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Abstract
In this paper, the convex nonsmooth optimization problemwith fuzzy objective function and both inequality and equality con-
straints is considered. The Karush–Kuhn–Tucker necessary optimality conditions are proved for such a nonsmooth extremum
problem. Further, the exact l1 penalty function method is used for solving the considered nonsmooth fuzzy optimization
problem. Therefore, its associated fuzzy penalized optimization problem is constructed in this approach. Then, the exactness
property of the exact l1 penalty function method is analyzed if it is used for solving the considered nonsmooth convex fuzzy
optimization problem.

Keywords Nonsmooth optimization problem with fuzzy objective function · Exact l1 penalty function method · Fuzzy
penalized optimization problem · Exactness of the penalization · Convex fuzzy function

1 Introduction

Fuzzy optimization problems were developed for formu-
lating such real-world problems, which are usually vague,
imprecise, and not well defined. The first who proposed the
basic concept of fuzzy decision making were Bellman and
Zadeh (1970). Since then, fuzzy mathematical programming
problems have been extensively studied by many authors.
Lai and Hwang (1992), Delgado et al. (1994) and Słowinski
(1998) gave the insightful surveys in which they summarized
the main ideas on this topic.

Convexity of fuzzy mappings plays central roles in fuzzy
mathematics and fuzzy optimization. Since Nanda and Kar
(1992) proposed the concept of a convex fuzzy mapping, the
research of convexity for fuzzy mapping and application to
fuzzy optimization have been developed widely and deeply
(see, for example, Ammar 1992; Ammar and Metz 1992;
Chalco-Cano et al. 2016; Gong and Hai 2016; Li and Noor
2013; Panigrahi et al. 2008; Syau and Lee 2006; Wang and
Wu 2003; Yan and Xu 2002; Zhang et al. 2006, and oth-
ers). The nondominated solution of a nonlinear optimization
problem with fuzzy-valued objective function was proposed
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by Wu (2007, 2008). Using the concept of continuous dif-
ferentiability of fuzzy-valued functions and the α-cuts to
describe the fuzzy objective function, he derived the suffi-
cient optimality conditions under (generalized) convexity for
obtaining the nondominated solution of a fuzzy optimization
problem having fuzzy-valued objective function with real-
valued inequality constraints.

In order to solve nonlinear optimization problems in real
life, variousmethods have been proposed in optimization the-
ory. One of them are exact penalty function methods. Exact
penalty function methods for finding an optimal solution of a
constrained optimization problem are based on the construc-
tion of a (penalty) function whose unconstrained minimizing
points are also a solution of the constrained extremum prob-
lem. One of the most frequently used type of an exact penalty
function for solving a constrained optimization problem is
the l1 exact penalty function, also known as the exact abso-
lute value penalty function (see, for example, Antczak 2009,
2011, 2013, 2018; Bazaraa et al. 1991; Bertsekas 1982; Bert-
sekas and Koksal 2000; Bonnans et al. 2003; Binh 2015;
Charalambous 1978; Han and Mangasarian 1979; Janesch
and Santos 1997; Mangasarian 1985; Peressini et al. 1988;
Rosenberg 1984; Sun and Yuan 2006, Wang and Liu 2010;
and others). Recently, Antczak 2012 used the vector l1 exact
penalty function method for solving convex vector optimiza-
tion problemswith inequality constraints, and he investigated
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the main property for such convex nonsmooth multiobjective
programming problems.

Although a lot of interesting explorations have been made
in the study of optimality conditions for fuzzy optimiza-
tion problems from different viewpoints, it seems that not
much progress has been made in the aspect of introducing
methods for solving such extremum problems. Therefore, in
the present paper, the l1 exact penalty function method is
applied for solving a nondifferentiable optimization prob-
lem with fuzzy objective function and with both real-valued
inequality and equality constraints. Then, for the considered
fuzzy optimization problem, its associated fuzzy penalized
optimization problem with the fuzzy l1 exact penalty func-
tion is constructed. Further, this paper focuses on the main
property of the l1 exact penalty function method, which is
exactness of the penalization. Therefore, this property of the
l1 exact penalty functionmethod is extended to the casewhen
this method is used for finding (weakly) nondominated solu-
tions of the considered fuzzy optimization problem. Thus,
the equivalence between the sets of (weakly) nondominated
solutions of a nondifferentiable optimization problem with
the fuzzy objective function and its associated fuzzy penal-
ized optimization problem with the fuzzy absolute value
penalty function constructed in the used approach is estab-
lished under assumptions that the fuzzy objective function
and the inequality constraints are convex and the equality
constraints are affine. This result is illustrated by the example
of an optimization problemwith the fuzzy objective function
which is solved byusing the l1 exact penalty functionmethod.

2 Notations and preliminaries

We first quote some preliminary notations, definitions, and
results, which will be needed in the sequel. Throughout this
paper, R is the set of all real numbers that is endowed with
the usual topology.

The fuzzy subset ũ of R is defined by amapping ξũ : R →
[0, 1], which is called amembership function. For each fuzzy
set ũ, we denote its α-level set as ũα and it is defined by
ũα = {x ∈ R : ξũ (x) ≥ α} for each α ∈ (0, 1]. The 0-level
set ũ0 is defined as the closure of the set {x ∈ R : ξũ (x) > 0},
i.e., ũ0 = cl {x ∈ R : ξũ (x) > 0}. We denote the support
of ũ by supp (̃u), where supp (̃u) = {x ∈ R : ξũ (x) ≥ 0}.
The closure of supp (u) defines the 0-level of u, i.e., ũ0 =
cl (supp (̃u)), where cl (S) means the closure of the subset
S ⊂ Rn (see, for example, Panigrahi et al. (2008)).

A fuzzy number ũ is a type of a fuzzy set (see Dubois and
Prade 1978, 1980) defined as follows:

Definition 1 (Wu 2007, 2008) We denote by F (R) the set
of all fuzzy subset ũ on R, that is, fuzzy numbers, if the
membership function ξũ satisfies the following requirements:

(a) ũ is normal, i.e., there exists x∗ ∈ R such that ξũ (x∗) =
1,

(b) ξũ is an upper semi-continuous function, i.e., {x : ξũ (x)
≥ α} is a closed subset of R for each α ∈ (0, 1],

(c) ξũ is quasi-concave, i.e., ξũ (λx + (1 − λ) y) ≥ min {ξũ
(x) , ξũ (y)} for all x, y ∈ R and any λ ∈ [0, 1],

(d) the 0-level set ũ0 is a compact subset of R.

If ũ is a fuzzy number, then, by the condition (b) in Defini-
tion 1, it follows that its α-level set ũα is a convex subset of R
for each α ∈ [0, 1]. Combining this fact with the conditions
(c) and (d) in Definition 1, ũα is a closed interval in R for
each α ∈ [0, 1]. Therefore, the α-levels of a fuzzy number
can be written for each α ∈ [0, 1] as ũα = [

uα, uα

]

, uα ,
uα ∈ R, uα ≤ uα .

Also any a ∈ R can be regarded as a fuzzy number ã with
the membership function defined by

ξ̃a (x) =
{

1 if x = a,

0 if x �= a.

Definition 2 (Wu 2007) Let ũ be a fuzzy number.We say that
ũ is nonnegative if uα ≥ 0 for each α ∈ [0, 1]. We say that ũ
is positive if uα > 0 for each α ∈ [0, 1].

Definition 3 (Panigrahi et al. 2008). A fuzzy number ũ =
[

uα, uα

]

is said to be a triangular fuzzy number if uα (1) =
uα (1). We denote a triangular fuzzy number by ũ =
(

u, u, u
)

.

Example 4 Let ũ = (u1, u2, u3) be a triangular fuzzy num-
ber. Its membership function is defined by

ξũ (x) =
⎧

⎨

⎩

x−u1
u2−u1

if u1 ≤ x ≤ u2,
u3−x
u3−u2

if u2 ≤ x ≤ u3,
0 otherwise.

The α-level set (a closed interval) of a triangular fuzzy
number ũ is then given as follows:

ũα = [

uα, uα

] = [(1 − α) u1 + αu2 , (1 − α) u3 + αu2] .

(1)

Given two fuzzy numbers ũ, ṽ ∈ F (R) represented by
ũα = [

uα, uα

]

and ṽα = [

vα, vα

]

, respectively, and a real
number k, then the fuzzy addition ũ + ṽ and scalar multipli-
cation kũ are defined as follows (see Panigrahi et al. 2008;
Rufián-Lizana et al. 2012; Wang and Wu 2003):

(a) ξ(̃u+ṽ) (x) = sup
y+z=x

min[ξũ (y) , ξṽ (z)],

(b) ξkũ (x) =
{

ξũ
( x
k

)

, if k �= 0,
˜0, if k = 0,

where˜0 ∈ F (R).
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The above operations on fuzzy numbers can be defined in
the equivalent way. Namely, for every α ∈ [0, 1], we have:

[̃u + ṽ]α =
[

(u + v)
α
, (u + v)α

]

= [

uα + vα, uα + vα

]

(2)

and

[kũ]α = [(ku)
α

,
(

ku
)

α

]= [min
{

kuα, kuα

}

,max
{

kuα, kuα

}]

.

(3)

Definition 5 (Wu 2007) Let ũ and ṽ be two fuzzy numbers. If
there exists a fuzzy number w̃ ∈ F (R) such that w̃ + ũ = ṽ

(note that addition is commutative) and w̃ is unique, then w̃

is called the Hukuhara difference of ũ and ṽ, and it is denoted
by ũ 	H ṽ.

In order to compare two fuzzy numbers, in the recent lit-
erature, there are various definitions as a generalization of
the relationship on intervals (see, for example, Guerra and
Stefanini (2012)). In the paper, we shall use the concepts of
partial orderings proposed by Wu (2008) , which are similar
to the similar concepts used for multiobjective programming
problems.

