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Abstract

In this paper, a surrogate merit function (SMF) is proposed to be evaluated instead of the traditional merit functions (i.e.,
penalized weight of the structure). The standard format of the conventional merit functions needs several expensive trial-
and-error tuning processes to enhance optimization convergence quality, retuning for different structural model configu-
rations, and final manual local search in case optimization converges to infeasible vicinity of global optimum. However, on
the other hand, SMF has no tunning factor but shows statistically stable performance for different models, converges
directly to outstanding feasible points, and shows other superior advantages such as reduced required iterations to achieve
convergence. In other words, this new function is a no-hassle one due to its brilliant user-friendly application and robust
numerical results. SMF might be a revolutionary step in commercializing design optimization in the real-world con-

struction market.

Keywords Constraints handling - Structural weight optimization - Penalty techniques - Fuzzy membership function -

Merit function - Fitness function

1 Introduction

Structural optimization belongs to the scope of constrained
optimization problems in which the objective function

F(X) is the weight of the structure W (X) (X=A and A is
the vector of cross sections of the beams and columns) and

. . . . <
design criteria are the constraints of the problem C(X)
determined using the design codes (see Table 1). However,
current optimization algorithms are for unconstrained
problems, and a merit function or fitness function, which is

. Lo . - .
a co-function of objective function F(X) and constraints

< . . .

C(X), is required to properly handle the constraints (for
consistency in the text’s terminology, the merit function is

used everywhere else in this paper). Penalty methods are
the traditional concept in structural engineering. However,
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due to the hassles of using them (as discussed in next
Sect. 1.3.1), and unavailability of other effective methods,
the authors decided to propose a new one.

The main goal is to provide a user-friendly concept as
simple as a merit function formula, which is general and
true on every structural model, straightforward to use and
has a higher efficiency compared to penalties. Since no
commercial software (e.g., ETABS or SAP2000) offers an
optimization option due to penalty hassles, authors expect
SMF to be a breakthrough or at least a beginning step in
facilitating the presence of an optimization option in
commercial software soon.

1.1 Traditional penalty-based format

The standard format of the traditional merit function for-
mula for structural optimization includes the weight of the

structure W(i)) multiplied by some penalty rule (called
“Constraint Handling Technique”) which means that the
merit function is like:
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Table 1 General optimization

. . General optimization statement
statement and its equivalent

Equivalent statement in structural weight optimization

statement in structural

. —
optimization FindX = [X,X3,X3, ..., X,]

N
To minimize F(X)

Subject to C(?): constraints of problem

.
FindA = [Al,A27...7A,J

L - o=
To minimize W(X) while X = A

Subject to C(?): design criteria vector

—

Mer(X) =f(W(X),P(X, C,t,0,B,¢,....a,b,c,...))

(1)

g . . .
where, X is a proposed solution vector obtained by the
optimization algorithm (e.g., suggested cross-section list

for a steel frame design), C = [g1,82,83: -, &) 1s the
vector of constraints in which each g; is a constraint of the
problem to be satisfied. The rule of constraint-handling part
P(Y, ?, o, fB,,...,a,b,c,...)is the key to composing the
Merit function, and factors like o, f, @, a, b, ¢, and so on
are included in the formulas as tunning factors for con-
vergence quality control purposes. For example, the for-
mula by Joines and Houck (1994)) includes o, B, and ¢ as
the tuning factor:

Mer(X) = F(X) + (e x 1)* x imax(o, «X) @

Here, n is the number of constraints of the problem. ¢ is
the current iteration number throughout the optimization
process.

The F (Y) for structural engineers is usually the weight
of the structure, W(Y). Also, the engineers consider the

design criteria of the codes as the constraints gl-(?) and
denote them in normalized format when doing structural
optimization (for simplicity, we denote gi(?) as C; in the
remaining of the text). For example, the most common
criterion for members is a strength capacity check,
according to AISC (2010) provisions, and stated as

Demand
Capacity
u_ | Mux  Muy < 1For "o,
2¢pcPn  @bMnx  @bMny ocPn
P 8/ M M p
u 8 ux uy < 1For ” ~ 02
@cPn 9 \bMnx = @bMny ocPn
(3)
C itv Ind Demand N(;rmahzted
—> _
apacity Index Capacity = orma

which is originally written in a normalized format in the
design code. However, some other criteria need to be re-
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written in normalized format. For instance, for story s,
inter-story drift is stated as Eq. 4. like:

A1 — A
St TS < RIRI = 0.0025(AISC, 2010) (4)

s

Av - AS‘ .
Drift Index = =5l TS <1 Normalized Format
RI x hy

where A; and A,y are the lateral displacements of a pre-
sumed spot on the stories s and s + 1, respectively. h; is
the height of the story s, and RI is the code limit. But
engineers change it to a normalized format to apply to
structural optimization. In this paper, the capacity index
(CI) and drift index (DI) are selected as the main design
constraints and implemented in the optimization process.

1.2 Three factual strategies to develop SFM

In the current paper, SMF is developed in two steps based
on three factual strategies.

Stepl: Initiating Formulation Based on Fuzzy Logic

First Factual Strategy is to Use Fuzzy Platform to
Develop the Formula: SFM must have a logical format
with no clash with the nature of the search space to perform
well. Fortunately, the fact is that the structures’ combina-
torial search space is a fuzzy one; thus, it has the potential
to attribute a fuzzy membership value for each candidate
structure in it (as described in Sects. 3.1, 3.2, and 3.3).
Since this fuzziness is an intrinsic property of the search
space, a fuzzy membership format sounds to be the best fit
for the formulation as the platform. However, it must be
converted to a proper merit function afterward.

Step2: Converting Fuzzy Membership Function into
a Useful Merit Function

Second and third factual strategies are to convert the
Jfuzzy membership function into proper merit function to
be efficient in structural optimization.

Second Factual Strategy is to Set the Minimum of SMF
on the Feasibility Boundary: The fact is that an efficient
merit function must be capable of helping algorithm push
the exploration away from overdesign structures toward
on-the-edge feasible structures to meet global optimum.
The authors’ proposed strategy here is to set the minimum
of SFM on the feasibility boundary by assigning zero to on-
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the-edge feasible elements and a positive value for any of
others.

Third Factual Strategy is Securing a Feasible Explo-
ration by Feasibility Factor: The fact is that saving the
feasibility of exploration flow over the structural search
space is necessary since the optimization algorithms are not
built for constrained problems and will not be able to stay
on the proper feasible path on the search space. To tackle
this fact, a feasibility factor is defined and embedded in
SFM formula in Sect. 3.5, which tends to be equal to one
for 100% feasible structure and takes values higher than 1
in any other case according to the feasibility level of the
structure.

Those three factual strategies are discussed in detail in
Sect. 3, and SFM is developed thereafter.

1.3 Motivation behind proposing SFM

The motivation to do the current research is originated
from two main streams: first, difficulties of using the tra-
ditional penalty-based formats; second, reviewed literature.

1.3.1 The hassles of using penalty based merit in structural
optimization problems

The produced value by penalty formulas is sensitive to the
tuning factors and requires several try and errors to be
adjusted, which are expensive due to the analysis time cost
of finite element models of the structures with a high
number of degrees of freedom. Other than such hassle, the
settings for tuning factors must usually be readjusted when
applying to another structure. Moreover, when an opti-
mization process shows convergence and stops, especially
when using metaheuristic algorithms, the resulted point is
in the vicinity of the feasible global optima but sometimes
infeasible. Therefore, the user needs to conduct a little bit
of local search manually (e.g., for the steel frames, the
engineer plays with the offered result by convergence and
removes slight infeasibility between the elements and
obtains a feasible lightweight structure with some
struggle).

All those drawbacks prevent the structural optimization
from being commercialized, and none of the current soft-
ware has included it. According to the authors’ knowledge,
penalties have been the common concept utilized by
structural engineers, and the research on this topic seems to
be virgin. From this viewpoint, the structural engineering
field lacks a proper research record.

