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Abstract
The Alexandrov L-fuzzy nearness is a new addition to the L-fuzzy systems that is the base for intelligent systems and its wide
applications in various fields. This paper represents the connections among L-fuzzy nearness and various L-fuzzy systems such
as: L-fuzzy rough sets, L-fuzzy semi-topogenous orders and L-fuzzy uniformities in complete residuated lattices. Moreover,
we show that there is a Galois correspondence between the categories of those mentioned systems.
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1 Introduction

Intelligent systems with fuzzy, uncertain and incomplete
information are more easy to handle after Zadeh (1965) pro-
posed the fuzzy set theory with the structure of membership
value [0, 1] in 1965. After that, Goguen (1967) replaced
that structure with an arbitrary set and introduced the fuzzy
topology which gave more varieties to study more fuzzy
structures as Bělohlávek (2002b); Bělohlávek and Krupka
(2015); Chang (1968); Fang (2007); Höhle and Klement
(1995); Ramadan (1992); Ramadan and Kim (2018); Rod-
abaugh and Klement (2003); Šostak (1989).

Ward and Dilworth (1939) introduced the complete resid-
uated lattice which is an algebraic structure for many valued
logic. Through it, Bělohlávek (2002a) could give us the
L-fuzzy sets which was capable of modeling vague and
uncertain information systems.

Radzikowska and Kerre (2004) replaced the equivalence
relation in Pawlak’s rough set Pawlak (1982) by arbitrary
relation to handle more uncertainty. Yao and Lin (1996)
showed that upper and lower approximations of a set are
nothing but closure and interior of it. Hence, they could pro-
pose several models of rough sets.

Quasi-uniformities in fuzzy sets have different approaches
as follows: the entourage approach of Lowen (1981) and
Höhle (1982) based on powersets of the form LX×X , the
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quasi-uniform covering approach of Kotzé (1999), the unifi-
cation approach of Hutton (1977) based on the powersets of

the form LX LX

and the Rodabaugh (1988) as a generaliza-
tion of unification of Gutiérrez (2003). Gutiérrez introduced
L-valued Hutton quasi-uniformity where a quadruple (L,≤
,�, ∗) is defined by a GL-monoid (L, ∗) dominated by
�, a cl-quasi-monoid (L,≤,�). They obtained the relation
betweenHutton,LowenandHöhle categories. Lattice-valued
fuzzy quasi-uniformity in entourage approach is studied by
Ramadan et al. (2006).

The concept of topogenous structures was introduced
in 1963 by Hungarian mathematician Császár (1963) that
allowed to develop a unified approach of topologies, prox-
imities and uniformities. In the same monograph, Császár
developed the basics of the theory of topogenous struc-
tures and investigated spaces: uniform spaces and proximity
spaces as a particular display of topogenous space. In the
period of 1963–1991, Katsaras has published a series of
papers (some of them in collaboration with Petalas) in which
fuzzy topogenous spaces were defined and studied. In these
papers, fuzziness was interpreted in Chang’s sense (1968),
that is fuzzy topogenous structures were realized as a crisp
on the family [0, 1]X of fuzzy subsets of a set X .

Lately and as a unified structure and extension of Pawlak’s
rough set (1982; 1991), specifically in 2019,
Ramadan et al. (2019) introduced the concept of Alexan-
drov L-fuzzy nearness and arose a great deal of relationships
among it, L-fuzzy topological spaces and the L-fuzzy pre-
proximities. That took the applications to multi-attribute
decision making to a whole new level.
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Šostak in (2004) proposed the concept of fuzzy category
which is an ordinary category modified in such a way that
”potential” objects and ”potential” morphisms are such only
to a certain degree and this degree can be any element of the
corresponding lattice.

The degree approach has been developed extensively in
the theory of fuzzy topology, fuzzy convergence and fuzzy
convex structure (e.g., Yue and Fang (2006), Shi (2011),
Li and Shi (2010), Pang and Shi (2014); Pang (2017)).
Actually, special mappings between structured spaces and
the structured space itself can also be endowed with some
degrees. In (2014), Pang defined degrees of continuous map-
pings and open mappings between L-fuzzifying topological
spaces. Liang and Shi (2014) further defined the degrees of
continuous mappings and open mappings between L-fuzzy
topological spaces and investigated their relationship. Li et al.
(2019) defined the degrees of special mappings in the the-
ory of L-convex spaces and investigated their properties. Xiu
and Li in (2019) defined a degree approach to L-continuity,
L-closedness and L-openness for mappings between L-co-
topological spaces, and their connections were studied.

This paper’s content is organized as follows. In section 2,
we recall some fundamental concepts and related definitions.
In section 3, we introduce Alexandrov L-fuzzy nearness,
L-fuzzy approximation operators and Alexandrov L-fuzzy
uniformities and give relations among them. In section 4, we
show interesting relations also between Alexandrov L-fuzzy
nearness and L-fuzzy semi-topogenous structure. Finally,
in section 5, we define the degree to which a mapping is
LF-continuous and equip it to the previous spaces. Galois
correspondence between their categories is proved besides
the adjunctions between the considered categories.

2 Preliminaries

Definition 1 Bělohlávek (2002b);Blount andTsinakis (2003);
Turunen (1999) An algebra (L,∧,∨,�,→,⊥,	) is called
a complete residuated lattice if it satisfies the following con-
ditions:

(C1) (L,≤,∨,∧,⊥,	) is a complete lattice with the great-
est element 	 and the least element ⊥,

(C2) (L,�,	) is a commutative monoid,
(C3) x � y ≤ z iff x ≤ y → z for all x, y, z ∈ L .

In this paper, we assume that (L,≤,�,∗ ) is a complete
residuated lattice with an order reversing involution ∗ which
is defined by

x ⊕ y = (x∗ � y∗)∗, x∗ = x → ⊥.

For each α ∈ L and f ∈ LX , we denote (α → f ), (α �
f ), αX ∈ LX as (α → f )(x) = α → f (x), (α � f )(x) =
α � f (x), αX (x) = α,

	x (y) =
{	, if y = x,

⊥, otherwise,
	∗

x (y) =
{⊥, if y = x,

	, otherwise

Some basic properties of the binary operation� and resid-
uated operation → are collected in the following lemma that
can be found in Bělohlávek (2002b); Blount and Tsinakis
(2003); Šostak (2004).

Lemma 1 Bělohlávek (2002b); Blount and Tsinakis (2003);
Hájek (1998); Rodabaugh and Klement (2003); Turunen
(1999) For each x, y, z, xi , yi , w ∈ L, we have the following
properties:

(1) 	 → x = x, ⊥ � x = ⊥,
(2) if y ≤ z, then x � y ≤ x � z, x ⊕ y ≤ x ⊕ z, x → y ≤

x → z and z → x ≤ y → x,
(3) x ≤ y iff x → y = 	,
(4) (

∧
i yi )

∗ = ∨
i y

∗
i , (

∨
i yi )

∗ = ∧
i y

∗
i ,

(5) x → (
∧

i yi ) = ∧
i (x → yi ),

(6) (
∨

i xi ) → y = ∧
i (xi → y),

(7) x � (
∨

i yi ) = ∨
i (x � yi ),

(8) (
∧

i xi ) ⊕ y = ∧
i (xi ⊕ y),

(9) (x � y) → z = x → (y → z) = y → (x → z),
(10) x � y = (x → y∗)∗, x ⊕ y = x∗ → y and x → y =

y∗ → x∗,
(11) (x → y) � (z → w) ≤ (x � z) → (y � w),
(12) x → y ≤ (x � z) → (y � z) and (x → y) � (y →

z) ≤ x → z,
(13) (x → y) � (z → w) ≤ (x ⊕ z) → (y ⊕ w),
(14) x � (x → y) ≤ y and y ≤ x → (x � y) and x →

(y ⊕ z) ≤ (x → y)∗ → z,

(15)
∨

i∈Γ xi → ∨
i∈Γ yi ≥ ∧

i∈Γ (xi → yi ),
∧

i∈Γ xi
→ ∧

i∈Γ yi ≥ ∧
i∈Γ (xi → yi )

,

(16) (x � y) � (z ⊕ w) ≤ (x � z) ⊕ (y � w),
(17) z → x ≤ (x → y) → (z → y) and y → z ≤ (x →

y) → (x → z).

Definition 2 Bělohlávek (2002b) Let X be a nonempty set,
then the mapping R : X × X → L is called an L-fuzzy
relation on X and for all x, y, z ∈ X the relation R is said
to be

(1) reflexive if R(x, x) = 	,
(2) symmetric if R(x, y) = R(y, x),
(3) transitive if R(x, y) � R(y, z) ≤ R(x, z).

