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Abstract
In this paper, the two-parameter Pareto lifetime distribution is considered with vague shape and scale parameters, where
parameters are set as generalized intuitionistic fuzzy numbers. A new L-R type intuitionistic fuzzy number is introduced,
and cuts of the new fuzzy set are provided. The generalized intuitionistic fuzzy reliability characteristics such as reliability,
conditional reliability, hazard rate and mean time to failure functions are defined, along with the special case of the two-
parameter Pareto generalized intuitionistic fuzzy reliability analysis. Furthermore, the series and parallel system reliability
are evaluated by the generalized intuitionistic fuzzy sets. Finally, for certain cases of the fuzzy shape and scale parameters
and cut set values, the generalized intuitionistic fuzzy reliability characteristics are provided and compared through several
illustrative plots.

Keywords Generalized L-R type intuitionistic fuzzy numbers · (α1, α2)-cut set · Generalized intuitionistic fuzzy reliability ·
Generalized intuitionistic fuzzy probability · Two-parameter Pareto distribution

1 Introduction

The fuzzy sets (FSs) theory as a generalization of the classical
theory of sets provides the uncertainty associated with clas-
sification or imprecision. In the FSs, elements are defined by
their membership function, which represents the possibility
of the occurrence of an event to accommodate the uncer-
tainty. In the last decades, several developments of the FSs
are recommended, containing the L-fuzzy, interval-valued
fuzzy, rough and intuitionistic fuzzy sets (IFSs). The appli-
cation of IFSs instead of FSsmeans providing another degree
of freedom into a set description. In other words, the IFSs
are equipped by the degree of hesitation, which handles the
ambiguity and vagueness along with the membership, non-
membership and hesitancy functions.

The IFSs conception has been applied in a wide range
of branches, such as reliability (Shu et al. 2006; Aikhuele
2020), transportation problem (Mahmoodirad et al. 2019;
Mishra and Kumar 2020), data envelopment analysis (Puri
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and Yadav 2015; Arya and Yadav 2019) and decisionmaking
(Yang et al. 2021; Pękala et al. 2021).

Atanassov (2017) provided a comparison study among the
type-1 fuzzy sets and IFSs and transformed some concepts
from the IFSs theory to the type-1 fuzzy sets theory. The
theory included new operations, relations, and operators that
extend the operators defined over the type-1 fuzzy sets.

The triangular intuitionistic fuzzy number (TIFN) is
introduced byMahapatra and Roy (2009) for reliability anal-
ysis purposes. Afterward, Mahapatra and Mahapatra (2010)
reported the intuitionistic fuzzy fault tree using the arithmetic
operation of trapezoidal intuitionistic fuzzy number (TrIFN),
which are evaluated based on the (α, β)-cuts method.

Varghese and Rosario (2021) introduced the Pendant,
Hexant and Octant fuzzy numbers along with the α-cuts are
defined and mathematical operations. The reliability anal-
ysis based on different fuzzy numbers was compared via
the numerical examples, and defuzzification was performed
using various approaches, including the signed distance,
graded mean integration and centroid methods, with special
attention to the reliability of the weaving machine.

Feng et al. (2020) concentrated on the generalizations
of the expectation score function called Minkowski score
functions of intuitionistic fuzzy values (IFV) and ranking
IFV from a geometric perspective in decision-making issues.
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They provided a new algorithm for solving decision-making
problems based on the Minkowski weighted score function
and the maximizing deviation method under the IFSs.

Due to uncertainty in medical diagnosis, incomplete
evidence and imprecise information, Kozae et al. (2020)
introduced a new definition of IFS and evaluated its imple-
mentation in the Covid-19 pandemic.

Citakoglu et al. (2014) estimated the monthly mean refer-
ence evapotranspiration through the adaptive network-based
fuzzy inference system and artificial neural network models,
and Cobaner et al. (2014) estimated the means of maximum,
minimum and average monthly temperatures as a function of
geographical coordinates andmonth number for any location
in Turkey by the artificial neural networks, adaptive neuro-
fuzzy inference system andmultiple linear regressionmodels
(see also Citakoglu 2017; Citakoglu 2015).

The classical reliability analysis is based on the crisp
information on lifetime data and cannot cover the uncer-
tainty environments regarding the randomness, vagueness,
ambiguity, and imprecision with different and specific char-
acteristics. The uncertainties in the reliability fields are
concernedwith the components, parameters, phenomena and
underlying assumptions. The estimation methods for relia-
bility characteristics must be modified based on the fuzzy
lifetimes to attain a more realistic analysis and exploit the
uncertainty or imprecision in the data. The concept of the FS
has also received considerable attention from system reliabil-
ity analysis researchers such as Mahapatra and Roy (2012),
Pan et al. (2015), Pramanik et al. (2019) and El-Damcese
et al. (2014).

The fuzzy reliability analysis is illustrated based on var-
ious lifetime distributions, for instance, exponential (Baloui
Jamkhaneh 2011), Weibull (Baloui Jamkhaneh 2014),
Rayleigh (Pak et al. 2014) and three-parameter Weibull,
Pareto and Gamma (Shafiq et al. 2017).

Liu et al. (2007) illustrated the fuzzy reliability analysis
and mean time to failure of series, parallel, series-parallel,
parallel-series and cold standby systems. Kumar et al. (2013)
extended the fuzzy set semantics to IFS and analyzed IFS
reliability based on the profust reliability theory, where the
failure rate is represented by a time-dependent TIFN. Sharma
et al. (2012) provided the fuzzy reliability of systems by IFS
and implemented the TIFN and its arithmetic operations.
Akbari and Hesamian (2020) considered the intuitionistic
fuzzy random variable with crisp parameters and reported
a procedure for constructing time-dependent reliability sys-
tems. The uncertainty of the number of failures is modulated
with the aid of a fuzzy framework by Husniah and Supriatna
(2021), where Weibull failure distribution is considered with
the fuzzy shape parameter.

The new generalized intuitionistic fuzzy sets (GIFSB)
along with some operators over GIFSB and the new general-
ized intuitionistic fuzzy number (GIFNB) based on the GIFS

have been, respectively, introduced by Baloui Jamkhaneh
and Nadarajah (2015) and Shabani and Baloui Jamkhaneh
(2014). Baloui Jamkhaneh (2016) represented the values
and indeterminacy of the degree of membership and non-
membership functions of GIFSB and Baloui Jamkhaneh
(2017) considered the generalized intuitionistic fuzzy expo-
nential lifetime distribution and the reliability analysis based
on GIFSB . Ebrahimnejad and Baloui Jamkhaneh (2018) and
Roohanizadeh et al. (2021), respectively, considered system
reliability of Rayleigh and Pareto distributions with GIFNB .

The heavy-tailed univariate Pareto distribution has been
used often to model reliability and continuous lifetime data,
which was first proposed as a model for rare events as the
survival function slowly decreases in comparison to other
life distributions. The Pareto distribution has been applied in
modeling various phenomena in the description of hydrology,
insurance, scientific, finance, and actuarial science, which
can be found in the works of Amin (2008), Fu et al. (2012),
Prakash (2017), Lee and Kim (2018) and Ghitany et al.
(2018). According to practical purposes and research, sev-
eral kinds of Pareto distribution are introduced. In this paper,
we concentrate on two-parameter Pareto distribution with
fuzzy scale and fuzzy shape parameters.

The purpose of the paper has twofold. First, we provide
a new generalized L-R type intuitionistic fuzzy number with
corresponding (α1, α2) cut sets. The second principal aim
is extending the reliability characteristics in the GIFS envi-
ronment, which was introduced by Baloui Jamkhaneh and
Nadarajah (2015),with special attention to the two-parameter
Pareto distribution. We consider Pareto distribution, which
has the uncertainty in its lifetime scale and shape parameters
by the GIFN. The vagueness in the reliability characteristics
is represented perfectly by parameter fuzzification into the
GIFNB , and the generalized intuitionistic fuzzy reliability
(GIFR) modeling is introduced via the generalized intuition-
istic fuzzy probabilities (GIFP). Several characteristics such
as conditional reliability, hazard and mean time to failure
functions are obtained via generalized intuitionistic fuzzy
parameters. Also, the fuzzy reliability of the series and par-
allel system has been represented separately.