1.3.2 Inspiration from the literature review

A comprehensive literature review is provided in Sect. 2 on
constraints-handling techniques. There, the constraint-
handling importance in structural optimization has been
reviewed and main review articles to read about constraint-
handling techniques are mentioned (Sect. 2.1), available
ideas are briefly mentioned (Sect. 2.2), other miscellaneous
ideas are mentioned (Sect. 2.3), studies with a focus on
structures are cited (Sect. 2.4), and finally concluding an
inspiration is discussed (Sect. 2.5). Upon that review, the
authors understood that those other potential ideas even
though effective in other ways, not suitable enough to
remove the hassles of penalty tunning and the best choice is
the penalties to be replaced by a new surrogate merit
function.

1.4 Conceptual comparison with related works

A conceptual list of the differences and advances of SMF
which are not available in the similar works is mentioned in
Table 2.

2 Comprehensive literature review

2.1 Constraint-handling background
and available review articles

As mentioned earlier in the Introduction section, structural
optimization is a constrained problem in which the con-
straints are design criteria mentioned in the related codes.
In contrast, most optimization methods are developed to
explore the search space to find extremums of objective
functions with no constraints. Genetic algorithm (GA)
(Holland 1975), differential evolution (DE)) Storn and
Price 1997), particle swarm optimization (PSO) (Eberhart
and Kennedy 1995), bat algorithm (BA) proposed by Yang
(2016), ant colony optimization algorithm (ACO) (Dorigo
and Stiitzle 2004), cuckoo search (CS) (Yang and Deb
2009), tabu search (Glover 1989 and 1990), imperialist
competitive algorithm (ICA) (Gargari & Lucas 2007), big
bang-big crunch (BB-BC) (Erol and Eksin 2006), artificial
bee-colony algorithm (ABC) (Karaboga 2005), harmony
search (HS) (Geem et al. 2001), charged system search
algorithm (CSS) (Kaveh and Talatahari 2010a, b), and
chaos game optimization (CGOQO) (Talatahari and Azizi
2020) all perform in this way. Therefore, handling design
criteria has been of utmost interest among structural engi-
neers. Structural engineers and other academicians face
difficulties solving a related constraint optimization prob-
lem. Therefore, so many miscellaneous techniques appli-
cable to all or limited types of problems have been
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Table 2 Main features of surrogate merit function (SMF)

Formulated based on factual properties which means:

1. Utilizes a combinatorial fuzzy search space, letting both feasible and infeasible part of structure enroll in the formula (penalties simply

penalize by infeasible constraints)

2. Set the minimum of Merit intentionally on the feasible boundary (no minimum is set by penalties)

3. Defining a feasibility saving factor (the only common part with penalties. Penalties are in fact feasibility savers)

Specified for structural optimization problem only:
1. Applicable to all the structures
2. Not Applicable to problems other than structures
Is User Friendly by:
1. Not having the hassles of previous methods, such as penalties
2. Not a complicated computer programming required
3. Reducing required number of iterations
Has a focus on:

1. Expediting convergence by a compatible membership with optimization

but has No focus on:

1. Reducing computational cost by improving finite element concept or efficient programming

2. Handling constraints by constrained version of algorithms

developed until now. Coello (2001) and Montes and Coello
(2011) are comprehensive review surveys on different
constraint handling techniques. Typically, three main
groups of constraint handling techniques are available in
the literature: (a) penalty-based techniques, (b) modified
evolutionary algorithms (EAs) or hybrid algorithms such as
co-evolutionary algorithms (CoEAs), and (c) miscella-
neous techniques.

2.2 Available approaches

The most well-known methods are penalty techniques that
have different forms such as static penalties, dynamic
penalties, death penalty, adaptive penalty. Some other
researchers have focused on the manipulated versions of
the algorithms to directly embed a constraints-handling
technique into the algorithm’s logic directly. Yousefi et al.
(2012) have improved ICA with a feasibility-based ranking
embedded algorithm applied for handling design con-
straints of heat-transferring plates. Nema et al. (2011) have
presented a hybrid co-evolutionary version of PSO com-
bined with the gradient search and used an augmented
Lagrangian method as the constraints handling technique.
Mun and Cho (2012) explained a modified HS algorithm
with an embedded fitness priority-based ranking method
(FPBRM) to handle design constraints. Zade et al. (2017)
introduced a hybridized cuckoo search with box-complex
method to handle design constraints and increase the con-
vergence rate and computation speed. Mendez and Coello
(2009) utilized a selection mechanism and incorporated it
into a DE algorithm to handle constraints. Liu et al. (2018)

@ Springer

presented a modified PSO using a subset constrained
boundary narrower (SCBN) method cooperating with a
sequential quadratic programming for finding near-bound-
ary feasible answers for solving engineering problems. Lee
and Kang (2015) worked on handling constraints in water
resources optimization problems with modifying an EA
called shuffled complex evolution (SCE) with an adaptive
penalty. Stripinis et al. (2019) presented a constraint han-
dling technique incorporating a two-step selection proce-
dure and a penalty function called the direct type constraint
handling technique. Although efficient and valuable, these
algorithms are usually sophisticated in logic or need
exhausting programming and might not be simply available
for users.

2.3 Other miscellaneous ideas

Other miscellaneous ideas are available in the literature.
Chehouri et al. (2016) presented a method, so-called vio-
lation constraint handling (VCH) technique, for GAs by
utilizing a violation factor without tunable parameters
displaying a consistent performance. Guan et al. (2008)
have developed a repairing procedure added on GAs for
handling constraints applying to water resources opti-
mization problems. Mallipeddi and Suganthan (2010) uti-
lized four different constraint handling techniques,
superiority of feasible solutions (SF), self-adaptive penalty
(SP), e-constraint (EC), and stochastic ranking (SR),
simultaneously cooperating according to some outlined
rules and called it ensemble of constraint handling tech-
niques (ECHT) which outperforms all the four techniques
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when utilized individually. Leguizamén and Coello (2009)
developed a boundary-search constraint handling technique
utilizing two local and global level exploration, based on
an ant colony metaphor.

2.4 Studies with focus on structures

Some studies have focused on optimizing skeletal struc-
tures. For example, Kaveh and Zolghadr (2012) have
applied a penalty function to handle natural frequency
constraints on some small/mean scale structures. Their
algorithm has beaten all other former literature. The other
exterior penalty function utilized by Gholizadeh and
Barzegar (2012) is a technique that sequentially provides
an unconstrained situation for handling natural frequency
constraints. Also, the method presented in a work by Kim
et al. (2010) is an improved version of PSO that makes the
problem unconstrained. Pholdee and Bureerat (2014) have
compared the results of a fuzzy-set penalty function by
Cheng and Li (1997) and the three techniques. In the other
work by the same authors (i.e., Bureerat and Pholdee
2016), they have introduced a more powerful penalty that
outperforms another work by Kaveh and Zolghadr (2012).
Their new penalty function shows the best standard devi-
ation among all former techniques while the mean, max,
and min of the statistical study are in the scope of others.

2.5 Concluding an inspiration

All the concepts mentioned above are undoubtedly excel-
lent works, but they are not simply available and mostly
not specific to structural design problems; the scholars of
these studies have not utilized a structural design point of
view, and mostly they have had a heuristic or artificial
intelligence-based inspiration for their developed tech-
niques. In other words, such techniques manipulate
exploration/exploitation in the optimization process and do
not use the merit function by inspiration from routines and
logic of specific properties of the studied problem (the
structural design optimization problem in this paper).
Moreover, all the techniques have no statistical evidence of
reliable stable performance on large-scale structural design
problems. As the vision is general, trial and error for tuning
purposes remains the main drawback and prevents the user
conveniency, especially in the real market. Hasancgebi and
Erbatur (2000) have tried to avoid tunable factors of an old
penalty technique and eliminated its shortcomings for
providing improved performance with a reformulation; but
again, designing view is not considered due to basic vision
in their research.