An L-fuzzy relation on X is called an L-fuzzy pre-order if it
is reflexive and transitive and called an L-fuzzy equivalence
relation if it is reflexive, symmetric and transitive.
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Definition 3 Bělohlávek (2002b); Fang (2010) Let X be a
nonempty set, define a binary mapping S : LX × LX → L
by

S( f , g) = ∧
x∈X ( f (x) → g(x)).

Then, for each f , g, h, k ∈ LX and α ∈ L , the following
properties hold:

(1) S is an L-partial order on LX ,
(2) f ≤ g iff S( f , g) ≥ 	,
(3) if f ≤ g, then S(h, f ) ≤ S(h, g) and S( f , h) ≤

S(g, h) ∀ h ∈ LX ,
(4) S( f , g) � S(k, h) ≤ S( f ⊕ k, g ⊕ h) and S( f , g) �

S(k, h) ≤ S( f � k, g � h),
(5)

∧
i∈Γ S( fi , gi ) ≤ S(

∧
i∈Γ fi ,

∧
i∈Γ gi ),

(6) S( f , h) = ∨
g∈LX (S( f , g) � S(g, h)).

If φ : X → Y is a mapping, then for f , g ∈ LX and h, k ∈
LY , we have

S( f , h) ≤ S(φ←( f ), φ←(h)),

S(h, k) ≤ S(φ←(h), φ←(k)),

and the equalities hold if φ is bijective.

Definition 4 Pawlak (1982); Zhu (2009) A mapping R :
LX → LX is called an L-fuzzy upper approximation opera-
tor on X if the following holds:

(UO1) R(⊥X ) = ⊥X ,
(UO2) R( f ) ≥ f for all f ∈ LX ,
(UO3) R(

∨
i∈Γ fi ) = ∨

i∈Γ R( fi ) for all fi ∈ LX ,
(UO4) R(α � f ) = α � R( f ).

An L-fuzzy upper approximation operator is called
(T) topological if R(R( f )) ≤ R( f ) for all f ∈ LX ,
(UAS) (L,⊕)-fuzzy upper approximation operator on X

if R( f ⊕ g) ≤ R( f ) ⊕ R(g).

Lemma 2 An L-fuzzy upper approximation operator R on X
is topological if and only if

∨
z∈X R(	y)(z)�R(	z)(x) ≤

R(	y)(x).

Proof Since f = ∨
y∈X 	y � f (y), then we have

R( f )(x) = R
( ∨

y∈X
	y � f (y)

)
(x)

=
∨
y∈X

R(	y � f (y))(x)

=
∨
y∈X

R(	y)(x) � f (y)

≥
∨
y∈X

(∨
z∈X

R(	y)(z) � R(	z)(x)

)
� f (y)

=
∨
z∈X

R(	z)(x) �
⎛
⎝∨

y∈X
(R(	y)(z) � f (y))

⎞
⎠

=
∨
z∈X

R(	z)(x) � R( f )(z) = R(R( f ))(x).

Conversely, we have R(	x )(y) ≥ R(R(	x ))(y) =∨
z∈X R(	z)(y) � R(	x )(z). ��

Definition 5 Pawlak (1982); Zhu (2009) A mapping R :
LX → LX is called an L-fuzzy lower approximation opera-
tor on X if the following holds:

(LO1) R(	X ) = 	X ,
(LO2) R( f ) ≤ f for all f ∈ LX ,
(LO3) R(

∧
i∈Γ fi ) = ∧

i∈Γ R( fi ) for all fi ∈ LX ,
(LO4) R(α → f ) = α → R( f ).
An L-fuzzy lower approximation operator is called
(T) topological if R(R( f )) ≥ R( f ) for all f ∈ LX ,
(LAS) (L,�)-fuzzy lower approximation operator on X

if R( f � g) ≥ R( f ) � R(g).

Lemma 3 An L-fuzzy lower approximation operator R on X
is topological if and only if

∧
z∈X R(	∗

y)(z)⊕ R(	∗
z )(x) ≥

R(	∗
y)(x).

Proof Since f ∗(x) =
(∨

y∈X 	y � f (y)
)∗

(x) = ∧
y∈X

( f (y) → 	∗
y)(x), then we have f (x) = ∧

y∈X ( f ∗(y) →
	∗

y)(x). Hence, by Lemma 1(14), we have

R( f )(x) =
∧
y∈X

( f ∗(y) → R(	∗
y)(x))

≤
∧
y∈X

(
f ∗(y) →

∧
z∈X

(R(	∗
y)(z) ⊕ R(	∗

z )(x))

)

=
∧
y∈X

∧
z∈X

( f ∗(y) → (R(	∗
y)(z) ⊕

R(	∗
z )(x)))

≤
∧
y∈X

∧
z∈X

(
( f ∗(y) → R(	∗

y)(z))
∗ → R(	∗

z )(x)
)

=
∧
z∈X

⎛
⎝∧

y∈X
( f ∗(y) → R(	∗

y)(z))
∗ → R(	∗

z )(x)

⎞
⎠

=
∧
z∈X

(R∗( f )(z) → R(	∗
z )(x)) = R(R( f ))(x).

Conversely, by Lemma 1(10), we have

R(	∗
x )(y) ≤ R(R(	∗

x )(y))
= ∧

z∈X (R∗(	∗
x )(z) → R(	∗

z )(y))
= ∧

z∈X (R(	∗
x )(z) ⊕ R(	∗

z )(y)).

��
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Remark 1 Pawlak (1982) Let R and R be L-fuzzy upper and
L-fuzzy lower approximation operators on X , respectively,
then the pair (R( f ), R( f )) is called an L-fuzzy rough set for
f .

Lemma 4 Oh and Kim (2017) For each f , g ∈ LX , define
two mappings u f ,g, u

−1
f ,g : X × X → L by

u f ,g(x, y) = f (x) → g(y), u−1
f ,g(x, y) = u f ,g(y, x).

Then, the following holds:

(1) 	X×X = u⊥X ,⊥X = u	X ,	X ,
(2) if f2 ≤ f1 and g1 ≤ g2, then u f1,g1 ≤ u f2,g2 ,
(3) for any u f ,g ∈ LX×X and h ∈ LX , it holds that u f ,h ◦

uh,g ≤ u f ,g where

u f ,h(x, y) ◦ uh,g(y, z)

=
∨
y∈X

(( f (x) → h(y)) � (h(y) → g(z))),

(4) u∨
i∈Γ fi ,g = ∧

i∈Γ u fi ,g, u f ,
∧

i∈Γ gi = ∧
i∈Γ u f ,gi ,

(5) uα� f , g = α → u f ,g and u f ,α→g = α → u f ,g,
(6) uα� f ,α�g ≥ u f ,g and uα→ f ,α→g ≥ u f ,g,
(7) u f ,g = ∧

z∈X ( f (z) → u	z ,g), u f ,g = ∧
z∈X (g∗(z) →

u f ,	∗
z
),

(8) u f ,g = ∧
y,z∈X ( f (y) → (g∗(z) → u	y ,	∗

z
)),

(9) u−1
f ,g = ug∗, f ∗ .

Definition 6 Ramadan et al. (2015a, b) A mapping U :
LX×X → L is called an Alexandrov L-fuzzy pre-uniformity
on X iff the following conditions hold:

(AU1) there exists u ∈ LX×X such that U(u) = 	,
(AU2) if v ≤ u, then U(v) ≤ U(u),
(AU3) for every ui ∈ LX×X ,U(

∧
i∈Γ ui ) = ∧

i U(ui ),
(AU4) U(u) ≤ ∧

x∈X u(x, x),
(AU5) U(α → u) = α → U(u) for each α ∈ L .
The pair (X ,U) is called an Alexandrov L-fuzzy pre-

uniformity.
An Alexandrov L-fuzzy pre-uniformity is an Alexandrov

L-fuzzy quasi-uniformity if
(AQ) U(u) ≤ ∨{U(v) � U(w) | v ◦ w ≤ u}, where

v ◦ w(x, z) = ∨
y∈X v(y, z) � w(x, y).

An Alexandrov L-fuzzy quasi-uniformity is an Alexan-
drov L-fuzzy uniformity if

(U) U(u) = U(u−1), where u−1(x, y) = u(y, x).
An Alexandrov L-fuzzy pre-uniformity is separated if
(SE)U(u	x ,	x ) = 	 or U∗(u	∗

x ,	∗
x
) = ⊥ for each x ∈ X .

