
Soft Computing (2023) 27:8189–8208
https://doi.org/10.1007/s00500-022-07715-3

APPL ICAT ION OF SOFT COMPUTING

Advantages of the usage of the Infinity Computer for reducing the
Zeno behavior in hybrid systemmodels

Alberto Falcone1 · Alfredo Garro1 ·Marat S. Mukhametzhanov1 · Yaroslav D. Sergeyev1,2,3

Accepted: 27 November 2022 / Published online: 16 December 2022
© The Author(s) 2022

Abstract
To capture the dynamics ofmodernCyber-Physical Systems, hybrid systemmodels are introduced to combine their continuous
dynamics with the discrete ones. Unfortunately, one important negative issue can affect hybrid system models: the so-called
Zeno phenomenon, which results in an infinite number of discrete transitions in a finite amount of time occurring during the
model’s simulation that leads to inconsistent results. In this context, the paper investigates the use of a recently proposed
numerical algorithm, based on the Infinity Computer methodology, to handle the Zeno phenomenon and evaluate it with
respect to standard numerical methods by considering the hybrid system models of two exemplary Cyber-Physical Systems:
the Water tanks and the Thermostat.

Keywords Hybrid systems · Zero-crossing · Zeno effect · Infinity Computer · Numerical infinitesimals

1 Introduction

To design and analyze Cyber-Physical Systems (CPSs),
presenting both continuous and discrete dynamics, hybrid
systemmodels have been introduced and are widely adopted
[see, e.g., Bocciarelli et al. (2019), Falcone andGarro (2019),
Grossman et al. (1993); Lunze and Lamnabhi-Lagarrigue
(2009)]. A hybrid system can be defined as a system whose
dynamic is regulated through continuous and discrete behav-
iors. Ordinary differential equations (ODEs) are often used
to govern the continuous behavior, whereas control graphs

B Yaroslav D. Sergeyev
yaro@dimes.unical.it; yaro@icar.cnr.it

Alberto Falcone
alberto.falcone@dimes.unical.it

Alfredo Garro
alfredo.garro@dimes.unical.it

Marat S. Mukhametzhanov
m.mukhametzhanov@dimes.unical.it

1 Department of Informatics, Modeling, Electronics and
Systems Engineering (DIMES), University of Calabria,
87036 Rende, Cosenza, Italy

2 Institute of Information Technology, Mathematics and
Mechanics, Lobachevsky State University of Nizhni
Novgorod, Nizhni, Novgorod, Russia 603950

3 Institute of High Performance Computing and Networking of
the National Research Council of Italy, Rende, Italy

can be used to describe the discrete behavior. The values of
continuous variables in a particular discrete mode define the
state of a hybrid system [see, e.g., Bouskela et al. (2021),
Platzer (2008)]. More in detail, continuous states can change
their values in two ways: (i) through a discrete transition
or (ii) based on the differential equations results. Discrete
states can only alter values through discrete transitions. As
a consequence, hybrid systems can be considered an effi-
cient formalism for modeling and simulating CPSs, where
digital components interact with a physical environment, and
their dynamics are regulated through continuous and discrete
behaviors.

One of themost important issues unique to hybrid systems
is the Zeno phenomenon that can happen when the system
undergoes an unbounded number of discrete transitions in a
finite and bounded length of time [see, e.g., Johansson et al.
(1999), Zhang et al. (2001)]. To explain this phenomenon
and its effects, suppose to model and simulate a ball that
is dropped from a predefined height h0 > 0 with an ini-
tial velocity v0 = 0. The ball in free fall hits the ground
after a certain time t in partially elastic way, loses energy,
bounces back into the air, and then starts falling again until it
stops. Starting from this physical system, a hybrid automata is
designed in order to model the behavior of the bouncing ball
[see Falcone et al. (2022), Johansson et al. (1999) for details];
in particular, ODEs are used to model the variation of h and
v during the motion of the ball, whereas transitions rules are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-022-07715-3&domain=pdf
http://orcid.org/0000-0002-1429-069X


8190 A. Falcone et al.

introduced to model the hit of the ball with the ground caus-
ing the ball to bounce. As the ball loses energy when it hits
the ground, with the progress of time, a large number of dis-
crete transitions occur progressively in the hybrid automata in
smaller and smaller time intervals; thus, the automata experi-
ences the Zeno phenomenon. This behavior leads to have, in
a simulated environment, incorrect data (e.g., negative val-
ues for h) resulting in unfeasible behavior (e.g., the ball goes
below the ground level) [see Fritzson (2014) for details].

It is important to note that the real-worldCPSs do not show
Zeno behavior, but their models may exhibit Zeno execu-
tions due to modeling abstractions [see, e.g., Heymann et al.
(2005)]. The Zeno phenomenon is difficult to characterize
and mitigate because it leads to incorrect simulation results
since the system behavior is intrinsically ill-conditioned
beyond the point in time (called Zeno point) in which such a
phenomenon starts [see, e.g., Branicky (2005), Zhang et al.
(2000)]. In this situation, it is necessary to carefully check
the prerequisites for discrete events’ transitions.

Different approaches and techniques for addressing the
Zeno phenomenon have been proposed in the literature.
In order to assess the effect on real-world systems, some
researchers have examined this issue when hybrid sys-
tem automata are derived as abstractions of the underlying
physical systems and defined the rules associated with this
phenomenon [see, e.g., Ames and Sastry (2004), Falcone and
Garro (2020), Heymann et al. (2005), Lygeros et al. (2003)].
Other researchers have used regularization and sliding mode
approaches to extend the simulation of Zeno hybrid systems
beyond the Zeno point. For example, in Johansson et al.
(1999), the authors delineated the characteristics of hybrid
automata and employed regularization approaches to sim-
ulate and evaluate these automata beyond the Zeno point.
However, in order to apply regularization approaches it is
necessary to alter the original system by perturbing it with a
small quantity ε to obtain a non-Zen solution. If ε = 0, the
regularized system tends to be the original one. However,
such perturbation ε may invalidate the notion of instanta-
neous discrete transitions and the simulation performance
may degrade. The other approach to handle the Zeno phe-
nomenon regards the use of a sliding mode algorithm that
is based on detecting regions on the switching manifold on
which the Zeno phenomenon occurs, and then forcing the
system to slide on the manifold in these regions [see, e.g.,
Utkin (2013), Weiss et al. (2015), Yu et al. (2011)]. When
infinitely fast transitions occur, a smooth sliding action takes
place on the switching surface to eliminate the Zeno phe-
nomenon. It is also possible to modify the original hybrid
system by adding the extra mode to represent the dynamics
during the mode transitions, but sliding mode algorithms can
only be applied to study special classes of hybrid systems
[see, e.g., Biák et al. (2013), Filippov (2013)].

From a numerical point of view, extending the simulation
of Zeno hybrid systems beyond the Zeno point means the
definition of fast and efficient procedures for the determina-
tion of zero-crossings of the transition conditions. Indeed,
classical numerical algorithms for simulating hybrid sys-
tem models generate observations tk = tk−1 + �tk−1, k ∈
{1, 2, ...}, of time t ∈ [t0, T ] in different ways. The standard
method consists of using a fixed stepsize�tk = �t = ωwith
k ∈ {0, 1, 2, ...}, but there exist other methods for generating
observations dynamically, such as MATLAB/Simulink pro-
cedures using Dormand–Prince methods [see, e.g., Kimura
(2009)]. However, the main objective of these methods is to
solve the ODEs used to describe the system in an efficient
way, and not to determine the zero-crossings. Thismeans that
these methods are useful to simulate hybrid system models
under a fixed state and a fixed set of ODEs, but they do not
allow determining whether a zero-crossing occurs between
two consecutive observations tk and tk+1.

To overcome the issues presented above, in Falcone
et al. (2022), an efficient method, called Infinity Computer
algorithm using Runge–Kutta method of the fourth order
(IC_RK4), to simulate hybrid system models by generat-
ing observations tk, k ∈ {0, 1, 2, ...}, dynamically has been
proposed. The proposed method allows studying better the
regions, where zero-crossings can occur, without spending a
lot of computational resources on “stable” regions. This is
done because, in a hybrid system, the continuous behavior
is performed as long as invariants remain, whereas discrete
transitions (or events) occur when a specific jump condi-
tion is satisfied. As a consequence, in the IC_RK4 method, a
jump condition is associated with zero-crossings of a given
function g(x(t)). This indicates that an event occurs at a
time t , when there have been generated the system variables
x = x(t), such that g(x(t)) = 0 [see, e.g., Ames et al.
(2006)]. The IC_RK4method has been developed taking into
consideration the following characteristics:

– Zero-crossing detection. Zero-crossings are detected
by evaluating approximations of the original function
g(x(t)), without resorting to the original hybrid sys-
tem. This characteristic allows efficient detection of
zero-crossings without requiring additional computing
resources, even if the original system is difficult to sim-
ulate;

– Dynamic generation of observations. The built-in algo-
rithm allows generating observations more frequently
around zero-crossing regions, and less frequently else-
where, avoiding unnecessary computations in “stable”
regions, where no zero-crossings can happen;

– Extensibility. It can be easily extended to integrate any
fast and efficient method for detecting zero-crossings,
such as global optimization algorithms [see, e.g., Casado
et al. (2002), Molinaro and Sergeyev (2001)].