The lack of a design vision-based technique specified for
the structural optimization motivated the authors to provide
a new reliable constraint handling technique. At the first

look, one may believe that providing a deal with the
computational cost of the optimization process might be a
better way than a fitness-based technique to facilitate try-
and-error attempts. However, available works on improv-
ing computation efficiency from spotlight scholars show
that computation expedition methods are not at a level to
highly facilitate such attempts in a way to make the process
convenient and user-friendly. Here are some examples:
Kaveh and Talatahari (2010a, b) presented an improved
ACO utilizing the sub-optimization mechanism (SOM) to
reduce the size of the pheromone vector, decision vector,
search space, and number of fitness evaluations to expedite
the optimization process. Hasangebi (2008) attempted to
improve the computational performance of adaptive evo-
lution strategies and increase the algorithm’s efficiency
with an adaptive penalty function. Azad et al. (2013), Azad
and Hasangebi (2013), Azad et al. (2014) and Hasangebi
and Azad (2015) all struggle to improve the efficiency of
various algorithms for solving large scale structures by
applying an outstanding strategy called Upper Bound
Strategy (UBS). Also, Azad and Hasancgebi (2015)
attempted to use a guided stochastic search (GSS) tech-
nique based on the principle of virtual work to enhance
computational efficiency. Kambampati et al. (2018) pre-
sented a sparse hierarchical data structure called volumetric
dynamic grid (VDG) in combination with the fast-sweep-
ing method and multi-threaded algorithm for faster con-
vergence in the topology optimization of structures by level
set method (LSM). The work by Dunning et al. (2016)
attempted to overcome computationally difficult and
expensive eigenmodes of buckling constraints by reusing
available eigenvectors, optimal shift estimates and some
other ideas to effectively overcome with many buckling
modes in topology optimization. Duarte et al. (2015) and
Sanders et al. (2018) introduce two versions of efficient
software for computationally fast analysis of polygonal
finite element meshes with many degrees of freedom. With
an investigation of these references, such expeditions do
not eliminate boring tuning situations. In Venkataraman
and Haftka (2004), it is illustrated that optimization com-
plexity grows as the computations’ possibilities improve
and eliminating such costs would be more and more
challenging and out of reach.

All said and done, the only way would be to eliminate
the tuning necessity with a strategy that basically does not
require tuning. The techniques mentioned above may
expedite the process, but apply other hassles like hard
programming or algorithm manipulation or analysis
improvement concepts which don’t seem to be user
friendly.
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3 Factual development of SMF
3.1 A discussion on combinatorial search space

Based on the three facts mentioned in (Sect. 1.4), the new
formula gets developed in this section. First, let’s elaborate
on the combinatorial search space of the structure itself. As
shown in Fig. 1, a schematic example of a 3D steel frame
may have a different set of sections randomly selected from
the list of standard W-shaped sections available in the
construction market. Ten sets are shown in Fig. 1., but if
the 267 sections are available in the market or can be
accessed in a famous software like ETABS or SAP2000
section-properties list, and the frame has n number of
elements, then the size of the combinatorial search space is
267" and the last member of this search space is Sn. For
example, the 3D steel Frame in Fig. 1. has 8 beams and
columns, so its search space size is equal t0267%. This
number is a big one and gives a sense to the reader about
the size of the search space of the larger-scale structures
like the 3D numerical examples studied in Sect. 5, which
have 26792267380 and 267%%7? (i.e., almost 10**%°,
1073 and 102°°°%) size of search space.

3.2 A discussion on fuzzy logic

Zadeh (1965) presented the idea of a fuzzy point of view on
truth-check values. This logic says that truth value vari-
ables may be any real number between 0 and 1 (logical
response VR € [0, 1]). Figures 2. and 3. show the differ-
ence between binary and fuzzy logic.

In Fig. 2, the circle (a) is entirely red, the circle (b) is
entirely green, the circle (c) is entirely orange, and some-
body may say how each circle is colored. It is binary logic
and the response to a quote like “the circle is green”
receives a clear credit equal to O or 1.

However, in Fig. 3, each circle has different colors, and
a distinct statement about their color is impossible, but we
can say that each of them is somehow red, green, and
orange. Figure 3a is 28% red, 47% green, and 22% orange.
Figure 3b and c also has different degrees of each color. It
is a fuzzy point of view. The main benefit of this logic is
that a fuzzy membership can be attributed value to each
circle and distinguish them from each other by using those
percentages.

A set in which its members follow this logic in mathe-
matics and logic is called fuzzy sets. Zadeh developed the

Combinatorial Search Space
Percentages % are feasibility degrees

Cs7
ST

S6
S2-
Over Design

100 %
80 %
60 %
40 %
20%

510

. sS4

S5

n = 2678(Search Space Size)

s3] . | s8]

Each Si is a Set of Candidate Sections for the 8 Element 3D Frame

S$1:[W8X121, W80X152, W92X106, W410X100, W27X178, W24X94, W21X73, W16X31]
§2:[W14X132,W160X88, W12X106, W8X35, W21X57, W21X111, W24X55, W640X560]
S§3:[W8X48, W14X43, W18X55,W310X129, W530X219, W230X72, W360X178, W8X14]
S§4:[W14X132,W410X100, W36X134, W48X92, W28X74,W16X57, W32X210, W14X10]
§5: [W460X130, W80X130, W14X26, W89X210, W240X64, W32X92, W72X290, WX126]

Sn: [W48X52, W60X92, W18X55, W310X129, W530X219, W240X84, W390X152, W12X48]

Fig. 1 The combinatorial search space and sample candidate set of sections Si for 8§ member 3D frame

@ Springer



A surrogate merit function developed for structural weight optimization problems 1539

Fig. 2 All the logical checks
receive exactly 0% or 100% and
no degree in between

100 % Red 100 % Green 100 % Orange
0 % Green 0 % Orange 0 % Red
0 % Orange 0 % Red 0 % Green
Fig. 3 Logical checks cannot be
responded to by 0% and 100%
only. A mixture of degrees
applies
(a) (b) (©)

Orange

28% red, 47% green, 22%

34% red, 10% green, 56% | 17% red, 68% green,

Orange

proposal of the “fuzzy-set” theory immediately after
defining “fuzzy logic.” The segments on each fuzzy mem-
ber who belongs to a fuzzy set are called fuzzy segments as
they are degree takers of the membership in part. For
example, areas with different colors in Fig. 3 are the fuzzy
areas of each circle.

In the next section, the fuzziness of the combinatorial
search space of the structures is discussed, and the initial
format of SFM is founded based on that.

3.3 Step1: initiating formulation platform
by first factual strategy

When external loading is applied to the structure (e.g.,
dead, live, earthquake, and wind load cases) and structure
is analyzed, in the civil engineering culture, the response of
the structure is always stated in the format of feasible
(green) or infeasible (red) elements by colors, similar to
Fig. 4.

The corresponding feasibility vector V is stated with a
color in the way that elements with violated constraints
(C; > 1), colored in red, is not acceptable and marked as
infeasible, which takes value zero, V; = 0, and the elements

with satisfying constraints (C; < 1), colored as green, takes
value one, V; = 1.

The structure is represented by degrees of feasibility and
infeasibility. Therefore, we can call combinatorial search
space a fuzzy set because all its members (S, S;, S, etc.)
have a potential opportunity to be distinguished by a fuzzy
membership value. S;, S;, Sy, etc. are called fuzzy members,
and structural elements (beams, columns, and braces) of
each fuzzy member are fuzzy segments (because they are
value takers upon feasibility or infeasibility). In other
words, this fuzzy property of the combinatorial search space
provides a format platform for a potential SFM.

As the vector V is so simple, and based on the number of
feasible and infeasible elements, it might represent several
candidates S;, S;, S ,etc. on the combinatorial search space.
In terms of mechanics of structure, stiffness matrix K in
static equation F = Kd is its unique identity which has a
distribution (may be represented by weight distribution
vector y7) and a scale (may be represented by absolute
weight W). Also, a factor related to constraints is required
and C vector is available.