The structure of the present paper is organized as follows.
In Sect. 2, we report some basic concepts of GIFNB . The
GIFP is introduced in Sect. 3, where parameters are set as
the GIFNB . In Sect. 4, we obtain the GIFR characteristics,
which include the reliability, conditional reliability, hazard
and mean time to failure functions, and as a special case, we
consider the two-parameter Pareto distribution with GIFNB

scale and shape parameters. Section 5 concentrates on GIFR
for both series and parallel systems. Finally, in Sect. 6, the
graphical illustration and numerical example confirm the the-
oretical outcomes.
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2 Preliminaries

In this section, we concentrate on the GIFSB with basic
GIFNB elements that are summarized in the next Defini-
tions. Also, a new generalized L-R type intuitionistic fuzzy
number is provided, which is used throughout the paper.

Definition 1 (Baloui Jamkhaneh and Nadarajah 2015) The
generalized intuitionistic fuzzy set (GIFSB(X)) A in X , is
defined as follows

A = {〈x, μA(x), νA(x)〉 : x ∈ X} ,

where X is a non-empty set andμA : X → [0, 1], νA : X →
[0, 1] denote the degree ofmembership and non-membership
functions of x in A, respectively. Also, 0 ≤ μδ

A(x)+νδ
A(x) ≤

1, ∀ x ∈ X and δ = n or 1
n , n = 1, 2, . . . , N .

Afterward, Shabani and Baloui Jamkhaneh (2014) intro-
duced the GIFNB based on the GIFSB(X) defined in Defini-
tion 1. We review the GIFNB in the next Definition.

Definition 2 (Shabani and Baloui Jamkhaneh 2014) Con-
sider GIFSB (X) from the real number domain, a generalized
L-R type intuitionistic fuzzy number A is defined with the
following membership μA (x) and non-membership νA (x)
functions

μA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

f L(x), a ≤ x ≤ b
u, b ≤ x ≤ c
f R (x) , c ≤ x ≤ d
0, o.w

,

νA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

gL (x) , a1 ≤ x ≤ b
w, b ≤ x ≤ c
gR (x) , c ≤ x ≤ d1
1, o.w

,

such that bound values must be satisfied in a1 ≤ a ≤ b ≤
c ≤ d ≤ d1 constraint and

0 ≤ μδ
A(x) + νδ

A(x) ≤ 1, ∀x ∈ X .

The basis left
(
f L (x) , gL (x)

)
and right

(
f R (x) , gR (x)

)

are continuous monotone membership and non-membership
functions, where f L (x) , gR (x) are increasing and f R (x) ,

gL (x) are decreasing functions.

A class of generalized L-R type intuitionistic fuzzy num-
ber (GIFNB) A is defined as

μA (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( (x − a)μ

b − a

) 1
δ
, a ≤ x ≤ b

μ
1
δ , b ≤ x ≤ c

( (d − x)μ

d − c

) 1
δ
, c ≤ x ≤ d

0, o.w

,

νA (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 − (1 − ν)(x − a1)

b − a1

) 1
δ
, a1 ≤ x ≤ b

ν
1
δ , b ≤ x ≤ c
(
1 − (1 − ν)(d1 − x)

d1 − c

) 1
δ
, c ≤ x ≤ d1

1, o.w

.

with the condition μ + ν ≤ 1.
The GIFNB A is denoted as A = (a1, a, b, c, d, d1, μ, ν, δ),
where μA (x) and 1 − νA (x) are fuzzy numbers. Two

parameters μ
1
δ and ν

1
δ reflect the confidence level and non-

confidence level of the A, respectively.
The α-cut of a fuzzy set is the classical set that includes

all the elements of the set with greater than or equal to the
specified value of α membership degree. Baloui Jamkhaneh
(2016) introduced the (α1, α2)-cut ofGIFNB , which is briefly
explained in Definition 3.

Hereafter in the paper, we select the fixed numbers
α1, α2 ∈ [0, 1] such that both hold in the constraint 0 ≤
α1 ≤ μ

1
δ , ν

1
δ ≤ α2 ≤ 1 and 0 ≤ αδ

1 + αδ
2 ≤ 1, to avoid

repetition.

Definition 3 (Baloui Jamkhaneh (2016)) Consider the set of
(α1, α2)-cut generated by a GIFNB A defined by

A [α1, α2, δ] = { 〈x, μA (x) ≥ α1,

νA (x) ≤ α2〉 : x ∈ X
}
.

A [α1, α2, δ] is defined as the crisp set of elements x which
belong to A at least α1 degree and does not belong to A at
most α2 degree. The α1-cut set of a GIFNB A is a crisp subset
of real number domain R, which is defined as

A [α1, δ] = {〈x, μA (x) ≥ α1〉 : x ∈ X}
= [L1(α1),U1(α1)] ,

where

L1(α1) = a + (b − a) αδ
1

μ
, U1(α1) = d − (d − c) αδ

1

μ
.

Analogously, the α2-cut set of a GIFNB A is a crisp subset
of R as

A [α2, δ] = {〈x, νA (x) ≤ α2〉 : x ∈ X}
= [L2(α2),U2(α2)] ,

where

L2(α2) = a1 + (b − a1)(1 − αδ
2)

1 − ν
,

U2(α2) = d1 − (d1 − c)(1 − αδ
2)

1 − ν
.
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Similarly,

A [α1, α2, δ]

= {〈x, μA (x) ≥ α1, 1 − νA (x) ≥ 1 − α2〉 : x ∈ X} .

If set α1 = 1 − α2 = α, then

A [α1, α2, δ] = {〈x, μA (x) ≥ α, 1 − νA (x) ≥ α〉 : x ∈ X} .

The GIFNB based on the α1-cut and α2-cut sets is shown
as

A (α1, α2, δ) = (Aμ [α1, δ] , Aν [α2, δ]).

Definition 4 Consider two α-cut sets [a, b] and [c, d], some
relations and operations on α-cut sets are defined as follows:

(i) The relation [a, b] � [c, d] is hold, if and only if a ≤ c
and b ≤ d,

(ii) If k > 0, then k ⊗ [a, b] = [ka, kb] and if k < 0, then
k ⊗ [a, b] = [kb, ka],

(iii) k⊕[a, b] = [k + a, k + b] and k�[a, b] = [k−b, k−
a],

(iv) [a, b] ⊕ [c, d] = [a + c, b + d] .

Definition 5 Several relations and operations on GIFNBs are
listed as below:

(i) A (α1, α2, δ) ⊕ B (α1, α2, δ)

= (
Aμ [α1, δ]⊕ Bμ [α1, δ] , Aν [α2, δ] ⊕ Bν [α2, δ]

)
,

(ii) k ⊗ A (α1, α2, δ) ⊕ b = (
k ⊗ Aμ [α1, δ] ⊕ b, k ⊗

Aν [α2, δ] ⊕ b
)
,

(iii) b � A (α1, α2, δ) = (b � Aμ [α1, δ] , b � Aν [α2, δ]),

(iv) A (α1, α2, δ) � B (α1, α2, δ), if and only if
Aμ [α1, δ] � Bμ [α1, δ] and Aν [α2, δ] � Bν [α2, δ],

(v) A (α1, α2, δ) = B(α1, α2, δ), if and only if Aμ [α1, δ]
= Bμ [α1, δ] and Aν [α2, δ] = Bν [α2, δ].

where A (α1, α2, δ) and B (α1, α2, δ) are two GIFNBs.

3 Generalized intuitionistic fuzzy probability

The uncertainty in lifetime datamay be caused by the random
variables or parameters of the model. Here, we focus on the

imprecise parameters modeled by fuzzy numbers. We intro-
duce the fuzzy probability where parameters of the model
are considered as the GIFNB .

Consider the continuous randomvariable X fromadensity
function f (x, θ̃ , β̃) where θ̃ and β̃ are GIFNB . Then, α1-
cut set of membership and α2-cut set of non-membership
functions of the GIFP of C is defined as

Pj (C) [αi , δ] = {P (C) | θ ∈ θ j [αi , δ] , β ∈ β j [αi , δ]}
=
[
PL
j (C)[αi ], PU

j (C)[αi ]
]
,

(i, j) = (1, μ) , (2, ν) ,

where P (C) is the crisp probability defined as P (C) =∫

C f (x, θ) dx, and

PL
j (C)[αi ] = inf

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P(C),

PU
j (C)[αi ] = sup

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P(C), (i, j) = (1, μ) , (2, ν) .