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8191

The IC_RK4 method adopts the Infinity Computer that
represents a new kind of supercomputer that allows one to
work numerically with infinite and infinitesimal numbers
[see, e.g., Sergeyev (2010, 2017)] in a novel framework dif-
ferent w.r.t. nonstandard analysis [see Sergeyev (2019)].

The Infinity Computer allows one to work numerically
with finite, infinite, and infinitesimal numbers. It introduces
a newnumeral①, called grossone, that represents the number
of elements of the set,N, of natural numbers and it is used as
the radix of a positional numeral system, in which a number
C (finite, infinite, or infinitesimal), known as grossnumber,
is expressed in the following form [see, e.g., Falcone et al.
(2020b), Sergeyev (2017) for details]:

C = c1 · ①p1 + c2 · ①p2 + · · · + cN · ①pN , (1)

where ci , i = 1, ..., N , named grossdigits, are finite positive
or negative real numbers, whereas pi , i = 1, ..., N , known
as grosspowers, are arranged in decreasing order; thus, p1 >

p2 > · · · > pN , and they can in turn be finite, infinite, or
infinitesimal quantities of the same form (1). According to
this methodology, one of the following three situations can
happen:

– p1 > 0. The number C is infinite; thus, ① = 1①1 is the
basic infinite number;

– p1 < 0. The number C is infinitesimal; thus, ①−1 repre-
sents the simplest infinitesimal;

– p1 = 0. The number C is finite. Specifically, if N = 1,
then C is known as purely finite, i.e., there are no infinite
nor infinitesimal quantities.

Arithmetic operations between grossnumbers are carried out
in the Infinity Computer as follows. Given the grossnumbers
A, B, and C specified as:

A =
K∑

i=1

aki ①
ki , B =

M∑

j=1

bm j ①
m j ,C =

L∑

i=1

cli ①
li . (2)

The addition operation is carried out by including in the result
C the items of A, aki ①

ki : ki �= m j with 1 ≤ j ≤ M , with
those of B, bm j ①

m j : m j �= ki with 1 ≤ i ≤ K , whereas the

items aki ①
ki , bm j ①

m j with ki = m j generate the grossdigit

(aki + bki )①
ki in the result C .

The operation of subtraction is directly derived from addi-
tion.

The result ofmultiplying A and B produces a grossnumber
C , defined as follows:

C =
M∑

j=1

C j , 1 ≤ j ≤ M, (3)

where

C j = bm j ①
m j · A =

K∑

i=1

aki bm j ①
ki+m j . (4)

Finally, the division operation of A by B yields a result
C with a reminder R, where the first grossdigit is ckK =
alL /bmM , the highest exponent is kK = lL − mM , and the
first partial reminder R∗ is produced as follows: R∗ = A −
ckK ①kK ·B. If R∗ = 0 or the default accuracy is achieved, the
division operation is complete; otherwise, the computation
is restarted by substituting A with R∗.

To briefly describe how the Infinity Computer per-
forms the arithmetic operations described above, given two
grossnumbers A = 5.0①7.23.4①0 − 2.1−1.5 and B =
3.0①3.02.0①0. The addition operationC = A+B returns the
result C = 5.0①7.23.0①3.05.4①0 − 2.1①−1.5; the subtrac-
tion operation C = A − B returns the result C = 5.0①7.2 −
3.0①3.01.4①0 −2.1①−1.5; multiplying C = A · B yields the
result C = 15.0①10.210.0①7.210.2①3.0 − 6.3①1.56.8①0 −
4.2①−1.5; and finally, the operation C = A ÷ B returns the
result:

C = 1.6667①4.2 − 1.1111①1.20.7407①−1.81.1333①−3.0

− 0.7000①−4.5 − 0.4938①−4.8.

The Infinity Computer has been largely exploited in many
research domains for solving remarkable problems, such as
numerical problems involving ODEs [see, e.g., Amodio et al.
(2017), Iavernaro et al. (2020), Iavernaro et al. (2021)]; game
theory, paradoxes of infinity, probability, statistics, and ran-
dom processes [see, e.g., Calude and Dumitrescu (2020),
Fiaschi and Cococcioni (2018), Sergeyev (2022), Rizza
(2018), Sergeyev (2023)]; high performance computing [see,
e.g., Amodio et al. (2020); Sergeyev (2016)]; optimization
problems under constraints [see, e.g., De Cosmis and De
Leone (2012), De Leone (2018), Sergeyev and De Leone
(2022); Žilinskas (2012)], teaching [see, e.g., Ingarozza et al.
(2020), Mazzia (2022)] and handling ill-conditioning con-
straints in optimization problems [see, e.g., Gaudioso et al.
(2018), Sergeyev et al. (2018)], etc.Additionally, in the recent
papers (Falcone et al. 2020a, b, c), the Software Solution to
the Infinity Computer (SSIC) has been proposed for manag-
ing the concepts delineated by the Infinity Computer within
the MATLAB/Simulink tool. SSIC provides a user-friendly
library that provides blocks to work with the Infinity Com-
puter. In Falcone et al. (2020a), an additional module, named
Differentiation Blocks Module, has been integrated in SSIC
to perform standard, partial, and Lie higher-order derivative
computations.

In this paper, the IC_RK4 method proposed in Falcone
et al. (2022) is further exploited to study complex Zeno

123



8192 A. Falcone et al.

hybrid systems. More specifically, two well-known Zeno
hybrid systems, i.e.,Water tanks [see Johansson et al. (1999)]
and Thermostat [see Johnson et al. (2004)] are considered in
this work. Both the systems are modeled with constant and
nonlinear functions in order to stress the IC_RK4 method
and evaluate its performance in detecting zero-crossings
through a dynamical generation of time observations by
using the infinite quantity ① [see Sergeyev (2017) for its
detailed description]. To show the validity of the IC_RK4
method, these hybrid systems have been studied and results
are gathered from simulations and compared with the stan-
dard method.

The rest of the paper is structured as follows. Section 2
provides an introduction to hybrid systems and the IC_RK4
method. Section 3 presents the Water tanks and Thermo-
stat hybrid systems taken from the literature that exhibit
Zeno behavior. Section 4 describes the conducted numeri-
cal experiments on such systems along with a comparison
of simulation results obtained with the exploited IC_RK4
method and a standard one. Conclusions are presented in
Sect. 5. Finally, some additional results related to the con-
ducted experiments are reported in Appendix.

2 Hybrid systemmodels and the IC_RK4
method

The paper uses notions and concepts from hybrid systems
and the IC_RK4 method along with the related algorithm
and concepts, as presented in the following subsections.

2.1 Hybrid systemmodels

The structure of a hybrid system model can be formally rep-
resented as [see Lunze and Lamnabhi-Lagarrigue (2009)]
follows

H = (X , Q, f , Z , δ, K , R, I ), (5)

where

X = R
n is the continuous state space;

Q is a finite set of discrete states;
f is a set of vector fields describing the continuous
dynamics for all q ∈ Q;
Z is a set of initial states;
δ is the discrete state transition function;
K is a set of guards describing when a discrete state
transition occurs;
R is a reset map defining the state jumps;
I invariants of the discrete states.

The discrete behavior is modeled through a control graph
G = (Q, E), where the set of vertices Q represents the

discrete states (also called “operation modes”), whereas the
edges E ⊆ {(qi , q j )|(qi , q j ) ∈ Q2 ∧ i, j = [0, 1, ..., n]}
represent state transitions managed by the function δ : Q ×
R
n → Q, which determines the discrete successor state q j

when the system is in the discrete state qi . Every discrete
state qi ∈ Q is linked to a vector field f : Q × R

n → R
n

that belongs to it. The evolution of the continuous state in
the discrete state q(t) is described by the equation ẋ(t) =
f (q(t), x(t)).
The collection of initial states Z ⊂ Q × R

n is defined
within the hybrid system model. Through the associated
vector field f (q, ·), a discrete state q affects the continu-
ous dynamics, while the collection of guards K serves as a
representation of the impact of continuous dynamics on the
evolution of discrete states. Thus, given a continuous state
space X and K ⊂ X , a guard k ∈ K is a region where a
discrete state transition may take place if the state x is in k.