Let ũ, ṽ ∈ F (R) be given two fuzzy numbers represented
by ũα = [

uα, uα

]

and ṽα = [

vα, vα

]

, respectively.

Definition 6 (Wu 2008) We say that ũ dominates (is better
than) ṽ if and only if uα 
 vα for all α ∈ [0, 1]. In other
words, ũ dominates (is better than) ṽ if and only if

{

uα < vα

uα ≤ vα
or

{

uα ≤ vα

uα < vα
or

{

uα < vα

uα < vα
for all α ∈ [0, 1] .

Definition 7 (Wu 2008) We say that ũ strongly dominates ṽ

if and only if ũα ≺ ṽα for all α ∈ [0, 1]. In other words, ũ
dominates (is better than) ṽ if and only if

{

uα < vα

uα ≤ vα
for all α ∈ [0, 1]

or

{

uα ≤ vα

uα < vα
for all α ∈ [0, 1]

or

{

uα < vα

uα < vα
for all α ∈ [0, 1] .

Remark 8 It is not difficult to see that if ũ strongly dominates
ṽ, then ũ dominates ṽ.

Now, we recall some definitions and results for nondiffer-
entiable and convex functions.

Let X be a nonempty convex subset of Rn . We recall that
a crisp function f : X → R is a (strictly) convex function

on X if and only if, the inequality

f (λy + (1 − λ)x) ≤ λ f (y) + (1 − λ) f (x) (<)

holds for all y, x ∈ X , (y �= x) and any λ ∈ [0, 1], (λ ∈
(0, 1)).

Definition 9 (Rockafellar 1970) The subdifferential of a
(nondifferentiable) convex crisp function f : X → R at
x̂ ∈ X is defined as follows:

∂ f (̂x) :=
{

ξ ∈ Rn : f (y) − f (̂x) ≥ ξT (y − x̂) for all y ∈ X
}

.

Remark 10 As it follows from the definition of a convex func-
tion f : X → R on X and the definition of its subdifferential
at x̂ , the following inequality

f (y) − f (̂x) ≥ ξ T (y − x̂)

holds for all y ∈ X .

Lemma 11 (Clarke (1983)) Let f : X → R be a locally
Lipschitz function on a nonempty open set X ⊂ Rn , u is an
arbitrary point of X and λ ∈ R. Then,

∂ (λ f ) (u) ⊆ λ∂ f (u) .

Proposition 12 (Clarke 1983) Let fi : X → R, i =
1, . . . , k, be convex functions on a nonempty open set X ⊂
Rn , u is an arbitrary point of X ⊂ Rn . Then

∂

(

k
∑

i=1

fi

)

(u) ⊆
k
∑

i=1

∂ fi (u) .

Equality holds in the above relation if all but at most one of
the functions fi are strictly differentiable at u.

Corollary 13 (Clarke 1983) For any scalars λi , one has

∂

(

k
∑

i=1

λi fi

)

(u) ⊆
k
∑

i=1

λi∂ fi (u) ,

and equality holds if all but at most one of the fi is strictly
differentiable at u.

Remark 14 If each fi is convex at u, equality holds in Propo-
sition 12. Equality then holds in Corollary 13 as well, if in
addition each λi is nonnegative.

Now, we re-call the definition for a fuzzy function (see,
for example, Panigrahi et al. (2008)).
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Definition 15 (Panigrahi et al. 2008) Let X be a nonempty
subset of Rn and ˜f : X → F (R) be a fuzzy mapping. The
α-cut of ˜f at x ∈ X , which is a closed and bounded interval
for each α ∈ [0, 1], can be denoted by:

˜fα (x) =
[

f
α

(x) , f α (x)
]

, (4)

where f
α

(x) = min ˜fα (x) and f α (x) = max ˜fα (x).

Thus, ˜f can be understood by two functions f
α
and f α ,

which are functions from X × [0, 1] to the set R, f
α
is a

bounded increasing function of α, f α is a bounded decreas-
ing function of α and, moreover, f α (x) ≥ f

α
(x) for all

x ∈ X and each α ∈ [0, 1]. Here, the endpoint functions
f
α
, f α : X × [0, 1] → R are called lower and upper func-

tions of ˜fα , respectively.

In the paper, we consider fuzzy functions ˜f : Rn →
F (R) such that their endpoint functions f

α
and f α are

defined at a given point x of interest for each α ∈ [0, 1].

Proposition 16 (Wu 2007) Let X be a nonempty convex sub-
set of Rn and ˜f : X → F (R) be a fuzzy function defined
on X . Then, ˜f is convex on X if and only if the functions f

α
,

f α are convex on X for each α ∈ [0, 1].

Definition 17 The one-sided directional α-derivative of the
fuzzy function ˜f (given by (4)) at x̂ for some α-cut in the
directiond is defined as the one-side directionalα-derivatives
of the lower and upper functions f

α
and f α at x̂ in the direc-

tion d as follows

˜f ′
α (̂x; d) :=

(

lim
t↓0

f
α

(̂x + td) − f
α

(̂x)

t
, lim
t↓0

f α (̂x + td) − f α (̂x)

t

)

:=
(

f ′
α

(̂x; d) , f ′
α (̂x; d)

)

.

Definition 18 We say that the fuzzy function ˜f : X →
F (R) is (one-sided) directionally differentiable at x̂ if
˜f ′
α (̂x; d) exists for each direction d and for all α-cuts, i.e.,

for each α ∈ [0, 1].

Definition 19 Let the convex fuzzy function ˜f : X → F (R)

admit the directional α-derivative at x̂ in each direction d ∈
Rn for some α-cut. It is said that the subdifferential of this
convex fuzzy function ˜f on the α-cut is defined as a pair of
subdifferentials at x̂ of the functions f

α
and f α on this α-cut

as follows

∂ ˜fα(̂x) :=
(

∂ f
α

(̂x) , ∂ f α (̂x)
)

,

where ∂ f
α

(̂x) :=
{

ξ ∈ Rn : f ′
α

(̂x; d) � ξT d for all d ∈ Rn
}

and ∂ f α (̂x) :=
{

ξ ∈ Rn : f ′
α

(̂x; d) � ξ
T
d for all d ∈ Rn

}

.

In the paper, we consider fuzzy functions f : Rn →
F (R) such that their functions f

α
and f α are locally Lips-

chitz at a given point x of interest for each α ∈ [0, 1].

Proposition 20 Let ˜f : X → F (R) be a (strictly) convex
fuzzy function and x̂ be a given point. Assume that ˜f admits
the directional α-derivative at x̂ in each direction d ∈ Rn

for some α-cut. Then, the following inequalities

f
α
(x) − f

α
(̂x) ≥ ξ T (x − x̂) ∀ξ ∈ ∂ f

α
(̂x) , (>) (5)

f α(x) − f α(̂x) ≥ ξ
T

(x − x̂) ,∀ξ ∈ ∂ f α (̂x) (>) (6)

hold for all x ∈ Rn, (x �= x̂ ).

3 Nondifferentiable convex fuzzy
optimization problem and optimality

In the paper, we consider the constrained optimization
problem with a fuzzy-valued objective function and both
inequality and equality constraints defined by:

minimize ˜f (x)
subject to g j (x) ≤ 0, j ∈ J = {1, . . . m} ,

hi (x) = 0, i ∈ I = {1, . . . , r} ,

x ∈ X ,

(FO)

where X is a nonempty convex open subset of Rn , ˜f : X →
F (R) is a fuzzy function and g j : X → R, j ∈ J , hi : X →
R, i ∈ I , are real-valued functions defined on X . Let D :=
{

x ∈ X : g j (x) ≤ 0, j ∈ J , hi (x) = 0, i ∈ I
}

be the set of
all feasible solutions of the considered fuzzy optimization
problem (FO). Further, we denote the set of active inequality
constraints at point x̂ ∈ X by J (̂x) = {

j ∈ J : g j (̂x) = 0
}

.
In this paper, the α-cuts are used to describe the objective

fuzzy function ˜f , as it was done by Wu (2007). Therefore, it
is assumed that its left- and right-hand side values are given
by the endpoint functions f

α
: X × [0, 1] → R and f α :

X×[0, 1] → R for eachα ∈ [0, 1], respectively. Throughout
the paper, we shall assume that all functions constituting the
fuzzy optimization problem (FO), that is, functions f

α
and

f α for each α ∈ [0, 1], the constraints g j , j ∈ J , hi : X →
R, i ∈ I , are locally Lipschitz functions on X .

Since “
” and “≺” are partial orderings on F (R), we
may follow the similar solution concepts used for multiob-
jective programming problems. Namely, we use the weakly
nondominated and nondominated solutions defined by Wu
(2008).

Definition 21 (Wu 2008) It is said that a feasible solution
x̂ of the considered constrained optimization problem (FO)
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with the fuzzy-valued objective function is its weakly non-
dominated solution if there is no other x ∈ D such that

˜f (x) ≺ ˜f (̂x) .

In other words (by Definition 7), if x̂ ∈ D is a weakly non-
dominated solution of the problem (FO), then there is no
other x ∈ D such that

{

f
α

(x) < f
α

(̂x)
f α (x) ≤ f α (̂x)

for all α ∈ [0, 1]

or

{

f
α

(x) ≤ f
α

(̂x)
f α (x) < f α (̂x)

for all α ∈ [0, 1]

or

{

f
α

(x) < f
α

(̂x)
f α (x) < f α (̂x)

for all α ∈ [0, 1] . (7)

Definition 22 (Wu 2008) It is said that a feasible solution
x̂ of the considered constrained optimization problem (FO)
with the fuzzy-valued objective function is its nondominated
solution if there is no other x ∈ D such that

˜f (x) 
 ˜f (̂x) .