Remark 2 Oh and Kim (2017); Ramadan et al. (2015a, b) Let
(X ,U) be an L-fuzzy pre-uniformity and by (U1),(U2), then
we have U(	X×X ) = 	 because u ≤ 	X×X for all u ∈
LX×X .

Definition 7 El-Dardery et al. (2013);Ramadanet al. (2015a)
A mapping ξ : LX × LX → L is called an Alexandrov L-
fuzzy semi-topogenous order on X if it satisfies the following
axioms:

(ST1) ξ(	X ,	X ) = ξ(⊥X ,⊥X ) = 	,
(ST2) ξ( f , g) ≤ S( f , g),
(ST3) if f1 ≤ f , g ≤ g1, then ξ( f , g) ≤ ξ( f1, g1),
(ST4) ξ(

∨
i∈Γ fi , g) = ∧

i∈Γ ξ( fi , g), ξ( f ,
∧

i∈Γ gi ) =∧
i∈Γ ξ( f , gi ).

For every f , f1, f2, g, g1, g2 ∈ LX , an Alexandrov L-fuzzy
semi-topogenous order ξ on X is called

(1) (L,⊕)-fuzzy topogenous order if ξ( f1⊕ f2, g1⊕g2) ≥
ξ( f1, g1) � ξ( f2, g2),

(2) (L,�)-fuzzy co-topogenous order if

ξ( f1 � f2, g1 � g2) ≥ ξ( f1, g1) � ξ( f2, g2),

(3) (L,�)-fuzzy topogenous (resp. co-topogenous) space
if ξ ≤ ξ ◦ ξ , where

(ξ1 ◦ ξ2)( f , g) = ∨
h∈LX ξ1( f , h) � ξ2(h, g),

(4) topological if
∧

y∈X ξ(	x ,	∗
y) ⊕ ξ(	y,	∗

z ) ≥
ξ(	x ,	∗

z ),
(5) stratified if ξ(α � f , g) = α → ξ( f , g),
(6) co-stratified if ξ( f , α → g) = α → ξ( f , g),
(7) strong if ξ(α � f , α � g) ≥ ξ( f , g), ξ(α → f , α →

g) ≥ ξ( f , g),
(8) separated if ξ(	x ,	x ) = 	, ξ(	∗

x ,	∗
x ) = 	.

Proposition 1 El-Dardery et al. (2013); Ramadan et al.
(2015a) Let ξ be an Alexandrov L-fuzzy semi-topogenous
order on X, define a mapping Iξ : LX → LX by

Iξ ( f ) = ∨
g∈LX ξ(g∗, g∗) � S(g, f ) � g ∀ f , g ∈ LX .

Then, the pair (X , Iξ ) is an Alexandrov L-fuzzy interior
space.

Proposition 2 El-Dardery et al. (2013); Ramadan et al.
(2015a) Let (X , C) be an Alexandrov L-fuzzy closure
space, define a mapping ξC : LX × LX → L by
ξC( f , g) = ∧

x∈X (C( f )(x) → g(x)) . Then, ξC is an
Alexandrov L-fuzzy semi-topogenous order on X.
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Proposition 3 El-Dardery et al. (2013); Ramadan et al.
(2015a) Let (X , I) be an Alexandrov L-fuzzy interior
space, define a mapping ξI : LX × LX → L by
ξI( f , g) = ∧

x∈X (g∗(x) → I( f ∗)(x)) . Then, ξI is an
Alexandrov L-fuzzy semi-topogenous order on X.

3 Alexandrov L-fuzzy nearness, L-fuzzy
approximation operators and Alexandrov
L-fuzzy uniformities

This section is divided into two parts; in the first part, we
investigate the relationship between the L-fuzzy nearness
and L-fuzzy upper (lower) approximation operators, while
the second part addresses the relation between the L-fuzzy
nearness and L-fuzzy uniformities.

Definition 8 Ramadan et al. (2019) A mapping N : LX ×
LX → L is called an Alexandrov L-fuzzy nearness on X if
it satisfies the following axioms:

(N1) N (⊥X ,	x ) = ⊥,
(N2) N ( f ,	x ) ≥ f (x),
(N3) if f ≤ g, then N ( f ,	x ) ≤ N (g,	x ) ∀ f , g ∈ LX ,
(N4) N (

∨
i∈Γ fi ,	x ) = ∨

i∈Γ N ( fi ,	x ), N (	x ,
∨

i ∈
Γ fi ) = ∨

i∈Γ N (	x , fi ),
(N5) for all α ∈ L, f ∈ LX we have

N (α � f ,	x ) = α � N ( f ,	x ) = N ( f , α � 	x ).

The pair (X ,N ) is called an Alexandrov L-fuzzy near-
ness. An Alexandrov L-fuzzy nearness (X ,N ) is called

(1) topological if
∨

y∈X N (	x ,	y) � N (	y,	z) ≤
N (	x ,	z),

(2) (L,⊕)-fuzzy nearness if for every f1, f2 ∈ LX ,we have

N ( f1 ⊕ f2,	x ) ≤ N ( f1,	x ) ⊕ N ( f2,	x ),

(3) (L,⊕)-fuzzy co-nearness if for every f1, f2 ∈ LX , we
have

N (	x , f1 ⊕ f2) ≤ N (	x , f1) ⊕ N (	x , f2),

(4) symmetric if N s = N , where N s( f ,	x ) = N (	x , f ),
(5) separated if N (	∗

x ,	x ) = N (	x ,	∗
x ) = ⊥ for every

x ∈ X .

Theorem 1 Let R be an Alexandrov L-fuzzy upper approxi-
mationoperator on X, defineamapping NR : LX×LX → L
by

NR( f ,	x ) = ∨
x∈X R( f )(x) ∀ x ∈ X .

Then, the following holds:

(1) NR is an Alexandrov L-fuzzy nearness on X,
(2) if R is topological, then NR is topological,
(3) if (X , R) is an (L,⊕)-fuzzy upper approximation space,

then (X ,N ) is an (L,⊕)-fuzzy nearness.

Proof (2)

∨
y∈X

NR(	x ,	y) � NR(	y,	z)

=
∨
y∈X

(
∨
y∈X

R(	x )(y) �
∨
z∈X

R(	y)(z))

=
∨

y,z∈X

(
R(	x )(y) � R(	y)(z)

)

≤
∨
z∈X

R(	x )(z) = NR(	x ,	z).

��
Theorem 2 Let R be an Alexandrov L-fuzzy lower approxi-
mationoperator on X, defineamapping NR : LX×LX → L
by

NR( f ,	x ) = ∨
x∈X R∗( f ∗)(x) ∀ x ∈ X .

Then, the following holds:

(1) NR is an Alexandrov L-fuzzy nearness on X,
(2) if R is topological, then NR is topological,
(3) if (X , R) is an (L,�)-fuzzy lower approximation space,

then (X ,N ) is an (L,⊕)-fuzzy nearness.

Proof (2)

∨
y∈X

NR(	x ,	y) � NR(	y,	z)

=
∨
y∈X

⎛
⎝∨

y∈X
R∗(	∗

x )(y) �
∨
z∈X

R∗(	∗
y)(z)

⎞
⎠

≤
∨
z∈X

R∗(	∗
x )(z) = NR(	x ,	z).

��
Theorem 3 LetN be an Alexandrov L-fuzzy nearness on X,
define two mappings RN , RN : X × X → L as

RN ( f )(x) = ∨
y∈X N (	x ,	y) � f (y), RN ( f )(x)

= ∧
y∈X (N (	x ,	y) → f (y))

for all x, y ∈ X , f ∈ LX . Then, the following holds:
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6 E. H. Elkordy et al.

(1) RN is an L-fuzzy upper approximation operator such
that

RN (	y)(x) = N (	x ,	y),

(2) RN is an L-fuzzy lower approximation operator such
that

RN (	∗
y)(x) = N ∗(	x ,	y),

(3) ifN is topological, then RN and RN both are topolog-
ical,

(4) if L is idempotent, then RN is an (L,⊕)-fuzzy upper
approximation operator on X and RN is an (L,�)-
fuzzy lower approximation operator on X,

(5) RN ( f ) = R∗
N ( f ∗), RN ( f ) = R

∗
N ( f ∗).

