indicates

the shift parameter or translation, and the symbol of *

indicates the complex conjugate function (Lee and Choi

2019). Besides, f ;wa;b

� �
is expressed as a function of the

inner products of Eq. (2). It CWT a; bð Þ is regulated,

CWT a; bð Þ ¼ 1ffiffiffi
a

p
Zþ1

�1

f ðtÞw t � b

a

� �
dt ð4Þ

will be in the form like in Eq. (4). The signal function f ðtÞ
can be converted from the inverse of CWT a; bð Þ, as

follows:

f tð Þ ¼ 1

C

Zþ1

�1

Zþ1

�1

CWT a; bð Þ
wa;b tð Þ
aj j3=2

da db ð5Þ

where C indicates the normalization constant depending on

the choice of the mother wavelet function in Eq. (5) (Lee

and Choi 2019).

Some mother wavelet functions as follows:

wMorl tð Þ ¼ e2pite�
t2

2r2 ¼ cos 2pt þ i sin 2ptð Þe�
t2

2r2 ð6Þ

wMexh tð Þ ¼ 1 � t2

r2

� �
e�

t2

2r2 ð7Þ

wBump abð Þ ¼ e
1� 1

1�ab�l=r2

� �
v l� r; lþ r½ � ð8Þ

Fig. 2 Flowchart of this study
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will be in the form in Eqs. (6–8). Here, wMorl tð Þ, Morlet,

wMexh tð Þ, Mexican hat, and wBump abð Þ, Bump, show the

mother wavelet function (Lee and Choi 2019).

2.1.3 Short-time Fourier transform (STFT)

Short-time Fourier transform (STFT) is also a transfor-

mation method. The STFT is obtained from the discrete

Fourier transform (DFT), to discover the sudden frequency

and the sudden amplitude of localized waves with time-

varying typical (Huang et al. 2019; Haykin and Veen

1999). The STFT uses a window function to extract time-

domain information (Toma and Choi 2022). The window

function possesses a certain interval, and the value of this

window function outward of the interval is zero (Toma and

Choi 2022). To calculate the frequency domain informa-

tion, the window function shifts over all non-stationary

signals and each time it is multiplied with the signal

(Haykin and Veen 1999; Toma and Choi 2022). Further,

the time–frequency spectrogram can be computed in a

discretized non-stationary digital signal as given in Eq. (9)

(Toma and Choi 2022),

STFT x n½ �f g ¼ X m;xð Þ ¼
X1
n¼�1

x n½ �w n� m½ �e�jxn ð9Þ

where x n½ � symbolizes signals and w n½ � is the window

function. In this study, we utilize the Kaiser function with a

window size of 500 Hz. Thus, we convert ECG signals into

ECG spectrums images with dimensions of

227 9 227 9 3.

2.2 Convolutional neural network (CNN)

Convolutional neural network (CNN) emerges as a spe-

cialized deep learning approach for analyzing two-dimen-

sional data. Not only it is preferred algorithm in the

analysis of multidimensional data but also one-dimensional

data. Other classifications and clustering algorithms are

difficult to apply to real-time data due to their computa-

tional complexity (Narin 2020). For this reason, deep

learning technology that can overcome this complexity

evolves day by day. Moreover, CNN can perform feature

extraction and classification automatically using raw data,

so deep learning algorithms are very popular in the field of

artificial intelligence. Further, it is found to give very good

results of classification studies involving both big data and

small data by researchers. Thanks to the CNN algorithm,

ECG signals can be analyzed and observed on smart-

phones, watches, Holter monitoring devices, etc. (Huang

et al. 2019).

The CNN processes an image in different layers and

separates all its features. The most commonly used layers

are:

1. Convolution layer,

2. Nonlinear layer,

3. Pooling layer,

4. Flattening layer,

5. Fully connected layer expressed as (Baloglu et al.

2019; Lee and Choi 2019; Acharya et al. 2017).

1. Convolutional Layer: The convolution process is the

layer where the features of the image are determined.

To determine more than one feature, the number of

convolutional layers increases in the same proportion.

This layer is the main building block of CNN.

2. Nonlinear Layer: This layer is also known as the

activation layer. It is used to realize the activation of

the system with nonlinear functions. Rectified linear

unit function (ReLU), which is widely used because it

is faster than others, is preferred in recent years.

3. Pooling Layer: Smaller matrices are obtained while

preserving the properties of the existing input. In this

way, the computational complexity is reduced.

4. Flattening Layer: The matrix format data obtained

from the previous step is prepared following the fully

connected layer.

5. Fully Connected Layer: It is the most important layer

of convolutional neural network layers. The data are

taken from the flattening layer and trained by the

neural network and the learning process is performed.

2.3 Pre-trained architectures: AlexNet
and SqueezeNet

AlexNet (Krizhevsky et al. 2012) has five convolution

layers combined with max-pooling layers and three fully

connected layers. It also includes a dropout layer and a

softmax. Moreover, each layer is activated with the ReLU

activation function. In 2012, it was used the ReLU acti-

vation function in place of the tanh function (Abdelmalek

et al. 2019). Thus, it was seen that the architecture was

accelerated. The total number of parameters is 62.3 mil-

lion, and the input image size is 227 9 227.