In other words (by Definition 6), if x̂ ∈ D is a nondominated
solution of the problem (FO), then there is no other x ∈ D
such that

{

f
α

(x) < f
α

(̂x)
f α (x) ≤ f α (̂x)

or

{

f
α

(x) ≤ f
α

(̂x)
f α (x) < f α (̂x)

or

{

f
α

(x) < f
α

(̂x)
f α (x) < f α (̂x)

for all α ∈ [0, 1] . (8)

Remark 23 Note that any nondominated solution of the prob-
lem (FO) is its weakly nondominated solution.

Let us consider, for fixed α ∈ [0, 1], the following bi-
objective programming problem

(

f
α

(x) , f α (x)
)

→ min

x ∈ D.
(VPα)

For such multicriterion optimization problems, an optimal
solution is defined in terms of a (weak) Pareto solution in the
following sense:

Definition 24 A feasible point x̂ is said to be a weak Pareto
solution of the problem (VPα) for some α ∈ [0, 1] if and
only if there is no other x ∈ D such that

f
α

(x) < f
α
(̂x) and f α (x) < f α(̂x).

Definition 25 Afeasible point x̂ is said to be a Pareto solution
of the problem (VPα) for some α ∈ [0, 1] if and only if there
is no other x ∈ D such that

f
α

(x) ≤ f
α
(̂x) and f α (x) ≤ f α(̂x)

with at least one strong inequality.

For solving the vector optimization problem (VPα), we
use theweightingmethod. Therefore, for fixed α ∈ [0, 1], we
define the weighting optimization problem associated with
(VPα) as follows:

λ1 f α
(x) + λ2 f α (x) → min

x ∈ D, λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1.
(Pα)

It is well known (see, for example, Miettinen (2004)) that if
x̂ ∈ D is a minimizer of the weighting optimization problem
(Pα), then it is aweakly Pareto solution of the problem (VPα).
If λ1 > 0, λ2 > 0, then it is a Pareto solution of the multi-
objective programming problem (VPα). The converse result
holds under assumption that the problem (VPα) is convex
(see Miettinen 2004).

Now, we give the Karush–Kuhn–Tucker optimality con-
ditions for the weighting optimization problem (Pα) under
assumption that the involved functions are convex.

Theorem 26 Let x ∈ D and there exist ̂λ1 ∈ R, ̂λ2 ∈ R,
μ̂ ∈ Rm and̂ϑ ∈ Rr such that the following Karush–Kuhn–
Tucker optimality conditions

0 ∈ ∂
(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

+
m
∑

j=1

μ̂ j ∂g j (̂x) +
r
∑

i=1

̂ϑi ∂hi (̂x),

(9)

μ̂ j g j (̂x) = 0, j ∈ J , (10)
̂λ1 > 0,̂λ2 > 0,̂λ1 + ̂λ2 = 1, μ̂ ≥ 0 (11)

hold for fixed α ∈ [0, 1]. Further, assume that the func-
tions f

α
and f α are convex on D for any fixed α ∈ [0, 1]

and the functions g j , j = 1, . . . ,m, hi , i ∈ I+ (̂x) :
{

i ∈ I : ̂ϑi > 0
}

, −hi , i ∈ I− (̂x) : {i ∈ I : ̂ϑi < 0
}

, are
convex on D. Then x̂ is an optimal solution of the weighting
optimization problem (Pα).

The following results show the connection between a
(weakly) nondominated solution of the considered optimiza-
tion problem (FO) with the fuzzy-valued objective function
and a Pareto solution of its associated multiobjective pro-
gramming problem (VPα).

Proposition 27 If x̂ ∈ D is a Pareto solution of the multi-
objective programming problem (VPα̂) for some α̂ ∈ [0, 1],
then x̂ is also a weakly nondominated solution of the consid-
ered fuzzy optimization problem (FO).
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Proof We assume that x̂ ∈ D is a Pareto solution of the
multiobjective programming problem (VPα̂) for some α̂ ∈
[0, 1]. We proceed by contradiction. Suppose, contrary to
the result, that x̂ ∈ D is not a weakly nondominated solution
in (FO). Then, by Definition 21, there exists other x̃ ∈ D
such that ˜f (̃x) ≺ ˜f (̂x). Hence, by (7), the foregoing relation
implies that

{

f
α

(̃x) < f
α

(̂x)
f α (̃x) ≤ f α (̂x)

for all α ∈ [0, 1]

or

{

f
α

(̃x) ≤ f
α

(̂x)
f α (̃x) < f α (̂x)

for all α ∈ [0, 1]

or

{

f
α

(̃x) < f
α

(̂x)
f α (̃x) < f α (̂x)

for all α ∈ [0, 1] .

The above relations imply that, for all α ∈ [0, 1],
(

f
α

(̃x) <

f
α

(̂x) and f α (̃x) ≤ f α (̂x)
)

or
(

f
α

(̃x) ≤ f
α

(̂x) and

f α (̃x) < f α (̂x)
)

. Thus, this is true also for α̂ ∈ [0, 1].
Hence, byDefinition 25, this is a contradiction to the assump-
tion that x̂ ∈ D is a Pareto solution of the multiobjective
programming problem (VPα̂) for α̂ ∈ [0, 1]. ��
Proposition 28 If x̂ ∈ D is a Pareto solution of the multi-
objective programming problem (VPα) for each α ∈ [0, 1],
then x̂ is also a nondominated solution of the considered
fuzzy optimization problem (FO).

Proof We assume that x̂ ∈ D is a Pareto solution of the
multiobjective programming problem (VPα̂) for some α̂ ∈
[0, 1].We proceed by contradiction. Suppose, contrary to the
result, that x̂ ∈ D is not a weakly nondominated solution in
(FO). Then, by Definition 21, there exists other x̃ ∈ D such
that ˜f (̃x) � ˜f (̂x). Hence, by (8), the foregoing relation
implies that

{

f
α

(̃x) < f
α

(̂x)
f α (̃x) ≤ f α (̂x)

or

{

f
α

(̃x) ≤ f
α

(̂x)
f α (̃x) < f α (̂x)

or

{

f
α

(̃x) < f
α

(̂x)
f α (̃x) < f α (̂x)

for all α ∈ [0, 1] .

The above relations imply that there exists α̂ ∈ [0, 1] such
that one of three above systems of inequalities is satisfied.
Hence, byDefinition 25, this is a contradiction to the assump-
tion that x̂ ∈ D is a Pareto solution of the multiobjective
programming problem (VPα) for each α ∈ [0, 1]. ��

Now, under convexity hypotheses, we prove the Karush–
Kuhn–Tucker optimality conditions for a (weakly) nondomi-

nated solution of the considered fuzzy optimization problem
(FO).

Theorem 29 Let x̂ be a feasible solution of the problem (FO),
and, for each α ∈ [0, 1], there exist̂λ1 ∈ R,̂λ2 ∈ R, μ̂ ∈ Rm

and ̂ϑ ∈ Rr such that the Karush–Kuhn–Tucker optimality
conditions

0 ∈ ∂
(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

+
m
∑

j=1

μ̂ j ∂g j (̂x) +
r
∑

i=1

̂ϑi ∂hi (̂x),

(12)

μ̂ j g j (̂x) = 0, j ∈ J , (13)
̂λ1 > 0,̂λ2 > 0,̂λ1 + ̂λ2 = 1, μ̂ ≥ 0 (14)

hold. Further, assume that the objective function ˜f is a con-
vex fuzzy function on D and the functions g j , j = 1, . . . ,m,
hi , i ∈ I+ (̂x) : {i ∈ I : ̂ϑi > 0

}

, −hi , i ∈ I− (̂x) :
{

i ∈ I : ̂ϑi < 0
}

, are convex on D. Then, x̂ is a nondomi-
nated solution of the considered fuzzy optimization problem
(FO).

Proof By assumption, x̂ is such a feasible solution of the
problem (FO) at which the Karush–Kuhn–Tucker optimality
conditions (12)–(14) are fulfilled. We proceed by contra-
diction. Suppose, contrary to the result, that x̂ is not a
nondominated solution of the considered fuzzy optimization
problem (FO). Then, by Definition 22, there exists x0 ∈ D
such that ˜f (x0) 
 ˜f (̂x). Since ̂λ1 > 0 and ̂λ2 > 0, this
relation implies by (8) that, for each α ∈ [0, 1],

̂λ1 f α
(x0) +̂λ2 f α (x0) <̂λ1 f α

(̂x) +̂λ2 f α (̂x) . (15)

Note that all assumptions of Theorem 26 are fulfilled. Then,
by Theorem 26, it follows that x̂ is a minimizer of the weight-
ing optimization problem (Pα). This means that, for each
α ∈ [0, 1], the following inequality

̂λ1 f α
(x) +̂λ2 f α (x) ≥̂λ1 f α

(̂x) +̂λ2 f α (̂x)

holds for all x ∈ D, which contradicting (15). This completes
the proof of this theorem. ��

In the next theorem, under convexity hypotheses, we
prove the sufficient optimality conditions of aKarush–Kuhn–
Tucker type for a weakly nondominated solution in the
considered fuzzy optimization problem (FO).