As shown in Fig. 5, the C vector and weight distribution
vectors compared to the V vector presented in Fig. 4. are
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v=(0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,01
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V=[1,2,00,0,1,0,0,00,
0,1,0,1,0,00,1,0,1]
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Vv=(1,0,1,1,1,1,1,1,1,1,
1,0,1,1,1,1,1,1,1,0)

V=I11111,1,1111,
1,1,1,1,1,1,1,1,1,1]

0% Green, 100% Red

35 % Green, 65 % Red

80 % Green, 20 % Red

100 % Green

Fig. 4 Fuzzy membership vector V, attributed to the structure, binary point of view to structural elements. (0 and 1 values for each member) is
enough to have different membership values; however, it is not yet sufficient and efficient enough for searching optimum design

N
N we Ry
|

T

Wy
WL =[0.81,0.18,0.77,0.36, 0.85,

0.03,0.58,0.64, 0.58,0.20,
0.87,0.46,0.91,0.77,0.96,
0.20,0.45,0.24,0.54,0.73]

W;
WL =[0.38,0.15,0.22,0.02,0.70,

0.89,0.64,0.28,0.25,0.03,
0.16,0.15,0.72,0.61, 0.32,
0.99,0.82,0.72,0.28,0.42]

W,
Wl =[0.88,0.38,0.50,0.15,0.07

0.56,0.62,0.76,0.81,0.27,
0.52,0.43,0.20,0.35,0.98,
0.79,0.35,0.80, 0.34,0.26]

W,
Wl =[0.39,0.36,0.68,0.09,0.96,

0.95,0.60,0.72,0.54, 0.90,
0.63,0.96,0.95,0.20,0.13,
0.09,0.01,0.28,0.92,0.89]

C =[1.96,1.10,1.51,1.20,2.28,
1.02,1.62,1.67,1.47,1.31,
2.91,1.61,1.43,2.79,1.88,
1.10,2.73,2.90, 2.80, 2.48]

€ =1[0.19,0.97,0.36,0.11, 0.14,
0.64,0.98,2.41,1.10, 1.96,
2.05,2.32,1.35,2.18, 2.65,
2.63,2.87,1.53,2.35,2.38]

C =[0.45,0.65,0.14,0.89,0.46,
0.36,0.02,0.91, 0.80,0.93,
0.55,0.82,0.55,0.69,0.09,
0.47,1.72,1.61,1.33,2.50]

C =[0.55,0.17,0.88,0.84, 0.83,
0.64,0.74,0.66,0.29, 0.58,
0.04,0.38,0.63,0.44,0.17,
0.04,0.92,0.46,0.64, 0.05]

WiEW, #Ws£EW,

Fig. 5 More distinguished fuzzy membership may be attributed to the structure by normalized constraints vector C and weight distribution rate

W

more unique factors to provide distinguishment among S;
in the combinatorial search space. Therefore, we have:

FuzzyMembership(X) o % ,W,C (5)

None of the three factors (%), absolute weight W, and C
are unique for each structure but the maximum one of them
can be the same and the other ones are certainly different.
For example, structures with the same weight W have
different weight distribution 3 and accordingly different C
vector, or structures with the same weight distribution have
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different weights and are just physical scale of each other
and accordingly different C vectors. As a result, we must
use at least two of them in the membership function to
make sure their product is unique. In this paper, the authors
selected weight distribution (3}) and C vector and dropped
absolute weight W since this factor is used later in feasi-
bility factor in Sect. 3.4, part two, and double embedding
in final SMF formula has no sense; and the initial version
of the formula is as Eq. 6:
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Combinatorial Search Space
S2 is an Overdesign Structure, S6 is a Critical One
©os7

Sn 5-1

s3] ’ s8

‘Ar De5|gn
510

. 100% . .

30 % . S4 <.
60 %
40 %
20%

. S9
S5

Minimum of Membership Set on Green Boundary

Fig. 6 A proper movement from an overdesign sample candidate S,
to a critically feasible sample structure S6 (green boundary)

FuzzyMembership(X) o W , C — FuzzyMembership(X)

i
(6)

This formula is still a fuzzy membership function and
has no property to support the role of a merit function yet.
In the following sections, this membership is converted to a
merit function with two steps: first, by setting function’s
minimum to the on-the-edge feasible structures (i.e., fea-
sibility boundary) and, second, control the feasibility of the
exploration by feasibility factor.

3.4 Step2: converting fuzzy membership
function into an SMF

3.4.1 Second factual strategy: set the minimum of SMF
on the feasibility boundary

To set the minimum of SMF, first, we define overdesign
and on-the-edge feasible structures.

Overdesign Structure is a structure on the combina-
torial search space Si with excessive material or stiffness
and may lose an amount of its weight and remain feasible.

On-the-Edge Feasible Structure is a structure on the
combinatorial search space in which any slight loss of
material of any element leads to loss of mechanical resis-
tance in a way that at least one infeasible element emerges.
These structures are the boundary of the feasible subset of
the combinatorial search space.

A schematic of an entirely feasible area (structures with
100% feasibility), edge structures (feasibility boundary),
and structures with other degrees of feasibility are shown in
Fig. 6.

Accordingly, the exploration may meet the global opti-
mum if we set the minimum of the fuzzy membership on
the edges and attract algorithms’ exploration toward the
critical designs and meet the minimums. Therefore, the
most critical case scenario C = I for all the elements is
considered to represent the boundary in Eqs. 6 to 1 to set
the optima of the fuzzy membership function and make it
one step forward to be a proper merit function. Therefore,
the modified formula may be stated as:

i%x\cﬁu

1

FuzzyMembership(X) = Merit(X) =

(7)

Combinatorial Search Space
A Constraints-Handled Exploration Moves

I~ 6 !
BN~ 52— Bl
;,;__5-19\ ><W\LEZ'S". ; //

o

//"igf?i.\\\ |
20%\\ s5

Most of the Moves are Toward the Higher Feasibility or from
Inside to Feasibility Edge

Combinatorial Search Space
No Constraints Handled Moves

T T

TN,

55 . \
\ 38 €
Over Design

s10/ ; /
) / 100 % l :
sS4
. 80% : i
\ Sow \

=55

-S3

The Algorithm is Exploring Regardless of Feasibility Ratio

Fig. 7 Exploration Flow. Various types of movements throughout optimization iterations while an optimization algorithm executes exploration
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The set of constraints C might be divided into two
feasible and infeasible subsets: C; and C;,;. To boost the
exploration, its possible to add a power (e.g., 2) to C; to
push the algorithm to stay more and more near the feasi-
bility boundary and remain far from over-design Si on the
combinatorial search space. Therefore, if the structure has a
bunch of elements C; (satisfied constraints) and the
remaining  with Cjy (violated constraints)  while
nfeasible + ninfeasible = n (n is the total number of
structural elements):

FuzzyMembership(X) = Merit(X)

nfeasiblew
i 2
= Y =x(CG-1)
—~ W
nInfeasible

+ 2 =D ®

As another booster, we may remove the tense -1 for Cj,¢
to let infeasible ones have even higher values and prohibit
the algorithm from exploring the infeasible side of the
feasibility edge even better. Then we have:

FuzzyMembership(X) = Merit(X)

nfeasible

Wi 2
= — X (Cr—1
§1 (G-
ninfeasible

Wi
+ ZI: Wj' X Cinf (9)

It is worth mentioning that the minimum of the function
is still set on 1 (feasibility boundary) and the changes in
Egs. 8 and 9 do not affect this property of the formula. The
minimum of the function is set, but the feasibility of

Table 3 Parameter summary of

the alternative metaheuristic Metaheuristic Parameter Description Value
algorithms ACO Nons Colony size 50
o Intensity of pheromone control parameter 1.0
p Visibility parameter 0.4
p Pheromone evaporation 0.2
4 pheromone trail 0.1
ICA Neont Countries size 50
Nemp Number of empires/imperialists 10
o Selection pressure 1
p Assimilation coefficient 1.5
Dy Revolution probability 0.05
u Revolution rate 0.1
{ Colonies mean cost coefficient 0.2
CSS Npop Charged particle size 50
a Radius of charged sphere 0.1
HMCR Harmony memory consideration rate 0.85
PAR Pitch adjustment rate 0.15
kt Attract-repel coefficient 0.9
Nem Charged memory size 12
kq Acceleration coefficient 0.5
ky, Velocity coefficient 0.5
PSO Npop Particle size 50
w Intertia coefficient 1
Waamp Damping ratio of inertia coefficient 0.99
C; Personal acceleration coefficient
C, Social acceleration coefficient
FA Npop Fireflies size 50
bo Attractiveness parameter 1.0
SOS Npop Agent size 50
WOA Npop Agent size 50
ISA Npop Agent size 50
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Table 4 Different utilized penalty methods utilized in the third example; all the formulas are extracted from Coello (2001)