Consequently,

P̃ (C) = P (C) (α1, α2, δ)

=
(
Pμ (C) [α1, δ] , Pν(C) [α2, δ]

)
,

which is the GIFNB and (α1, α2)-cut set of GIFP of C is
defined as

P (C) [α1, α2, δ]

= {
w,w ∈ Pμ(C) [α1, δ] ∩ Pν(C) [α2, δ]

}
.

Corollary 1 Consider the GIFP as P(C), then

(i) P (Cc) (α1, α2, δ) = 1 � P(C) (α1, α2, δ),
(ii) IfC1 ⊂ C2 then P (C1) (α1, α2, δ) � P (C2) (α1, α2, δ).

Proof (i) Regarding to the definition of GIFP, for (i, j) =
(1, μ) , (2, ν) we have

Pj
(
Cc) [αi , δ]

= {
1 − P (C) | θ ∈ θ j [αi , δ] , β ∈ β j [αi , δ]

}

=
[
PL
j

(
Cc) [αi ], PU

j

(
Cc) [αi ]

]

=

⎡

⎢
⎢
⎣ inf

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(1 − P (C)) , sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(1 − P (C))

⎤

⎥
⎥
⎦
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=

⎡

⎢
⎢
⎣1 − sup

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C) , 1 − inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C)

⎤

⎥
⎥
⎦

= 1 �
[
PL
j (C) [αi ] , P

U
j (C) [αi ]

]
,

which is verified by Definition 5-v. (ii) Since P (C1) ≤
P(C2), so

Pj (C1) [αi , δ]

=
[

inf θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C1) , supθ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C1)

]

�
[

inf θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C2) , supθ∈θ j [αi ,δ]
β∈β j [αi ,δ]

P (C2)

]

= Pj (C2) [αi , δ] ,

and based on Definition 5-iv, the proof is completed. ��
The fuzzification of some statistical concepts, including

expectation and variance, can be induced by the specification
of GIFP.
A set of α1-cut of membership and α2-cut set of non-
membership functions of generalized intuitionistic fuzzy
expectation (GIFE) Ẽ(g (X)) is determined as

E j (g (X)) [αi , δ]

= {E(g (X)) | θ ∈ θ j [αi , δ] , β ∈ β j [αi , δ]}
=
[
EL

j (g (X)) [αi ], EU
j (g (X))[αi ]

]
,

where (i, j) = (1, μ) , (2, ν) and based on the crisp expec-
tation E(g (X)), we have

EL
j (g (X)) [αi ] = inf

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E(g (X)),

EU
j (g (X))[αi ] = sup

θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E(g (X)).

Consequently, it is concluded that

E(g (X)) (α1, α2, δ)

= (
Eμ(g (X)) [α1, δ] , Eυ(g (X)) [α2, δ]

)
,

and (α1, α2)-cut set of GIFE of g (X) is described as

E(g (X)) [α1, α2, δ]

= (
Eμ(g (X)) [α1, δ] ∩ Eυ(g (X)) [α2, δ]

)
.

Remark 1 The GIFE of X(μ̃) and generalized intuitionistic
fuzzy variance of X(σ̃ 2) are obtained by the assumptions
g (X) = X and g (X) = (X − E (X))2, respectively.

Corollary 2 Consider a, b, c as constant numbers, then

(i) Ẽ (c) = c,
(ii) Ẽ (ag (X) + b) = a ⊗ Ẽ(g(X)) ⊕ b,
(iii) σ̃ 2 (c) = 0,
(iv) σ̃ 2 (aX + b) = a2 ⊗ σ̃ 2 (X).

Proof (i) and (iii) are obvious and the proofs are omitted. The
proof of (ii) is obtained as follows:

inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E (ag (X) + b) = a inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E (g (X)) + b,

sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E (ag (X) + b) = a sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

E (g (X)) + b,

(i, j) = (1, μ) , (2, ν).

Also, (iv) is concluded by

inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

σ 2 (aX + b) = a2 inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

σ 2 (X) ,

sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

σ 2 (aX + b) = a2 sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

σ 2 (X) ,

(i, j) = (1, μ) , (2, ν),

and the proof is completed. ��

4 Generalized intuitionistic fuzzy reliability
analysis

The intuitionistic fuzzy approach for reliability parameter
analysis leads to more flexible information that can capture
subjective, uncertain, and ambiguous information.

Consider X as a lifetime variable of a component with a
density function f (x, θ̃ )where the vector of the parameters θ̃

is the GIFNB and the GIFR characteristic (GIFRC) denoted
by g̃ (t). A set ofα1-cut ofmembership andα2-cut set of non-
membership functions of GIFRC are denoted by g j (t) [αi , δ]
as

g j (t) [αi , δ] = {g (t) | θ ∈ θ j [αi , δ] , β ∈ β j [αi , δ]}
=
[
gLj (t) [αi ], gUj (t)[αi ]

]
,

where

gLj (t)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

g(t),
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gUj (t) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

g(t), (i, j) = (1, μ) , (2, ν) .

The function g(t) can be considered as the reliability, con-
ditional reliability, hazard rate, cumulative risk and reverse
hazard functions. It can be shown that g (α1, α2, δ) =
(gμ(t) [α1, δ] , gν(t) [α2, δ]) and the (α1, α2)-cut set of
GIFRC is defined as

g(t) [α1, α2, δ]

= {
w,w ∈ gμ(t) [α1, δ] ∩ gν(t) [α2, δ]

}
.

In the next subsection, we provide different reliability
characteristics, comprehensively. Also, the fuzzy reliability
characteristics of the two-parameter Pareto lifetime distribu-
tion with the scale parameter λ and shape parameter γ is
provided as a special case.

4.1 Generalized intuitionistic fuzzy reliability
function

The fuzzy reliability accounts for the uncertainty of the
membership and non-membership grades of the component’s
reliability. In this section, the GIFR as the GIFP of surviving
beyond time t , denoted by S̃ (t), is constructed based on the
lifetime GIFNB parameters.

The α1-cut set of membership and α2-cut set of non-
membership functions of GIFR of component denoted by
S j (t) [αi , δ], are obtained as

S j (t) [αi , δ] = {S (t) | θ ∈ θ j [αi , δ] , β ∈ β j [αi , δ]}
= [

SLj (t) [αi ], SUj (t)[αi ]
]
,

(i, j) = (1, μ) , (2, ν),

where S(t) is the crisp reliability function and

SLj (t)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

S(t),

SUj (t) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

S(t), (i, j) = (1, μ) , (2, ν),

and it can be shown as

S (α1, α2, δ) = (Sμ(t) [α1, δ] , Sν(t) [α2, δ]).

The (α1, α2)-cut set of GIFR is defined as follows:

S(t) [α1, α2, δ]

= {
w,w ∈ Sμ(t) [α1, δ] ∩ Sν(t) [α2, δ]

}
,

where S j (t) [αi , δ] , (i, j) = (1, μ) , (2, ν) are two-variate
functions in terms of αi , i = 1, 2 and t . For t0, S̃ (t0) is the
GIFNB .

As a special case, we consider the two-parameter Pareto
distribution and provide each corresponding reliability char-
acteristic, respectively. Consider the random variable X from
the two-parameter Pareto lifetime distribution

f (x, λ) = λγ λ

xλ+1 , x > γ, λ, γ > 0,

which has the uncertainty in both scale and shape parameters
and the vagueness are represented by fuzzifying the param-
eter values into a GIFNB . Set the generalized intuitionistic
fuzzy lifetime scale parameter

λ̃ = (a11, a1, b1, c1, d1, d11, μ, ν, δ),

and shape parameter

γ̃ = (a21, a2, b2, c2, d2, d21, μ, ν, δ),

then, the cut sets of GIFR function for (i, j) = (1, μ) , (2, ν)

is obtained as follows

S j (t) [αi , δ] =
{(γ

t

)λ|λ ∈ λ j [αi , δ], γ ∈ γ j [αi , δ]
}

.