Theorem 30 Let x̂ be a given feasible solution of the problem
(FO) and, for each α ∈ [0, 1], there exist μ̂ ∈ Rm, μ̂ ≥ 0
and ̂ϑ ∈ Rr such that the following Karush-Kuhn-Tucker
optimality conditions
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0 ∈ ∂ f
α
(̂x) +

m
∑

j=1

μ̂ j∂g j (̂x) +
r
∑

i=1

̂ϑi∂hi (̂x), (16)

0 ∈ ∂ f α(̂x) +
m
∑

j=1

μ̂ j∂g j (̂x) +
r
∑

i=1

̂ϑi∂hi (̂x), (17)

μ̂ j g j (̂x) = 0, j ∈ J (18)

hold. Further, assume that the objective function ˜f is a con-
vex fuzzy function on D and the functions g j , j = 1, ...,m,
hi , i ∈ I+ (̂x) := {

i ∈ I : ̂ϑi > 0
}

, −hi , i ∈ I− (̂x) :=
{

i ∈ I : ̂ϑi < 0
}

, are convex on D. Then, x̂ is a weakly
nondominated solution of the considered fuzzy optimization
problem (FO).

Proof By assumption, x̂ is such a feasible solution of the
problem (FO) at which the Karush–Kuhn–Tucker optimality
conditions (16)–(18) are fulfilled with Lagrange multipliers
μ̂ ∈ Rm , μ̂ ≥ 0 and ̂ϑ ∈ Rr . We proceed by contradic-
tion. Suppose, contrary to the result, that x̂ is not a weakly
nondominated solution of the considered fuzzy optimization
problem (FO). Then, by Definition 21, there exists x0 ∈ D
such that

f
α̂

(x0) < f
α̂

(̂x) for all α ∈ [0, 1] (19)

or

f α̂ (x0) < f α̂ (̂x) for all α ∈ [0, 1] . (20)

By hypothesis, the objective function ˜f is a convex fuzzy
function on D. Hence, by Proposition 16, the functions f

α

and f α are convex on D. Combining (16), (17), (19) and
(20), respectively, we get

ξ T (x0 − x̂) < 0,∀ξ ∈ ∂ f
α

(̂x) for all α ∈ [0, 1] (21)

or

ξ
T

(x0 − x̂) < 0,∀ξ ∈ ∂ f α (̂x) for all α ∈ [0, 1] . (22)

By convexity hypotheses imposed on the constraint func-
tions, it follows that

g j (x0) − g j (̂x) ≥ ζ T
j (x0 − x̂) , ∀ζ j ∈ ∂g j (̂x) , j = 1, ...,m, (23)

hi (x0) − hi (̂x) ≥ ςT
i (x0 − x̂) , ∀ςi ∈ ∂hi (̂x) , i ∈ I+ (̂x) , (24)

−hi (x0) + hi (̂x) ≥ −ςT
i (x0 − x̂) , ∀ (−ςi ) ∈ ∂ (−hi (̂x)) , i ∈ I− (̂x) .

(25)

Multiplying (23)–(25) by the corresponding Lagrange mul-
tiplier, we get

μ̂ j g j (x0) − μ̂ j g j (̂x) ≥ μ̂ j ζ
T
j (x0 − x̂) , ∀ζ j ∈ ∂g j (̂x) , j = 1, ...,m,

(26)
̂ϑi hi (x0) −̂ϑi hi (̂x) ≥ ̂ϑiς

T
i (x0 − x̂) , ∀ςi ∈ ∂hi (̂x) , i ∈ I+ (̂x) ,

(27)
̂ϑi hi (x0) −̂ϑi hi (̂x) ≥ ̂ϑiς

T
i (x0 − x̂) , ∀ςi ∈ ∂hi (̂x) , i ∈ I− (̂x) .

(28)

Using x0, x̂ ∈ D and the Karush–Kuhn–Tucker optimality
condition (18), we obtain, respectively,

μ̂ jζ
T
j (x0 − x̂) ≤ 0 , ∀ζ j ∈ ∂g j (̂x) , j ∈ J , (29)

̂ϑiς
T
i (x0 − x̂) ≤ 0,∀ςi ∈ ∂hi (̂x) , i ∈ I . (30)

Combining (21), (22), (29) and (30), respectively, we get
that, for any ξ ∈ ∂ f

α
(̂x), ξ ∈ ∂ f α (̂x) for all α ∈ [0, 1] ,

ζ j ∈ ∂g j (̂x), j ∈ J , ςi ∈ ∂hi (̂x), i ∈ I ,

⎛

⎝ξ T +
m
∑

j=1

μ̂ jζ
T
j +

r
∑

i=1

̂ϑiς
T
i

⎞

⎠ (x0 − x̂) < 0, (31)

or

⎛

⎝ξ
T +

m
∑

j=1

μ̂ jζ
T
j +

r
∑

i=1

̂ϑiς
T
i

⎞

⎠ (x0 − x̂) < 0. (32)

Thus, (31) and (32) imply, respectively, that at least one of
the following relations

0 /∈ f
α
(̂x) +

m
∑

j=1

μ̂ j∂g j (̂x) +
r
∑

i=1

̂ϑi∂hi (̂x)

or

0 /∈ f α(̂x) +
m
∑

j=1

μ̂ j∂g j (̂x) +
r
∑

i=1

̂ϑi∂hi (̂x)

is fulfilled for all α ∈ [0, 1], which is a contradiction to
the Karush–Kuhn–Tucker optimality condition (16) or to the
Karush–Kuhn–Tucker optimality condition (17). This means
that x̂ is a weakly nondominated solution of the considered
fuzzy optimization problem (FO) and completes the proof of
this theorem. ��

We now give the Karush–Kuhn–Tucker necessary opti-
mality conditions for a feasible solution x̂ to be a weakly
nondominated solution of the considered fuzzy optimization
problem (FO).
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Theorem 31 Let x̂ ∈ D be a weakly nondominated solution
of the considered fuzzy optimization problem (FOP). Further,
assume that ˜f is a convex fuzzy function on D and the func-
tions g j , j = 1, . . . ,m, hi , i ∈ I+ (̂x) := {

i ∈ I : ̂ϑi > 0
}

,
−hi , i ∈ I− (̂x) := {

i ∈ I : ̂ϑi < 0
}

, are convex on D and,
moreover, the Slater constraint qualification is satisfied at
x̂ for (FO). Then, there exist α̂ ∈ [0, 1],̂λ1 ∈ R,̂λ2 ∈ R,
μ̂ ∈ Rm and̂ϑ ∈ Rr such that the following Karush–Kuhn–
Tucker optimality conditions

0 ∈ ∂
(

̂λ1 f α̂
(̂x) +̂λ2 f α̂ (̂x)

)

+
m
∑

j=1

μ̂ j∂g j (̂x) +
r
∑

i=1

̂ϑi∂hi (̂x),

(33)
μ̂ j g j (̂x) = 0, j ∈ J , (34)
̂λ1 ≥ 0,̂λ2 ≥ 0,̂λ1 + ̂λ2 = 1, μ̂ ≥ 0 (35)

hold.

Now, we introduce two types of a Karush–Kuhn–Tucker
point for the considered fuzzy optimization problem (FO).

Definition 32 The point x̂ ∈ D is said to be Karush–Kuhn–
Tucker point (a KKT point, for short) if, for each α ∈ [0, 1],
there exist Lagrange multiplierŝλ1 ∈ R,̂λ2 ∈ R, μ ∈ Rm

and ϑ ∈ Rr such that the Karush–Kuhn–Tucker optimality
conditions (12)–(14) are satisfied.

Definition 33 The point x̂ ∈ D is said to be a strong Karush–
Kuhn–Tucker point (a weak KKT point, for short) if, for
each α ∈ [0, 1], there exist Lagrange multipliers μ ∈ Rm

and ϑ ∈ Rr such that the Karush–Kuhn–Tucker optimality
conditions (16)–(18) are satisfied.

4 The exactness of the l1 exact penalty
functionmethod for fuzzy optimization
problem

Methods using an exact penalty function transform a con-
strained extremum problem into a single unconstrained
optimization problem. The constraints are placed into the
objective function via a penalty parameter c in a way that
penalizes any violation of the constraints. The basic idea in
any exact penalty function method is to choose a penalty
function p and a penalty parameter c so that the optimal
solution x̂ in the penalized optimization problem is also an
optimal solution in the given extremum problem.

Now, we use an exact penalty method for solving the con-
sidered nonlinear fuzzy optimization problem (FO) with the
fuzzy objective function. Therefore, for the given nonlinear
fuzzy extremum problem (FO), we define an unconstrained
fuzzy penalized optimization problem as follows:

min ˜P(x, c) = ˜f (x) +˜1cp(x), (FP(c)) (36)

where ˜f : X → F (R) is a fuzzy function, p is a suit-
able penalty function, c is a penalty parameter and˜1{cp(x)}
is a crisp number with the value cp(x). As it follows from
the definition of (FP(c)), the considered constrained fuzzy
optimization problem (FP) is replaced by an unconstrained
fuzzy optimization problem, whose fuzzy objective function
is the sum of a certain fuzzy “merit” function (which reflects
the fuzzy objective function of the given fuzzy optimization
problem) and the penalty term which reflects the constraint
set. The fuzzy merit function is chosen as the original fuzzy
objective function, while the penalty term is obtained bymul-
tiplying a suitable function, which represents the constraints,
by a positive parameter c, called the penalty parameter.

Note that the penalized objective function in the uncon-
strained fuzzy penalized optimization problem is a fuzzy
function. Then, as it follows from (4), for any fixed α ∈
[0, 1], we associate with ˜P interval-valued functions ˜Pα :
X × [0, 1]× R+ → F (R), α ∈ [0, 1], given by ˜Pα (x, c) =
[

Pα (x, c) , Pα (x, c)
]

for any x ∈ X , where Pα ,, Pα : X ×
[0, 1]× R+ → R are real-valued functions. Thus, an uncon-
strained fuzzy penalized optimization problem (FPα(c)) is
defined by

min ˜Pα(x, c) =
[

f
α
(x) + cp(x) , f α (x) + cp(x)

]

. (FPα(c))

Now, in a natural way, we extend the definition of the
property of exactness of the penalization for a classical exact
penalty function method to the fuzzy case.