The reset map R : Q × Q → 2R
n × 2R

n
and the invari-

ants of the discrete states I : Q → 2R
n
allow to include

state jumps and complete the representation of the interaction
between the continuous and the discrete dynamics. Specifi-
cally, each discrete state q has associated an invariant i ∈ I
that describes the conditions that the continuous state x has to
satisfy at q. Invariants and guards play complementary roles;
specifically, invariants characterize when a transition must
take place, whereas guards represent “enabling conditions”
that identify when a particular transition may take place. R
is a function that specifies how new continuous states are
related to previous ones for a given transition.

2.2 The IC_RK4method and relatedmodeling and
simulation process

Todesign and simulate dynamic systems that exhibit theZeno
phenomenon, a modeling and simulation (M&S) process has
been defined. This M&S process consists of a set of inter-
connected activities for the management of such systems.
Starting from the description and requirements of a Zeno
dynamic system (input), this M&S process allows one to
produce an enhanced version of the system that can be simu-
lated by managing the Zeno phenomenon (output). Figure 1
depicts the Business Process Model and Notation (BPMN)
diagram of the defined process [see, e.g., Falcone et al.
(2017), Falcone et al. (2018), Garro et al. (2018), von Rosing
et al. (2015)].

The M&S process, of which the IC_RK4 method is part,
involves two experienced engineers: system engineers and
modeling and simulation engineers. System engineers are
in charge of delineating the requirements and characteris-
tics of the real system, in a semi-structured way, by using
specialized software and technical documents to define the
structure and behavior of the system along with its compo-
nents, whereas modeling and simulation engineers, starting

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8193

Fig. 1 BPMN diagram of the modeling and simulation process of a dynamic system

from the technical reports and resources produced by system
engineers, define the corresponding hybrid system automata,
simulate it, and then gather the simulation results. The results
coming from the performed experiments are jointly evaluated
by both engineer experts to evaluate the system performance
and explore the system’s design before building it.

The M&S process begins inside the swimlane of the
system engineers, where the real-world dynamic system is
defined by capturing the system’s requirements and defini-
tions, and the stakeholders’ needs in technical documents
(“Dynamic System Requirements” and “Dynamic System
Description”). This step ensures that the dynamic system’s
structure and behavior are proper, rational, and effective by
making it explicit and complete in its components.

The obtained technical documents represent the input of
the “Requirements Representation” and “Dynamic System
Components” steps. In the first step, the system’s require-
ments are formally defined to automate their verification
through simulation, whereas the components that make up
the system are specified in the “Dynamic System Compo-
nents” step. After defining the hybrid system in terms of
requirements and components, thewhole system architecture
and behavior are derived in the “Dynamic System Architec-
ture and Behavior” step, and the system specifications are
stored into a repository. At these steps, two languages are
adopted to formalize the dynamic system: the Unified Mod-
eling Language (UML) and/or Systems Modeling Language
(SysML) (Johnson et al. 2007).

UML is a modeling language developed and maintained
by the Object Management Group (OMG) that allows one
to specify, design, implement, and document the artifacts of

software systems. UML is not a programming language but it
supports the entire life cycle of a software system in different
application domains (e.g., finance, aerospace, and industry
4.0). UML provides visual notations, based on diagrams,
that are not only intended for developers but also for stake-
holders, and anybody involved in the project. The provided
diagrams allow one to capture the characteristics of a sys-
tem along with the relations among its components. SysML
is a general-purpose architecture modeling language, main-
tained by OMG, for system engineering applications. The
SysML language supports the definition, analysis, design,
verification and validation of a wide range of systems and
systems of systems. The SysML language allows system
engineers to create effective SysML models able to cap-
ture the characteristics of a system at different levels of
abstraction. SysML extends a subset of the UML diagrams
by using the UML profile mechanism and provides addi-
tional diagrams for managing requirements and parametric
constraints. As a result, SysML ismore adaptable and expres-
sive than UML for modeling dynamic systems.

Upon obtaining the formal representation of the hybrid
system automata HS in terms of UML/SysML diagrams,
control graph, and differential equations, the “g(x) function
definition” step is executed bymodeling and simulation engi-
neers inside the corresponding swimlane. In this step, a g(x)
function that captures the discrete transitions of HS is defined
and included in the hybrid system automata. This step pro-
duces as output an extended version of HS, i.e., HS′ that
is evaluated by system engineers for approval. If the design
is approved, the “Dynamic System Simulation” step is per-
formed by taking two input arguments: (i) a property file,

123



8194 A. Falcone et al.

Algorithm 1: Simulation of a hybrid system automata

Data: The infinitesimal quantity ①−1;
The time interval
[�tmin; �tmax ] | 0 < �tmin < �tmax << T − t0;
The simulation stop time T ;
The initial discrete state q.

1 k ← 0;
2 tk ← 0;
3 �t ← �tmax ;
4 while tk < T do
5 x

k+1,①−1 ← computeApproximation(x
tk+�t−①−1 );

6 g
k+1,①−1 ← evaluateFunction(g(x

k+1,①−1 , q));

7 g(y) ← extractCoefficients(g
k+1,①−1 );

8 y∗ ← findLargestValue(g(y),�t);
9 if g(y) > 0 at the whole interval [0,�t] then

10 xk+1 ← finitePart(x
k+1,①−1 );

11 tk+1 ← tk + �t ;
12 �t = �tmax ;
13 else
14 if g(y) < 0 for all t ∈ [0,�t] or y∗ > �t − �tmin then
15 y∗ ← �t − �tmin ;
16 end
17 xk+1 ← computeApproximation(xk+1, y∗);
18 tk+1 ← tk + (�t − y∗);
19 �t = y∗;
20 ACTION(varargs);
21 end
22 k ← k + 1;
23 end

i.e., “Properties” that delineates the parameters required to
configure the simulation scenario (e.g., simulation time step,
solver type, log folder, etc.) and (ii) the extended hybrid
system automata HS′. Inside this step, the simulation is per-
formed according to Algorithm 1. Finally, in the “Simulation
Result Evaluation” step, the simulation results are analyzed
to study the system’s behavior and evaluate different design
alternatives before building it.

Algorithm 1 allows one to execute the simulation of a
hybrid system automata HS′ also in the presence of the
Zeno behavior. The algorithm takes as parameters: (i) the
infinitesimal quantity①−1 provided by the InfinityComputer
[see Sergeyev (2010)]; (ii) the time interval [�tmin;�tmax ],
where �tmin represents the smallest time value between
two discrete transitions, and �tmax is the time interval
between two consecutive observations on “good” and “sta-
ble” regions; (iii) the simulation stop time T ; and, finally, (iv)
the initial discrete state of HS′, q.

Until the simulation of HS′ is completed, the approxima-
tion x

k+1,①−1 of the value x(t) at the point t = tk + �t −
①−1 with �t ∈ [�tmin,�tmax ] is calculated by using the
infinitesimal quantity①−1 (seeAlgorithm1-line 5).Note that
x is an n-dimensional vector, whereas①−1 is an infinitesimal
scalar. Thus, all the arithmetic operations are component-
wise vector operations, and they are performed numerically

by adopting the Infinity Computer and not in a symbolic way
[as it is done in standardmethodologies, e.g., in Shamseddine
and Berz (2000)].

Once the value x
k+1,①−1 is derived, the approximation

g
k+1,①−1 is calculated, and then, the function g(y), y ∈

[0,�t], is defined using the coefficients of ①−1 extracted
from g

k+1,①−1 (see Algorithm 1—lines 6, 7):

g(y) = g0 + g1 · y + g2 · y2 + · · · + gN · yN . (6)

After the search for zero-crossings of g(y) for y ∈ [0,�t],
two situations can arise:

– no zero-crossings No zero-crossings have been detected,
this means that the function g(y) is positive over the
whole interval [0,�t]. In this situation, the interval
[tk, tk + �t] is considered “stable”; thus, it is no neces-
sity to use a smaller stepsize �t to better analyze this
interval. The value xk+1 is obtained by using the func-
tion FinitePart(t), which is provided by SSIC, at the
point t = x

k+1,①−1 . Since the interval is “stable” for the
next simulation step, the value of �t is set to �tmax (see
Algorithm 1-lines 9–12);

– zero-crossings detected Zero-crossings havebeendetected,
this means that the function g(y) can be negative in the
interval [0,�t]. To avoid numerical issues related to gen-
eration of observations too closely, the value of y∗ is set
to �t − �tmin if g(y) is negative for all t ∈ [0,�t]
or y∗ is too close to �t , i.e., 0 < �t − y∗ < �tmin .
After that, the value xk+1 is calculated from the value
x
k+1,①−1 substituting ①−1 by y∗ (without resolution of
the ODEs and re-simulation of the system at t = tk+1).
Once the value xk+1 is obtained, the observation tk+1

is computed starting from tk + (�t − y∗). Finally, the
switch is performed by ACT I ON (varargs) and the
simulation continues decreasing�t = y∗.More in detail,
the function ACT I ON (varargs) is responsible for per-
forming a discrete transition on the hybrid automata and,
if required, updating the values of its discrete variables
(e.g., the hybrid automata’s state). Here, the function’s
parameter varargs holds all the information required to
carry out the discrete transition (e.g., the current state
q, the last computed variable xk , and the previously cal-
culated variables xk−1, xk−2, ...,). At the next iteration,
if zero-crossings are not detected then the default value
�t = �tmax is automatically restored (see Algorithm 1-
lines 14–20).