Since (
γ
t )λ is a monotonically decreasing with respect to λ

and increasing with respect to γ , the reliability bands are
given by

Sμ (t) [α1, δ] =

⎡

⎢
⎢
⎢
⎣

⎛

⎝
a2 + (b2−a2)αδ

1
μ

t

⎞

⎠

d1− (d1−c1)α
δ
1

μ

,

⎛

⎝
d2 − (d2−c2)αδ

1
μ

t

⎞

⎠

a1+ (b1−a1)α
δ
1

μ

⎤

⎥
⎥
⎥
⎦

,

Sν (t) [α2, δ] =

⎡

⎢
⎢
⎢
⎣

⎛

⎝
a21 + (b2−a21)(1−αδ

2)

1−ν

t

⎞

⎠

d11− (d11−c1)(1−αδ
2)

1−ν

,

⎛

⎝
d21 − (d21−c2)(1−αδ

2)

1−ν

t

⎞

⎠

a11+ (b1−a11)(1−αδ
2)

1−ν

⎤

⎥
⎥
⎥
⎦

.

In this method, for every specially α10 and α20, shapes of
S j (t) [αi0, δ] ,
(i, j) = (1, μ), (2, ν) are like bands with upper and lower
curves. For (i, j) = (1, μ), (2, ν), this reliability bands has
the following properties
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(i) S j (0) [αi0, δ] = [1, 1], i.e., no one starts off dead,
(ii) S j (∞) [αi0, δ] = [0, 0], i.e., everyone dies eventually,
(iii) S j (t1) [αi0, δ] � S j (t2) [αi0, δ] if and only if t1 ≤ t2,

i.e., bands of S j (t) [αi0, δ] declines monotonically.

4.2 Generalized intuitionistic fuzzy conditional
reliability function

In reliability analysis, conditional reliability is the probability
of an item surviving for the time t , given that it has already
survived until time τ .

Here, we extend the conditional reliability function to
the uncertain case by the GIFS concept. The generalized
intuitionistic fuzzy conditional reliability (GIFCR) function
of the component is denoted by S̃ (t |τ). The α1-cut set of
membership and α2-cut set of non-membership functions of
S̃ (t |τ) are represented as

S j (t |τ) [αi , δ] = {S(t |τ)|θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}
=
[
SLj (t | τ) [αi ], SUj (t | τ)[αi ]

]
,

(i, j) = (1, μ) , (2, ν),

where S(t |τ) is the crisp conditional reliability function and

SLj (t |τ)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

S(t |τ),

SUj (t |τ) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

S(t |τ), (i, j) = (1, μ) , (2, ν).

Subsequently, we have

S (α1, α2, δ) = (Sμ(t |τ) [α1, δ] , Sν(t |τ) [α2, δ]).

The (α1, α2)-cut set of GIFCR function is defined as

S(t |τ) [α1, α2, δ]

= {
w,w ∈ Sμ(t |τ) [α1, δ] ∩ Sν(t |τ) [α2, δ]

}
,

where S j (t |τ) [αi , δ] , (i, j) = (1, μ) , (2, ν) are two-
variate functions in terms of αi , i = 1, 2 and t .

For t0, S̃(t0|τ) is the GIFNB . In this method, for every
specially α10 and α20, shapes of S j (t |τ) [αi0, δ] , (i, j) =
(1, μ) , (2, ν) are like bands with upper and lower curves.

Consider the two-parameter Pareto distribution, the cut
sets of GIFCR function, for (i, j) = (1, μ) , (2, ν) are rep-
resented by

S j (t |τ) [αi , δ]

=
{( τ

t + τ

)λ

|λ ∈ λ j [αi , δ], γ ∈ γ j [αi , δ]
}
.

Since
(

τ
t+τ

)λ is a monotonically decreasing function with
respect to λ, the conditional reliability bands are computed
as

Sμ (t | τ) [α1, δ] =
⎡

⎢
⎣

(
τ

t + τ

)d1− (d1−c1)αδ
1

μ

,

(
τ

t + τ

)a1+ (b1−a1)α
δ
1

μ

⎤

⎥
⎦ ,

Sν (t | τ) [α2, δ] =
⎡

⎢
⎣

(
τ

t + τ

)d11− (d11−c1)(1−αδ
2)

1−ν

,

(
τ

t + τ

)a11− (b1−a11)(1−αδ
2)

1−ν

⎤

⎥
⎦ .

For every especial t0, membership and non-membership
functions of S̃ (t0 | τ) are given as

μ
S
(
t0 |τ ) (x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ

⎛

⎝d1 − ln x

ln
(

τ
t0+τ

)

⎞

⎠

d1 − c1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
δ

,
(

τ
t0+τ

)d1 ≤ x ≤
(

τ
t0+τ

)c1

μ
1
δ ,

(
τ

t0+τ

)c1 ≤ x ≤
(

τ
t0+τ

)b1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ

⎛

⎝ ln x

ln
(

τ
t0+τ

) − a1

⎞

⎠

b1 − a1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
δ

,
(

τ
t0+τ

)b1 ≤ x ≤
(

τ
t0+τ

)a1

0, o.w.

,

ν
S
(
t0 |τ ) (x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d11−c1 + (1 − ν)

⎛

⎝ ln x

ln
(

τ
t0+τ

) − d11

⎞

⎠

d11 − c1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
δ

,
(

τ
t0+τ

)d11 ≤x≤
(

τ
t0+τ

)c1

ν
1
δ ,

(
τ

t0+τ

)c1 ≤ x ≤
(

τ
t0+τ

)b1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 − a11 + (1 − ν)

⎛

⎝a11 − ln x

ln
(

τ
t0+τ

)

⎞

⎠

b1 − a11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
δ

,
(

τ
t0+τ

)b1 ≤x≤
(

τ
t0+τ

)a11

1, o.w.

.
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4.3 Generalized intuitionistic fuzzy hazard function

Another fuzzy character of the lifetime distribution is the
fuzzy hazard function (or fuzzy failure rate). We propose the
generalized intuitionistic fuzzy hazard (GIFH) function of
component as h̃ (t) and it means the probability of an item
failing at the time interval �t if it operated until t . The α1-
cut set of membership and α2-cut set of non-membership
functions of GIFH of the component are illustrated as

h j (t) [αi , δ] = {h(t)|θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}
=
[
hLj (t) [αi ], hUj (t)[αi ]

]
,

where h (t) is the crisp hazard rate function and

hLj (t)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

h(t),

hUj (t) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

h(t), (i, j) = (1, μ) , (2, ν) .

It can be shown that

h (α1, α2, δ) = (hμ(t) [α1, δ] , hν(t) [α2, δ]),

and the (α1, α2)-cut set of GIFH function is defined by

h(t)[α1, α2, δ] = {
w,w ∈ hμ(t) [α1, δ] ∩ hν(t) [α2, δ]

}
,

where h j (t) [αi , δ] , (i, j) = (1, μ) , (2, ν) are two-variate
functions in terms of αi , i = 1, 2 and t .

Remark 2 Same as the GIFR, for every especially α10 and
α20, the shapes of S j (t |τ)[αi0, δ] and h j (t)[αi0, δ], (i, j) =
(1, μ), (2, ν) are like bands with upper and lower curves and
for every especially t0, S̃(t0|τ) and h̃(t0) are the GIFBBs.

Remark 3 Ifμ = 1 and ν = 0, then ourmethod changes to its
special case; in addition, if δ = 1, then our method is named
intuitionistic fuzzy reliability evaluation. If α1 = 1 − α2,
a = a1 and d = d1, then it changes to fuzzy reliability
evaluation. Finally, if assumption a = b = c = d is added,
it agrees to classical reliability theory.

For (i, j) = (1, μ) , (2, ν), the cut set of GIFH function
for two-parameter Pareto lifetime distribution is demon-
strated as

h j (t) [αi , δ] =
{

λ

t
| λ ∈ λ j [αi , δ] , γ ∈ γ j [αi , δ]

}

=
[
hLj (t) [αi ] , h

U
j (t) [αi ]

]
,

where

hLj (t) [αi ] = inf
{

λ
t | λ ∈ λ j [αi , δ] , γ ∈ γ j [αi , δ]

}
,

hUj (t) [αi ] = sup
{λ

t
| λ ∈ λ j [αi , δ] γ ∈ γ j [αi , δ]

}
,

(i, j) = (1, μ) , (2, ν) .

Therefore,

hμ(t) [α1, δ] =
[
a1
t

+ (b1 − a1)αδ
1

μt
,

d1
t

− (d1 − c1)αδ
1

μt

]

,

hν(t) [α2, δ] =
[
a11
t

+ (b1 − a11)(1 − αδ
2)

(1 − ν)t
,

d11
t

− (d11 − c1)(1 − αδ
2)

(1 − ν)t

]

.