Definition 34 Let α be any fixed number from the interval
[0, 1]. If a threshold value c ≥ 0 exists such that, for every
c ≥ c,

arg (weakly) nondominated
{

˜f (x) : x ∈ D
}

= arg (weakly)nondominated
{

˜P(x, c) : x ∈ Rn} ,

then the function ˜P is termed a fuzzy exact penalty function
and, therefore, we call (FP(c)), defined by (36), the fuzzy
penalized optimization problem or the penalized optimiza-
tion problem with the fuzzy objective function.

It is clear that, conceptually, if ˜P is a fuzzy exact penalty
function, we can find the constrained (weak) nondominated
solution of the considered fuzzy optimization problem (FO),
by looking for unconstrained (weakly) nondominated solu-
tions of the function ˜P(x, c), for sufficiently large values of
the penalty parameter c.

Themost popular nondifferentiable exact penalty function
method for solving nonlinear optimization problems is the l1
exact penalty function method also called the absolute value
penalty function. We now give the definition of the l1 exact
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penalty function if it is used for solving the given nonlinear
fuzzy optimization problem (FO) as follows

min ˜P(x, c) = ˜f (x) +˜1
c
(

∑m
j=1 max{0,g j (x)}+∑r

i=1|hi (x)|
). (FP(c))

We call (FP(c)) defined above the fuzzy penalized optimiza-
tion problemwith the fuzzy l1 exact penalty function. Hence,
for any fixed α ∈ [0, 1], we define the fuzzy l1 exact penalty
function for the given nonlinear fuzzy optimization problem
(FO) as follows

˜Pα(x, c) =
[

f
α
(x) + c

(

∑m
j=1 max

{

0, g j (x)
}+∑r

i=1 |hi (x)|
)

f α (x) + c
(

∑m
j=1 max

{

0, g j (x)
}+∑r

i=1 |hi (x)|
)]

,

(37)

where Pα (x, c) = f
α
(x) + c

(

∑m
j=1 max

{

0, g j (x)
}

+∑r
i=1 |hi (x)|

)

and Pα (x, c) = f α (x) + c
(

∑m
j=1 max

{

0, g j (x)
}+∑r

i=1 |hi (x)|
)

are left- and right-hand side
values of ˜Pα .

Thus, for fixed α ∈ [0, 1], the unconstrained fuzzy
optimization problem with the fuzzy l1 exact penalty func-
tion defined by (37), constructed for the considered fuzzy
optimization problem (FP) in the l1 exact penalty function
method, can be written in the following form

min ˜Pα(x, c)

=
[

f
α
(x) + c

(

∑m
j=1 max

{

0, g j (x)
}+∑r

i=1 |hi (x)|
)

,

f α (x) + c
(

∑m
j=1 max

{

0, g j (x)
}+∑r

i=1 |hi (x)|
)]

(FPα(c))

It is well known that, for a given constraint g j (x) ≤ 0,
j ∈ J , the function g+

j defined by

g+
j (x) =

{

0 if g j (x) ≤ 0
g j (x) if g j (x) > 0

(38)

is zero for all x that satisfy the constraint and that it has a
positive valuewhenever this constraint is violated.Moreover,
large violations in the inequality constraint g j result in large
values for the function g+

j (x). Thus, the function g+
j has the

penalty features relative to the single inequality constraint
g j . However, observe that at points, where g j (x) = 0, the
foregoing objective functionmight not be differentiable, even
though g j is differentiable. Therefore, using (38), the fuzzy
penalized optimization problem (FPα(c)) with the fuzzy l1
exact penalty function can be re-written for any fixed α ∈
[0, 1] as

min ˜Pα(x, c) =
[

f
α
(x) + c

(

∑m
j=1 g

+
j (x) +∑r

i=1 |hi (x)|
)

,

f α (x) + c
(

∑m
j=1 g

+
j (x) +∑r

i=1 |hi (x)|
)]

.

(FPα(c))

(39)

In the paper, the l1 exact penalty function method is used
for solving the considered nonlinear fuzzyoptimization prob-
lem (FO). Then, we prove the equivalence between the sets
of (weak) nondominated solutions of the problem (FO) and
the fuzzy penalized optimization problem (FP(c)) for suffi-
ciently large penalty parameter c.

First, we prove that a Karush–Kuhn–Tucker point of the
considered fuzzy optimization problem with convex func-
tions is a nondominated solution of the associated fuzzy
penalized optimization problem (FPα(c)) with the fuzzy l1
exact penalty function for any α ∈ [0, 1] and for sufficiently
large penalty parameters c greater than the threshold equal to
the largest absolute value of Lagrange multiplier associated
with some of the constraints.

Theorem 35 Let x̂ ∈ D be a Karush–Kuhn–Tucker point of
the considered nonsmooth fuzzy optimization problem (FO),
that is, for each α ∈ [0, 1], there exist Lagrange multipliers
̂λ1 > 0,̂λ2 > 0,̂λ1 +̂λ2 = 1, μ̂ j , j ∈ J , ̂ϑi , i ∈ I such
that the Karush–Kuhn–Tucker optimality conditions (12)–
(14) are satisfied at x̂ . Further, assume that the objective
function ˜f is a convex fuzzy function on X, each inequality
constraint function g j , j ∈ J , each equality constraint func-
tion hi , i ∈ I+ (̂x) := {

i ∈ I : ̂ϑi > 0
}

, and each function
−hi , i ∈ I− (̂x) := {

i ∈ I : ̂ϑi < 0
}

, are convex on X. If the
penalty parameter c is assumed to be sufficiently large (it is
sufficient to set c ≥ max

{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

), then x̂
is a nondominated solution of the fuzzy penalized optimiza-
tion problem (FP(c)) with the l1 exact penalty function.

Proof We are going to prove this result by contradiction.
Suppose, contrary to the result, that x̂ is not a nondominated
solution of the fuzzy penalized optimization problem (FP(c))
with the fuzzy l1 exact penalty function. Therefore, by Defi-
nition 22, there exists x0 ∈ X such that

˜Pα (x0, c) 
 ˜Pα (̂x, c) for all α ∈ [0, 1] .

Hence, by Definition 6, the above relation implies

{

Pα (x0, c) < Pα (̂x, c)

Pα (x0, c) ≤ Pα (̂x, c)
or

{

Pα (x0, c) ≤ Pα (̂x, c)

Pα (x0, c) < Pα (̂x, c)

or

{

Pα (x0, c) < Pα (̂x, c)

Pα (x0, c) < Pα (̂x, c)
for all α ∈ [0, 1] .

By the definition of (FP(c)) (see (39)), we have that, for all
α ∈ [0, 1],
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤ f α (̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

or

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤ f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

or

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

.

Multiplying the above inequalities by the corresponding
Lagrange multipliers ̂λ1 > 0, ̂λ2 > 0 associated with the
fuzzy objective function, then adding the resulting inequali-
ties and using that̂λ1+̂λ2 = 1, we get

̂λ1 f α
(x0) +̂λ2 f α (x0) + c

[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

<̂λ1 f α
(̂x) +̂λ2 f α (̂x) + c

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

.
(40)

Since x̂ ∈ D, by (38), it follows that
∑m

j=1 g
+
j (̂x) +

∑r
i=1 |hi (̂x)| = 0. Hence, by (38) and the definition of the

absolute function, (40) gives

̂λ1 f α
(x0) +̂λ2 f α (x0) + c

⎡

⎣

m
∑

j=1

g j (x0) +
r
∑

i=1

hi (x0)

⎤

⎦

<̂λ1 f α
(̂x) +̂λ2 f α (̂x) . (41)

By assumption, c ≥ max
{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

. Thus,
(41) implies

̂λ1 f α
(x0) +̂λ2 f α (x0) +

m
∑

j=1

μ̂ j g j (x0) +
r
∑

i=1

̂ϑi hi (x0)

<̂λ1 f α
(̂x) +̂λ2 f α (̂x) .

Using theKarush–Kuhn–Tucker condition (13) togetherwith
x̂ ∈ D, we obtain

̂λ1 f α
(x0) +̂λ2 f α (x0) +∑m

j=1 μ̂ j g j (x0) +∑r
i=1
̂ϑi hi (x0)

<̂λ1 f α
(̂x) +̂λ2 f α (̂x) +∑m

j=1 μ̂ j g j (̂x) +∑r
i=1
̂ϑi hi (̂x) .