It is worth noting that the function g(y) can be negative for
y ∈ [0,�t] but no zero-crossings are present in such inter-
val. This situation may occur when a zero-crossing was not
correctly determined during the previous iterations for dif-

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8195

ferent reasons. In this case, since by construction of g(x, q)

the system works correctly only when g(x, q) ≥ 0, then the
simulation can be incorrect at this interval and some addi-
tional actions are required. Since the value of �t decreases
with each iteration, the algorithm continues to simulate the
hybrid systems with an ever smaller value of �t up to the
minimum allowed value of �tmin (see Algorithm 1-line 19),
this behavior allows to stabilize the system after some itera-
tions, but, in general, more actions can be required to solve
this issue.

3 Hybrid systems used in the experiments

This section presents two well-known dynamic hybrid sys-
tems that exhibit the Zeno phenomenon, i.e., theWater tanks
and Thermostat [see Johansson et al. (1999), Johnson et al.
(2004)]. These systems have been considered in this work,
since they are important both from practical and numerical
points of view. More in detail, both the systems are linear
hybrid systems, which means that the rate of change of each
variable describing the system is constant, and the terms
and conditions involved in the invariants, guards, and assign-
ments are linear [see, e.g, Alur et al. (1995)].

Due to the Zeno phenomenon, the simulation of these
systems fails because of numerical errors that start grow-
ing beyond the Zeno point. Such errors lead to incorrect
simulation, and therefore, simulation results can bemeaning-
less, especially when the systems aremodeledwith nonlinear
functions.

3.1 Water tanks

Water tanks is an hybrid system that consists of two tanks t1
and t2 containing water [see Johansson et al. (1999)]. With
reference to a generic Water tank ti with i ∈ I = {1, 2},
define xi as the water level, ri as the critical threshold, vi > 0
as the constant water flow going out. Definew as the constant
flow of water that goes exclusively to either tank through a
pipe at a given time t .

Figure 2 shows the hybrid automaton model of the Water
tanks system. The two blocks represent the two discrete
states, whereas the physical behavior is described with the
following differential equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
ẋ1 = w − v1,

ẋ2 = −v2,
, if x2 ≥ r2,

{
ẋ1 = −v1,

ẋ2 = w − v2.
, if x1 ≥ r1,

(7)

The objective of the system is to keep, for the tank t1 the
water level x1 above r1, and for the tank t2 the water level x2

Fig. 2 Water tanks system hybrid automaton model

above r2, assuming that x1(0) > r1 ∧ x2(0) > r2. To pursue
this objective while the water levels x1 and x2 keep dropping,
when in one of the tanks, for example t1 the water level drops
below the critical threshold, i.e., x1 < r1, the pipe switches
to deliver the water, with the constant flow w, to the tank
t1. As the water rapidly goes out of the tanks, the switching
frequency of the pipe increases until it reaches the limit point
that occurs when for each tank ti becomes xi = ri .

Let x = x(t) ∈ R
2, t ∈ [0, T ], q ∈ {0, 1}, w, v1, v2

are positive constants, r1 and r2 are real constants in the
following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
ẋ1 = w − v1,

ẋ2 = −v2,
, if q = 0,

{
ẋ1 = −v1,

ẋ2 = w − v2,
, if q = 1,

g(x) = (x1 − r1) · q + (x2 − r2) · (1 − q),

ACT I ON (q) : q := 1 − q.

(8)

If w = v1 + v2, then the system should stabilize on the
level x1 = r1 and x2 = r2, making infinitely many switches
of the state starting from the time tc. If w < v1 + v2, the
system should also stabilize in one Water tank, but the level
of the water in the other tank can decrease with time, making
infinitely many switches as well. If w > v1 + v2, then the
system will not stabilize, and the water level in the tanks will
grow. (In the latter case, the system is not Zeno, since the
intervals between the switches will also grow.)

The Water tanks hybrid system is also very important
from a practical point of view. First, it has two different
states q ∈ {0, 1} and for each fixed state q, there are two
independent systems, i.e., Water tanks. Second, this system
involves Zeno behavior already from the first occurrence
g(x(t), q) = 0. In this case, the errors related to the Zeno
phenomenon can arise very quickly, leading so to wrong
states, incorrect simulation, and/or large oscillations of the
water around the desired level r (r = r1 and r2, respectively,
for the first and the second tank). In the Water tanks system,
the water level can be below the required level r . In this case,
the simulation is correct only if the current state q leads to

123



8196 A. Falcone et al.

the growth of the water level in this Water tank. However, if
the required water level r is not a constant, but a nonlinear
function r = r(t), then there could be more than one Zeno
point and the system’s behavior becomesmore sophisticated.
In this case, it can be inefficient to generate observations
too dense already from the first occurrence of g(x(t), q) =
0, and as will be shown below, the IC_RK4 method can
be extremely efficient from the computational point of
view.

3.2 Thermostat

A Thermostat is a digital component that senses the tem-
perature of a room and performs actions so that the room’s
temperature x is always maintained near a desired set point
σ by turning “off” and “on” a heater.

When the Thermostat system starts, the heater is assumed
to be “on” with an initial room temperature x , such that x <

σ . In this situation, the room temperature increases according
to the equation ẋ = w−x , wherew is the heater constant. The
heating phase continues until x < σ . Upon the temperature
reaches σ , the Thermostat turns the heater “off,” and then,
the room’s temperature starts decreasing according to the
equation ẋ = −x .

Similar to the heating phase, the cooling one continues
until x ≥ σ . When the temperature value becomes less than
σ , the Thermostat turns the heater “on” and starts heating
again. Note that, even if the Thermostat system looks simpler
than theWater tanks one, it allows to better appreciate specific
features of IC_RK4 method as the presence of the single
threshold σ makes the handling of the Zeno phenomenon
even more challenger [see Johansson et al. (1999), Johnson
et al. (2004)].

Figure 3 shows the hybrid automaton model of the Ther-
mostat system. The two blocks represent the two discrete
states, i.e., “off” and “on.” In each discrete state, the room’s
temperature x evolves according to the following differential
equation:

{
ẋ = −x, if x ≥ σ,

ẋ = w − x, if x < σ.
(9)

Fig. 3 Thermostat system hybrid automaton model

Let x = x(t) ∈ R
2, t ∈ [0, T ], q ∈ {0, 1},w be a nonneg-

ative real constant large enough, whereas r be a real constant,
rand() generates a random number in the interval [0, 1]:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = −x, if q = 0,

ẋ = w − x, if q = 1,

g(x) = (x − r + rand()) · (1 − q)

+(r − x + rand()) · q,

ACT I ON (q) : q := 1 − q.

(10)

Formula (10) describes the hybrid dynamics of a Thermostat
for monitoring the internal temperature of a building. During
the simulation, twooutputs are provided, i.e., x andq that rep-
resent the temperature and the operation mode, respectively.
In each mode, a specific differential equation regulates the
temperature. The initial mode is “on” with an initial tem-
perature value w, and the transition conditions between the
discrete state q = 0 (“off”) and q = 1 (“on”) are regulated
by ACT I ON (q).

The Thermostat system is also very important from the
practical point of view, since it also has a clear physical real-
world interpretation. Even if it is similar to the Water tanks
system, it has several important differences with respect to
it. First, it has only one variable x(t), instead of two indepen-
dent systems x1(t) and x2(t), as in the Water tanks. Second,
the function g(x, q) is randomized, so the zero-crossings are
determined with a random error ξ(t), which can be consid-
ered as a standard white noise and can add some difficulties
both for the proposed and standard methods. However, as
will be shown below, the proposed algorithm can be useful
in this case as well, showing promising behavior with respect
to standard methods.

4 Numerical experiments

4.1 Description of Numerical experiments

All numerical experiments have been executed in MATLAB
version R2016b. A software simulator of the Infinity Com-
puter has been used for this purpose [see Falcone et al.
(2020b) for details]. The initial and final times t0 and T have
been taken to 0 and 20, respectively, for all test problems. All
parameters for each test problem have been set to the pre-
sented values only for simplicity: The obtained results and
conclusions with other initial values and system parameters
are similar to the presented ones.