As can be seen, the GIFH function for generalized
intuitionistic fuzzy two-parameter Pareto distribution is
decreasing with respect to time t . The membership and non-
membership functions of h̃ (t0) are reported as follows:

μh(t0)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(μ(t0x − a1)

b1 − a1

) 1
δ
, a1

t0
≤ x ≤ b1

t0

μ
1
δ , b1

t0
≤ x ≤ c1

t0(μ(d1 − t0x)

d1 − c1

) 1
δ
, c1

t0
≤ x ≤ d1

t0

0, o.w.

,

νh(t0)(x) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(b1 − a11 + (1 − ν)(a11 − t0x)

b1 − a11

) 1
δ
, a11

t0
≤ x ≤ b1

t0

ν
1
δ , b1

t0
≤ x ≤ c1

t0
(d11 − c1 − (1 − ν)(d11 − t0x)

d11 − c1

) 1
δ
, c1

t0
≤ x ≤ d11

t0

1, o.w.

.

4.4 Some fuzzy reliability characteristics properties

In this section, we provided some relations and properties of
the reliability characteristics, with special attention to fuzzy
two-parameter Pareto reliability.

Corollary 3 If μ1 ≤ μ2 and ν1 ≤ ν2, then we have

(i) Sμ1(t) [α1, δ] ⊂ Sμ2(t) [α1, δ] and Sν2(t) [α2, δ] ⊂
Sν1(t)
[α2, δ],

(ii) Sμ1(t | τ) [α1, δ] ⊂ Sμ2(t | τ) [α1, δ] and Sν2(t |
τ) [α2, δ] ⊂ Sν1(t | τ) [α2, δ],
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(iii) hμ1(t) [α1, δ] ⊂ hμ2(t) [α1, δ] and hν2(t) [α2, δ] ⊂
hν1(t)
[α2, δ].

Corollary 4 If δ1 ≤ δ2, then we have

(i) Sμ(t) [α1, δ1] ⊂ Sμ(t) [α1, δ1] and Sν(t) [α2, δ2] ⊂
Sν(t) [α2, δ1],

(ii) Sμ(t | τ) [α1, δ1] ⊂ Sμ(t | τ) [α1, δ2] and Sν(t |
τ) [α2, δ2] ⊂ Sν(t | τ) [α2, δ1],

(iii) hμ(t) [α1, δ1] ⊂ hμ(t) [α1, δ2] and hν(t) [α2, δ2] ⊂
hν(t) [α2, δ1].

Corollary 5 For every δ,

S (t)
[
μ

1
δ , ν

1
δ

]
=
[(

b2
t

)c1
,
(c2
t

)b1
]

,

h (t)
[
μ

1
δ , ν

1
δ

]
=
[
b1
t

,
c1
t

]

,

S (t) [0, 1, δ] =
[(a2

t

)d1
,

(
d2
t

)a1]

,

h (t) [0, 1] =
[
a1
t

,
d1
t

]

.

Corollary 6 Consider g (t0) [α1, α2] as (α1, α2)-cut set of
reliability characteristics (GIFR or GIFCR or GIFH) and
set

η = 1 − 1−αδ
2

1−ν

1 − αδ
1

μ

, z1 = b − a

b − a1
, z2 = d − c

d1 − c
,

then

(i) g(t0)[α1, α2] =
{ [

gLν [α2] , gUν [α2]
]
, η < min(z1, z2)[

gLμ [α1] , gUμ [α1]
]
, η ≥ max(z1, z2)

,

(ii) if η = 1 (i.e., 1− 1−αδ
2

1−ν
= 1− αδ

1
μ
), then g (t0) [α1, α2] =

[
gLμ [α1] , gUμ [α1]

]
,

(iii) if z1 = z2 = η then gμ (t0) [α1] = gν (t0) [α2] =
g (t0) [α1, α2],

Corollary 7 Consider the two-parameter Pareto lifetime dis-
tribution, if μg(t0) (x) = νg(t0)(x) and z1 = z2 = z, then we
have

(i) S (t0) [α1, α2] = Sμ (t0) [α1] = Sν (t0) [α2] =
[( γ

t0
)ζ , (

γ
t0

)ξ ],
(ii) h (t0) [α1, α2] = hμ (t0) [α1] = hν (t0) [α2] = [

ζ
t0
,

ξ
t0

]
,

(iii) S (t0 | τ) [α1, α2] = Sμ (t0 | τ) [α1] = Sν (t0 | τ) [α2]

= [(
τ

t0+τ

)ζ
,
(

τ
t0+τ

)ξ ]
,

(iv) α1 = α2 =
( (1 − ν)z + ν

1 + z( 1−ν
μ

)

) 1
δ
,

where ζ = d1(μ−ν)+c1(ν+(1−ν)z)
μ+(1−ν)z and ξ = a1(μ−ν)+b1(ν+(1−ν)z)

μ+(1−ν)z .

Theorem 1 Consider the lifetime variables T1 and T2 with
thegeneralized intuitionistic fuzzy density function f̃1(x, θ̃ , β̃)

and f̃2(x, θ̃ , β̃), respectively. For every t > 0, if the condition
h̃1(t) � h̃2(t) and S̃1(τ ) = S̃2(τ ) hold, it can be concluded
that S̃1(t |τ) � S̃2(t |τ).

Proof By using h̃1 (t) (α1, α2, δ) � h̃2 (t) (α1, α2, δ) it is
induced that

(
h1μ (t) [α1, δ] , h1ν (t) [α2, δ]

)
�

(
h2μ(t) [α1, δ] , h2ν (t) [α2, δ]

)
,

which leads to

h1μ (t) [α1, δ] � h2μ (t) [α1, δ] ,

h1ν (t) [α2, δ] � h2ν (t) [α2, δ] .

Therefore, for every γ = L,U , we have

hγ
1μ(t)[α1, δ] ≥ hγ

2μ(t)[α1, δ],
hγ
1ν(t)[α2, δ] ≥ hγ

2ν(t)[α2, δ],

consequently,

∫ t+τ

0
hγ
1μ(x)[α1, δ]dx ≥

∫ t+τ

0
hγ
2μ(x)[α1, δ]dx,

∫ t+τ

0
hγ
1ν(x)[α2, δ]dx ≥

∫ t+τ

0
hγ
2ν(x)[α2, δ]dx .

Hence, regarding the definition of hazard rate function, we
have

∫ t+τ

0
f γ
1μ(x)[α1,δ]

1−Fγ
1μ(x)[α1,δ]

dx ≥
∫ t+τ

0
f γ
2μ(x)[α1,δ]

1−Fγ
2μ(x)[α1,δ]

dx,

∫ t+τ

0
f γ
1ν (x)[α2,δ]

1−Fγ
1ν (x)[α2,δ]dx ≥
∫ t+τ

0
f γ
2ν (x)[α2,δ]

1−Fγ
2ν (x)[α2,δ]dx,

and

− ln
(
1 − Fγ

1μ (t + τ) [α1, δ]
)

≥
− ln

(
1 − Fγ

2μ (t + τ) [α1, δ]
)

,

− ln
(
1 − Fγ

1ν (t + τ) [α2, δ]
) ≥
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− ln
(
1 − Fγ

2ν (t + τ) [α2, δ]
)
,

subsequently,

(
S1μ (t + τ) [α1, δ] , S1ν (t + τ) [α2, δ]

)
�

(S2μ (t + τ) [α1, δ] , S2ν (t + τ) [α2, δ]) ,

also, S1 (t + τ) (α1, α2, δ) � S2 (t + τ) (α1, α2, δ) and
S̃1(t |τ) � S̃2(t |τ), which completes the proof. ��

Theorem 2 The increasing condition on the S̃(x |t) func-
tion is a necessary and sufficient condition for f (x, θ̃ , β̃)

to belong to a class of distribution with a decreasing failure
rate (IFR).

Proof For every t1 < t2 we have S̃(x |t1) � S̃(x |t2) and

S̃(x |t1)(α1, α2, δ) � S̃(x |t2)(α1, α2, δ),

we conclude that

(
S1μ (x | t1) [α1, δ] , S1ν (x | t1) [α2, δ]

)

�
(
S2μ (x | t1) [α1, δ] , S2ν (x | t2) [α2, δ]

)
,

then

S1μ (x | t1) [α1, δ] � S2μ (x | t2) [α1, δ] ,

and

S1ν (x | t1) [α2, δ] � S2ν (x | t2) [α2, δ] .