(42)

By assumption, the fuzzy objective function ˜f is convex on
X . Then, by Proposition 20, the inequalities

f
α
(x0) − f

α
(̂x) ≥ ξ T (x0 − x̂) ,∀ξ ∈ ∂ f

α
(̂x) , (43)

f α(x0) − f α(̂x) ≥ ξ
T

(x0 − x̂) ,∀ξ ∈ ∂ f
α

(̂x) (44)

hold for each α ∈ [0, 1]. Further, each inequality constraint
function g j , j ∈ J , each equality constraint function hi ,
i ∈ I+ (̂x), and each function −hi , i ∈ I− (̂x), are also
convex on X . Then, by Remark 10, the inequalities

g j (x0) − g j (̂x) ≥ ζ T
j (x0 − x̂) ,∀ζ j ∈ ∂g j (̂x) , j = 1, ...,m, (45)

hi (x0) − hi (̂x) ≥ ςT
i (x0 − x̂) ,∀ςi ∈ ∂hi (̂x) , i ∈ I+ (̂x) , (46)

−hi (x0) + hi (̂x) ≥ −ςT
i (x0 − x̂) ,∀ (−ςi ) ∈ ∂ (−hi (̂x)) , i ∈ I− (̂x)

(47)

hold. Multiplying each inequality (43)–(47) by the corre-
sponding Lagrange multiplier and then adding both sides of
the resulting inequalities, we get that the inequality

̂λ1 f α
(x0) +̂λ2 f α (x0) +∑m

j=1 μ̂ j g j (x0) +∑r
i=1
̂ϑi hi (x0)

−
(

̂λ1 f α
(̂x) +̂λ2 f α (̂x) +∑m

j=1 μ̂ j g j (̂x) +∑r
i=1
̂ϑi hi (̂x)

)

≥
(

̂λ1ξ +̂λ2ξ +∑m
j=1 μ̂ j ζ j +∑r

i=1
̂ϑiςi

)T
(x0 − x̂)

(48)

holds. Then, by theKarush–Kuhn–Tucker condition (12) and
Corollary 13, (48) implies that the inequality

̂λ1 f α
(x0) +̂λ2 f α (x0) +∑m

j=1 μ̂ j g j (x0) +∑r
i=1
̂ϑi hi (x0)

≥̂λ1 f α
(̂x) +̂λ2 f α (̂x) +∑m

j=1 μ̂ j g j (̂x) +∑r
i=1
̂ϑi hi (̂x)

holds, contradicting (42). Hence, the proof of this theorem is
completed. ��

The following result follows directly from Theorem 35. It
says that, under appropriate convexity hypotheses, a non-
dominated solution of the considered fuzzy optimization
problem (FO) is also a nondominated solution of the associ-
ated penalized fuzzy optimization problem (FP(c)) with the
fuzzy l1 exact penalty function if the penalty parameter c is
assumed to be sufficiently large.

Theorem 36 Let x̂ be a nondominated solution of the con-
sidered fuzzy optimization problem (FO) and all hypotheses
of Theorem 35 be fulfilled. If the penalty parameter c is
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assumed to be sufficiently large (it is sufficient to set c ≥
max

{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

), then x̂ is also a nondomi-
nated solution of the associated fuzzy penalized optimization
problem (FP(c)) with the fuzzy l1 exact penalty function.

Now, under appropriate convexity hypotheses, we prove
that a strong Karush–Kuhn–Tucker point of the considered
nonsmooth fuzzy optimization problem (FO) is also aweakly
nondominated solution of the fuzzy penalized optimization
problem (FP(c)) with the fuzzy l1 exact penalty function.

Theorem 37 Let x̂ ∈ D be a strong Karush–Kuhn–Tucker
point of the considered nonsmooth fuzzy optimization prob-
lem (FO) and the conditions (16)–(18) be satisfied at x̂
with Lagrange multipliers μ̂ j , j ∈ J , ̂ϑi , i ∈ I . Fur-
thermore, assume that the objective function ˜f is a convex
fuzzy function on X and the constraints of the problem (FO),
that is, the functions g j , j = 1, . . . ,m , hi , i ∈ I+ (̂x),
−hi , i ∈ I− (̂x), are convex on X. If the penalty param-
eter c is assumed to be sufficiently large (it is sufficient to
set c ≥ max

{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

), then x̂ is a weakly
nondominated solution of the fuzzy penalized optimization
problem (FP(c)) with the fuzzy l1 exact penalty function.

Proof We proceed by contradiction. Suppose, contrary to the
result, that x̂ is not a weakly nondominated solution of the
fuzzy penalized optimization problem (FP(c)) with the fuzzy
l1 exact penalty function. Then, by Definition 21, there exists
x0 ∈ X such that

˜P (x0, c) ≺ ˜P (̂x, c) .

In particular, one has for all α ∈ [0, 1] that

Pα (x0, c) < Pα (̂x, c) or Pα (x0, c) < Pα (̂x, c) .

By (39), the above inequalities yield for allα ∈ [0, 1], respec-
tively,

f
α

(x0) + c

⎛

⎝

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎞

⎠

< f
α

(̂x) + c

⎛

⎝

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎞

⎠ (49)

or

f α (x0) + c

⎛

⎝

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎞

⎠

< f α (̂x) + c

⎛

⎝

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎞

⎠ . (50)

By x̂ ∈ D, (49) and (50) imply for allα ∈ [0, 1], respectively,

f
α

(x0) + c

⎛

⎝

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎞

⎠ < f
α

(̂x) (51)

or

f α (x0) + c

⎛

⎝

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎞

⎠ < f α (̂x) . (52)

By assumption, c ≥ max
{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

. Thus,
(51) and (52) imply for all α ∈ [0, 1] , respectively,

f
α

(x0) +
m
∑

j=1

μ̂ j g
+
j (x0) +

r
∑

i=1

∣

∣̂ϑi hi (x0)
∣

∣ < f
α

(̂x) (53)

or

f α (x0) +
m
∑

j=1

μ̂ j g
+
j (x0) +

r
∑

i=1

∣

∣̂ϑi hi (x0)
∣

∣ < f α (̂x) . (54)

Using again the feasibility of x̂ in (FO) together with (18)
and (38), we get, for all α ∈ [0, 1],

f
α

(x0) +
m
∑

j=1

μ̂ j g j (x0) +
r
∑

i=1

̂ϑi hi (x0) <

f
α

(̂x) +
m
∑

j=1

μ̂ j g j (̂x) +
r
∑

i=1

̂ϑi hi (̂x) (55)

or

f α (x0) +
m
∑

j=1

μ̂ j g j (x0) +
r
∑

i=1

̂ϑi hi (x0) <

f α (̂x) +
m
∑

j=1

μ̂ j g j (̂x) +
r
∑

i=1

̂ϑi hi (̂x) . (56)

Now, assume that x̂ is a feasible solution of the considered
nonsmooth fuzzy optimization problem (FO) and the weak
Karush–Kuhn–Tucker optimality conditions (16)–(18) are
satisfied at x̂ with Lagrange multipliers ̂λ1 > 0, ̂λ2 > 0,
μ̂ j , j ∈ J ,̂ϑi , i ∈ I . Using convexity hypotheses, we have,
by Proposition 20 andDefinition 9, that the inequalities (43)–
(47) are satisfied. Multiplying each inequality (43)–(47) by
the corresponding Lagrange multiplier and then combining
the resulting inequalities, we get for all α ∈ [0, 1] that the
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following inequalities

f
α

(x0) +∑m
j=1 μ̂ j g j (x0) +∑r

i=1
̂ϑi hi (x0)

−
(

f
α

(̂x) +∑m
j=1 μ̂ j g j (̂x) +∑r

i=1
̂ϑi hi (̂x)

)

≥
(

ξ +∑m
j=1 ζ j +∑r

i=1 ςi

)T
(x0 − x̂)

(57)

f α (x0) +∑m
j=1 μ̂ j g j (x0) +∑r

i=1
̂ϑi hi (x0)

−
(

f α (̂x) +∑m
j=1 μ̂ j g j (̂x) +∑r

i=1
̂ϑi hi (̂x)

)

≥
(

ξ +∑m
j=1 ζ j +∑r

i=1 ςi

)T
(x0 − x̂)

(58)

hold for any ξ ∈ ∂ f
α

(̂x), ξ ∈ ∂ f
α

(̂x), ζ j ∈ ∂g j (̂x), j =
1, . . . ,m, ςi ∈ ∂hi (̂x), i ∈ I . Then, by the Karush–Kuhn–
Tucker optimality conditions (16) and (17), (57) and (58)
yield that the inequalities

f
α

(x0) +
m
∑

j=1

μ̂ j g j (x0) +
r
∑

i=1

̂ϑi hi (x0)

≥ f
α

(̂x) +
m
∑

j=1

μ̂ j g j (̂x) +
r
∑

i=1

̂ϑi hi (̂x) , (59)

f α (x0) +
m
∑

j=1

μ̂ j g j (x0) +
r
∑

i=1

̂ϑi hi (x0)

≥ f α (̂x) +
m
∑

j=1

μ̂ j g j (̂x) +
r
∑

i=1

̂ϑi hi (̂x) (60)

hold for all α ∈ [0, 1], contradicting (55) or (56). Hence, the
proof of this theorem is completed. ��

The following result follows directly from Theorem 37.
It shows that, under appropriate convexity hypotheses, a
weakly nondominated solution of the considered fuzzy opti-
mization problem (FO) is also a weakly nondominated
solution of the associated penalized fuzzy optimization prob-
lem (FP(c)) with the fuzzy l1 exact penalty function if the
penalty parameter c is assumed to be sufficiently large.

Theorem 38 Let x̂ be a weakly nondominated solution of the
considered fuzzy optimization problem (FO) and all hypothe-
ses of Theorem 37 be fulfilled. If the penalty parameter
c is assumed to be sufficiently large (it is sufficient to set
c ≥ max

{

μ̂ j , j ∈ J ,
∣

∣̂ϑi
∣

∣ , i ∈ I
}

), then x̂ is also a weakly
nondominated solution of the associated penalized fuzzy opti-
mization problem (FP(c)) with the fuzzy l1 exact penalty
function.

Now, we prove the converse results to those formulated in
Theorems 36 and 38. First, we establish some useful results
which we use in proving them.

Proposition 39 Let x̂ be a nondominated solution of the fuzzy
penalized optimization problem (FP(c)) with the fuzzy l1

exact penalty function associated with the considered fuzzy
optimization problem (FO). Then, there does not exist x ∈ D
such that

˜f (x) 
 ˜f (̂x) . (61)

Proof By assumption, x̂ is a nondominated solution of the
fuzzy exact l1 penalized optimization problem (FP(c)). We
proceed by contradiction. Suppose, contrary to the result,
that there exists x0 ∈ D such that ˜f (x0) 
 ˜f (̂x). Hence,
for each α ∈ [0, 1], it follows that

{

f
α

(x0) < f
α

(̂x)
f α (x0) ≤ f α (̂x)

or

{

f
α

(x0) ≤ f
α

(̂x)
f α (x0) < f α (̂x)

or

{

f
α

(x0) < f
α

(̂x)
f α (x0) < f α (̂x) .