The parameters of the Infinity Computer have been set for
all test problems as follows. The simplest infinitesimal ①−1

has been used to set up the IC_RK4method and the precision
N has been set to 5, since the Runge–Kutta method of order
4 (RK4) method has the global error of order 4.

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8197

Table 1 Number of
observations performed by the
RK4_F and IC_RK4 methods to
simulate the hybrid system with
r = const . Specifically, for the
Water tanks system r1 = r2 = 1,
and for the Thermostat system
r = 70

Case study RK4_F IC_RK4
�t Observations �tmin ; �tmax Observations

Water tanks 0.005 4001 0.005; 0.5 3189

0.0005 40,001 0.0005; 0.05 31,869

0.00005 400,001 0.00005; 0.005 318,669

Thermostat 0.005 4001 0.005; 0.5 851

0.0005 40,001 0.0005; 0.05 1266

0.00005 400,001 0.00005; 0.005 5157

For finding the zero-crossing points of g(y) for y ∈
[0,�t], the standard bisection method up to machine preci-
sion has been used just for simplicity, since the variables x(t)
are always monotonically decreasing or increasing around
the zero-crossings g(x, q) = 0 in the studied test problems.
(Othermethods for the determination of zero-crossings based
on global optimization algorithms from Casado et al. (2002),
Molinaro and Sergeyev (2001) and Sergeyev et al. (1999) on
more difficult real-life problems can be exploited.)

Each of the hybrid systems presented above has the
parameter(-s) r representing the simplest case for the zero-
crossing function g: We want to keep the evaluations along
the direction x = r (for the Water tanks system, there are
two parameters r1 and r2 of the same meaning: x1 = r1
should be kept, if the current state is 1, and x2 = r2, other-
wise). However, in practice, the zero-crossing function g can
have a nonlinear behavior: e.g., the cooling of the Thermostat
along a nonlinear rule can be required. For this reason, for
each test problem, we considered the following two series of
experiments.

First, a simple case, when r is equal to a constant value ω,
i.e., r = ω (r1 = ω and r2 = ω forWater tanks) is considered.
Second, a more complicated case, when r = r(t) (r1 = r1(t)
and r2 = r2(t) for Water tanks), is considered, where r(t),
r1(t), r2(t) are nonlinear functions.

The already mentioned method RK4 has been used for
solving ODEs. For each test problem, first, the standard
RK4 method with the fixed stepsize �t has been applied
(we will call this method as RK4_F, hereinafter). Then, the
IC_RK4method described above with the dynamic stepsizes
and parameters �tmin and �tmax is applied for the same
problems.

It should be noticed that in this paper, the internal MAT-
LABmethodswith dynamic stepsizes (e.g.,Dormand–Prince
methods) are not considered for several reasons. First, these
methods are just related to different numerical algorithms for
solving ODEs and not to the methods of generating obser-
vations tk : These methods do not generate the observations
dynamically, but use more sophisticated numerical methods
for solving ODEs, with respect to the standard RK4 method,
thus, comparing them with the RK4 method is not correct.

Moreover, these methods are not adapted well for the case,
when g(x, q) is nonlinear, allowing only to determine sim-
ple zero-crossings of a type x = 0. However, it should be
also noted that the algorithm for generating the observations
proposed in this paper can be used with the above-mentioned
dynamic methods, as well.

For each test problem, the standard method RK4_F with
the fixed stepsize �t has been applied for simulating the
system using different values of �t : 0.5, 0.05, 0.005,
0.0005, and 0.00005. Then, the IC_RK4 method has been
applied for the same problems using three different val-
ues of the parameters �tmin and �tmax : [�tmin,�tmax ] =
[0.005, 0.5], [0.0005, 0.05], and [0.00005, 0.005] in order
to compare the obtained results with the standard method
RK4_F with the stepsizes �t of the same ranges. In
the following subsections, only the figures related to the
stepsizes �t = 0.5, 0.05, and 0.005 for RK4_F, and
[�tmin,�tmax ] = [0.5, 0.005] for IC_RK4 are presented; to
improve the readability of the paper, the figures with the sim-
ulation results of other stepsizes are presented in Appendix
(avoiding a lot of additional figures in the main text). This is
done because these additional figures show the same behav-
ior of the algorithms, but they substantiate the conclusions
presented in this section, so they should be also attached to
the paper. The numbers of generated observations by both
methods are presented in each figure. They are also summa-
rized in Tables 1, 2 for the sake of completeness.

4.2 Water tanks

4.2.1 Case r1 = r2 = !

In this section, the test problem studied numerically is
the Water tanks system described in Sect. 3.1. The fol-
lowing parameters have been set for this system: x(t0) =
[x1(t0), x2(t0)] = [2, 0], the initial state q = 0, and the
parameters w, v1, and v2 have been chosen in the way that
w = v1 + v2 (since it is required to keep the water levels
x1 and x2 at the constant levels r1 and r2: w = 5, v1 = 2,
v2 = 3). The desirable water levels r1 and r2 for both the

123



8198 A. Falcone et al.

Table 2 Number of
observations performed by the
RK4_F and IC_RK4 methods to
simulate the hybrid system with
r set to a nonlinear function

Case study RK4_F IC_RK4
�t Observations �tmin ;�tmax Observations

Water tanks 0.005 4001 0.005; 0.5 282

0.0005 40,001 0.0005; 0.05 1156

0.00005 400,001 0.00005; 0.005 6387

Thermostat 0.005 4001 0.005; 0.5 978

0.0005 40,001 0.0005; 0.05 1403

0.00005 400,001 0.00005; 0.005 5314

Specifically, for the Water tanks system with r1 = sin(t) − t and r2 = sin(t), and for the Thermostat system
r(t) = ω + sin(t) − t with ω = 70

Fig. 4 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with ω = 1; thus, r1 = r2 = ω and the fixed
stepsizes �t = 0.5. Simulation results show that the standard method
can lead to wrong states of the systems and its incorrect behavior,
which can be resolved only using smaller �t . Generated observations
tk , k = 0, ..., N , with N = 40) are dense everywhere (the observations
are indicated below the graphs by signs “+”)

Water tanks have been set to a constant value ω = 1, i.e.,
r1 = r2 = 1.

Results of the simulation by RK4_F using �t = 0.5,
0.05, and 0.005 are presented in Figs. 4, 5, and 6, results of

Fig. 5 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with ω = 1; thus, r1 = r2 = ω and the
fixed stepsizes �t = 0.05. Also in this case, the standard method
RK4_F leads to incorrect system’s behavior. Generated observations
tk , k = 0, ..., N , with N = 400 are dense everywhere (the observa-
tions are indicated by signs “+”)

IC_RK4 using [�tmin,�tmax ] = [0.5, 0.005] are presented
in Fig. 7. The remaining results are presented in Appendix
(see Figs. 16, 17).

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8199

Fig. 6 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with ω = 1; thus, r1 = r2 = ω and the
fixed stepsizes �t = 0.005. The same considerations, which were
described in both the cases �t = 0.5 and �t = 0.05 about the
results of the standard method, can be done here. Generated obser-
vations tk , k = 0, ..., N , with N = 4000 are dense everywhere (the
observations are indicated by signs “+”)

Figures 4, 5, and 6 show that the standard fixed stepsize
method RK4_F also can lead to an incorrect system’s state
and, as a consequence, to incorrect behavior. In particular,
Fig. 4 shows the incorrect behavior of theWater tanks system
in the interval [0, 0.5]. More in detail, in Tank 1 the water
level decreases and remains below the desired value r1, but
it should increase to reach and stay on r1 (see Fig. 4a). On
the other tank, i.e., Tank 2, the water level increases above
the desired value r2, while it should decrease to reach and
remain on r2. However, with smaller values �t , the method
converges to the correct simulation (see Figs. 5, 6).

In its turn, the IC_RK4 method (see Fig. 7) simulates the
system similarly to the standard method with the smallest
value �t = 0.005, switching right away the system from the
“wrong” initial state to the correct one at the first iteration.
Again, since the IC_RK4 method generates the observations

Fig. 7 Simulation of the Water tanks system performed with the
evaluated method IC_RK4 with ω = 1; thus, r1 = r2 = ω and
�tmin = 0.005, �tmax = 0.5. The simulation results show that the
proposed IC_RK4 method with the dynamic stepsizes �t and auto-
matic zero-crossing checking allows to keep the same precision as the
fixed stepsize method with small �t , but generates less observations.
Generated observations tk , k = 0, 1, ..., 3188, are dense only after the
first zero-crossing (the observations are indicated below the graphs by
signs “+”)

tk more frequently, where it is required, and less frequently
on “good” and “stable” regions, then it generates fewer obser-
vations obtaining at least the same accuracy that the standard
fixed stepsizemethod does. One can see also that the IC_RK4
method generates always fewer evaluations keeping at least
no worse precision of the simulation. Both Table 1 and Fig. 7
show that the IC_RK4 method starts to generate the dense
observations only after the first zero-crossing. This allows
to use fewer computational resources on the initial subinter-
vals where there are no zero-crossings and the system is well
conditioned.