Proof (3)(T)

RN (RN ( f ))(x) =
∨
y∈X

N (	x , 	y) � RN ( f )(y)

=
∨
y∈X

N (	x , 	y) �
⎛
⎝ ∨
z∈X

N (	y , 	z) � f (z)

⎞
⎠

=
∨
z∈X

⎛
⎝ ∨

y∈X
N (	x ,	y) � N (	y , 	z)

⎞
⎠ � f (z)

≤
∨
z∈X

N (	x , 	z) � f (z) = RN ( f )(x),

RN (RN ( f ))(x) =
∧
y∈X

(N (	x ,	y) → RN ( f )(y))

=
∧
y∈X

(N (	x ,	y) →
⎛
⎝ ∧
z∈X

(N (	y ,	z) → f (z)))

⎞
⎠

=
∧
z∈X

⎛
⎝(

∨
y∈X

N (	x , 	y) � N (	y , 	z)) → f (z)

⎞
⎠

≥
∧
z∈X

(N (	x ,	z) → f (z)) = RN ( f )(x).

(5)

R
∗
N ( f ∗)(x) =

⎛
⎝∨

y∈X
N (	x ,	y) � f ∗(y)

⎞
⎠

∗

=
∧
y∈X

(N (	x ,	y) → f (y)) = RN ( f )(x),

R∗
N ( f ∗)(x) =

⎛
⎝∧

y∈X
(N (	x ,	y) → f ∗(y))

⎞
⎠

∗

=
∨
y∈X

N (	x ,	y) � f (y) = RN ( f )(x).

��

Theorem 4 Let U be an Alexandrov L-fuzzy pre-uniformity
on X, define a mapping NU : LX × LX → L by

NU ( f ,	x ) = U∗(u f ,	∗
x
) ∀ x ∈ X .

Then, the following holds:

(1) NU is an Alexandrov L-fuzzy nearness on X,
(2) if U is an Alexandrov L-fuzzy uniformity on X, thenNU

is symmetric,
(3) if U is separated, then NU is separated,
(4) NU ( f ,	x ) = ∨

y∈X U∗(u	y ,	∗
x
),

(5) ifU∗(u	x ,	∗
z
) ≥ ∨

y∈X U∗(u	x ,	∗
y
)�U∗(u	y ,	∗

z
), then

NU is topological.

Proof (5)(T)∨
y∈X N (	x ,	y) � N (	y,	z)

= ∨
y∈X U∗(u	x ,	∗

y
) � U∗(u	y ,	∗

z
)

≤ U∗(u	x ,	∗
z
) = N (	x ,	z).

��

Theorem 5 LetN be an Alexandrov L-fuzzy nearness on X,
define a mapping UN : LX×X → L by

UN (u) = ∧
x,y∈X (N (	x ,	y) → u(x, y)).

Then, the following holds:

(1) UN is an Alexandrov L-fuzzy pre-uniformity on X,
(2) if N is symmetric, then UN is an Alexandrov L-fuzzy

uniformity on X,
(3) if N is separated, then UN is separated,
(4) if N is topological, then

U∗
N (u	x ,	∗

z
) ≥ ∨

y∈X U∗
N (u	x ,	∗

y
) � U∗

N (u	y ,	∗
z
).

Proof (4) Since

U∗
N (u	x ,	∗

y
) = ∨

x,y∈X N (	x ,	y) � u∗	x ,	∗
y
(x, y)

= ∨
x,y∈X N (	x ,	y) � (	x (x) → 	∗

y(y))
∗

= ∨
x,y∈X N (	x ,	y),

then

∨
y∈X U∗(u	x ,	∗

y
) � U∗(u	y ,	∗

z
)

= ∨
y∈X

(∨
x,y∈X N (	x ,	y) � ∨

y,z∈X N (	y,	z)
)

≤ ∨
x,z∈X N (	x ,	z) = U∗(u	x ,	∗

z
).

��
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4 Alexandrov L-fuzzy nearness and
Alexandrov L-fuzzy topogenous space

In this section, we introduce the relationship between
Alexandrov L-fuzzy nearness and Alexandrov L-fuzzy
topogenous space and raise some characteristics among other
previously given systems.

Theorem 6 Let ξ be a strong Alexandrov L-fuzzy topogenous
order on X, define a mapping Nξ : LX × LX → L by

Nξ ( f ,	x ) = ξ∗( f ,	∗
x ) ∀ f ∈ LX .

Then,

(1) (X ,Nξ ) is an Alexandrov L-fuzzy nearness,
(2) if ξ is an (L,⊕)-fuzzy topogenous order on X, then

(X ,Nξ ) is an (L,⊕)-fuzzy nearness,
(3) if ξ is topological, then Nξ is topological,
(4) if ξ is separated, then Nξ is separated.

Proof (2)

Nξ ( f1 ⊕ f2,	x )

= ξ∗( f1 ⊕ f2,	∗
x ) = (

ξ( f1 ⊕ f2,	∗
x ⊕ 	∗

x )
)∗

≤ (
ξ( f1,	∗

x ) � ξ( f2,	∗
x )

)∗ = ξ∗( f1,	∗
x ) ⊕ ξ∗( f2,	∗

x )

= Nξ ( f1,	x ) ⊕ Nξ ( f2,	x ).

(3)

N (	x ,	z) = ξ∗(	x ,	∗
z ) = (

ξ(	x ,	∗
z )

)∗

≥
(∧

y∈X ξ(	x ,	∗
y) ⊕ ξ(	y,	∗

z )
)∗

= ∨
y∈X ξ∗(	x ,	∗

y) � ξ∗(	y,	∗
z )

= ∨
y∈X Nξ (	x ,	y) � Nξ (	y,	z).

��

Theorem 7 Let (X ,N ) be an Alexandrov L-fuzzy nearness,
define a mapping ξN : LX × LX → L by

ξN ( f , g) = ∧
x∈X (N ( f ,	x ) → g(x)) ∀ f , g ∈ LX .

Then,

(1) ξN is a strong Alexandrov L-fuzzy semi-topogenous
order on X,

(2) if (X ,N ) is an (L,⊕)-fuzzy nearness, then ξN is an
(L,⊕)-fuzzy topogenous order on X,

(3) if N is topological, then ξN is topological,
(4) if N is separated, then ξN is separated.

Proof (3)

∧
y∈X ξN (	x ,	∗

y) ⊕ ξN (	y,	∗
z )

= ∧
y∈X

(∧
y∈X (N (	x ,	y) → 	∗

y(y))
)

⊕ (∧
z∈X (N (	y,	z) → 	∗

z (z))
)

= ∧
y,z∈X N ∗(	x ,	y) ⊕ N ∗(	y,	z)

= ∧
z∈X

(∨
y∈X N (	x ,	y) � N (	y,	z)

)∗

≥ ∧
z∈X N ∗(	x ,	z) = ∧

z∈X (N (	x ,	z) → 	∗
z (z))

= ξ(	x ,	∗
z ).

��
Corollary 1 Let (X ,N ) be an Alexandrov L-fuzzy nearness,
define a mapping ξN : LX × LX → L by

ξN ( f , g) = ∧
x∈X (g∗(x) → N ∗(	x , f )) ∀ f , g ∈ LX .

Then,

(1) ξN is a strong Alexandrov L-fuzzy semi-topogenous
order on X,

(2) if (X ,N ) is an (L,⊕)-fuzzy nearness, then ξN is an
(L,⊕)-fuzzy topogenous order on X,

(3) if N is topological, then ξN is topological,
(4) if N is separated, then ξN is separated.

Theorem 8 Let (X ,N ) be an Alexandrov L-fuzzy nearness
and ξ be an Alexandrov L-fuzzy co-topogenous order on X.
Define a mapping IξN : LX → LX by

IξN ( f ) = ∨
g∈LX ξ(g∗, g∗) � S(g, f ) � g ∀ f , g ∈ LX .

Then, (X , IξN ) is an Alexandrov L-fuzzy interior space.
Moreover, if N is symmetric, we have IξN ( f ) ≤ IN ( f ∗).

Proof

IξN ( f )(x) = ∨
g∈LX ξN (g∗, g∗) � S(g, f ) � g(x)

= ∨
g∈LX

(∧
x∈X (N (g∗,	x ) → g∗(x))

)
�S(g, f ) � g(x)

≤ ∧
x∈X (N ( f ∗,	x ) → f ∗(x))

�S( f , f ) � f (x)
= ∧

x∈X
(N ( f ∗,	x ) → f ∗(x)

) � f (x)
= ∧

x∈X
(
f (x) → N ∗( f ∗,	x )

) � f (x)
= ∧

x∈X f (x) � (
f (x) → N ∗( f ∗,	x )

)
≤ N ∗( f ∗,	x ) = IN ( f ∗)(x).