For every γ = L,U , it can be concluded that

Sγ
μ (x | t1) [α1, δ] � Sγ

μ (x | t2) [α1, δ] ,

and

Sγ
ν (x | t1) [α2, δ] � Sγ

ν (x | t2) [α2, δ] .

Therefore, Sγ
μ and Sγ

ν are increasing functions and by
usingdefinitionofGIFCRfunction, for (i, j) = (1, μ) , (2, ν),
we have

Sγ

j (x |t) [αi , δ] = Sγ
j (x+t)[αi ,δ]

Sγ
j (t)[αi ,δ]

,

∂Sγ

j (x |t) [αi , δ]

∂t
= − f γ

j (x+t)[αi ,δ]S
γ
j (t)[αi ,δ]

Sγ
j (t)[αi ,δ]

2

+ f γ
j (t)[αi ,δ]S

γ
j (x+t)[αi ,δ]

Sγ
j (t)[αi ,δ]

2 .

Due to increasing shape of Sγ

j function, so it is induced

that
∂Sγ

j (x | t) [αi ]

∂t
≥ 0 and hence

f γ

j (t) [αi ] S
γ

j (x + t) [αi ] ≥ f γ

j (x + t) [αi ] S
γ

j (t) [αi ] ,

so,

hγ

j (t) [αi , δ] ≥ hγ

j (x + t) [αi , δ] ,

and it is concluded that

hγ
μ(t) [αi , δ] ≥ hγ

μ (x + t) [αi , δ] ,

hγ
ν (t) [αi , δ] ≥ hγ

ν (x + t) [αi , δ] ,

hμ(t)[α1, δ] � hμ(x + t)[α1, δ],
hν(t)[α2, δ] � hν(x + t)[α2, δ].

Finally, we have h(t)(α1, α2, δ) � h(x + t)(α1, α2, δ)

and h̃(t) � h̃(x + t), which completes the proof. ��

4.5 Generalized intuitionistic fuzzymean time to
failure for Pareto distribution

The mean time to failure (MTTF) is a reliability character
that indicates the expected time span when an unrepairable
system is active. The MTTF can be used to evaluate relia-
bility and to improve maintenance and system management
strategies. The generalized intuitionistic fuzzy mean time to
failure (GIFMTTF) of components is the expected time to
failure of the fuzzy system and is denoted by MT̃TF. In this
section, the GIFMTTF function of any component is pro-
vided under the two-parameter Pareto lifetime distribution,
which is defined as follows

GIFMTTF j [αi ]

=
{∫ ∞

γ

x f (x)dx | λ ∈ λ j [αi , δ], γ ∈ γ j [αi , δ]
}

=
{

γ λ

λ − 1
| λ ∈ λ j [αi , δ] , γ ∈ γ j [αi , δ]

}

, λ > 1

, (i, j) = (1, μ), (2, ν),

then

GIFMTTF j [α1] =
[
(
a2 + (b2−a2)αδ

1
μ

)(
d1 − (d1−c1)αδ

1
μ

)

(
d1 − (d1−c1)αδ

1
μ

)
− 1

,

(
d2 − (d2−c2)αδ

1
μ

)(
a1 + (b1−a1)αδ

1
μ

)

(
a1 + (b1−a1)αδ

1
μ

)
− 1

]

,

GIFMTTF j [α2] =
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[
(
a21 + (b2−a21)(1−αδ

2)

1−ν

)(
a11 + (b1−a11)(1−αδ

2)

1−ν

)

(
a11 + (b1−a11)(1−αδ

2)

1−ν

)
− 1

,

(
d21 − (d21−c2)(1−αδ

2)

1−ν

)(
a11 + (b1−a11)(1−αδ

2)

1−ν

)

(
a11 + (b1−a11)(1−αδ

2)

1−ν

)
− 1

]

,

5 GIFR function of series and parallel system

The reliability of a system depends on the manner of relation
of each component such as the series or parallel structure. In a
series structure, the reliability of the system is the minimum
of the reliability of components and the system fails even
if an individual component failed. On contrary, for parallel
structure, the system works even only one component works
and reliability is equal to the maximum of the reliability of
components. In this section, we focus on the GIFR of series
and parallel systems, such that the failure of any component
does not depend on any other component.

5.1 Series system

If n-components are connected in a series manner, then the
αi -cut (i = 1, 2) of GIFR with generalized intuitionistic
fuzzy distribution is given by

S j (t) [αi , δ]={P(Y1 > t)|θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}
= {S(t)n | θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}
=
[
SLj (t) [αi ], SUj (t)[αi ]

]
,

where

SLj (t)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(
S(t)

)n
,

SUj (t) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(
S(t)

)n
, (i, j) = (1, μ) , (2, ν).

The αi -cut (i = 1, 2) of GIFR with generalized intuition-
istic fuzzy two-parameter Pareto distribution is given by

S j (t) [αi , δ] =
{ (γ

t

)nλ | λ ∈ λ j [αi , δ] , γ ∈ γ j [αi , δ]
}
,

and

Sμ (t) [α1, δ] =

⎡

⎢
⎢
⎣

(
a2+ (b2−a2)αδ

1
μ

t

)n(d1− (d1−c1)α
δ
1

μ
)

,

(
d2− (d2−c2)αδ

1
μ

t

)n(a1+ (b1−a1)α
δ
1

μ
)

⎤

⎥
⎥
⎦ ,

Sν (t) [α2, δ] =
⎡

⎢
⎢
⎣

(
a21+ (b2−a21)(1−αδ

2)

1−ν

t

)n(d11− (d11−c1)(1−αδ
2)

1−ν
)

,

(
d21− (d21−c2)(1−αδ

1)

1−ν

t

)n(a11+ (b1−a11)(1−αδ
2)

1−ν
)

⎤

⎥
⎥
⎦ .

5.2 Parallel system

If n-components are related in a parallel manner, the αi -cut
(i = 1, 2) of GIFR with generalized intuitionistic fuzzy dis-
tribution is provided as

S j (t) [αi , δ] = {P(Yn > t)|θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}
= {1 − (1 − S (t))n|θ ∈ θ j [αi , δ], β ∈ β j [αi , δ]}

=
[
SLj (t) [αi ], SUj (t)[αi ]

]
,

(i, j) = (1, μ) , (2, ν),

where

SLj (t)[αi ] = inf
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(1 − (1 − S(t)))n,

SUj (t) [αi ] = sup
θ∈θ j [αi ,δ]
β∈β j [αi ,δ]

(1 − (1 − S(t)))n, (i, j) = (1, μ) , (2, ν).

The αi -cut (i = 1, 2) of GIFR with generalized intuition-
istic fuzzy two-parameter Pareto distribution is represented
as

S j (t) [αi , δ]

=
{
1 −

(
1 − ( γ

t

)λ
)n | λ ∈ λ j [αi , δ], γ ∈ γ j [αi , δ]

}
,

and

Sμ (t) [α1, δ] =
[

1 −
(
1 − (a2 + (b2−a2)αδ

1
μ

t

)d1− (d1−c1)α
δ
1

μ

)n
,

1 −
(
1 − (d2 + (d2−c2)αδ

1
μ

t

)a1+ (b1−a1)α
δ
1

μ

)n
]

,

Sν (t) [α2, δ] =
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[

1 −
(
1 − (a21 + (b2−a21)(1−αδ

2)

1−ν

t

)d11− (d11−c1)(1−αδ
2)

1−ν

)n
,

1 −
(
1 − (d21 − (d21−c2)(1−αδ

2)

1−ν

t

)a11+ (b1−a11)(1−αδ
2)

1−ν

)n
]

.

6 Numerical example

Let the lifetime of electronic component is modeled by the
two-parameter Pareto distributionwith generalized intuition-
istic fuzzy scale and shape parameters

λ̃ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.25, 2),

γ̃ = (1, 1, 1.25, 1.5, 1.75, 1.75, 0.75, 0.25, 2).