However, it should be noted that the IC_RK4method does
not resolve completely the Zeno phenomenon: It also can
lead to incorrect behavior beyond the Zeno points. In Fig. 7,

123



8200 A. Falcone et al.

Fig. 8 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with r1(t) = sin(t) − t , r2(t) = sin(t), and
fixed stepsizes �t = 0.5. Simulation results show that the stan-
dard method leads to wrong states and incorrect system’s behavior,
which can be resolved only using smaller �t . Generated observations
tk k ∈ [0, ..., N ], with N = 40 are dense everywhere (the observations
are indicated below the graphs by signs “+”)

for example, the water level in the second Water tank can
“jump” a little below the level r2 at some moments tk (at
the same moments, the water level in the first tank “jumps”
above the level r1), this is related only to the Zeno behavior of
the system and is due to Algorithm 1, lines 14–15: At some
moments, the zero-crossing point y∗ becomes too close to
�t , so it is replaced by�t −�tmin to avoid numerical issues
related to ill-conditioning, which leads to these “jumps.”

4.2.2 Case r1(t) = sin(t)− t and r2(t) = sin(t)

A numerical experiment has been conducted by changing the
parameters r1 and r2 to nonlinear functions r1(t) = sin(t)−
t and r2(t) = sin(t). The functions r1(t) and r2(t) have
been chosen to study the case when the Water tank as should
behave differently: We want to decrease the water level x1

Fig. 9 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with r1(t) = sin(t) − t , r2(t) = sin(t), and
fixed stepsizes �t = 0.05. Also in this case, the standard method
leads to incorrect simulation of the system. Generated observations
tk , k ∈ [0, ..., N ], with N = 400 are dense everywhere (the obser-
vations are indicated with signs “+”)

in the first tank along with the level r1(t), while we would
like to keep the level x2 in the second tank higher than r2(t).
For this reason, the velocities of the flows w, v1, and v2 have
been fixed in the way that w < v1 + v2.

Results of the simulation byRK4_Fusing�t = 0.5,0.05,
and 0.005 are presented in Figs. 8, 9, and 10, and results of
IC_RK4 using [�tmin,�tmax ] = [0.5, 0.005] are presented
in Fig. 11. The remaining results are presented in Appendix
(see Figs. 18, 19).

Also in this case, the standard method RK4_F was able to
simulate the systembehavior only using smallest values of�t
(see Figs. 8, 9, and 10), while the proposed one successfully
simulated the system by generating much fewer observations
than the standard one (see Fig. 11). One can see that the
IC_RK4method has generatedmore dense observations only
in “unstable” and ill-conditioned regions. Table 2 reports the
number of observations performed by the two methods to

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8201

Fig. 10 Simulation of the Water tanks system performed with the stan-
dard method RK4_F with r1(t) = sin(t) − t , r2(t) = sin(t), and fixed
stepsizes �t = 0.005. Same considerations, which were described
in both the cases �t = 0.5 and �t = 0.05 about the adoption of
the standard method to simulate the system. Generated observations
tk , k ∈ [0, ..., N ], with N = 4000 are dense everywhere (the observa-
tions are indicated with signs “+”)

simulate the system with r1(t) = sin(t) − t and r2(t) =
sin(t).

Also in this case, the advantages of the IC_RK4 method
become more evident in the case of a nonlinear function
g(x, q): It has generated almost 14, 34, and 62 times less
observations than the standard one for�t = �tmin = 0.005,
0.0005, and 0.00005, respectively (282 vs 4001, 1156 vs
40,001, and 6387 vs 400,001 observations, respectively, see
Table 2).

4.3 Thermostat

4.3.1 Case r = !

The example described in Sect. 3.2 is different with respect
to the previous one due to the presence of random perturba-

Fig. 11 Simulation of the Water tanks system performed with the eval-
uated method IC_RK4 with r1(t) = sin(t) − t , r2(t) = sin(t), and
�tmin = 0.005, �tmax = 0.5. The simulation results show that the
IC_RK4 method with the dynamic stepsizes �t and automatic zero-
crossing checking allows tomaintain the correct behavior of the system.
Generated observations tk , k = 0, 1, ..., 281, are more dense around
zero-crossings (the observations are indicated below the graphs by signs
“+”)

tions. It has been simulated using the following parameters:
x(t0) = x0 = 60, initial state q = 0, w = 100, the desirable
temperature r has been set to a constant value ω = 70 oF ,
random numbers have been generated on the interval [0, 1]
using the internal MATLAB function rand() (the seed of the
generator has been set to 1 by the command rng(1)).

Results of the simulation byRK4_Fusing�t = 0.5,0.05,
and 0.005 are presented in Fig. 12, results of IC_RK4 using
[�tmin,�tmax ] = [0.5, 0.005] are presented in Fig. 13. The
remaining results are presented in Appendix (see Figs. 20,
21).

Figures 12 and 13 show that the standard method RK4_F
leads to an incorrect simulation of the system with biased
mean temperature: it is required to keep the temperature of
the Thermostat at the level of 70 oF , while one can see that

123



8202 A. Falcone et al.

Fig. 12 Simulation of the Thermostat system performed with the stan-
dard method RK4_F with the constant value ω = 70; thus, r = ω and
�t = 0.5 (a), �t = 0.05 (b), and �t = 0.005 (c). The simulation
results show that the standard method RK4_F can lead to wide oscil-
lations of the system’s variables. These oscillations can be stabilized
only using smaller �t , and, therefore, can lead to biased average tem-
perature with respect to the desirable level roF . Generated observations
tk , k = 0, ..., N , (N = 40, 400, and 4000, respectively for a-c) are
dense everywhere (the observations are indicated below the graphs by
signs “+”)

the mean level of the temperature generated by RK4_F is
below this level (this is avoided only using smaller �t , see

Fig. 13 Simulation of the Thermostat system performed with the eval-
uated method IC_RK4 with the constant value ω = 70; thus, r = ω and
[�tmin, �tmax ] = [0.005, 0.5]. Unlike the standard method RK4_F,
the IC_RK4 one with the dynamic stepsizes �t and automatic zero-
crossing checking allows improving the accuracy of the simulation
decreasing the oscillations and keeping them around the desirable level
roF . Generated observations tk , k = 0, ..., 850, are more dense after
the first zero-crossing (the observations are indicated below the graphs
by signs “+”)

the respective figures in Appendix). The simulation behavior
in Fig. 20 seems to be deterministic just because the value�t ,
in this case, is too large and therefore dominates the stochas-
tic perturbations. On the other hand, the IC_RK4 method
simulates the system correctly generating the temperature of
the desirable level on average (see Fig. 13). Table 1 shows
that the proposed algorithm has generated significantly less
observations than the standard method RK4_F: almost 5, 31,
and 77 times less for �t = �tmin = 0.005, 0.0005, and
0.00005, respectively (851 vs 4001, 1266 vs 40,001, and
5157 vs 400,001 observations, respectively, see Table 1).

It should be noted that the IC_RK4 method determines
the zero-crossings in this problem with a random error, since
the function g(x, q) contains random numbers. Thus, oscil-
lations of the variable x(t) with smaller �tmax and �tmin

have higher amplitudes with respect to the standard method
RK4_F (see Fig. 21). However, first, as for the standard
method, smaller values of �tmin and �tmax allow reduc-
ing these amplitudes. Second, the proposed algorithm is
able to maintain a correct simulation in this case as well
as for the previous hybrid systems, decreasing the num-
ber of observations significantly: e.g., as was mentioned
above it has generated almost 77 times fewer observations
using [�tmin,�tmax ] = [0.00005, 0.005] than the standard
method using �t = �tmin = 0.00005.