Corollary 2 Let (X ,N ) be an Alexandrov L-fuzzy near-
ness, define a mapping ξCN : LX × LX → L by
ξCN ( f , g) = ∧

x∈X (CN ( f )(x) → g(x)) ∀ f , g ∈ LX ,

where CN ( f )(x) = N ( f ,	x ). Then, (X , ξCN ) is an
Alexandrov L-fuzzy co-topogenous space.
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8 E. H. Elkordy et al.

Theorem 9 Let (X ,N ) be an Alexandrov L-fuzzy nearness,
define a mapping ξIN : LX × LX → L by

ξIN ( f , g) = ∧
x∈X (g∗(x) → IN ( f ∗)(x)) ∀ f , g ∈ LX ,

where IN ( f )(x) = N ∗(	x , f ∗). Then, we have the follow-
ing properties:

(1) if (X ,N ) is an Alexandrov L-fuzzy co-nearness, then
(X , ξIN ) is an Alexandrov L-fuzzy co-topogenous space,

(2) if N is symmetric, then ξIN = ξN ,
(3) if N is separated, then ξIN is separated.

Proof (1) IfN is an Alexandrov L-fuzzy co-nearness on X ,
then

ξIN ( f1 ⊕ f2, g1 ⊕ g2)
= ∧

x∈X ((g1 ⊕ g2)
∗(x) → IN ( f1 ⊕ f2)

∗(x))
= ∧

x∈X
(
(g∗

1 (x) � g∗
2 (x)) → N ∗(	x , f1 ⊕ f2)

)
≥ ∧

x∈X
(
(g∗

1 (x) � g∗
2 (x)) → (N (	x , f1) ⊕ N (	x , f2)

)∗)
= ∧

x∈X
(
(g∗

1 (x) � g∗
2 (x)) → (N ∗(	x , f1) � N ∗(	x , f2))

)
≥ ∧

x∈X
((
g∗
1 (x) → N ∗(	x , f1)

) � (
g∗
2 (x)

→ N ∗(	x , f2)
))

= ∧
x∈X

(
g∗
1 (x) → N ∗(	x , f1)

) � ∧
x∈X

(
g∗
2 (x)

→ N ∗(	x , f2)
)

= ξIN ( f1, g1) � ξIN ( f2, g2).

(2) If N is symmetric, then

ξIN ( f , g) =
∧
x∈X

(
g∗(x) → IN ( f ∗)(x)

)

=
∧
x∈X

(
g∗(x) → N ∗(	x , f )

)

=
∧
x∈X

(N ( f ,	x ) → g(x)) = ξN .

(3) Easily proved.

Example 1 Let X = {hi | i = {1, ..., 3}} with hi=house
and Y = {e, b, w, c, i} with e=expensive, b=beautiful,
w=wooden, c=creative, i=in the green surroundings. Let
([0, 1],�,→,∗ , 0, 1) be a complete residuated lattice as

x � y = max{0, x + y − 1}, x → y
= min{1 − x + y, 1}, x∗ = 1 − x .

Let R ∈ [0, 1]X×Y be a fuzzy information system as fol-
lows:

R e b w c i
h1 0.7 0.6 0.5 0.9 0.2
h2 0.6 0.8 0.4 0.3 0.5
h3 0.4 0.9 0.8 0.6 0.6

Define [0, 1]-fuzzy pre-orders RY
X , R{b,w}

X ∈ [0, 1]X×Y by

RY
X (hi , h j ) = ∧

y∈Y (R(hi , y) → R(h j , y)),

R{b,w}
X (hi , h j ) = ∧

y∈{b,w}(R(hi , y) → R(h j , y)),

RY
X =

⎛
⎝ 1 0.4 0.7
0.7 1 0.8
0.6 0.6 1

⎞
⎠ , R{b,w}

X =
⎛
⎝ 1 0.9 1
0.8 1 1
0.7 0.6 1

⎞
⎠ .

For each R ∈ {RY
X , R{b,w}

X }, we obtain NR : LX × LX →
L as

NR( f ,	x ) = ∨
x,y∈X R(x, y) � f (y) ∀ f ∈ LX .

Hence, and by Ramadan et al. (2019), NR is an Alexan-
drov L-fuzzy nearness on X . Moreover, NR is topological.

(1) By Theorem 3, we obtain an L-fuzzy upper approxi-
mation operator RN : LX → LX on X as RNR ( f )(x) =∨

x,y∈X R(y, x) � f (y) ∀ f ∈ LX .

(T) Moreover, RNR is topological since

RNR (RNR ( f ))(x) =
∨

x,y∈X
R(y, x) � RNR ( f )(y)

=
∨

x,y∈X
R(y, x) �

∨
y,z∈X

R(z, y) � ( f )(z)

=
∨

x,y,z∈X
R(z, y) � R(y, x) � ( f )(z)

≤
∨

x,z∈X
R(z, x) � ( f )(z) = RNR ( f ).

(UAS) Finally, RNR is an (L,⊕)-fuzzy upper approxima-
tion operator on X since

RNR ( f ⊕ g)(x) =
∨

x,y∈X
R(x, y) � ( f ⊕ g)(y)

=
∨

x,y∈X
R(x, y) � ( f (y) ⊕ g(y))

≤
⎛
⎝ ∨

x,y∈X
R(x, y) � f (y)

⎞
⎠⊕

⎛
⎝ ∨

x,y∈X
R(x, y) � g(y)

⎞
⎠

= RNR ( f ) ⊕ RNR (g).

(2) By Theorem 3, we obtain an L-fuzzy lower approxi-
mation operator RN : LX → LX on X as RNR

( f )(x) =∧
x,y∈X (R(y, x) → f (y)) ∀ f ∈ LX .
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(T) Moreover, and by Lemma 1(9), RNR
is topological

since

RNR
(RNR

( f ))(x) =
∧

x,y∈X
(R(y, x) → RNR

( f )(y))

=
∧

x,y∈X

⎛
⎝R(y, x) →

⎛
⎝ ∧

y,z∈X
R(z, y) → ( f )(z)

⎞
⎠

⎞
⎠

=
∧

x,y,z∈X
((R(z, y) � R(y, x)) → ( f )(z))

≥
∧

x,z∈X
(R(z, x) → ( f )(z)) = RNR

( f ).

(LAS) Finally, RNR
is an (L,�)-fuzzy lower approxima-

tion operator on X since

RNR ( f � g)(x) =
∧

x,y∈X

(
R(x, y) → ( f � g)(y)

)

=
∧

x,y∈X

(
R(x, y) → ( f (y) � g(y))

)

≥
⎛
⎝ ∧

x,y∈X
(R(x, y) → f (y))

⎞
⎠

�
⎛
⎝ ∨

x,y∈X
(R(x, y) → g(y))

⎞
⎠

= RNR
( f ) � RNR

(g).

(3) ByTheorem5,we obtain amappingUN : LX×X → L
as

UNR (u) = ∧
x,y∈X (R(y, x) → u(x, y)) ∀ u ∈ LX×X ,

which is easily proved to be an Alexandrov L-fuzzy pre-
uniformity on X .

(4) By Theorem 7, we obtain a strongAlexandrov L-fuzzy
semi-topogenous order ξN : LX × LX → L on X by

ξNR ( f , g) = ∧
x,y∈X (R(y, x) → ( f (y) → g(x))) for

all f , g ∈ LX . But not separated.

5 Degrees of LF-mappings and Galois
correspondences

Now, we will study the degree of continuity Xiu and Li
(2019) for LF-near map and some special maps of spaces
discussed in this paper, like: L-fuzzy lower (upper) approxi-
mation spaces, L-fuzzy uniform space, L-fuzzy topogenous
space and vise versa. we will show the Galois correspon-
dences between their categories.

Definition 9 Let (X , RX ) and (Y , RY ) be two L-fuzzy upper
approximation spaces and φ : X → Y be a mapping. Then,

DR(φ) defined by

DR(φ) = ∧
f ∈Y S

(
RX (φ←( f )), φ←(RY ( f ))

)

is the degree to which themapping φ is an LF-upper approx-
imation map.

If DR(φ) = 	, then RX (φ←( f )) ≤ φ←(RY ( f )) for
all f ∈ LY which is exactly the definition of LF-upper
approximation map.