SqueezeNet (Iandola et al. 2016) starts with an inde-

pendent convolutional layer (conv1), follows by eight fir-

ing modules, and ends with the last convolutional layer

(conv10). In total, it consists of ten convolutional layers,

some max-pooling layers, and a SoftMax layer, in the

recently presented version.

In this study, a novel CNN architecture is presented in

the next section and it is compared with AlexNet and

SqueezeNet on created different datasets.
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2.4 Novel proposed CNN architecture

A CNN architecture usually consists of an input layer,

some convolutional layers, some pooling layers, and a fully

connected layer (Krak et al. 2020). In this study, we

introduce a novel CNN architecture. It has seven convo-

lutional layers, seven batch normalization layers, seven

activation layers (ReLU), seven maximum pooling layers,

and two fully connected layers with one dropout layer.

Additionally, a SoftMax layer and a classification layer

with an entropy approach are used as well. The convolution

layers are effectively utilized for feature extraction from

ECG image datasets. This is important since well feature

extraction is also meaning very sensitive classification.

Essentially, these layers are filtered to enhance the features

of the primary signal while reducing the noise (Hua, et al.

2020; Li et al. 2018). The pooling layers reduce the

dimension of the input images, and these are prepared for

the next layer. Finally, extensive features in the fully

connected layers are reduced with 0.5 probability by using

the dropout layer and transferred to the SoftMax layer for

the classification. Details of the parameters of the proposed

CNN are given in Table 2.

The proposed CNN is a novel architecture that has dif-

ferent filter sizes, number of filters, strides, and padding.

Fundamentally, we develop the architecture for biomedical

image classification. However, it is tested on known clas-

sical datasets such as CIFAR-10, like other CNN archi-

tectures. Additionally, it is utilized on Physikalisch-

Technische Bundesanstalt (PTB) Diagnostic ECG Data-

base (Özaltın and Yeniay 2021; Goldberger, et al. 2000).

This proposed CNN is performed for not only signals but

also brain computed tomography, detailed in Ozaltin et al.

(2022). Moreover, this proposed CNN is named as OzNet

in studies of Ozaltin et al. (2022). And, this architecture

obtains successful performances in these datasets (Fig. 3).

In this study, the proposed CNN is compared with

AlexNet and SqueezeNet using same fine-tuning parame-

ters. Stochastic gradient descent method (sgdm) is per-

formed as the optimization algorithm, and the momentum

parameter is determined as 0.95, and the learning rate is

also started with 0.0001 as constant. Figure 4 shows the

proposed CNN scheme.

2.5 Deep feature extraction

In this study, the proposed CNN can extract features from

images effectively. Therefore, we use it both classifier and

deep feature extractor. Although, when it is used for clas-

sification algorithm, the results are quite well, we decide to

more improving results for obtaining the best one. There-

fore, we designed a hybrid algorithm which is included the

proposed CNN and SVM. In this section of study, the

proposed CNN is assigned as automatic feature extractor

from ECG images and SVM is employed for classifier. In

brief, we can explain the steps of how to work it as follows:

(i) the proposed CNN is trained on ECG images, firstly. (ii)

Reduced features are obtained from the proposed CNN of

fully connected layer and 4096 features are collected for

each image. (iii) To classify with these features, the dataset

is split into 30% training set and 70% testing set. This is

because we want to obtain trustworthy classification results

owing to dropout layer would not have much influence

(Elleuch et al. 2016; Srivastava et al. 2014). Then, the

trained net is activated. (iv) SVM classifier is employed to

detect type of ECG, effectively. The same stages are hap-

pened when reduced features are achieved from maximum

pooling (Max-Pooling 7) layer. Figure 5 demonstrates the

scheme of the proposed CNN–SVM.

2.6 Support vector machine (SVM)

Support vector machine (SVM) is a machine learning

algorithm that an effective separation with a kernel-based

method to the datasets for classification or regression

(Koklu and Ozkan 2020). It is improved by Cortes and

Vapnik (1995) for two classes. Then, the algorithm is

advanced and generalized for multiclass and nonlinear

datasets. In general, the dataset can be separated in high-

dimensional feature space with a kernel function. Also,

SVM can be overcome confused datasets and overfitting.

The most common representation of the SVM function is

f ðxÞ ¼ wT/ xð Þ þ b where w 2 Rn b 2 R and / xð Þ is a

feature map.

3 Results

3.1 ECG dataset

In this study, we benefit from three different ECG datasets

from PhysioNet databases (Physionet 2020). Each raw

ECG dataset is taken with a signal length of 1 h and

sampled at 128 Hz. The first ECG dataset consists of the

ECG recordings from 48 patients, which contain two leads.