Presenters Formula

Settings description

Morales and
Quezada
(1998)

F(x) feasible
() K
Fitness(x) K — Zfﬁ—/[ infeasible

Michalewicz
and Attia
(1994)

Hoffmeister and
Sprave (1996)

Fitness(x) = F(x) 4+ F(x) x 5= >_] max(0, g,(0)*

Fitness(x) = F(x) + /> max(0, g;(x))*

Skalak and Fitness(x) = A x F(x)
Shonkwiler
(1998)
Joines and Fitness(x) = F(x) + (¢ x 1)* x Y1 max(0, g(x))”

Houck (1994)

Smith and Tate

(1993) Fitness(x) = F(x) + (Breasibie — Ban)” x Y2 &2

Bean and Hadj-

Fitness(x) = F(x) + A(f) x 31 max(0, g;(x))
Alouane

K = 1000

(The author mentions that K is great enough according to
dimension of problem, s is the number of satisfied
constraints)

7=0.99 x \/iwt(arbitrary chosen)

A=exp(ENT = \/iﬁM = 37 max(0, g;(x))* (arbitrary chosen)

c=0.5
a=1
p=2

(These parameters are penalty factors and selected values are
inspired from authors of the formula)

b; =0.05

(b; is a threshold value for constraints’ violation and B is the
brevity for ‘Best’)

(arbitrary chosen)

At) By =1.01
(1992) —— best is feasible in last K generations B, =1.05
) 1) = 1 . . . .
Ae+1) A1) B, best is infeasible in last K generation
A(t) none of above
Deb (2000) Fitness(x) { F(x) feasible " = fworst
- Jwors =7 % -y max(0, g;(x)) infeasible (In original form there is no r, but for dimensional objectives in
structures, r is included)
a G1

® It means iteration in optimization process

exploration is not yet assured which is provided by the
feasibility factor described in Part 2.

3.5 Third factual strategy: securing a feasible
exploration by feasibility factor

The second important property of the SMF is that it must
handle the feasibility of the exploration by algorithms. As
already discussed, the optimization algorithms cannot
detect the feasibility and must be supported by handling
ideas embedded in the merit function. The authors here
propose to have a simple and near-to-mind feasibility
factor, as follows:

x W
FeasibilityFactor = rx (10)
ng X wr
where wy is cumulative weight of all feasible elements and
ns is the number of feasible elements available in the

structure. Other formats for this factor like W—V‘f/ or % are also

available but choosing among them and the one in Eq. 10

is a deliberate one. This factor’s value reaches its minimum
equal to one when the structure is 100% feasible (i.e., all
the members are feasible ones). However, the more
infeasible parts in the structure, the bigger value this factor
gets and pushes algorithms’ exploration toward a higher
level of feasibility. Therefore, we can state that:

nx W
_—>

FeasibilityFactor = 2
1y X Wy

1 (11)

and:
. nx W
lim — =

—1 (12)
feasibility—100% 1y X Wy

Figure 7 shows an unconstrained exploration and a
handled exploration by feasibility factor.

Therefore, the final version of the merit function may be
the product of the feasibility factor and the fuzzy mem-
bership function, as stated in Eq. 13:
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Fig. 8 10-story 1026-element frame: a 3D view; b plan view and column groupings

nfeasible

3 %x@_nz

1

nlnfeasible

ta

SMF(X) = FeasibilityFactor X (
Winf x Cinf

W )
nfeasible
(5
1

— X
w
X C,’nf>
(13)

The feasibility factor assures the feasibility of explo-
ration and prevents algorithm from wasting iterations

(Cr—1)?

nInfeasible
Winf
w

Table 5 Design load coefficients according to ASCE (2000)

Number Combination

1.4D"

1.2D + 1.6L°

1.2D + 0.5L 4 1(E," or W,")
1.2D + 0.5L + 1(Eex or We)
1.2D + 0.5L + 1(Ey or Wy)
1.2D + 0.5L + 1(Eey or Wey)
0.9D + 1(E or W,)

0.9D + 1(Eex or Wey)

0.9D + 1(E, or Wy)

0.9D + 1(E., or Wey)

O 00 N O BN =

—
(=]

“D, L, E and W denote dead, live, earthquake and wind loads,
respectively. x and y are loading directions. ex and ey denote loading
direction with eccentricity
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exploring infeasible areas on the combinatorial search
space. Now, the membership function is fully converted to
a merit function. SFM performance test results are reported
in the following sections by applying to the three large-
scale examples.

4 Numerical evaluation material
4.1 Optimization methods

Several algorithms are selected to be utilized in this paper
to verify the SMF’s performance, such as GA (Holland
1975), ACO (Dorigo and Stiitzle 2004), PSO (Eberhart and
Kennedy 1995), CSS (Talatahari and Azizi 2020), interior
search algorithm (ICA) (Gargari and Lucas 2007), firefly
algorithm (FA) (Yang 2008, 2009), symbiotic organisms
search (SOS) (Cheng and Prayogo 2014), upgraded whale
optimization algorithm (WOA) (Azizi et al. 2019), and
interior search algorithm (ISA) (Gandomi 2014). The
constant parameters of these algorithms are set the same as
the standard versions provided by the main references, as
presented in Table 3. Each algorithm performed thirty
optimization runs to have statistical outputs.

4.2 Utilized penalty functions to be compared
with SMF

The list of all penalty methods applied to the examples is
summarized in Table 4.
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Fig. 9 20-story steel frame: a 3D view, b elevation views of frames B to H ¢ the plan view and columns groupings

4.3 Output clarification

Initially, the method of Hoffmeister and Sprave (1996) is
implemented as the penalty to optimize the first and second
examples by nine evolutionary algorithms to compare with
SMF to prove that SMF is practically hirable and then
statistical results are compared. Afterward, by implement-
ing one algorithm (CSS), the results obtained by SMF are
statistically compared with the results obtained by the other
penalty methods listed in Table 4.

5 Numerical examples and results
5.1 Initial information
This section presents the details of frame structures as well

as the numerical results of optimization obtained by dif-
ferent methods. AISC (2010) and ASCE (2000) are the

codes for designing and loading of the examples, respec-
tively. In addition, normalized design constraints, the CI
and DI, are selected as criteria.

The proposed technique is tested by three frames opti-
mizations: 10-story frame (Azad et al. 2013), X-braced 20-
story tall frame (Azad et al. 2014), and 60-story mega-
braced tubed frame (Talatahari et al. 2022). The first and
second frames are both benchmark examples in literature.
The possible sections for structural members of examples
were taken from 267 W-shaped standard profiles. Proper-
ties of utilized steel material were p = 7850 Kg/m’, E =
200 GPa and F, =248.2 MPa, as the mass density,
modulus of elasticity, and yielding stress, respectively.
10-story and 20-story frames are loaded by dead, live, and
seismic loads while the tubed frame is loaded by dead, live,
and wind. In the following, each example is described, and
numerical results are presented afterward.
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Fig. 10 60-story tubed frame: a 3D view, b the plan view for 24 initial story, ¢ the plan view for stories 25 toward 42 and d the plan view for

upper stories
5.2 10-story frame

This model, as the first example, is shown in Fig. 8 and was
firstly introduced by Azad et al. (2013). This frame con-
tains 1026 elements, 580 beams, 350 columns, and 26
X-type braces. The braces are applied just along x-axes for
all bays in the first story and the side-bays of the other
stories. Joints are moment-resisting connections for beams
and columns and pin connections for braces. Thirty-two
different groups of members are available, and they are
repeated every three stories from 2nd story toward
upwards; 5 column groups, 2 groups for outer and inner
beams, and 1 for bracings are the considered groups. It is
noteworthy that all the story nodes modeled as rigid dia-
phragms and 10-story diaphragms modeled for this exam-
ple. In addition, the effective length factor for buckling
stability for columns, braces, and the major bending of
beams are all taken equal to one. However, for the bending
over the weak bending plane of beams, namely the plane
orthogonal to the floor layer, this factor is taken equal to
0.01 since the beams are fully braced by the floors. The
loadings applied on the floors are equal to 20KN/m dead
and 12KN/m live, respectively. Simultaneously, 15KN/m
and 7KN/m are the dead and live loads applied on the roof
story. In this paper, the self-weight of the story is consid-
ered the effective story weight for calculating the related
seismic lateral load and gets updated from time to time
while exploration is moved on by algorithms. According to
ASCE (2000), the lateral seismic load results as
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k
Fo= V0w
Z?:owihik

where the w, and h; are the effective weight and height of
the story s, respectively; k is a function of fundamental
period of the structure; and F| is the lateral seismic load
assigned to the mass center of the story s; for this example,
the seismic base shear V was taken equal to 10 percentage
of the weight of the structure W (ie., V=0.1 W).
According to ASCE (2000), the fundamental period of the
structure could be computed by