Definition 10 Let (X , RX ) and (Y , RY ) be two L-fuzzy
lower approximation spaces and φ : X → Y be a mapping.
Then, DR(φ) defined by

DR(φ) = ∧
f ∈LY S

(
φ←(RY ( f )), RX (φ←( f ))

)

is the degree to which the mapping φ is an LF-lower approx-
imation map.

If DR(φ) = 	, then φ←(RY ( f )) ≤ RX (φ←( f )) for
all f ∈ LY which is exactly the definition of LF-lower
approximation map.

Definition 11 Let (X ,UX ) and (Y ,UY ) be two Alexandrov
L-fuzzy pre-uniformities and φ : X → Y be a mapping.
Then, DU (φ) defined by

DU (φ) = ∧
v∈LY×Y

(UY (v) → UX ((φ × φ)←(v))
)

is the degree to which the mapping φ is an LF-uniformly
continuous map.

If DU (φ) = 	, then for every v ∈ LY×Y ,UY (v) ≤
UX ((φ × φ)←(v)) which is exactly the definition of LF-
uniformly continuous map.

Definition 12 Let (X , ξX ) and (Y , ξY ) two Alexandrov L-
fuzzy topogenous spaces and φ : X → Y be a mapping.
Then, Dξ (φ) defined by

Dξ (φ) = ∧
f ,g∈LY

(
ξY ( f , g) → ξX (φ←( f ), φ←(g))

)

is the degree to which the mapping φ is an LF-topogenous
map.

If Dξ (φ) = 	, then ξY ( f , g) ≤ ξX (φ←( f ), φ←(g))
for all f , g ∈ LY which is exactly the definition of LF-
topogenous map.

Definition 13 Let (X ,NX ) and (Y ,NY ) be two Alexandrov
L-fuzzy nearness and φ : X → Y be a mapping. Then,
DN (φ) defined by

DN = ∧
f ∈LY

∧
x∈X(NX (φ←( f ), φ←(	φ(x))) → NY ( f ,	φ(x))

)
,
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10 E. H. Elkordy et al.

or equivalently,

DN = ∧
f ∈LY

∧
x∈X(NX (φ←(	φ(x)), φ

←( f )) → NY (	φ(x), f )
)

is the degree to which a mapping φ is an LF-near map.
If DN (φ) = 	, then NX (φ←( f ), φ←(	φ(x))) ≤

NY ( f ,	φ(x)), or equivalently, NX (φ←(	φ(x)), φ
←( f )) ≤

NY (	φ(x), f ) for all x ∈ X , f ∈ LY , which is exactly the
definition of LF-near map.

Definition 14 Adámek et al. (1990) A concrete category is
a pair (C,U ), where C is a category and U : C → Set is
a faithful functor (or a forgetful functor). For each C-object
X ,U (X) is called the underlying set of X . Thus, every object
in a concrete category can be regarded as a structured set.

We write C for (C,U ), if the concrete functor is obvious.
All of the categories considered in this paper are concrete
categories.

A concrete functor between two concrete categories
(C,U ) and (D, V ) is a functor G : C → D withU = V ◦G,
which means that G only changes the structures on the
underlying sets. Hence, in order to define a concrete functor
G : C → D, we only consider the following two require-
ments.

First, we assign to each C-object X , aD-objectG(X) such
that V (G(X)) = U (X).

Second, we verify that if a function f : U (X) → U (Y ) is
a C-morphism X → Y , then it is alsoD-morphism G(X) →
G(Y ).

Theorem 10 Adámek et al. (1990) Suppose that F : D →
C,G : C → D are concrete functors. Then, the following
conditions are equivalent

(1) {idY : (F ◦ G)(Y ) → Y | Y ∈ C} is a natural trans-
formation from the functor (F ◦ G) to the identity functor
on C, and {idX : X → (G ◦ F)(X) | X ∈ D} is a natural
transformation from the identity functor on D to the functor
(G ◦ F),

(2) for each Y ∈ C, idY : (F ◦ G)(Y ) → Y | Y ∈ C
is a C-morphism, and for each X ∈ D, idX : X → (G ◦
F)(X) | X ∈ D is a D-morphism.

In this case, (F,G) is called a Galois correspondence
between C andD. If (F,G) is a Galois correspondence, then
it is easy to check that F is left adjoint to G, or equivalently
that G is a right adjoint to F.

The category of L-fuzzy lower approximation spaces with
LF-lower approximation maps as morphisms is denoted by
LF-LAS.

The category of L-fuzzy upper approximation spaces with
LF-upper approximation maps as morphisms is denoted by
LF-UAS.

The category of Alexandrov L-fuzzy pre-uniformities
with LF-uniformly continuousmaps asmorphisms is denoted
by ALF-UNS.

The category of Alexandrov L-fuzzy semi-topogenous
spaces with LF-topogenous maps as morphisms is denoted
by ALF-TGS.

The category of Alexandrov L-fuzzy near spaces with
LF-near maps as morphisms is denoted by ALF-NRS.

Theorem 11 Let (X , RX ) and (Y , RY ) be two L-fuzzy upper
approximation spaces and φ : X → Y be a mapping, then
DR(φ) ≤ DNR

(φ).

Proof

DNR
(φ) =

∧
f ∈LY

∧
x∈X

(NRX
(φ←( f ), φ←(	φ(x)))

→ NRY
( f ,	φ(x))

)

=
∧
f ∈LY

∧
x∈X

( ∨
x∈X

RX (φ←( f ))(x)

→
∨

φ(x)∈Y
RY ( f )(φ(x))

)

=
∧
f ∈LY

∧
x∈X

(∨
x∈X

RX (φ←( f ))(x) →
∨
x∈X

φ←(RY ( f ))(x)

)

≥
∧
f ∈LY

S
(
RX (φ←( f )), φ←(RY ( f ))

) = DR(φ).

The above theorem shows the correspondence (X , RX ) �
(X ,NRX

) induced a concrete functor Π : LF-UAS →
ALF-NRS with Π(X , RX ) = (X ,NRX

),Π(φ) = φ. ��
Theorem 12 Let (X , RX ) and (Y , RY ) be two L-fuzzy lower
approximation spaces and φ : X → Y be a mapping, then
DR(φ) ≤ DNR (φ).

Proof

DNR (φ) =
∧
f ∈LY

∧
x∈X(NRX

(φ←( f ), φ←(	φ(x))) → NRY
( f ,	φ(x))

)
=

∧
f ∈LY

∧
x∈X

( ∨
x∈X

R∗
X ((φ←( f ))∗)(x) →

∨
φ(x)∈Y

R∗
Y ( f ∗)(φ(x))

)

=
∧
f ∈LY

∧
x∈X

( ∨
x∈X
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R∗
X (φ←( f ∗))(x) →

∨
x∈X

φ←(R∗
Y ( f ∗))(x)

)

≥
∧
f ∈LY

∧
x∈X

(
R∗
X (φ←( f ∗))(x)

→ (φ←(RY ( f ∗)))∗(x)
)

=
∧
f ∈LY

S
(
φ←(RY ( f ∗)), RX (φ←( f ∗))

) = DR(φ).

The above theorem shows the correspondence (X , RX ) �
(X ,NRX

) induced a concrete functor Ω : LF-LAS →
ALF-NRS with Ω(X , RX ) = (X ,NRX

),Ω(φ) = φ. ��
Theorem 13 Let (X ,UX ) and (Y ,UY ) be two L-fuzzy pre-
uniformities and φ : X → Y be a mapping, then DU (φ) ≤
DNU (φ).

Proof For x, y ∈ X , f , g ∈ LY×Y , we have

(φ × φ)←(u f ,g)(x, y) = u f ,g(φ(x), φ(y))
= f (φ(x)) → g(φ(y))
= φ←( f )(x) → φ←(g)(y)
= uφ←( f ),φ←(g)(x, y).

Thus, for all v ∈ LY×Y , v ≤ u f ,	∗
φ(x)

we have

DNU (φ) =
∧
f ∈LY

∧
x∈X(NUX (φ←( f ), φ←(	φ(x))) → NUY ( f ,	φ(x))

)
=

∧
f ∈LY

∧
x∈X

(U∗
X (uφ←( f ),(φ←(	φ(x)))

∗) → U∗
Y (u f ,	∗

φ(x)
)
)

=
∧
f ∈LY

∧
x∈X

(U∗
X ((φ × φ)←(u f ,	∗

φ(x)
)) → U∗

Y (u f ,	∗
φ(x)

)
)

=
∧
f ∈LY

∧
x∈X

(UY (u f ,	∗
φ(x)

) → UX ((φ × φ)←(u f ,	∗
φ(x)

))
)

≥
∧

v∈LY×Y

(UY (v)

→ UX ((φ × φ)←(v))) = DU (φ).