It is received from the MIT-BIH Arrhythmia Database and

referred to as ARR (Goldberger, et al. 2000; Moody and

Mark 2001). The next ECG dataset consists of the ECG

recordings from 15 patients, which contain two leads. It

comes from the BIDMC Congestive Heart Failure Data-

base and is named CHF (Goldberger, et al. 2000; Baim

et al. 1986). The final ECG dataset consists of the ECG

recordings from 18 patients, containing two leads. It is

obtained from MIT-BIH Normal Sinus Rhythm and
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Table 2 Proposed CNN architecture details

Layer

name

Type Layer parameters Output shape

Input Image Input 227 9 227 9 3 images with ‘‘zerocenter’’ normalization 227 9 227 9 3

Conv-1 Convolution

2D

Filter size = 64, number of filters = [5 5], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

225 9 225 9 64

MaxPool-

1

Max Pooling Pool size = [3 3], stride = [2 2], padding = [0 0 0 0] 112 9 112 9 64

Conv-2 Convolution

2D

Filter size = 128, number of filters = [3 3], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

112 9 112 9 128

MaxPool-

2

Max Pooling Pool size = [3 3], stride = [2 2], padding = [0 0 0 0] 55 9 55 9 128

Conv-3 Convolution

2D

Filter size = 128, number of filters = [13 13], stride = [1 1], padding = [0 0 0 0],

BatchNormalization, ReLU

55 9 55 9 128

MaxPool-

3

Max Pooling Pool size = [3 3], stride = [2 2], padding = [0 0 0 0] 27 9 27 9 128

Conv-4 Convolution

2D

Filter size = 256, number of filters = [7 7], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

27 9 27 9 256

MaxPool-

4

Max Pooling Pool size = [2 2], stride = [2 2], padding = [0 0 0 0] 13 9 13 9 256

Conv-5 Convolution

2D

Filter size = 128, number of filters = [3 3], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

13 9 13 9 128

MaxPool-

5

Max Pooling Pool size = [3 3], stride = [2 2], padding = [0 0 0 0] 6 9 6 9 128

Conv-6 Convolution

2D

Filter size = 128, number of filters = [3 3], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

6 9 6 9 128

MaxPool-

6

Max Pooling Pool size = [3 3], stride = [2 2], padding = [0 0 0 0] 3 9 3 9 128

Conv-7 Convolution

2D

Filter size = 128, number of filters = [3 3], stride = [1 1], padding = [1 1 1 1],

BatchNormalization, ReLU

3 9 3 9 128

MaxPool-

7

Max Pooling Pool size = [2 2], stride = [2 2], padding = [0 0 0 0] 1 9 1 9 128

FC-8 Fully

Connected

4096 1 9 1 9 4096

Drop-8 Dropout 50%

FC-9 Fully

connected

3 (number of classes) 1 9 1 9 3

Softmax SoftMax 1 9 1 9 3

Output Classification Cross-entropy

Fig. 3 Transformed images

using STFT
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referred to as NSR (Goldberger, et al. 2000). There are a

total of 96 ARR, 30 CHF and 36 NSR in the ECG dataset.

In fact, this dataset is not suitable for convolutional neural

networks because of demand pattern. That is why we

convert the signals into the images. First, we normalize the

dataset using the max–min normalization method. Next,

one-dimensional ECG signals are transformed into images

utilizing CWT with different sampling lengths of signals,

360 Hz, 500 Hz, and 1000 Hz. This is because we want to

compare which sample length is better to see differences.

Besides, three different mother wavelet functions: Amor,

Bump, and Morse, are applied to each sample length to

compare which mother wavelet function is better to detect

differences. It also sizes each image to 227 9 227 9 3

and.jpg format. Therefore, we create nine different bal-

anced datasets with identifying mother wavelet functions

and signal lengths. Each dataset contains 900 images, and

each class (ARR, CHF, and NSR) includes 300 images.

After that, to compare the results, we also benefit from the

STFT transform method to turn signals into images. Also,

created this dataset consists of 900 images, and each class

contains 300 images.

Fig. 4 Proposed CNN architecture

Proposed CNN-SVM

Fig. 5 Proposed CNN–SVM algorithm
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3.2 Experimental setup

In this study, we run AlexNet, SqueezeNet, and the pro-

posed CNN to classify ECG datasets. In this study, we use

splitting methods: training and testing sets, and cross-val-

idation to compare affective classification performance.

Primarily, the dataset is split conventionally as a training

and testing set with 80:20 and 70:30 percentages. Next,

k-fold cross-validation is performed, where k values are

determined as 5 and 10. Further, we use the proposed CNN

to automatically extract deep features. They are reached

from the fully connected layer (FC-8) and maximum

pooling layer (Max-Pooling 7), respectively. To classify

these reduced features, we perform an SVM using Gaus-

sian kernel function to detect ECG type from images.

Therefore, we present a comprehensive study that effec-

tively determines the ECG type.

3.3 Performance metrics

In this study, we review performance metrics of CNN

architectures that are accuracy, sensitivity, specificity,

precision, and F1-score in Eq. (8–12), as follows (Xu and

Liu 2020; Abdelmalek et al. 2019):

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
� 100% ð10Þ

Sensitivity ¼ TP

TP þ FN
� 100% ð11Þ

Specificity ¼ TN

TN þ FP
� 100% ð12Þ

Precision ¼ TP

TPþ FP
� 100% ð13Þ

F1 - Score ¼ 2 � Precision � Sensitivity

Precision þ Sensitivity
� 100% ð14Þ

where TP: true positive, FP: false positive, TN: true neg-

ative, and FN: false negative are expressed.