(24)

T = Crh,* (25)

where C7 is taken equal to 0.0853 and H is the height of the
structure equal to 36.5 m in this example. According to this
formula, the fundamental period of this structure T is equal
to 1.267 s. According to ASCE (2000) guideline, the
k factor for this value of fundamental period is equal to
1.38. Additionally, different load coefficients applied to 10
load combinations are considered for all the examples as
presented in Table 5.

5.3 X-braced 20-story frame

This tall building consists of 8 bays in x-direction and 6
bays in y-direction, but the number of bays in x-direction
reduces to 6 from 7th story. Bays are 6 m and 5 m long, in
x- and y-directions, respectively. The structure contains
3860 members; 1836 beams; 1064 columns; and 960
bracing elements. This moment frame is braced with X-
shaped braces in both x- and y-directions. In this frame,
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Table 7 (continued)

Azad et al. 2010 PSO ACO FA GA ICA CSS ISA SOS WOA

Groups

Stories

"W36X160°  *W16X77° *W24X84° "W18X40 "W16XT77 "W14X53° "W24X84°
"W14X99 "W18X106°
"W18X86’

"W24X62’

"W24X76

"W18X86’
"W21X50°

8-10

"W14X145°
"W8X40’

"W14X120°
"W12X120°
"W33X141°

"W14X90?

"W30X99’

"W18X55°

"W30X173°

"W10X54°

CG2
CG3
CG4
C

"W30X132°
"W18X130
"W8X35’

"W18X46’
"W12X87

'W21X122° "W30X116°  *W24X131°

"W14X74°

"W27X129°
"W14X211°
"W14X99’
"W24X55°
"W8X21’

"W36X135°

"W24X76

"W24X68’

"W40X215°

"W21X111°

"W33X201°
"W30X108’

"W21X57

"W14X109°
"W16X45°

"WI12X120°  "W21X73° "W24X117° "W14X68’ "W12X120° "W16X77
"W14X34°

"W21X50°
"W24X76°

G5

"W16X36’

"W14X34°

"W24X55° "W14X43’

"W14X43’

1B
OB

"W21X44° "W14X26’ *W24X55° "W21X50° "W21X50° "W21X73° "W10X22’

"W30X90’
595.71

"W16X26’

"W18X71’
558.05
1.03

1.03

"W18X55°
549.51
1.03

0.97

"W14X38’
563.19
1.01

0.99

"W12X45°
549.24
1.02

0.93

"W14X48’
571.03
1.00

0.99

"W18X76’

591.34
1.04
0.92

"W12X58°
591.53
0.97

0.90

"W24X68’
591.36
1.00

0.89

"W18X76’°

584.93

BR

Weight (ton)

1.00
0.88

Max drift index

Max capacity index

591.53 595.71 612.08 571.03 561.13 585.74 558.23 569.55

591.36

584.93

Practical weight

braces apply to frames one in a between; namely, grids
1,3,5, and 7 are braced parallel to x-direction and grids b, d,
f, and h are braced parallel to y-direction as shown in
Fig. 9. Considering practical construction easiness, mem-
bers are divided into 73 groups, in every two stories; col-
umns are divided into five groups, beams into two inner
and outer groups and braces solely into one group for both
stories. The effective length factor and unbraced length
factor are the same as in the first example. This example
was optimized by Azad et al. (2014) applied gravity loads,
dead, and live loads, assigned as distributed loads on the
beams of each floor. For the floors, 14 KN/m and 10 KN/m
were applied as dead load and live load, respectively; also,
12 KN/m and 7 KN/m were applied on the roof story as
dead and live loads, respectively. As a reminder, the self-
weight of the structure is also added to the dead load. Like
the first example, the base shear is equal to 10 percent of
the effective weight of the structure; Cr is taken equal to
0.0488; and H is the height of the structure equal to 70 m
for this example. The fundamental period of this structure,
T, is equal to 1.181 s, and the K factor for this value of the
fundamental period is equal to 1.341. Load combinations
are the same as in the first example.

5.4 60-story Mega-braced tubed-frame

This high-rise building is made up of four rectangular
independent tubed frames. As shown in Fig. 10, tube A has
4 bays in x-direction and 2 bays in the y direction; tube B
has 6 bays in x-direction and 4 bays in the y-direction. Both
tubes A and B continue to the top story. Tube C has 8 bays
in the x-direction and 6 bays in the y-direction, and tube D
has 10 bays in the x-direction and 8 bays in the y-direction
in the plan. Tubes C and D continue to stories 42 and 24,
respectively. The outer tube D has mega-braces on each of
its four elevation views, which are lozenge-shaped braces
repeated every 6 stories. As depicted in Fig. 8, every
lozenge brace consists of 4 independent elements. How-
ever, tubes B and C have just bracings in the extreme right
and extreme left bays at each of their four elevation views.
This structure contains 8272 frame members, 3960 beams,
3960 columns, and 352 braces. It is noteworthy that tubes
connect by in-plane beam elements, hinged to the joints of
the two tubes; therefore, the gravity loads of the floor
system apply to these elements. However, since the floor
joints are rigid-body diaphragms, these elements use
determined sections and do not play any role in structural
optimization and are therefore excluded from structural
members and optimization process. All the members are
divided into 103 groups; each group covers every six
succeeding stories; in the plan of a story, any tube has its
own beam group and columns are dedicated to the corner
and side groups. Every 6 adjacent stories have their own

@ Springer
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WOA
*W24X146’°

SOS
"W14X90?

ISA
"W14X43°

CSS
"W14X30°

"W21X132°
"W8X31’

ICA

"W30X116’°

GA

FA
"W8X67’

ACO
"W14X120°
"W12X30°

PSO
"W30X235°
"W12X96’

Group
CG2

Table 8 (continued)

Story
19-20

@ Springer

"W14X68’ "W14X30° "W21X73°

"W16X50°

"W21X132°
"W18X211°
"W24X335°
"W16XT77

"W21X147°
*W44X290°
"W14X48’

CG3
CG4
CG5
1B

"W10X45°

"W36X160°
"W21X68’

"W14X48’ "W10X30

*W44X230°
"W12X106°
"W12X120°
"W30X99°
"W6X20°
2913.79
0.91

0.99

"W14X38’

"W24X146

"W12X65°

"W40X235°
"W12X58’

"W12X96’

"W12X136°
"W18X106°
"W18X192’
"W8X24°

3112.13

0.8

"W24X146°

"W16X57

"W21X68’

"W24X103’
"W18X65’
"W10X33’
2713.57
0.97

0.98

"W24X76

"W12X136
"W12X87
"W6X15°
2993.51
0.85

1.00

"W14X109°
"W12X79
2921.28
0.92

0.99

"W12X53°
"W8X28’
2775.39
0.92

0.99

"W14X99’
"W24X104°
2817.29
0.85

0.96

"W40X199

"W21X83’
"W6X207
3036.29
0.69

0.99

OB

"W14X193°
3614.55

0.74
1.00

BR

Weight (ton)