The above theorem shows the correspondence (X ,UX ) �
(X ,NUX ) induced a concrete functor Φ : ALF-UNS →
ALF-NRS with Φ(X ,UX ) = (X ,NUX ), Φ(φ) = φ. ��
Theorem 14 Let (X , ξX ) and (Y , ξY ) be two Alexandrov L-
fuzzy semi-topogenous spaces andφ : X → Y be amapping.
Then, Dξ (φ) ≤ DNξ

(φ).

Proof

DNξ
(φ) =

∧
f ∈LY

∧
x∈X

(
NξX

(
φ←( f ), φ←(	φ(x))

)

→ NξY ( f ,	φ(x))
)

=
∧
f ∈LY

∧
x∈X

(
ξ∗
X

(
φ←( f ), (φ←(	φ(x)))

∗)

→ ξ∗
Y ( f ,	∗

φ(x))
)

=
∧
f ∈LY

∧
x∈X

(
ξY ( f ,	∗

φ(x))

→ ξX
(
φ←( f ), φ←(	∗

φ(x))
)) = Dξ (φ).

The above theorem shows the correspondence (X , ξX ) �
(X ,NξX ) induced a concrete functor Θ : ALF-TGS →
ALF-NRS with Θ(X , ξX ) = (X ,NξX ), Θ(φ) = φ.

Theorem 15 Let (X ,NX ) and (Y ,NY ) be two L-fuzzy near
spaces and φ : X → Y be a mapping, then

(1) DN (φ) ≤ DRN (φ),
(2) DN (φ) ≤ DRN (φ),
(3) DN (φ) ≤ DUN (φ),
(4) DN (φ) ≤ DξN (φ).

Proof (1)

DRN (φ) =
∧
f ∈LY

S
(
RNX (φ←( f )), φ←(RNY ( f ))

)

=
∧
f ∈LY

∧
x∈X

(
RNX (φ←( f ))(x) → φ←(RNY ( f ))(x)

)

=
∧
f ∈LY

∧
x∈X

(
(
∨
y∈X

NX (	x ,	y) � φ←( f )(y))

→
⎛
⎝ ∨

φ(y)∈Y
NY (	φ(x),	φ(y)) � f (φ(y)))

⎞
⎠

≥
∧
f ∈LY

∧
x,y∈X

(
(NX (	x ,	y) � φ←( f )(y))

→ (NY (	φ(x),	φ(y)) � φ←( f )(y))
)

≥
∧
f ∈LY

∧
x,y∈X

(NX (	x ,	y)

→ NY (	φ(x), 	φ(y))
) = DN (φ).

This shows the correspondence (X ,NX ) � (X , RNX )

induced a concrete functor Γ : ALF-NRS → LF-UASwith
Γ (X ,NX ) = (X , RNX ), Γ (φ) = φ.

(2)

DRN (φ) =
∧
f ∈LY

S
(
φ←(RNY

( f )), RNX
(φ←( f ))

)

=
∧
f ∈LY

∧
x∈X

(
φ←(RNY

( f ))(x) → RNX
(φ←( f ))(x)

)

=
∧
f ∈LY

∧
x∈X

(
(

∧
φ(y)∈Y

NY (	φ(x),	φ(y)) → f (φ(y))
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→
⎛
⎝∧

y∈X
NX (	x ,	y) → φ←( f )(y))

⎞
⎠

≥
∧
f ∈LY

∧
x,y∈X

(
(NY (	φ(x),	φ(y)) → f (φ(y)))

→ (NX (	x ,	y) → f (φ(y)))
)

≥
∧

x,y∈X
(NX (	x ,	y)

→ NY (	φ(x),	φ(y))) = DN (φ).

This shows the correspondence (X ,NX ) � (X , RNX
)

induced a concrete functor Υ : ALF-NRS → LF-LASwith
Υ (X ,NX ) = (X , RNX

), Υ (φ) = φ.
(3) By Theorem 13, we have

DUN (φ) =
∧

v∈LY×Y

(UNY (v) → UNX ((φ × φ)←(v))
)

=
∧

v∈LY×Y

( ∧
φ(x),φ(y)∈Y(NY (	φ(x),	φ(y)) → v(φ(x), φ(y))

)
→

∧
x,y∈X

(NX (	x ,	y)

→ (φ × φ)←(v)(x, y)
))

≥
∧

x,y∈X
(NX (	φ←(x),	φ←(y))

→ NY (	x ,	y)) = DN (φ).

This shows the correspondence (X ,NX ) � (X ,UNX )

induced a concrete functor Δ : ALF-NRS → ALF-UNS
with Δ(X ,NX ) = (X ,UNX ),Δ(φ) = φ.

(4)

DξN (φ) =
∧

f ,g∈LY

(
ξNY ( f , g)

→ ξNX (φ←( f ), φ←(g))
)

=
∧

f ,g∈LY

⎛
⎝ ∧

φ(x)∈Y
(NY ( f ,	φ(x)) → g(φ(x))

⎞
⎠

→
(∧
x∈X

(NX (φ←( f ),	x ) → φ←(g)(x))

)

≥
∧

f ,g∈LY

∧
x∈X

(
(NY ( f ,	φ(x)) → g(φ(x)))

→ (NX (φ←( f ),

φ←(	φ(x))) → g(φ(x)))
)

≥
∧
f ∈LY

∧
x∈X

(NX (φ←( f ), φ←(	φ(x)))

→ NY ( f ,	φ(x))) = DN (φ).

This shows the correspondence (X ,NX ) � (X , ξNX )

induced a concrete functor Ψ : ALF-NRS → ALF-TGS
with Ψ (X ,NX ) = (X , ξNX ), Ψ (φ) = φ. ��
Proposition 4 The pair (Π, Γ ) forms a Galois correspon-
dence between the category LF-UAS and the category
ALF-NRS.

Proof DN (idX ) = 	, where idX : (X , (Π ◦ Γ )(NX )) →
(X ,NX ). By Theorems 1 and 3, we have

DN (idX ) = DN (Π ◦ Γ )

=
∧
f ∈LX

∧
x∈X

(
NRNX

( f ,	x ) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(∨
x∈X

RNX ( f )(x) → NX ( f ,	x )

)

=
∧
f ∈LX

∧
x∈X

(
(

∨
x,y∈X

NX (	x ,	y)

� f (y)) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(
(
∨
x∈X

NX (	x ,	x )

� f (x)) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(NX (
∨
x∈X

	x

� f (x),	x ) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(NX ( f ,	x ) → NX ( f ,	x )
) = 	.

Thus, Π is a left inverse of Γ for any (X ,NX ) ∈
ALF-NRS and idX : (X , (Π ◦ Γ )(NX )) → (X ,NX ) is
an LF-near map.

Secondly, we show that DR(idX ) = 	, where idX :
(X , RX ) → (X , (Γ ◦ Π)(RX )),

DR(idX ) = DR(Γ ◦ Π)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x) → RNRX

( f )(x)
)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x)

→
∨
y∈X

NRX
(	x ,	y) � f (y)

)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x)

→
∨

x,y∈X
RX (	x )(y) � f (y)

)

≥
∧
f ∈LX

∧
x∈X

(
RX ( f )(x)
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→
∨
x∈X

RX (	x )(x) � f (x)
)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x) → RX (

∨
x∈X

	x � f (x))(x)

)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x) → RX ( f )(x)

) = 	.

Thus, Π is a right inverse of Γ for any (X , RX ) ∈
LF-UAS and idX : (X , RX ) → (X , (Γ ◦Π)(RX )) is an LF-
upper approximation map. The pair (Π, Γ ) forms a Galois
correspondence between the category LF-UAS and the cat-
egory ALF-NRS. ��
Proposition 5 The pair (Ω,Υ ) forms a Galois correspon-
dence between the category LF-LAS and the category
ALF-NRS.

Proof Firstly, we show that DN (idX ) = 	, where idX :
(X , (Ω ◦ Υ )(NX )) → (X ,NX ). By Theorems 2 and 3, we
have

DN (idX ) = DN (Ω ◦ Υ )

=
∧
f ∈LX

∧
x∈X

(NRNX
( f ,	x ) → NX ( f ,	x )

)

=
∧
f ∈LX

∧
x∈X

( ∨
x∈X

R∗
NX

( f ∗)(x) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

( ∨
x∈X

(
∧
y∈X

(NX (	x ,	y)

→ f ∗(y)))∗ → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(
(

∨
x,y∈X

NX (	x ,	y)

� f (y)) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(NX (
∨
x∈X

	x � f (x),	x ) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(NX ( f ,	x ) → NX ( f ,	x )) = 	.