3.4 Experimental results

This study is conducted in a MATLAB 2021b environment

with Intel Core i7-7500U CPU, NVIDIA GeForce GTX

950 M, 16 GB RAM and 64-bit Operating System. The

aim of this study was to identify ECG types via CNN

architectures and a designed hybrid algorithm. First, nine

different ECG image datasets are created using CWT, and

each is classified using AlexNet, SqueezeNet, and the

proposed CNN with the same option parameters with 80:20

training and testing split percentages. In addition, the

obtained results are tested with the Wilcoxon signed rank

test. Tables 3 and 4 show both performance results and

paired comparisons for statistical significance. Besides, all

comparisons are demonstrated in Fig. 5.

When Table 3 is examined in relation to the sample

length of the ECG between AlexNet and the proposed

CNN, AlexNet gets a maximum accuracy of 94.67% at a

sample length of 500 Hz. Also, the proposed CNN

achieves the maximum accuracy of 98.00% at a sample

length of 500 Hz. Finally, SqueezeNet achieves a maxi-

mum accuracy of 94.67% with a sample length of 500 Hz,

as given in Table 4. Therefore, we can indicate that 500 Hz

is the best one for the sample length of ECG.

When Tables 3 and 4 are also examined in terms of the

mother wavelet function, Amor and Morse provide almost

similar results to classify images for AlexNet and our

proposed CNN. However, these results do not apply to

SqueezeNet. When SqueezeNet is examined for the mother

wavelet function, Bump is found to be the best. So, if

researchers want to use SqueezeNet, they can choose to use

the bump wavelet function while performing CWT. When

Tables 3 or 4 is investigated for the proposed CNN in terms

of the mother wavelet function, Amor’s choice for classi-

fying the images is the best.

Although the results are quite good, we want to test

these results for the reliability of this study using the

nonparametric method, the Wilcoxon signed rank test.

First, we make one hypothesis, which is a null hypothesis:

there is no difference between AlexNet and the proposed

CNN, and an alternative hypothesis: there is a difference

between AlexNet and the proposed CNN. As a result, p

value is obtained 0.018\ 0.05, and hence, null hypothesis

is rejected. In this study, a significant level is determined as

0.05. Therefore, we can statistically say that there is a

difference between AlexNet and the proposed CNN.

Though the results are rather good, as given in Table 4,

we want to test these results for the trustfully of this study

using the Wilcoxon signed rank test. First, we make one

hypothesis, which is a null hypothesis: there is no differ-

ence between SqueezeNet and the proposed CNN, and an

alternative hypothesis: there is a difference between

SqueezeNet and the proposed CNN. As a result, p value is

obtained 0.024\ 0.05, and hence, null hypothesis is

rejected. Thus, we can statistically express that there is a

difference between SqueezeNet and the proposed CNN.

As a result, the proposed CNN is the best choice to

classify ECG datasets while using CWT and 80:20 training

and testing percentages. Figures 6 and 7 display perfor-

mance graphs for classification. In addition, Table 5 details

the results with other performance metrics for each class.

When all of the performance metrics in Table 5 are

examined, these proposed CNNs metrics are met at over

96%. Specifically, the NSR performances are considered to

be %100 in terms of specificity and precision score. In
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addition, its performances on other metrics are also over

98%.

When the metrics are examined, which the classifiers

did well, it is noticeable that the proposed CNN’s F1-score

is superior to the others in Table 5. Therefore, the proposed

CNN is determined to be the best classifier in terms of

performance metrics.

As a result of this part, the best signal length, mother

wavelet function, and architecture are determined to be

500 Hz, Amor, and the proposed CNN, respectively. Thus,

these foundations have shown that only one ECG dataset is

classified. In addition, Fig. 8 shows the accuracy rate graph

and the loss graph for the proposed CNN, while the signal

length is 500 Hz and the wavelet function is Amor.

Having determined the proposed CNN as the best

architecture for classifying ECG images, we examine the

impact of other split methods on performance. First, the

ECG image dataset created with 500 Hz sample length and

Amor wavelet function using CWT is divided into 80:20

and 70:30 training and test sets, respectively, and then, we

use a fivefold and tenfold cross-validation. The results are

shown in Tables 6, 7, and 8.

When Table 6 is viewed, all mean performance metrics

are observed above 96.52% and also the maximum stan-

dard deviation (Std) was 0.0173. Therefore, the proposed

architecture is traditionally trained and tested to classify

images.