Since x0 ∈ D, by (38), we have for each α ∈ [0, 1],

⎧

⎨

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x)

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤ f α (̂x)

or

⎧

⎨

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤ f
α

(̂x)

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x)

or

⎧

⎨

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x)

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x) .

Again using (38), we obtain for each α ∈ [0, 1],

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤
f α (̂x) + c

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

or

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

≤
f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

or

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
α

(x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f
α

(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

f α (x0) + c
[

∑m
j=1 g

+
j (x0) +∑r

i=1 |hi (x0)|
]

< f α (̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi (̂x)|
]

.

.
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Thus, by the definition of the fuzzy l1 exact penalty function
˜P (see (37)), it follows that

{

Pα (x0, c) < Pα (̂x, c)
Pα (x0, c) ≤ Pα (̂x, c)

or

{

Pα (x0, c) < Pα (̂x, c)
Pα (x0, c) ≤ Pα (̂x, c)

or

{

Pα (x0, c) < Pα (̂x, c)
Pα (x0, c) ≤ Pα (̂x, c)

for all α ∈ [0, 1] .

Hence, there exists x0 ∈ D ⊂ X such that ˜P (x0, c) 

˜P (̂x, c). This means that x̂ is not a nondominated solution
of the fuzzy penalized optimization problem (FP(c)) with
the fuzzy l1 exact penalty function, which is a contradiction.
Hence, the proof of this proposition is completed. ��
Proposition 40 Let x̂ be a weakly nondominated solution of
the fuzzy penalized optimization problem (FP(c)) with the
fuzzy l1 exact penalty function associated with the considered
fuzzy optimization problem (FO). Then, there does not exist
x ∈ D such that

˜f (x) ≺ ˜f (̂x) . (62)

Proof Suppose, contrary to the result, that there exists x0 ∈
D such that

˜f (x0) ≺ ˜f (̂x) . (63)

In particular, there exists x0 ∈ D such that, for each α ∈
[0, 1],

f
α

(x0) < f
α

(̂x) or f α (x0) < f α (̂x) .

Using x0 ∈ D together with (38), we get

f
α

(x0) + c

⎡

⎣

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎤

⎦

< f
α

(̂x) + c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦

or

f α (x0) + c

⎡

⎣

m
∑

j=1

g+
j (x0) +

r
∑

i=1

|hi (x0)|
⎤

⎦

< f α (̂x) + c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦ .

Thus, by (37), it follows that, for each α ∈ [0, 1],

Pα (x, c) < Pα (̂x, c) or Pα (x0, c) < Pα (̂x, c) .

This means that there exists x0 ∈ D such that the relation

˜P (x, c) ≺ ˜P (̂x, c)

holds, contradicting the assumption that x̂ is a weakly
nondominated solution of the fuzzy penalized optimization
problem (FP(c)) with the fuzzy l1 exact penalty function.
Hence, the proof of this proposition is completed. ��

Theorem 41 Let D be a compact subset of Rn and x̂ be a
(weakly) nondominated solution of the fuzzy penalized opti-
mization problem (FP(c)) with the fuzzy l1 exact penalty
function. Further, assume that the objective fuzzy function
˜f is convex on X, each inequality constraint function g j ,
j ∈ J , is convex on X, each equality function hi , i ∈ I , is
affine. If the penalty parameter c is sufficiently large, then x̂
is also a (weakly) nondominated solution of the considered
fuzzy optimization problem (FO).

Proof Assume that x̂ is a nondominated solution of the fuzzy
penalized optimization problem (FPα(c)) with the fuzzy l1
exact penalty function.

We consider two cases. First, we assume that x̂ ∈ D.
Then, by Proposition 40, there is no other x ∈ D such that
f (x) 
 f (̂x). Hence, by Definition 22, the feasibility of
x̂ in (FO) implies that x̂ is a nondominated solution of the
considered fuzzy optimization problem (FO). We have, by
Definition 34, that, for any c ≥ c, x̂ a nondominated solution
of any fuzzy penalized optimization problem (FP(c)) with the
fuzzy l1 exact penalty function. Moreover, we have shown
that x̂ is also a nondominated solution of the considered fuzzy
optimization problem (FO).

Now, we prove that, under the assumptions of this theo-
rem, the case x̂ /∈ D is impossible. Suppose, contrary to the
result, that x̂ /∈ D. Since x̂ is a nondominated solution of the
fuzzy penalized optimization problem (FP(c)), there exists
̂λ1 ∈ R,̂λ1 ≥ 0,̂λ2 ∈ R,̂λ2 ≥ 0,̂λ1 +̂λ2 = 1, such that

0 ∈̂λ1∂Pα(̂x, c) +̂λ2∂Pα(̂x, c). (64)

By definition of the fuzzy l1 exact penalty function, it follows
that

0 ∈̂λ1∂
⎛

⎝ f
α

(̂x) + c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦

⎞

⎠

+̂λ2∂
⎛

⎝ f α (̂x) + c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦

⎞

⎠ . (65)
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Since the weightŝλ1 and̂λ2 are nonnegative, by Remark 14,
equality holds in Corollary 13. Thus, (65) yields

0 ∈̂λ1∂ f
α

(̂x) +̂λ2∂ f α (̂x)

+ (̂λ1 +̂λ2
)

∂

⎛

⎝c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦

⎞

⎠ .

Hence, bŷλ1 +̂λ2 = 1, it follows that

0 ∈̂λ1∂ f
α

(̂x) +̂λ2∂ f α (̂x)

+∂

⎛

⎝c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎤

⎦

⎞

⎠ .

Then, by Lemma 11, it follows that

0 ∈̂λ1∂ f
α

(̂x) +̂λ2∂ f α (̂x)

+c∂

⎛

⎝

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi (̂x)|
⎞

⎠ . (66)

Thus, by Proposition 12, we have

0 ∈̂λ1∂ f
α

(̂x) +̂λ2∂ f α (̂x)

+c

⎡

⎣

m
∑

j=1

∂g+
j (̂x) +

r
∑

i=1

∂ (|hi (̂x)|)
⎤

⎦ . (67)

By assumption, the objective fuzzy function ˜f is a convex
fuzzy mapping. Then, by Proposition 16, the functions f

α

and f α are convex on X for each α ∈ [0, 1]. Then, for each
α ∈ [0, 1]. by Proposition 20, the following inequalities

f
α
(x) − f

α
(̂x) ≥ ξ T (x − x̂) , ∀ξ ∈ ∂ f

α
(̂x) , (68)

f α(x) − f α(̂x) � ξ
T

(x − x̂) , ∀ξ ∈ ∂ f α (̂x) (69)

hold for all x ∈ X . Further, by assumption, each constraint
function g j , j ∈ J , is convex on X . Therefore, also the
functions g+

j , j ∈ J , are convex on X . Since each function
hi , i ∈ I , is an affine function, therefore, each function |hi |,
i ∈ I , is convex. Then, the inequalities

g+
j (x) − g+

j (̂x) ≥
(

ζ+
j

)T
(x − x̂) ,

∀ζ+
j ∈ ∂g+

j (̂x) , j = 1, ...,m, (70)

|hi | (x) − |hi | (̂x) ≥ ςT
i (x − x̂) ,

∀ςi ∈ ∂ (|hi |) (̂x) , i = 1, ..., r (71)

hold for all x ∈ X . Multiplying (70) and (71) by c > 0 and
then adding the resulting inequalities, we get

c
[

∑m
j=1 g

+
j (x) +∑r

i=1 |hi | (x)
]

−c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
]

≥ c
[

∑m
j=1

(

ζ+
j

)

+∑r
i=1 ςi

]T
(x − x̂) .

(72)

Combining (68), (69) and (72), we have that the inequalities

f
α
(x) + c

[

∑m
j=1 g

+
j (x) +∑r

i=1 |hi | (x)
]

−
(

f
α
(̂x) + c

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
])

≥
(

ξ + c
[

∑m
j=1

(

ζ+
j

)

+∑r
i=1 ςi

])T
(x − x̂) ,

(73)

f α(x) + c
[

∑m
j=1 g

+
j (x) +∑r

i=1 |hi | (x)
]

−
(

f α(̂x) + c
[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
])

≥
(

ξ + c
[

∑m
j=1

(

ζ+
j

)

+∑r
i=1 ςi

])T
(x − x̂)

(74)

hold for all x ∈ X and for any ξ ∈ ∂ f
α

(̂x), ξ ∈ ∂ f α (̂x),

ζ+
j ∈ ∂g+

j (̂x), j ∈ J , ςi ∈ ∂ (|hi |) (̂x). Multiplying (73) and

(74) bŷλ1 and̂λ2 and then adding both sides of the resulting
inequalities, we get

̂λ1 f α
(x) +̂λ2 f α(x) + c

(

̂λ1 +̂λ2
)

[

∑m
j=1 g

+
j (x)

+∑r
i=1 |hi | (x)

]−
(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

+c
(

̂λ1 +̂λ2
)

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
])

≥
(

̂λ1ξ +̂λ2ξ + c
(

̂λ1 +̂λ2
)

[

∑m
j=1

(

ζ+
j

)

+∑r
i=1 ςi

])T
(x − x̂) .

Sincêλ1 +̂λ2 = 1, the above inequality gives, for all x ∈ X
and for any ξ ∈ ∂ f

α
(̂x), ξ ∈ ∂ f α (̂x), ζ+

j ∈ ∂g+
j (̂x), j ∈ J ,

ςi ∈ ∂ (|hi |) (̂x), i ∈ I ,

̂λ1 f α
(x) +̂λ2 f α(x) + c

[

∑m
j=1 g

+
j (x) +∑r

i=1 |hi | (x)
]

−
(

̂λ1 f α
(̂x) +̂λ2 f α(̂x) + c

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
])

≥
(

̂λ1ξ +̂λ2ξ + c
[

∑m
j=1

(

ζ+
j

)

+∑r
i=1 ςi

])T
(x − x̂) .