Max drift index

0.98

Max capacity index

3112.13 3036.29 3614.55 2913.79 2713.57 2817.29 2775.39 2921.28

2993.51

Practical weight

bracing group, as well. The typical story height is equal to
3 m for all the stories. Like the former example, dead and
live loads applied on story beams are equal to 14KN/m and
10KN/m, respectively; however, for roof story, these val-
ues are equal to 12KN/m and 7KN/m, respectively,
because of the high-rise nature of this structure, the wind
load is supposed to be the major lateral load. According to
ASCE (2000), wind load may be computed as

P, = (0.613K.KK,V*I)(GC,) (26)

in which P,, is the wind pressure on the structural surface in
KN/m?; Kz is the factor of velocity exposure; Kzt is the
factor related to topography; Kd is the factor of winding
direction; V is the wind speed; G denotes the gust factor;
and C, denotes the external pressure coefficient. In this
example, wind speed was set to 85 mph and exposure type
to B; Kzt is set to 1, Kd equals to 0.85, and G is 0.85; Cp
equals to 0.8 and 0.45 for windward and leeward faces of
the building, respectively. Wind loads are considered as the
major lateral loading.

5.5 Discussion on results
5.5.1 Convergence results

Tables 6 and 7 present results for the 10-story frame, uti-
lizing the SMF and a penalty method to handle design
criteria, respectively. All nine algorithms with both con-
straint handling methods are used. The best weight among
tables for the CSS algorithm, as shown in Table 6, is equal
to 543.02 (ton) found via applying the SMF, which is 8%
lighter than the result reported in the literature (i.e., in Azad
et al. (2013) equal to 584.93 (ton)) as mentioned in Table 7.
Since some results have some violations, to have a fair
comparison, total weight is modified to present feasible
weight, mentioned as practical weight. It means that we
made some modification on the final sections reported by
the algorithm to exchange an infeasible result for a feasible
one. This modification is not necessary for feasible repor-
ted results. The reason is that results handled by penalties
in structural design optimization usually are not feasible
solutions, as seen in our results. Thus, manual manipulation
in found final sections is necessary to gain a feasible
solution in engineering practice. This process usually
increases the total weight of the structure. As seen in
Table 7, five of nine reported solutions obtained by GA,
CSS, ISA, SOS, and WOA with the weight of 591.34,
549.24, 563.19, 549.51, 558.05 tons are infeasible, and
some modifications are needed upon their sections. Authors
reported new total weights as GA: 612.08 (tons), CSS:
561.13 (ton), ISA: 585.74(ton), SOS: 558.23 (ton), WOA:
569.55 (ton). All these manipulated designs experienced an
increase in the total weight with a minimum value of 2%
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Fig. 12 Convergence curvature of the best result of second frame
(SMF)

for SOS and WOA and the maximum of 4% for ISA. In
addition to this, such manipulation is an excessive annoy-
ing process for designers. One superior feature demon-
strated by the results in Table 6 is that the SMF converges
to feasible solutions in almost all cases, unlike the penalty
methods. All the solutions in Table 6 are feasible ones and
even some of them have DI equal to or near to one (FA,
ICA, CSS, ISA), which is the governing design criteria for
this example. It means that SMF precisely detects infea-
sibility and performs better than penalty over the boundary.

For the second example, Tables 8 and 9 present results
for an X-braced 20-story frame, utilizing the SMF and the
penalty mothed, respectively. Again, the best weight in
both tables belongs to the CSS with a weight of 2713.57
(tons) found via applying the SMF which is much better
than results obtained by the same algorithms found by

@ Springer

penalty methods and 24% lighter than the result mentioned
by Azad and Hasangebi (2015). Again, all the results of the
SMF are feasible solutions, while many of the results of the
penalty method needed handy manipulation. The increase
in the weight after modification is presented in Table 9.
Like the 10-story example, the SMF shows robust perfor-
mance in discovering near/on the boundary solutions.
Capacity, unlike the 10-story example, is the governing
design criteria, and four of nine designs found by the SMF
are exactly on the boundary with maximum CI near/equal
to one.

Figures 11 and 12 are the convergence history of the
best solutions found via the SMF for the two examples. As
seen from the first example, after a minimum 13,500
analyses (270 iterations), all the algorithms show no more
exploration while a minimum of 25,000 analyses (500
iterations) are required by most of the chosen penalty
techniques. Corresponding numbers for the second exam-
ple are17500 (350 iterations) and 25,000 (500 iterations),
respectively. So, a tangible 46% and 30% reduction in the
number of required analyses is achieved using SMF for the
first and second examples, respectively.

The best results obtained for the first example using the
SMF method, belonging to the CSS and SOS algorithms,
are 543.02 and 550.61 (tons), respectively. ISA, WOA,
ICA, FA, ACO, PSO, and GA are placed the third to ninth
levels. The values are 559.32 (ton), 560.26 (ton), 568.48
(ton), 576.45 (ton), 578.96 (ton), 581.05 (ton), 598.27 (ton).
The order for the results of the second example obtained by
the SMF is mostly the same as the first example: CSS,
SOS, ISA, WOA, ICA, FA, PSO, ACO, GA, with the
weights equal to 2713.57 (ton), 2775.39 (ton), 2817.29
(ton), 2921.28 (ton), 2913.79 (ton), 3036.29 (ton), 2993.51
(ton), 3112.13 (ton), 3614.55 (ton), respectively. This
consistency can be interpreted as the stability of the per-
formance when applying the SMF. However, for the
penalties, the order of the consequent weights is quite
messy; for the 10-story example, the order is as CSS, SOS,
WOA, ISA, ICA, GA, PSO, ACO, FA, while for the
20-story frame, it is as CSS, SOS, ISA, WOA, PSO, FA,
ICA, ACO, GA. This disorder shows that the utilized
penalty in this research needs tuning to assure high-quality
convergence.

The all-stories DIs of the first example for the results of
three superior algorithms, i.e., CSS, SOS, and ISA, are
shown in Fig. 13, comparing the results by SMF and
penalty methods. As it can be seen, the distribution of
displacement among stories of the results reported by the
SMF is smoother while the results obtained by the penalty
method mostly show a harsh distribution that leads to
slightly infeasible solutions. As this structure is not braced
in the y-direction, the CI is not the governing criteria;
therefore, as shown in Fig. 13, both the SMF and penalty
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Fig. 13 a and b are the results of DIs and ClIs of first example while applying SMF and Penalty with three optimizers ISA, SOS and CSS. ¢ and

d are the same for the second example

method show satisfied CI. The adverse situation is estab-
lished for the 20-story frame; CI is the governing criteria
since the structure is braced in both X and Y global
directions. Figure 13 presents the value of DIs for the
second example. All DIs are feasible. As shown in Fig. 13,
CI for all the designs by the SMF methods is feasible and
the result of SOS (Fig. 13d) is lying on the boundary where
the CI equals to one for each element, while, like the
10-story example, two of three designs found by the pen-
alty method have some violated Cls (Fig. 13).

For the third example, some common penalty techniques
(as described in Coello (2001)) are utilized. Table 10 shows
the best result found by CSS for this example with a weight
equal to 6779.56 (ton). The maximum DI and maximum CI
of this example are 0.98 and 0.87 which are feasible and
directly found by the algorithm with no handy modifica-
tions (no local search); the quality of the result shows that it
is an on-the-boundary solution like the two other examples.
Figure 14 shows the all-stories DIs and all-elements CIs for
this structure, respectively. Figure 15 shows the conver-
gence curvature of the mega-braced tubed frame.