Table 3 Wilcoxon signed rank test for proposed CNN and AlexNet

Datasets AlexNet (accuracy%) Proposed CNN (accuracy%) Di r Dij jð Þ

ECG signal length Wavelet function

360 Hz Amor 89.33 92.67 -3.34 7

Bump 91.33 92 -0.67 1

Morse 94 94 0 –

500 Hz Amor 94.67 98 -3.33 6

Bump 94 94 0 –

Morse 93.33 94.67 -1.34 2.5

1000 Hz Amor 93.33 95.33 -2 4.5

Bump 92 94 -2 4.5

Morse 93.33 94.67 -1.34 2.5

Wilcoxon signed ranks test Z ¼ �2:375; p� value ¼ 0:018 Pn¼7

i¼1

r Dij jð Þ ¼ 28

Table 4 Wilcoxon signed rank test for proposed CNN and SqueezeNet

Datasets SqueezeNet (accuracy%) Proposed CNN (accuracy%) Di r Dij jð Þ

ECG signal length Wavelet function

360 Hz Amor 90 92.67 -2.67 4

Bump 94 92 ? 2 2.5

Morse 89.33 94 -4.67 6.5

500 Hz Amor 87.33 98 -10.67 9

Bump 94.67 94 ? 0.67 1

Morse 90.67 94.67 -4 5

1000 Hz Amor 88.67 95.33 -6.66 8

Bump 92 94 -2 2.5

Morse 90 94.67 -4.67 6.5

Wilcoxon signed ranks test Z ¼ �2:255; p� value ¼ 0:024 Xn¼7

i¼1

r �Dij jð Þ ¼ 41:5

Xn¼2

i¼1

r þDij jð Þ ¼ 3:5
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According to Table 7, all mean performance metrics are

above 95.3% and also the maximum standard deviation

(Std) was 0.01705. Thus, it can be said that a training and

testing split of 80:20 has the best performance for classi-

fying ECG images while performing CWT.

According to Table 8, all average performance metrics

are seen, and the maximum average accuracy of 97.22% is

obtained through tenfold cross-validation. Concluding on

the use of CWT, the performances expressed that the cross-

validation is better than the split method for training and

testing. Perfect performances for classifying ECG images

are achieved using CWT and the proposed CNN. However,

we would like to see how other pre-processing methods

affect the performance of the proposed CNN using the

same splitting methods. Therefore, we prefer to use STFT

method which is performed widely. Its performances are

shown in Tables 9, 10, and 11.

According to Table 9, all the average performance

metrics are shown above 89.3% and also, the maximum

standard deviation (Std) was 0.013438. Therefore, the

proposed architecture is traditionally trained and tested at

80:20 to classify images using STFT.

According to Table 10, all the average performance

metrics are shown above 89.2% and also, the maximum

standard deviation (Std) was 0.0169. Therefore, when the

proposed architecture is trained and tested at 70:30 to

classify images using STFT, performance results are sim-

ilar to 80:20 training and testing split.

According to Table 11, all average performance metrics

are observed, and the maximum average accuracy of

91.11% is achieved through fivefold cross-validation. Final

on the use of STFT, the performances indicated that the

cross-validation is better than the split method for training

and testing. Compared with CWT, STFT is not preferred to

create ECG images as its performances are lower than

CWT using the proposed CNN. In general, however, the

proposed CNN in this study achieves quite good classifi-

cation performance for recognizing ECG types.

Indeed, in this study, our main contributor wants to find

the best algorithm to detect ECG types. Thus, the proposed

CNN is used as a deep feature extractor from images.

Having trained proposed CNN for the ECG images using

CWT through 80:20 splitting method because of the

highest accuracy rate, reduced features are obtained from

the fully connected (FC-8) layer and maximum pooling

layer (Max-Pooling 7), respectively. These features are

classified using SVM classifier. Therefore, we designed

novel hybrid algorithm thanks to the proposed CNN and

SVM. Table 12 exhibits performance results.

Fig. 6 Performance comparison

of different sample lengths and

mother wavelet function using

CNN architectures
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According to Table 12, all performance metrics are

increased for two different processes. However, the highest

accuracy of 99.21% is achieved when retrieving features

from Max-Pooling 7 layer. In this study, while using CWT,

the proposed CNN–SVM is seen as the best algorithm for

recognizing ECG types. Additionally, Fig. 9 displays a

confusion matrix of the proposed CNN–SVM with the

highest.

This study is conducted not only with CNN, but also

with an SVM classifier, which is very successful in image

classification. The combination of these two methods,

which are very successful individually, has proven itself

very well. Table 13 shows a comparison of all methods in

terms of performance metrics while using CWT.

Fig. 7 Performance comparison

of different sampling lengths

and mother wavelet function

using the proposed CNN

Table 5 Performance metrics of proposed CNN, AlexNet, and SqueezeNet architectures

CNN architecture Class name Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test Accuracy Rate (%)

Proposed-CNNa ARR 97.96 98.02 96 96.97 98

CHF 98 99.02 98 98 98

NSR 98.04 100 100 99.01 98

Proposed-CNNb ARR 93.88 96.04 92 92.93 95.33

CHF 96.15 100 100 98.04 95.33

NSR 95.92 98.01 94 94.95 95.33

AlexNeta ARR 92.31 97.96 96 94.12 94.67

CHF 97.87 96.12 92 94.85 94.67

NSR 94.12 98.6 96 95.05 94.67

SqueezeNeta ARR 94.34 100 100 97.09 94.67

CHF 90.57 97.94 96 93.20 94.67

NSR 100 96.05 88 93.62 94.67

aECG sample length 500 Hz, bECG sample length 1000 Hz

*Bold values indicate the maximum metrics
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4 Discussion

In this study, we aim to investigate whether ECG types are

distinguishable from ECG-created images using deep

learning structures and which type of ECG images (CWT

or STFT) is efficient in recognizing ECG types using deep

learning. Actually, our study possesses some advantages

and disadvantages as follows:

Advantages of this study are as follows: (i) Different

sample lengths (360 Hz, 500 Hz, and 1000 Hz) are

Fig. 8 Accuracy rate and loss graph of training progress using the proposed CNN

Table 6 Proposed CNN performance metrics over five training sessions with an 80:20 training and testing split using CWT