Thus, Ω is a left inverse of Υ for any (X ,NX ) ∈
ALF-NRS and idX : (X , (Ω ◦ Υ )(NX )) → (X ,NX ) is
an LF-near map.

Secondly, we show that DR(idX ) = 	, where idX :
(X , RX ) → (X , (Υ ◦ Ω)(RX )),

DR(idX ) = DR(Υ ◦ Ω)

=
∧
f ∈LX

S
(
RNRX

( f ), RX ( f )
)

=
∧
f ∈LX

∧
x∈X

(
RNRX

( f )(x) → RX ( f )(x)
)

=
∧
f ∈LX

∧
x∈X

(
(
∧
y∈X

(NRX

(	x ,	y) → f (y))) → RX ( f )(x)
)

=
∧
f ∈LX

∧
x,y∈X

(
(
∨
y∈X

R∗
X (	∗

x )(y) → f (y)) → RX ( f )(x)
)

≥
∧
f ∈LX

∧
x∈X

(( f (x) → RX (
∧
x∈X

	∗
x )(x)) → RX ( f )(x)

)

=
∧
f ∈LX

∧
x∈X

(
RX ( f (x) →

∧
x∈X

	∗
x )(x) → RX ( f )(x)

)

=
∧
f ∈LX

∧
x∈X

(
RX (

∨
x∈X

f (x)

� 	x )(x) → RX ( f )(x)
)

=
∧
f ∈LX

∧
x∈X

(
RX ( f )(x) → RX ( f )(x)

) = 	.

Thus, Ω is a right inverse of Υ for any (X , RX ) ∈
LF-LAS and idX : (X , RX ) → (X , (Υ ◦ Ω)(RX )) is an
LF-lower approximation map.

The pair (Ω,Υ ) forms a Galois correspondence between
the category LF-LAS and the category ALF-NRS. ��
Proposition 6 The pair (Φ,Δ) forms a Galois correspon-
dence between the category ALF-UNS and the category
ALF-NRS.

Proof Firstly, we show that DN (idX ) = 	, where idX :
(X , (Φ ◦ Δ)(NX )) → (X ,NX ). By Theorems 4 and 5, we
have

DN (idX ) = DN (Φ ◦ Δ)

=
∧
f ∈LX

∧
x∈X

(NUNX
( f ,	x ) → NX ( f ,	x )

)

=
∧
f ∈LX

∧
x∈X

(U∗
NX

(u f ,	∗
x
)

→ NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

( ∨
x,y∈X

(NX (	x ,	y)

→ u f ,	∗
x
(x, y))∗ → NX ( f ,	x )

)
=

∧
f ∈LX

∧
x∈X

( ∨
x,y∈X

(NX (	x ,	y)

� f (x) � 	x (y)) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(
(NX (

∨
x∈X

	x � f (x),	x )) → NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(NX ( f ,	x ) → NX ( f ,	x )
) = 	.
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Thus, Φ is a left inverse of Δ for any (X ,NX ) ∈
ALF-NRS and idX : (X , (Φ ◦ Δ)(NX )) → (X ,NX ) is
an LF-near map.

Secondly, we show that DU (idX ) = 	, where idX :
(X ,UX ) → (X , (Δ ◦Φ)(UX )). Since u = ∧

x,y∈X (u∗(x, y)
→ u	x ,	∗

y
), then we have

DU (idX ) = DU (Δ ◦ Φ)

=
∧

u∈LX×X

(UNUX
(u) → UX (u)

)

=
∧

u∈LX×X

( ∧
x,y∈X

(NUX (	x ,	y) → u(x, y))

→ UX (u)
)

=
∧

u∈LX×X

( ∧
x,y∈X

(U∗
X (u	x ,	∗

y
)

→ u(x, y)) → UX (u)
)

=
∧

u∈LX×X

(UX (
∧

x,y∈X
(u∗(x, y)

→ u	x ,	∗
y
)) → UX (u)

)
=

∧
u∈LX×X

(UX (u) → UX (u)
) = 	.

Thus, Φ is a right inverse of Δ for any (X ,UX ) ∈
ALF-UNS and idX : (X ,UX ) → (X , (Δ ◦ Φ)(UX )) is an
LF-uniformly continuous map.

The pair (Φ,Δ) forms a Galois correspondence between
the category ALF-UNS and the category ALF-NRS. ��

Proposition 7 The pair (Θ,Ψ ) forms a Galois correspon-
dence between the category ALF-TGS and the category
ALF-NRS.

Proof Firstly, we show that DN (idX ) = 	, where idX :
(X , (Θ ◦ Ψ )(NX )) → (X ,NX ). By Theorems 6 and 7, we
have

DN (idX ) = DN (Θ ◦ Ψ )

=
∧
f ∈LX

∧
x∈X

(NξNX
( f ,	x ) → NX ( f ,	x )

)

=
∧
f ∈LX

∧
x∈X

(
ξ∗
NX

( f ,	∗
x ) → NX ( f ,	x )

)

=
∧
f ∈LX

∧
x∈X

(
(
∧
x∈X

(NX ( f ,	x ) → 	∗
x (x)))

∗

→ NX ( f ,	x )
)

=
∧
f ∈LX

∧
x∈X

(
(NX ( f ,	x ) � 	x (x))

→ NX ( f ,	x )
) = 	.

Thus, Θ is a left inverse of Ψ for any (X ,NX ) ∈
ALF-NRS and idX : (X , (Θ ◦ Ψ )(NX )) → (X ,NX ) is
an LF-near map.

Secondly, we show that Dξ (idX ) = 	, where idX :
(X , ξX ) → (X , (Ψ ◦ Θ)(ξX )), we have

Dξ (idX ) = Dξ (Ψ ◦ Θ)

=
∧

f ,g∈LX

(
ξNξX

( f , g) → ξX ( f , g)
)

=
∧

f ,g∈LX

( ∧
x∈X

(NξX ( f ,	x )

→ g(x)) → ξX ( f , g)
)

=
∧

f ,g∈LX

( ∧
x∈X

(ξ∗
X ( f ,	∗

x ) → g(x)) → ξX ( f , g)
)

=
∧

f ,g∈LX

( ∧
x∈X

(g∗(x) → ξX ( f ,	∗
x )) → ξX ( f , g)

)

=
∧

f ,g∈LX

(
ξX ( f ,

∧
x∈X

(g∗(x) → 	∗
x ))) → ξX ( f , g)

)

=
∧

f ,g∈LX

(
ξX ( f , g) → ξX ( f , g)

) = 	.

Thus, Θ is a right inverse of Ψ for any (X , ξX ) ∈
ALF-TGS and idX : (X , ξX ) → (X , (Ψ ◦ Θ)(ξX )) is an
LF-topogenous map.

The pair (Θ,Ψ ) forms a Galois correspondence between
the category

ALF-TGS and the category ALF-NRS. ��

6 Conclusion

As a unified structure of extension of Pawlak’s rough set
Pawlak (1982, 1991), we have the following

(1) we reintroduce the Alexandrov L-fuzzy nearness and
presented its relations with some L-fuzzy systems such
as: L-fuzzy rough sets, L-fuzzy semi-topogenous orders
and L-fuzzy uniformities in complete residuated lattice.
Unlike the late paper Ramadan et al. (2019), we dis-
cussed its relations with different other systems: L-fuzzy
topological spaces (interior, closure, co-topology) and L-
fuzzy pre-proximities.

(2) in this paper, we present the degree of continuity concept
and equip it to prove that property for the mentioned
systems unlike the late paper Ramadan et al. (2019) in
which we discussed the continuity property in the regular
sense.

(3) in this paper, we extend the degree sense to demon-
strate the Galois correspondence among the categories
of Alexandrov L-fuzzy nearness ALF-NRS, L-fuzzy
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lower approximation spaces LF-LAS, L-fuzzy upper
approximation spaces LF-UAS, Alexandrov L-fuzzy
pre-uniformities ALF-UNS and Alexandrov L-fuzzy
semi-topogenous spaces ALF-TGS and prove its exis-
tence unlike the late paperRamadan et al. (2019) inwhich
we demonstrated it in the regular sense.

(4) like the late paper Ramadan et al. (2019), we present
example 1 through fuzzy information system which con-
firm the feasibility of using the proposed approaches to
solve daily problems.
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