4.3.2 Case r = !+ sin(t)− t

A further numerical experiment has been conducted by
changing the parameter r = ω to r(t) = ω + sin(t) − t
with ω = 70 similarly to the previous experiments. From the

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8203

Fig. 14 Simulation of the Thermostat system performed with the stan-
dard method RK4_F with the constant value ω = 70; thus, r(t) =
ω + sin(t) − t and �t = 0.5 (a), �t = 0.05 (b), �t = 0.005 (c).
The simulation results show that the standard method RK4_F can lead
to wide oscillations of the system’s variables, is able to stabilize them
only using smaller values of �t , and can lead to biased cooling. Gen-
erated observations tk , k ∈ [0, ..., N ], with N = 40, 400, and 4000,
respectively for a–c) are dense everywhere (the observations are indi-
cated below the graphs by signs “+”)

Fig. 15 Simulation of the Thermostat system performed with the
evaluated method IC_RK4 with the constant value ω = 70; thus,
r(t) = ω + sin(t) − t and �tmin = 0.005, �tmax = 0.5. Unlike
the standard method RK4_F, the IC_RK4 method with the dynamic
stepsizes �t and automatic zero-crossing checking allows to improve
the accuracy of the simulation decreasing the oscillations and keeping
the desirable cooling. Generated observations tk , k = 0, 1, ..., 977, are
dense after the first zero-crossing (the observations are indicated below
the graphs by signs “+”)

physical point of view, this case can be described as follows.
At the time t = 0, the required temperature is ω oF . After
that, a cooling alongwith a nonlinear rule r(t) is required (for
example, a too fast or slow cooling can damage the simulated
devices).

The results of the simulation by RK4_F using �t = 0.5,
0.05, and 0.005 are presented in Fig. 14, the results of
IC_RK4 using [�tmin,�tmax ] = [0.5, 0.005] are presented
in Fig. 15. The remaining results are presented in Appendix
(see Figs. 22, 23).

In this case, the simulation results confirm that the stan-
dard method was able to simulate the system behavior
correctly only using the smallest values of �t (see Fig. 14),
while the IC_RK4 method successfully simulated it by gen-
erating significantly fewer observations (see Fig. 15).

The obtained results confirm the advantages of the
IC_RK4 method: it is able to generate fewer observations
with respect to the standard one simulating correctly the
desirable cooling. In particular, the IC_RK4 method has
generated almost 4, 29, and 75 times less observations for
�t = �tmin = 0.005, 0.0005, and 0.00005, respectively
(978 vs 4001, 1403 vs 40,001, and 5314 vs 400,001 obser-
vations, respectively, see Table 2). However, again, for the
same reasons as in the previous case, i.e., due to random
errors in the determination of zero-crossings, the IC_RK4
method simulates the system with a higher amplitude with
small�tmin and�tmax , than the standard method, maintain-
ing always a correct behavior of the system and generating a
significantly smaller number of observations with respect to
the standard method.

123



8204 A. Falcone et al.

5 Conclusion

To support the design, development, and operation ofmodern
Cyber-Physical Systems, many research efforts are focusing
on the definition of methods, models, and techniques capa-
ble of capturing the interactions between the physical and
cyber components through the definition of hybrid system
models. Unfortunately, one of the most important issues in
hybrid systems is the Zeno phenomenon consisting in the
identification of zero-crossings represents a crucial aspect to
adequately simulate these systems. The numerical methods
adopted by classical modeling and simulation techniques are
slow because they require solving the ordinary differential
equations at each step. To overcome this issue, and, therefore,
avoid redundant computations, the IC_RK4 method work-
ing numerically with finite, infinite, and infinitesimal on the
Infinity Computer has been used.

The IC_RK4 method has been exploited to study two
well-known Zeno hybrid systems, i.e., Water tanks and
Thermostat. Both the systems have been modeled with con-
stant and nonlinear threshold functions to stress the IC_RK4
method, and evaluate its performance in detecting zero-
crossings by generating time observations using the infinite
quantity ① offered by the Infinity Computer, dynamically.

Simulation results have confirmed the validity and per-
formance of the IC_RK4 method in simulating Zeno hybrid
systems. Moreover, it has been shown in the performed
experiments that the IC_RK4 method allows improving the
accuracy of the simulation, also in the presence of nonlinear
threshold functions, because the effective detection of zero-
crossings directly influences the efficiency of the simulation.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability All data supporting the results reported in the article
are present in the paper.

Declarations

Conflict of interest All authors declare that they have no conflict of
interest.

Human and animal rights. This article does not contain any studies
with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

AWater tanks system

See Appendix Figs. 16, 17, 18, and 19.

Fig. 16 Simulation of the Water tanks system performed with the stan-
dard method RK4F with the constant value ω = 1; thus, r1 = r2 = ω

and the fixed stepsizes �t = 0.00005. Trend of the water level related
to Tank 1(a), Tank 2(b)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8205

Fig. 17 Simulation of the Water tanks system performed with the eval-
uatedmethod ICRK4 with the constant valueω = 1; thus, r1 = r2 = ω

and [�tmin,�tmax] = [0.0005, 0.05]. Trend of thewater level related
to Tank 1(a), Tank 2(b)

Fig. 18 Simulation of the Water tanks system performed with the stan-
dard method RK4F with r1 = sin(t) − t, r2 = sin(t) and fixed
stepsizes �t = 0.00005. Trend of the water level related to Tank 1(a),
Tank 2(b)

123



8206 A. Falcone et al.

Fig. 19 Simulation of the Water tanks system performed with the eval-
uated method ICRK4 with r1 = sin(t) − t and r2 = sin(t) and
[�tmin,�tmax] = [0.0005, 0.05]. Trend of the water level related
to Tank 1(a), Tank 2(b)

Thermostat system

See Appendix Figs. 20, 21, 22, and 23.

Fig. 20 Simulation of the Thermostat system performed with the stan-
dard method RK4_F with the constant value ω = 70; thus, r = ω and
the fixed stepsizes �t = 0.00005

Fig. 21 Simulation of the Thermostat system performed with the eval-
uated method IC_RK4 with the constant value ω = 70; thus, r = ω

and [�tmin, �tmax ] = [0.0005, 0.05]

Fig. 22 Simulation of the Thermostat system performed with the stan-
dard method RK4_F with the constant value ω = 70; thus, r =
ω + sin(t) − t and the fixed stepsizes �t = 0.00005

Fig. 23 Simulation of the Thermostat system performed with the
evaluated method IC_RK4 with the constant value ω = 70; thus,
r = ω + sin(t) − t and [�tmin, �tmax ] = [0.0005, 0.05]

References

Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin
X, Olivero A, Sifakis J, Yovine S (1995) The algorithmic analysis
of hybrid systems. Theoret Comput Sci 138(1):3–34

123



Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid... 8207

AmesAD, Sastry SS (2004) Blowing up affine hybrid systems. In: 2004
43rd IEEE conference on decision and control (CDC) (IEEE Cat.
No. 04CH37601), vol 1. IEEE, pp 473–478

Ames AD, Zheng H, Gregg RD, Sastry SS (2006) Is there life after
Zeno? Taking executions past the breaking (Zeno) point. In: 2006
American control conference. IEEE, 6 pp

Amodio P, Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD
(2017) A generalized Taylor method of order three for the solution
of initial value problems in standard and infinity floating-point
arithmetic. Math Comput Simul 141:24–39

Amodio P, Brugnano L, Iavernaro F, Mazzia F (2020) On the use of
the Infinity Computer architecture to set up a dynamic precision
floating-point arithmetic. Soft Comput 24(23):17589–17600

Biák M, Hanus T, Janovská D (2013) Some applications of Filippov’s
dynamical systems. J Comput Appl Math 254:132–143

Bocciarelli P, D’Ambrogio A, Falcone A, Garro A, Giglio A (2019) A
model-driven approach to enable the simulation of complex sys-
tems on distributed architectures. Simul: Trans Soc Model Simul
Int 95(12), 1185–1211

Bouskela D, Falcone A, Garro A, Jardin A, Otter M, Thuy N, Tundis A
(2021) Formal requirements modeling for cyber-physical systems
engineering: an integrated solution based on form-l and modelica.
Requir Eng 27(1):1–30

Branicky MS (2005) Introduction to hybrid systems. In: Handbook of
networked and embedded control systems. Springer, pp 91–116

Calude CS, Dumitrescu M (2020) Infinitesimal probabilities based on
Grossone. SN Comput Sci 1:1–8

Casado LG, García I, Sergeyev YD (2002) Interval algorithms for find-
ing the minimal root in a set of multiextremal one-dimensional
nondifferentiable functions. SIAM J Sci Comput 24(2):359–376

De Cosmis S, De Leone R (2012) The use of Grossone in mathemat-
ical programming and operations research. Appl Math Comput
218(16):8029–8038

De Leone R (2018) Nonlinear programming and grossone: quadratic
programming and the role of constraint qualifications. Appl Math
Comput 318:290–297

Falcone A, Garro A (2019) Distributed co-simulation of complex
engineered systems by combining the high level architecture
and functional mock-up interface. Simul Model Pract Theory
97(August):101967