Training number Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

1 94.86 97.60 94.67 94.66 94.67

2 95.53 97.72 95.33 95.33 95.33

3 96.05 98.12 96.00 96.00 96

4 98.06 99.03 98.01 97.99 98

5 98.68 99.45 98.67 98.67 98.67

Mean ? Std 96.64 ± 1.65 98.38 ± 0.82 96.54 ± 1.72 96.53 ± 1.73 96.53 ± 1.73

Table 7 Proposed CNN performance metrics over five training sessions with a 70:30 training and testing split using CWT

Training number Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

1 92.96 96.48 93.49 92.93 92.96

2 94.44 97.22 94.57 94.43 94.44

3 96.67 98.33 96.70 96.66 96.67

4 95.92 97.96 96.24 95.96 95.93

5 97.04 98.51 97.06 97.04 97.04

Mean ? Std 95.41 ± 1.69 97.70 ± 0.84 95.61 ± 1.52 95.4 ± 1.705 95.41 ± 1.69
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researched while using CWT, and 500 Hz is seen as an

efficient sample length when one-dimensional signals are

converted into images. (ii) Different mother wavelet

functions (Amor, Morse, and Bump) are examined which

one is more efficient on CNN architectures classification

performance while performing CWT. (iii) This study pre-

sents a novel CNN architecture, called proposed CNN, and

it is compared with AlexNet and SqueezeNet. (iv) Amor

wavelet function is viewed successfully when using

AlexNet and the proposed CNN, and the Bump wavelet

function is high performance for SqueezeNet. (v) The

proposed CNN has the highest performance in generating

ECG datasets and is tested for significant differences via

the Wilcoxon signed rank test. (vi) CWT is compared with

the STFT method using the proposed CNN. (vii) Perfor-

mances are measured on different splitting methods:

training and testing (80:20, 70:30), and k-fold cross-vali-

dation (5, 10). (viii) The proposed CNN is performed as a

deep feature extractor and provides from fully connected

and maximum pooling layer. (ix) As a result, a new hybrid

algorithm with the proposed CNN and SVM is designed. In

this stage, SVM is used as a classifier to increase the per-

formance of the distinguishability of ECG types. Disad-

vantages of this study are researched limited ECG types

(ARR, CHF, and NSR) and the number of individuals.

Many approaches are used for the classification of

arrhythmia (ARR), congestive heart failure (CHF), and

normal sinus rhythm (NSR) datasets. Basically, successful

classification is very important for diagnosis and treatment.

Therefore, in this study, we propose a novel 34-layer deep

learning algorithm, called proposed CNN. Besides this

ECG dataset, other datasets have also been classified using

Table 8 Proposed CNN

performance metrics with

fivefold and tenfold cross-

validation using CWT

k Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy rate (%)

5 96.44 98.22 96.44 96.44 96.44

10 97.22 98.61 97.23 97.22 97.22

*Bold values indicate the maximum average metrics

Table 9 Proposed CNN performance metrics over five training sessions with an 80:20 training and testing split using STFT

Training number Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

1 87.78 93.89 87.74 87.73 87.78

2 90.55 95.27 90.69 90.57 90.56

3 88.89 94.44 89.15 88.89 88.89

4 89.44 94.72 90.28 89.27 89.44

5 90.56 95.28 91.04 90.29 90.56

Mean ? Std 89.44 ± 1.177 94.72 ± 0.588 89.78 ± 1.3438 89.35 ± 1.142 89.45 ± 1.18

Table 10 Proposed CNN performance metrics over five training sessions with a 70:30 training and testing split using STFT

Training number Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

1 87.04 93.52 88.02 86.72 87.04

2 91.48 95.74 91.77 91.43 91.48

3 89.25 94.62 90.05 89.14 89.26

4 89.25 94.63 89.34 89.23 89.26

5 89.63 94.81 89.95 89.71 89.63

Mean ? Std 89.33 ± 1.58 94.66 ± 0.789 89.83 ± 1.35 89.25 ± 1.69 89.33 ± 1.578

Table 11 Proposed CNN

performance metrics with

fivefold and tenfold cross-

validation using STFT

k Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy rate (%)

5 91.11 95.56 91.16 91.06 91.11

10 87.66 93.83 87.87 87.57 87.66
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our proposed CNN, such as the PTB ECG dataset, CT

images of brain hemorrhages, and the CIFAR-10 dataset.

As is known, the pre-trained CNN architectures are tested

on the traditional dataset. In addition, the proposed CNN

architecture is also tested on the CIFAR-10 dataset in this

study and examined whether it could make a successful

classification. The CIFAR-10 dataset consists of 10 classes

and 60,000 images. Similarly, this huge dataset is split 80%

for training and 20% for testing, as shown in the study. In

this way, 50,000 images are trained and 10,000 images are

also tested. Also, the same option parameters are applied to

both sets of data. Table 14 shows the proposed CNN suc-

cess on different datasets. In addition, Fig. 10 displays the

confusion matrix for the CIFAR-10 dataset.

As can be seen, the performance of the proposed CNN is

very good. However, as mentioned earlier, this CNN must

be excellent for classifying biomedical signals or images.