Then cut sets of GIFP of X ≤ 2 is obtained, for (i, j) =
(1, μ), (2, ν), as follows:

Pj (X ≤ 2) [αi , 2]

= {1 −
(γ

2

)λ |λ ∈ λ j [αi , 2] , γ ∈ γ j [αi , 2]},

and

Pμ (X ≤ 2) [α1, 2] =

⎡

⎢
⎢
⎣1 −

(
1.75

2
− α2

1

6

)0.2+ 0.1α21
0.75

,

1 −
(
1

2
+ α2

1

6

)0.5− 0.1α21
0.75

⎤

⎥
⎥
⎦ ,

Pν (X ≤ 2) [α2, 2] =

⎡

⎢
⎢
⎣1 −

(
1.75

2
− (1 − α2

2)

6

)0.1+ 0.2(1−α22 )

0.75

,

1 −
(
1

2
+ 1 − α2

2

6

)0.6− 0.2(1−α22 )

0.75

⎤

⎥
⎥
⎦ .

The membership and non-membership functions of the
GIFP are represented in Fig. 1. Also, for several values of
α1 and α2, the α1-cut set of membership and α2-cut set of
non-membership bands of GIFP and (α1, α2)-cut bands of
GIFP are reported in Table 1, respectively.

Regarding Table 1, by increasing α1 and decreasing α2,
the ambiguity in membership and non-membership bands of
GIFP is decreased as well as the bands of GIFP.
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Fig. 1 The membership and non-membership functions of GIFP

Table 1 The α1-cut of membership, α2-cut of non-membership bands
and (α1, α2)-cut band of GIFP, for different values of α1, α2

(α1, α2) Pμ[α1] Pν [α2] P[α1, α2]
(0,1) [0.0263,0.2928] [0.0132,0.3402] [0.0263,0.2928]

(0.2,0.9) [0.0285,0.2856] [0.0253,0.2932] [0.0285,0.2856]

(0.3,0.8) [0.0314,0.2766] [0.0393,0.2534] [0.0393,0.2534]

(0.4,0.7) [0.0357,0.2643] [0.0541,0.2201] [0.0541,0.2201]

(0.7,0.6) [0.0595,0.2098] [0.0688,0.1931] [0.0688,0.1931]

(
√
0.75,

√
0.25) [0.0826,0.1713] [0.0826,0.1713] [0.0826,0.1713]

The cut sets of GIFR are given by

Sμ(t) [α1, 2] =
⎡

⎢
⎣

(
1
t + α2

1
3t

)0.5− 0.1α21
0.75

,

(
1.75
t − α2

1
3t

)0.2+ 0.1α21
0.75

⎤

⎥
⎦ ,

Sν(t) [α2, 2] =
⎡

⎢
⎣

(
1
t + 1−α2

2
3t

)0.6− 0.2(1−α22 )

0.75

,

(
1.75
t − 1−α2

2
3t

)0.1+ 0.2(1−α22 )

0.75

⎤

⎥
⎦ .

Figure 2 represents the surfaces of GIFR for different
angles.
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x
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Fig. 2 The surfaces of GIFR function

The bands for α1 = √
0.15 and α2 = √

0.25 are given by

Sμ(t)
[√

0.15, 2
]

=
[(

1.05

t

)0.5− 0.1
3

,

(
1.7

t

)0.2+ 0.1
3
]

,

Sν (t)
[√

0.25, 2
]

=
[(

1.25

t

)0.4

,

(
1.5

t

)0.3
]

.

The GIFR bands for α1 = √
0.15 and α2 = √

0.25 are
plotted in Fig. 3. As can be seen, the ambiguity of GIFR is
increased by increasing time t , due to the increase in both
bandwidths of membership and non-membership functions.
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Fig. 3 The GIFR bands for α1 = √
0.15 and α2 = √

0.25

If set t = 2, then cut sets of GIFR are computed as

Sμ(2) [α1, 2] =

⎡

⎢
⎢
⎣

(
1

2
+ α2

1

6

)0.5− 0.1α21
0.75

,

(
1.75

2
− α2

1

6

)0.2+ 0.1α21
0.75

⎤

⎥
⎥
⎦ ,

Sν(2) [α2, 2] =

⎡

⎢
⎢
⎣

(
1

2
+ 1 − α2

2

6

)0.6− 0.2(1−α22 )

0.75

,

(
1.75

2
− 1 − α2

2

6

)0.1+ 0.2(1−α22 )

0.75

⎤

⎥
⎥
⎦ .

The membership and non-membership functions of GIFR
are depicted in Fig. 4.

In Table 2, the α1-cut of membership, α2-cut of non-
membership bands and (α1, α2)-cut bands of GIFR are
prepared, for different combinations of cuts α1 and α2.

Based on Table 2, by increasing α1 and decreasing α2,
the vagueness in membership and non-membership bands of
GIFR and bands of GIFR is decreased.

The cut sets of GIFR are computed as follows:

Sμ (t) [α1, δ] =
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Table 2 The α1-cut of membership, α2-cut of non-membership bands and (α1, α2)-cut band of GIFR, for different values of α1, α2

(α1, α2) Sμ (t) [α1, 2] Sν (t) [α2, 2] S (t) [α1, α2, 2]

[0,1]
[
( 1t )

0.5, ( 1.75t )0.2
] [

( 1t )
0.6, ( 1.75t )0.1

] [
( 1t )

0.5, ( 1.75t )0.2
]

(0.3,0.8)
[
( 1.03t )0.488, ( 1.72t )0.212

] [
( 1.12t )0.504, ( 1.63t )0.196

] [
( 1.12t )0.504, ( 1.63t )0.196

]

(0.4,0.7)
[
( 1.05t )0.4786, ( 1.69t )0.2213

] [
( 1.17t )0.4639, ( 1.58t )0.236

] [
( 1.17t )0.4639, ( 1.58t )0.236

]

(0.7,0.6)
[
( 1.16t )0.4346, ( 1.58t )0.2653

] [
( 1.21t )0.4293, ( 1.53t )0.2706

] [
( 1.21t )0.4293, ( 1.53t )0.2706

]

(
√
0.75,

√
0.25)

[
( 1.25t )0.4, ( 1.5t )0.3

] [
( 1.25t )0.4, ( 1.5t )0.3

] [
( 1.25t )0.4, ( 1.5t )0.3

]
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Fig. 4 The membership and non-membership functions of GIFR

⎡

⎢
⎢
⎣

(
1

t
+ αδ

1

3t

)0.5− 0.1αδ
1

0.75

,
(1.75

t
− αδ

1

3t

)0.2+ 0.1αδ
1

0.75

⎤

⎥
⎥
⎦ ,

Sν (t) [α2, δ] =

⎡

⎢
⎢
⎣

(
1

t
+ 1 − αδ

2

3t

)0.6− 0.2(1−αδ
2)

0.75

,

(
1.75

t
− 1 − αδ

2

3t

)0.1+ 0.2(1−αδ
2)

0.75

⎤

⎥
⎥
⎦ .

The reliability bands for the different values of δ and cut
sets (α1, α2) are represented in Fig. 5; the large values of the
parameter δ lead to less reliability bandwidth and more accu-
rate reliability. Also, by increasing α1 and decreasing α2, the
uncertainty in reliability bands is reduced. Also, by increas-
ing time t , the uncertainty in GIFR function is increased.
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Fig. 5 a The reliability bands of S(t)[0.05, 0.5, δ], b The reliability
bands of S(t)[α1, α2, 1]
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Fig. 6 The surfaces of GIFCR function

The αi -cuts of GIFCR for i = 1, 2 are given by

Sμ (t |τ) [α1, 2]

=
⎡

⎢
⎣

(
τ

t + τ

)0.5− 0.1α21
0.75

,

(
τ

t + τ

)0.2+ 0.1α21
0.75

⎤

⎥
⎦ ,

Sν (t |τ) [α2, 2]

=
⎡

⎢
⎣

(
τ

t + τ

)0.6− 0.2(1−α22 )

0.75

,

(
τ

t + τ

)0.1+ 0.2(1−α22 )

0.75

⎤

⎥
⎦ .

Figure 6 shows surfaces of the GIFCR function from dif-
ferent angles.
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Fig. 7 The GIFCR bands for α1 = √
0.1 and α2 = √
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Fig. 8 The membership and non-membership functions of GIFCR

The GIFCR bands with τ = 3 for α1 = √
0.1 and α2 =√

0.8 are expressed as

Sμ (t | τ) [0, 2] =
[(

3

t + 3

) 73
150

,

(
3

t + 3

) 32
150
]

,

Sν (t | τ) [1, 2] =
[(

3

t + 3

) 82
150

,

(
3

t + 3

) 23
150
]

.