(75)

Hence, by (67), (75) implies that the inequality

̂λ1 f α
(x) +̂λ2 f α(x) + c

[

∑m
j=1 g

+
j (x) +∑r

i=1 |hi | (x)
]

≥̂λ1 f α
(̂x) +̂λ2 f α(̂x) + c

[

∑m
j=1 g

+
j (̂x) +∑r

i=1 |hi | (̂x)
]

(76)

holds for all x ∈ X . By (38), for each x ∈ D, it follows that

m
∑

j=1

g+
j (x) = 0,

r
∑

i=1

|hi | (x) = 0. (77)
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Combining (76) and (77), we get that the inequality

̂λ1 f α
(x) +̂λ2 f α(x) −

(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

≥ c

⎡

⎣

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi | (̂x)
⎤

⎦ (78)

holds for all x ∈ D. By assumption, x̂ is not feasible in
the considered fuzzy optimization problem (FO). Hence, by
(38), we have that

m
∑

j=1

g+
j (̂x) +

r
∑

i=1

|hi | (̂x) > 0. (79)

Then, by (79), (78) gives

c ≤ max

⎧

⎨

⎩

̂λ1 f α
(x) +̂λ2 f α(x) −

(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

∑m
j=1 g

+
j (̂x) +∑r

i=1 (|hi |) (̂x)
: x ∈ D

⎫

⎬

⎭

.

(80)

By assumption, c is sufficiently large. Let us suppose that c
is assumed to satisfy for each α ∈ [0, 1] the condition

c > max

⎧

⎨

⎩

̂λ1 f α
(x) +̂λ2 f α(x) −

(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

∑m
j=1 g

+
j (̂x) +∑r

i=1 (|hi |) (̂x)
: x ∈ D

⎫

⎬

⎭

.

(81)

We now show that, by (81), c is a finite nonnegative real
number. Indeed, by assumption, x̂ is a nondominated solution
of the fuzzy penalized optimization problem (FPα(c)) with
the fuzzy l1 exact penalty function. Then, by Definition 22,
it follows that there does not exist x ∈ D such that, for each
α ∈ [0, 1] ,

̂λ1 f α
(x) +̂λ2 f α(x) −

(

̂λ1 f α
(̂x) +̂λ2 f α(̂x)

)

< 0.

Hence, by (81), we have that c > 0. Further, since D is
a compact subset of Rn , c is a finite real number. But the
inequality (81) contradicts the inequality (80). This means
that the case x̂ /∈ D is impossible. Hence, x̂ is feasible in
the considered fuzzy optimization problem (FO). Thus, the
conclusion of this theorem follows directly from Proposition
39 (or Proposition 40). Hence, the proof of this theorem is
completed. ��

We now formulate the main result of this work.

Theorem 42 Let all assumptions of Theorems 36 and 41 be
fulfilled. Then, x̂ is a (weakly) nondominated of the consid-
ered fuzzy optimization problem (FO)with the fuzzy objective
function if and only if x̂ is a (weakly) nondominated of the

fuzzy penalized optimization problem (FP(c)) with the fuzzy
l1 exact penalty function.

Now, we illustrate the results established in the paper by
an example of a nonlinear convex nondifferentiable fuzzy
optimization problemwhichwe solve using the fuzzy l1 exact
penalty method.

Example 43 Consider the following nondifferentiable con-
vex fuzzy optimization problem defined by:

˜f (x) = max
{

˜f1 (x) , ˜f2 (x)
} → min

g1 (x) = x2 − x ≤ 0,
(FO1)

where

˜f1 (x) =
{

˜1x − 1 if x < 0,
(

˜1 + 2
)

x − 1 if x ≥ 0,

˜f2 (x) = −˜2x 	H ˜3

and, moreover, ˜1, ˜2 and ˜3 are continuous triangular fuzzy
numbers which are defined as triples ˜1 = (0, 1, 2), ˜2 =
(1, 2, 4) and˜3 = (1, 3, 5). Hence, by using (1), their α-cuts
are as follows˜1α = [α , 2 − α],˜2α = [1 + α , 4 − 2α] and
˜3α = [1 + 2α , 5 − 2α], respectively. Note that the set D of
all feasible solutions of (FO1) is D = {

x ∈ R : x2 − x ≤ 0
}

and that x̂ = 0 is a feasible solution of (FO1). Moreover,
by (2), (3) and Definition 5, the α-level cuts of the fuzzy
objective functions ˜f1 and ˜f2 are defined for any α ∈ [0, 1]
as follows:

(

˜f1
)

α
(x) =

{

[(2 − α) x − 1 , (2α − 4) x − 2α − 1] if x < 0,

[αx − 1 , (2 − α) x − 1] if x ≥ 0,

(

˜f2
)

α
(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[(2α − 4) x − (2α − 1) , − (1 + α) x + 2α − 5]

if x < 0,

[− (1 + α) x − 2α − 1 , (2α − 4) x + 2α − 5]

if x < 0,

Hence, the α-level cut of the fuzzy objective function ˜f is
defined for any α ∈ [0, 1] as follows

˜fα (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[max {(2 − α) x − 1 , (2α − 4) x − (2α − 1)} ,

max {(2α − 4) x − 2α − 1 , − (1 + α) x + 2α − 5}]
if x < 0,

[max {αx − 1 , − (1 + α) x − 2α − 1} ,

max {(2 − α) x − 1 , (2α − 4) x + 2α − 5}]
if x ≥ 0,

123



11642 T. Antczak

where

f
α
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max {(2 − α) x − 1 , (2α − 4) x − (2α − 1)}
if x < 0,

max {αx − 1 , − (1 + α) x − 2α − 1}
if x ≥ 0,

f α (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max {(2α − 4) x − 2α − 1 , − (1 + α) x + 2α − 5}
if x < 0,

max {(2 − α) x − 1 , (2α − 4) x + 2α − 5}
if x ≥ 0.

Note that the lower function f
α
and the upper function f α of

˜f are convex for each α ∈ [0, 1] and the constraint function
g1 is also convex. Hence, by Proposition 16, the objective
function ˜f is a convex fuzzy function. Moreover, the lower
and upper functions f

α
and f α of ˜fα are not differentiable at

x̂ for any α ∈ [0, 1). Then, ˜f is not level-wise differentiable
at this point (see Definition 4.2Wu 2007). Thus, the Karush–
Kuhn–Tucker optimality conditions existing in the literature
for fuzzy optimization problems are not applicable in the
considered case (see, for example, Panigrahi et al. (2008),
Wu (2007)). However, the Karush–Kuhn–Tucker optimality
conditions (12)–(14) are fulfilled at x̂ with Lagrange mul-
tipliers ̂λ1 (α) = 1

2 , ̂λ2 (α) = 1
2 and μ̂1 (α) = 0 for each

α ∈ [0, 1]. Now, we use the l1 exact penalty function method
for solving the considered nondifferentiable fuzzy optimiza-
tion problem (FO1). Then, we construct the fuzzy penalized
optimization problem (FP(c)) with the fuzzy l1 exact penalty
function. Hence, the α-cut of the fuzzy penalized optimiza-
tion problem (FPα(c)) is defined for anyα ∈ [0, 1] as follows:

min Pα(x, c) =
[

f
α
(x) + cmax

{

0, x2 − x
}

, f α (x)

+cmax
{

0, x2 − x
}]

.
(FPα(c))

Note that all hypotheses of Theorem 35 are fulfilled. This
means that x̂ = 0 is a nondominated solution of the penalized
fuzzy optimization problem (FP(c)) for any penalty param-
eter c > 0. Further, also all hypotheses Theorem 41 are
fulfilled. Hence, if we assume that x̂ is a nondominated solu-
tion of the fuzzy penalized optimization problem (FP1(c))
with the fuzzy l1 exact penalty function for some penalty
parameter c greater than 0, then it is also a nondominated
solution of (FO1).

5 Conclusions

In the paper, the nonsmooth optimization problem with the
fuzzy objective function and both inequality and equality
constraints has been considered. The optimality conditions
of a Karush–Kuhn–Tucker type have been established for
a (weakly) nondominated solution in such nondifferentiable

optimization problems under appropriate convexity hypothe-
ses. Further, the l1 exact penalty function method has been
used for solving the considered nonsmooth convex optimiza-
tion problem with the fuzzy objective function and with both
inequality and equality constraints. Namely, the most fre-
quently used l1 exact penalty function method has been used
for finding (weakly) nondominated solutions of the con-
sidered nondifferentiable convex extremum problem with
a fuzzy objective function. Therefore, its associated penal-
ized fuzzy optimization problem has been constructed in this
approach. Then, one of the most important property of this
method, so-called exactness of the penalization, has been
defined if the method is used for finding such optimal solu-
tions. Further, this property has been analyzed under suitable
convexity hypotheses imposed on the functions constituting
the original nondifferentiable fuzzy optimization problem.
Hence, conditions guarantying the equivalence of (weakly)
nondominated optimal solutions of the original nonsmooth
minimization problem with a fuzzy objective function and
its penalized fuzzy optimization problem have been derived
under convexity hypotheses. Then, the results established in
the paper have been shown that the l1 exact penalty func-
tion method can be used for solving a class of nonsmooth
extremum problems, that is, convex nondifferentiable opti-
mization problems with fuzzy objective functions.

However, some interesting topics for further research
remain. It would be of interest to investigate whether is
possible to prove similar results for other classes of fuzzy
optimization problems. We shall investigate these questions
in the subsequent papers.
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