Therefore, the proposed CNN is merged with SVM for

perfect classification. In general, if a CNN architecture has

a fully connected layer, that layer is used for obtaining

features and combined with SVM. Of course, this method

offers good advantages because of the extracted features.

However, the deep learning algorithm (also CNN) is a

complex nonlinear model and is referred to as a black box

(Guidotti et al. 2018). Accordingly, it has to be investigated

which last layers have good properties within this proba-

bilistic process. Among all these considerations, the char-

acteristics in the Max-Pooling 7 (just before the FC-8

layer) are also examined in the present study. According to

Table 12 Performance metrics of proposed CNN–SVM algorithm

Layer name Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

Max Pooling-7 99.206 99.66 99.213 99.206 99.21

FC-8 98.72 99.5 98.75 98.732 98.73

*Bold values indicate the maximum metrics of this study

Fig. 9 Confusion matrix of the

proposed CNN–SVM

Table 13 Comparison of all methods in terms of performance metrics when using CWT

Classification algorithm Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Test accuracy rate (%)

Proposed CNN 96.64 98.38 96.54 96.53 96.53

SVM 85.56 93.68 85.56 85.51 85.56

Proposed CNN–SVM 99.206 99.66 99.213 99.206 99.21
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the knowledge gained in this study, it is necessary to

examine the features in the last layers for a more sensitive

analysis, which are listed in Table 12. Apart from this,

when the literature is searched on the same property ECG

dataset, the proposed CNN–SVM hits the top in terms of

accuracy rate, detailed in Table 14.

5 Conclusion

Many of sudden deaths from heart disease continue to

increase these days with the coronavirus (COVID-19).

Based on this, the automatic classification of the signals

received from the heart is of great importance for diagnosis

and treatment. In this study, we classify ECG types using

our proposed CNN, which has overcome overfitting with

the dropout layer. This CNN is also performed on other

datasets, shown in Table 14. In addition, the proposed CNN

is compared to AlexNet and SqueezeNet on nine different

ECG image datasets processed via CWT using three dif-

ferent wavelet functions and three different sample lengths.

All results show that the best sample length is 500 Hz and

the best mother wavelet function is ‘‘Amor.’’ Also, the

comparison of classification success in terms of the overall

accuracy rate of the proposed CNN, AlexNet, and Squee-

zeNet is 98%, 94.67%, and 94.67%, respectively. There-

fore, the proposed CNN architecture performs the best

classification on the ECG image dataset generated with the

Amor wavelet function and the 500 Hz sample length by

using CWT. However, we want to search how another pre-

processing method affects classification success and so, we

generate new ECG images using STFT with 500 Hz

Table 14 The proposed CNN performance on different datasets

Datasets Number of

Class

Sensitivity

(%)

Specificity

(%)

Precision

(%)

F1-score

(%)

Accuracy rate

(%)

PTB ECG dataset (Özaltın and Yeniay 2021) 2 96.42 94.96 95 95.56 95.6

CIFAR-10 10 83.95 98.22 84.10 83.87 84

ECG dataset in this Study 3 96.64 98.38 96.54 96.53 96.53

CT images of brain hemorrhage (Ozaltin et al.

2022)

4 91.95 94.93 93.17 92.53 92.85

Fig. 10 Confusion matrix of the

proposed CNN for the CIFAR-

10 dataset
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sample length. In this way, we use not only a splitting

method as training and testing (80:20, 70:30), but also

cross-validation implemented on two created datasets.

According to the ECG image dataset generating via CWT,

when the dataset split training and testing as 80:20, all

mean performance metrics are over 96.5%, and also max-

imum standard deviation (Std) is 0.0173 on testing the

ECG dataset. When the dataset split training and testing as

70:30, all average performance metrics are over 95.3%, and

the highest Std is 0.01705. Further, as fivefold and tenfold

cross-validation methods are implemented on the dataset,

average accuracies are 96.44% and 97.22%, respectively.

Also, the maximum average accuracy of 97.22% is

obtained through tenfold cross-validation. Resulting of the

use of CWT, the performances expressed that cross-vali-

dation is better than training and testing. According to the

ECG image dataset creating via STFT, when the dataset

split training and testing as 80:20, all average performance

metrics are above 89.3% and also the maximum Std is

0.013438. While the dataset split training and testing as

70:30, all mean performance metrics are above 89.2% and

also the maximum Std is 0.0169. Besides, when fivefold

and tenfold cross-validation methods are applied on the

dataset, average accuracies are 91.11% and 87.66%,

respectively. All these results show that CWT is better than

STFT to detect types of ECG.

The main purpose of the study is to find an excellent

classification algorithm for recognizing the ECG types.

Therefore, the proposed CNN is merged with SVM. In this

stage of the study, the proposed CNN is employed as a

deep feature extractor from ECG images generated with

CWT. In general, if any CNN architecture has a fully

connected layer, it is used for obtaining features. It is

highlighted that it can provide an advantage to examine

features from the last layers of CNN, such as the max-

pooling layer, in this study. To improve the proposed CNN

performance, Max-Pooling 7 and FC-8 layers are used

attaining reduced features, and the results are detailed in

Table 12. As a result, the highest success with an accuracy

of 99.21% is achieved by Max-Pooling 7 layer. When

comparing to other studies on similar ECG datasets, the

proposed CNN–SVM is considered the best performing for

classification, detailed in Table 15.