Falcone A, Garro A, Mukhametzhanov MS, Sergeyev YD (2020a)
A Simulink-based software solution using the Infinity computer
methodology for higher order differentiation. Appl Math Comput
409:125606

FalconeA, Garro A,MukhametzhanovMS, SergeyevYD (2020b) Rep-
resentation of Grossone-based arithmetic in simulink for scientific
computing. Soft Comput 24(23):17525–17539

Falcone A, Garro A, Mukhametzhanov MS, Sergeyev YD (2020c) A
simulink-based infinity computer simulator and some applications.
In: 3rd international conference and summer school ’numerical
computations: theory and algorithms’, NUMTA2019, Le Castella,
Crotone, Italy, June 15–21, 2019. Springer Nature, Switzerland, pp
362–369

Falcone A, Garro A, Mukhametzhanov MS, Sergeyev YD (2022) Sim-
ulation of hybrid systems under Zeno behavior using numerical
infinitesimals. Commun Nonlinear Sci Numer Simul 111:106443

Falcone A, Garro A (2020) Pitfalls and remedies in modeling and simu-
lation of cyber physical systems. In: 24th IEEE/ACM international
symposium on distributed simulation and real time applications,
DS-RT 2020, Prague, Czech Republic, September 14–16, 2020.
IEEE, pp 1–5

Falcone A, Garro A, D’Ambrogio A, Giglio A (2017) Engineering sys-
tems by combining BPMN andHLA-based distributed simulation.
In: The 2017 IEEE international conference on systems engineer-
ing symposium, ISSE2017,Vienna,Austria,October 11–13, 2017.
IEEE, pp 1–6

FalconeA, Garro A, D’Ambrogio A, Giglio A (2018) Using BPMN and
HLA for engineering SoS : lessons learned and future directions.
In: the 2018 IEEE international conference on systems engineering
symposium, ISSE 2018, Rome, Italy, October 1–3, 2018. IEEE, pp
1–8

Fiaschi L, Cococcioni M (2018) Numerical asymptotic results in game
theory using Sergeyev’s Infinity Computing. Int J Unconv Comput
14(1):1–25

FilippovAF (2013)Differential equationswith discontinuous righthand
sides: control systems, vol 18. Springer

Fritzson P (2014) Principles of object-orientedmodeling and simulation
with Modelica 3.3: a cyber-physical approach. Wiley

Garro A, Falcone A, D’Ambrogio A, Giglio A (2018) A model-driven
method to enable the distributed simulation of BPMN models. In:
The 27th IEEE international conference on enabling technologies:
infrastructure for collaborative enterprises, WETICE 2018, Paris,
France, June 27–29, 2018. IEEE, pp 121–126

GaudiosoM,GiallombardoG,MukhametzhanovMS (2018)Numerical
infinitesimals in a variable metric method for convex nonsmooth
optimization. Appl Math Comput 318:312–320

Grossman RL, Nerode A, Ravn AP, Rischel H (1993) Hybrid systems,
vol 736. Springer

Heymann M, Lin F, Meyer G, Resmerita S (2005) Analysis of Zeno
behaviors in a class of hybrid systems. IEEE Trans Autom Control
50(3):376–383

Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD (2020)
Conjugate-symplecticity properties of Euler-Maclaurin methods
and their implementation on the infinity computer. Appl Numer
Math 155:58–72

Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD (2021)
Computation of higher order lie derivatives on the infinity com-
puter. J Comput Appl Math 383:113135

Ingarozza F, Adamo MT, Martino M, Piscitelli A (2020) A Grossone-
based numerical model for computations with Infinity: A case
study in an Italian high school, LectureNotes inComputer Science,
LNCS 11973, 451–462

JohanssonKH,EgerstedtM,Lygeros J, Sastry SS (1999)On the regular-
ization of Zeno hybrid automata. Syst Control Lett 38(3):141–150

Johnson KH, Lygeros J, Sastry S (2004) Modeling of hybrid systems.
In: Control systems, robotics and automation, vol XV

Johnson TA, Jobe JM, Paredis CJ, Burkhart R (2007) Modeling con-
tinuous system dynamics in SysML. In: ASME international
mechanical engineering congress and exposition, vol 42975, pp
197–205

Kimura T (2009) On Dormand–Prince method. Jpn Malays Tech Inst
40:1–9

Lunze J, Lamnabhi-Lagarrigue F (2009) Handbook of hybrid systems
control: theory, tools, applications. Cambridge University Press

Lygeros J, JohanssonKH, Simic SN, Zhang J, Sastry SS (2003)Dynam-
ical properties of hybrid automata. IEEE Trans Autom Control
48(1):2–17

Mazzia F (2022) A computational point of view on teaching derivatives.
Inform pduc 37(1):79–86

Molinaro A, Sergeyev YD (2001) An efficient algorithm for the zero-
crossing detection in digitized measurement signal. Measurement
30(3):187–196

PlatzerA (2008)Differential dynamic logic for hybrid systems. JAutom
Reason 41(2):143–189

Rizza D (2018) A Study of mathematical determination through
Bertrand’s Paradox. Philosophia Math 26(3):375–395

Sergeyev YD (2023) Lower and upper estimates of the quantity of alge-
braic numbers. Mediterr J Math 20(1):12

Sergeyev YD. Computer system for storing infinite, infinitesimal, and
finite quantities and executing arithmetical operations with them.
US patent 7,860,914 (2010), EU patent 1,728,149 (2009), RF
patent 2,395,111 (2010)

123



8208 A. Falcone et al.

Sergeyev YD, De Leone R (eds) (2022) Numerical infinities and
infinitesimals in optimization. Springer

Sergeyev YD (2016) The exact (up to infinitesimals) infinite perimeter
of the Koch snowflake and its finite area. Commun Nonlinear Sci
Numer Simul 31(1–3):21–29

Sergeyev YD (2017) Numerical infinities and infinitesimals: method-
ology, applications, and repercussions on two Hilbert problems.
EMS Surv Math Sci 4:219–320

Sergeyev YD (2019) Independence of the Grossone-based infinity
methodology from non-standard analysis and comments upon
logical fallacies in some texts asserting the opposite. Found Sci
24(1):153–170

Sergeyev YD (2022) Some paradoxes of infinity revisited. Mediterr J
Math 19(3):1–28

Sergeyev YD, Daponte P, Grimaldi D,Molinaro A (1999) Twomethods
for solving optimization problems arising in electronic measure-
ments and electrical engineering. SIAM J Optim 10(1):1–21

Sergeyev YD, Kvasov DE, Mukhametzhanov MS (2018) On strong
homogeneity of a class of global optimization algorithms work-
ing with infinite and infinitesimal scales. Commun Nonlinear Sci
Numer Simul 59:319–330

Shamseddine K, Berz M (2000) The differential algebraic structure of
the Levi–Civita field and applications. Int J ApplMath 3:449–464.

Utkin VI (2013) Sliding modes in control and optimization. Springer
von RosingM,White S, Cummins F, deManH (2015) Business process

model and notation-BPMN
Weiss D, Küpper T, Hosham HA (2015) Invariant manifolds for nons-

mooth systemswith slidingmode.Math Comput Simul 110:15–32
Yu L, Barbot JP, Benmerzouk D, Boutat D, Floquet T, Zheng G (2011)

Discussion about sliding mode algorithms, Zeno phenomena and
observability. In: Sliding modes after the first decade of the 21st
century. Springer, pp 199–219

Zhang J, Johansson KH, Lygeros J, Sastry SS (2001) Zeno hybrid sys-
tems. Int J Robust Nonlinear Control: IFAC-Aff J 11(5):435–451

Zhang J, JohanssonKH,Lygeros J, SastrySS (2000)Dynamical systems
revisited: hybrid systems with Zeno executions. In: International
workshop on hybrid systems: computation and control. Springer,
pp 451–464

Žilinskas A (2012) On strong homogeneity of two global optimization
algorithms based on statistical models of multimodal objective
functions. Appl Math Comput 218(16):8131–8136

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Advantages of the usage of the Infinity Computer for reducing the Zeno behavior in hybrid system models
	Abstract
	1 Introduction
	2 Hybrid system models and the IC_RK4 method
	2.1 Hybrid system models
	2.2 The IC_RK4 method and related modeling and simulation process

	3 Hybrid systems used in the experiments
	3.1 Water tanks
	3.2 Thermostat

	4 Numerical experiments
	4.1 Description of Numerical experiments
	4.2 Water tanks
	4.2.1 Case r1 = r2 = ω
	4.2.2 Case r1(t) = sin(t) - t and r2(t) = sin(t)

	4.3 Thermostat
	4.3.1 Case r = ω
	4.3.2 Case r = ω+ sin(t) - t


	5 Conclusion
	Appendix
	A Water tanks system
	Thermostat system
	References