The GIFCR bands for α1 = √
0.1 and α2 = √

0.8 are
depicted in Fig. 7, which indicates that increasing time t leads
to increasing the bandwidth which is equivalent to increasing
in uncertainty. Let t0 = 3, τ = 3, the membership and non-
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membership functions of S̃ (t0 | τ) are obtained as follows:

μS(t0|τ) (x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

7.5
ln x

ln 2
+ 3.75

) 1
2

,
( 1
2

)0.5 ≤ x ≤ ( 1
2

)0.4

√
0.75,

( 1
2

)0.4 ≤ x ≤ ( 1
2

)0.3

(

−7.5
ln x

ln 2
− 1.5

) 1
2

,
( 1
2

)0.3 ≤ x ≤ ( 1
2

)0.2

0, o.w.

,

νS(t0|τ)(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

−3.75
ln x

ln 2
− 1.25

) 1
2

,
( 1
2

)0.6 ≤ x ≤ ( 1
2

)0.4

√
0.25,

( 1
2

)0.4 ≤ x ≤ ( 1
2

)0.3

(

3.75
ln x

ln 2
+ 1.375

) 1
2

,
( 1
2

)0.3 ≤ x ≤ ( 1
2

)0.1

1, o.w.

.

The (
√
0.75,

√
0.25)-cut set of S̃ (t |τ) is given by

Sμ (t |τ) [1, 2] =
[(

τ

τ + t

)0.4

,

(
τ

τ + t

)0.3
]

,

Sν (t |τ) [0, 2] =
[(

τ

τ + t

)0.4

,

(
τ

τ + t

)0.3
]

,

S (t |τ) [√0.75,
√
0.25] = Sμ (t |τ) [1, 2] ∩ Sν (t |τ) [0, 2]

=
[(

τ

τ + t

)0.4

,

(
τ

τ + t

)0.3
]

.

Themembership andnon-membership functions ofGIFCR
are represented in Fig. 8.

The α1-cut of membership, α2-cut of non-membership
bands and (α1, α2)-cut bands of GIFCR, for different com-
binations of cut sets (α1, α2) are assembled in Table 3. Based
on Table 3, the more accurate bands of membership and non-
membership of GIFCR and bands of GIFCR are attained by
the maximum value of α1 and minimum of α2.

The αi -cuts of GIFH function for i = 1, 2 are given by

hμ (t) [α1, 2] =
[
1.5 + α2

1

7.5t
,
3.75 − α2

1

7.5t

]

,

hν (t) [α2, 2] =
[
2.75 − 2α2

2

7.5t
,
2.5 + 2α2

2

7.5t

]

.

Figure 9 shows the surfaces of GIFH function from dif-
ferent angles.
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Fig. 9 The surfaces of the GIFH function

The GIFH bands for α1 = √
0.1 and α2 = √

0.8 are
computed as

hμ (t)
[√

0.1, 2
]

=
[
1.6

7.5t
,
3.65

7.5t

]

,

hν (t)
[√

0.8, 2
]

=
[
1.15

7.5t
,
4.1

7.5t

]

.

The GIFH bands of membership and non-membership
functions for α1 = √

0.1 and α2 = √
0.8 are exhibited in

Fig. 10. Analogously, increasing time t causes themore accu-
racy in GIFH function.

The membership and non-membership functions of h̃ (2)
are represented as below:
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Table 3 The α1-cut of membership, α2-cut of non-membership bands and (α1, α2)-cut band of GIFCR, for different values of α1, α2

(α1, α2) Sμ(t | τ) [α1, 2] Sν(t | τ) [α2, 2] S(t | τ)[α1, α2]

(0,1)
[
( τ
t+τ

)0.5, ( τ
t+τ

)0.2
] [

( τ
t+τ

)0.6, ( τ
t+τ

)0.1
] [

( τ
t+τ

)0.5, ( τ
t+τ

)0.2
]

(0.3,0.8)
[
( τ
t+τ

)0.488, ( τ
t+τ

)0.212
] [

( τ
t+τ

)0.504, ( τ
t+τ

)0.196
] [

( τ
t+τ

)0.488, ( τ
t+τ
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]

(0.4,0.7)
[
( τ
t+τ

)0.4786, ( τ
t+τ

)0.2213
] [

( τ
t+τ

)0.4639, ( τ
t+τ

)0.236
] [

( τ
t+τ

)0.4639, ( τ
t+τ

)0.236
]

(0.7,.6)
[
( τ
t+τ

)0.4346, ( τ
t+τ

)0.2653
] [

( τ
t+τ

)0.4293, ( τ
t+τ

)0.2706
] [

( τ
t+τ

)0.4293, ( τ
t+τ

)0.2706
]

(
√
0.75,

√
0.25)

[
( τ
t+τ

)0.4, ( τ
t+τ

)0.3
] [

( τ
t+τ

)0.4, ( τ
t+τ

)0.3
] [

( τ
t+τ

)0.4, ( τ
t+τ

)0.3
]
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Fig. 10 The GIFH bands for α1 = √
0.1 and α2 = √

0.8

μh(t0) (x) =

⎧
⎪⎪⎨

⎪⎪⎩

(15x − 1.5)0.5 , 0.1 ≤ x ≤ 0.15√
0.75, 0.15 ≤ x ≤ 0.2

(0.75 − 15x)0.5 , 0.2 ≤ x ≤ 0.25
0, o.w.

,

νh(t0)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
2.75 − 15x

2

)0.5

, 0.05 ≤ x ≤ 0.15
√
0.25, 0.15 ≤ x ≤ 0.2

(
15x − 2.5

2

)0.5

, 0.2 ≤ x ≤ 0.3

1, o.w.

.

The membership and non-membership functions of GIFH
are displayed in Fig. 11.

Figure 4 reports the α1-cut of membership, α2-cut of
non-membership bands and (α1, α2)-cut bands of GIFH, for
different combinations of α1, α2, which has the same results
as other counterpart tables.
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Fig. 11 The membership and non-membership functions of GIFH

Generally based on Tables 1, 2, 3 and 4, it is inferred that
increasing α1 and decreasing α2 lead to ambiguity decreas-
ing of the fuzzy reliability characteristics, including GIFR,
GIFCR and GIFH bands. Moreover, regarding Figs. 3, 7 and
10, the GIFR, GIFCR and GIFH are decreasing functions
with respect to t .

Conclusion

In the present paper, we extend the GIFNB to analyze the
system reliability with the special two-parameter Pareto dis-
tribution discussion. Both scale and shape parameters of the
two-parameter Pareto distribution are considered as GIFNB ,
and various generalized intuitionistic fuzzy reliability char-
acteristics are obtained. The reliability characteristics are
represented through bands, which attained their most precise
bands for large value of the cut set of membership and small
value of the cut set of non-membership functions. The the-
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Table 4 The α1-cut of membership, α2-cut of non-membership bands
and (α1, α2)-cut band of GIFH, for different values of α1, α2

(α1, α2) hμ (t) [α1, 2] hν (t) [α2, 2] h (t) [α1, α2]

(0,1) [ 0.2t , 0.5
t ] [ 0.1t , 0.6

t ] [ 0.2t , 0.5
t ]

(0.3,0.8) [ 0.212t , 0.488
t ] [ 0.196t , 0.504

t ] [ 0.212t , 0.488
t ]

(0.4,0.7) [ 0.2213t , 0.4786
t ] [ 0.236t , 0.464

t ] [ 0.236t , 0.464
t ]

(0.5,0.5) [ 0.2853t , 0.4146
t ] [ 0.2706t , 0.4293

t ] [ 0.2853t , 0.4146
t ]

(0.8,0.6) [ 0.2853t , 0.4146
t ] [ 0.2706t , 0.4293

t ] [ 0.2853t , 0.4146
t ]

(
√
0.75,

√
0.25) [ 0.3t , 0.4

t ] [ 0.3t , 0.4
t ] [ 0.3t , 0.4

t ]

oretical results are evaluated by a comprehensive numerical
approach. In this context, our study covers several research
kinds of literature in fuzzy subjects.
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