This study applies deep learning algorithms for ECG-

type detection as an assisting decision support system. As

such, clinicians will not spend much more time identifying

ECG types, and the proposed pipeline will help physicians

and professionals better identify ECG types in a hospital

setting. In future work, we will continue to search for the

detection of various diseases on signals or images by deep

learning algorithms.
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Table 15 The comparison of

classification performances for

different studies on ECG signals

Study Pre-processing method Algorithm Accuracy (%)

Çınar and Tuncer (2021) STFT CNN (AlexNet-SVM) 96.77

Eltras et al. (2021) CQ-NSGT* CNN (AlexNet) 98.82

Gaddam et al. (2021) CWT CNN (AlexNet) 95.67

Golgowski and Osowski (2020) CWT CNN 82.06

DWT Extra random forests 97.78

Krak et al. (2020) CWT CNN 96

Krishnakumar et al. (2021) CWT CNN (GoogleNet) 96.88

Kumari et al. (2020) DWT SVM 95.92

Nahak and Saha (2020) RR

Wavelet with AR

Fusion of features

SVM

SVM

SVM

86.77

92.22

93.33

Olanrewaju et al. (2021) CWT CNN (AlexNet) 98.7

Rahuja and Valluru (2021) CWT CNN (AlexNet) 97.3

Proposed CNN CWT CNN 96.53

Proposed CNN–SVM CWT CNN–SVM 99.21

*Constant-Q non-stationary Gabor transform
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Pałczyński K, Śmigiel S, Ledziński D, Bujnowski S (2022) Study of

the few-shot learning for ECG classification based on the PTB-

XL dataset. Sensors 22(3):904

Pławiak P, Acharya UR (2020) Novel deep genetic ensemble of

classifiers for arrhythmia detection using ECG signals. Neural

Comput Appl 32(15):11137–11161

Qaisar SM, Subasi A (2020) Cloud-based ECG monitoring using

event-driven ECG acquisition and machine learning techniques.

Phys Eng Sci Med 43(2):623–634

Rahuja N, Valluru SK (2021) A deep neural network approach to

automatic multi-class classification of electrocardiogram signals.

In: 2021 International Conference on Intelligent Technologies

(CONIT). IEEE, pp 1–4

Rajkumar A, Ganesan M, Lavanya R (2019) Arrhythmia classification

on ECG using Deep Learning. In: 2019 5th international

conference on advanced computing & communication systems

(ICACCS). IEEE, pp 365–369

Salem M, Taheri S, Yuan JS (2018) ECG arrhythmia classification

using transfer learning from 2-dimensional deep CNN features.

In: 2018 IEEE biomedical circuits and systems conference

(BioCAS). IEEE, pp 1–4

Sandeep K, Kora P, Swaraja K, Meenakshi K, Pampana L (2019)

ECG classification using machine learning. Int J Recent Technol

Eng (IJRTE) 8(4):2492–2494

Sepahvand M, Abdali-Mohammadi F (2022) A novel method for

reducing arrhythmia classification from 12-lead ECG signals to

single-lead ECG with minimal loss of accuracy through teacher-

student knowledge distillation. Inf Sci 593:64–77

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R

(2014) Dropout: a simple way to prevent neural networks from

overfitting. J Mach Learn Res 15(1):1929–1958

Toma TI, Choi S (2022) A comparative analysis of 2D deep CNN

models for arrhythmia detection using STFT-based long duration

ECG spectrogram. In: 2022 13th International conference on

ubiquitous and future networks (ICUFN). IEEE, pp 483–488

Tuncer T, Dogan S, Plawiak P, Subasi A (2022) A novel discrete

wavelet-concatenated mesh tree and ternary chess pattern based

ECG signal recognition method. Biomed Signal Process Control

72:103331

Xing Y et al (2022) Accurate ECG classification based on spiking

neural network and attentional mechanism for real-time imple-

mentation on personal portable devices. Electronics 11(12):1889

Xu X, Liu H (2020) ECG heartbeat classification using convolutional

neural networks. IEEE Access 8:8614–8619

Zhao Y, Cheng J, Zhang P, Peng X (2020) ECG classification using

deep CNN improved by wavelet transform. Comput Mater

Continua 64(3):1615–1628

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

4658 O. Ozaltin, O. Yeniay

123

https://doi.org/10.1002/ima.22806
https://doi.org/10.1002/ima.22806
https://www.physionet.org/

	A novel proposed CNN--SVM architecture for ECG scalograms classification
	Abstract
	Introduction
	Related studies

	Materials and methods
	Pre-processing methods
	Max--min normalization
	Continuous wavelet transform
	Short-time Fourier transform (STFT)

	Convolutional neural network (CNN)
	Pre-trained architectures: AlexNet and SqueezeNet
	Novel proposed CNN architecture
	Deep feature extraction
	Support vector machine (SVM)

	Results
	ECG dataset
	Experimental setup
	Performance metrics
	Experimental results

	Discussion
	Conclusion
	Author contributions
	Funding
	References