5.5.2 Statistical results

Table 11 shows a statistical comparison among the SMF
and the penalty method for the first two examples extracted

by 30 independent optimization runs for each algorithm.
For the 20-story frame, all the best results for the SMF are
lighter than the ones for the penalty method, while for the
10-story frame, GA (penalty method: 591.34 against SMF:
598.28), WOA (penalty method: 558.05 against SMF:
560.26) and SOS (penalty method: 549.51, against SMF:
550.61) have provided slightly better results; however,
SMF is still competitive since five other algorithms have
found lighter results compared to the penalties. To compare
with the results of literature, only GA has found heavier
results (i.e., 598.27 (ton) via the SMF) compared to Azad
et al. (2013) with 584.93 (ton) for the first example and all
others are smaller. Similarly, all the best results are lighter
than the one reported by Azad & Hasangebi (2015)
(3539.83 (ton)) for the second example, but the other ones
are competitive. In most cases, the mean of the finally
converged independent results by SMF shows an absolute
superiority against the results of the utilized penalty
method and only WOA has shown a slightly vice versa
performance (about only 5 tons and just for the first
example).

Table 12 presents the statistical comparison among the
penalty techniques and the SMF using the CSS algorithm
for all examples obtained from 30 independent runs. As it
is clear from Table 12, small values of the best and stan-
dard deviation are asserted for the SMF. Unstable order of

@ Springer
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Table 10 Sections of the best solution found for tubed-frame

Stories Groups Section Stories Groups Section Stories Groups Section

1-6 CC-A* "W44X290 7-12 CC-A "W40X199 13-18 CC-A "W21X83’
SC-A* "W40X174 SC-A "W27X102’ SC-A "W18X130”
CC-B* "W30X132’ CC-B "W24X103’ CC-B "W40X249’
SC-B* "W16X40 SC-B "W12X120 SC-B "W30X211°
CC-C* "W30X292° cc-C "W24X229° CcC-C "W14X176°
SC-C* "W36X650° SC-C "W18X211° SC-C "W24X207°
CC-D* "W21X147 CC-D "W40X174 CC-D "W30X108’
SC-D* "W27X307 SC-D "W33X318’ SC-D "W36X194’
BM-A* "W40X199’ BM-A "W36X439 BM-A "W12X210
BM-B* "W30X235’ BM-B "W12X136’ BM-B "W14X193”
BM-C* "W12X230 BM-C "W10X30 BM-C "W36X256’
BM-D* "W40X167 BM-D "W30X108’ BM-D "W40X235°
BR-D* "W12X210° BR-D "W30X211° BR-D "W8X48’

19-24 CC-A "W14X43’ 25-30 CC-A "W30X148’ 31-36 CC-A "W21X50
SC-A "W30X108’ SC-A "W33X291° SC-A "W24X162’
CC-B "W36X245° CC-B "W30X477 CC-B "W33X221°
SC-B "W12X210° SC-B "W14X120° SC-B "W24X176°
CC-C "W27X194° CC-C "W18X234’ CC-C "W36X170°
SC-C "W27X235° SC-C "W30X108’ SC-C "W16X100
CC-D "W40X264° BM-A "W36X245° BM-A "W27X217
SC-D "W21X101° BM-B "W8X58’ BM-B "W18X65°
BM-A "W21X62’ BM-C *W14X120° BM-C "W36X256’°
BM-B "W36X328’ BR-C* "W36X245° BR-C "W21X44’
BM-C "W18X65’ - -
BM-D "W16X50 - -
BR-D "W14X82’ - -

3742 CC-A "W30X99’ 43-48 CC-A "W24X146° 49-54 CC-A "W21X122°
SC-A "W27X217° SC-A "W18X175° SC-A "W12X65°
CC-B "W12X136° CC-B "W30X261° CC-B "W8X67’
SC-B "W12X152° SC-B "W14X74 SC-B "W18X258’
CC-C "W36X280° BM-A "W10X100 BM-A "W21X50
SC-C "W33X130 BM-B "W24X62’ BM-B "W33X118’
BM-A "W44X262’ BR-B* "W30X108’ BR-B "W12X50
BM-B "W14X48’ - -
BM-C "W24X104° - -
BR-C "W36X160° - -

55-60 CC-A "W14X53’
SC-A "W10X39’
CC-B "W40X249°
SC-B "W18X55° Total Weight (ton) = 6779.56
BM-A "W27X114°
BM-B "W14X99’
BR-B "W40X321°

a C-A, CC-B: CC-C, CC-D: Corner Columns in Tubes A, B, C and D, respectively. SC-A, SC-B, SC-C, SC-D: side columns in tubes A, B, C and
D, respectively, BM-A, BM-B, BM-C, BM-D: beam members in tubes A, B, C and D, respectively, BR-B, BR-C, BR-D: bracing members in
tubes B, C and D, respectively
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Fig. 14 a Drift Indices of the final design solution found via the SMF for the mega-braced 60-story frame; b Capacity Indices of the final design

solution found via the SMF for the mega-braced 60-story frame
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Fig. 15 Convergence curvature of the best result of the mega-braced 60-story frame

performance was seen in the first two examples, and poor
statistical performance is also seen using different penalty
techniques. For the first and second examples, standard
deviations of results by penalties are too bad and just the
penalty by Michalewicz and Attia (1994) has shown a
better and reasonable performance. Also, just three and two
answers among penalty results are feasible ones, for the

10-story and X-braced frame, respectively. For the third
example, only three out of ten results in Table 9 have
weights less than 6780 tons: SMF, Michalewicz and Attia
(1994) and Hoffmeister and Sprave (1996), with weights
equal to 6779.56 (ton), 6720.45 (ton), and 6453.09 (ton);
all others have weights more than 6930 tons which are
severely over-design. The penalty by Deb (2000), Skalak
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Table 11 Statistical results for the first and second examples with different optimization methods

Methods GA PSO ACO SOS ICA WOA ISA FA CSS Literature

10-story frame Kim et al. 2010

Best result

Penalty method 591.34 591.36 591.35  549.51 571.03 558.05 563.19 595.71  549.24 584.93

SMF method 598.27 581.05 578.96  550.61 568.48  560.26  559.32 576.45 543.02 -

Mean of results

Penalty method 832.09 866.11 862.81  654.03 808.24  766.50  733.15 765.13 64581 -

SMF method 739.092  740.758  755.55 627942 73223 77140 6557629 711.74 618.11 -

X-Braced 20-story Hasangebi and

frame Erbatur 2000

Best result

Penalty method 398543  3066.03 315536 2818.76  3106.56 2994.61 2918.67 3077.17 2822.70 3539.83

SMF method 3614.55 2993.51 311213 277539  2913.79 2921.28 2817.29 3036.29 2713.57 -

Mean of results

Penalty method 5626.49  4683.780 4654.03 3259.86 4150.00 4125.60 3701.93 4116.53 3148.67 -

SMF method 4351.38  3983.34  4293.17 3003.12 3675.29 3963.89 3116.21 3465.44 2803.92 -

fesits of compatisons for ll  Methods 10-story Frame

three problems by different Best Weight (ton) Max RI Max DI Weight Std

penalties
Morales and Quezada 571.25 0.98 0.96 92.68
Michalewicz and Attia 549.24 1.02 0.93 16.29
Hoffmeister and Sprave 535.63 1.08 0.91 85.36
Skalak and Shonkwiler 556.33 0.98 0.90 63.56
Joines and Houck 541.92 1.04 0.89 48.99
Smith and Tate 561.32 1.01 0.92 68.96
Bean and Hadj-Alouane 555.68 1.05 0.95 62.96
Deb 568.37 0.98 0.92 93.61
SMF 543.02 1.00 0.96 22.36

X-Braced Frame
Morales and Quezada 2901.39 0.96 0.95 256.36
Michalewicz and Attia 2822.70 0.86 1.01 46.29
Hoffmeister and Sprave 2650.32 1.03 1.02 262.36
Skalak and Shonkwiler 2785.59 1.01 0.99 195.33
Joines and Houck 2765.36 1.01 1.00 165.73
Smith and Tate 2755.49 1.02 0.98 155.56
Bean and Hadj-Alouane 2786.66 0.98 1.01 120.91
Deb 2801.88 0.99 0.98 270.22
SMF 2713.57 0.97 0.98 56.35
60-story frame

Morales and Quezada 7158.23 0.95 0.92 930.35
Michalewicz and Attia 6720.45 0.98 1.02 108.30
Hoffmeister and Sprave 6453.09 1.07 1.01 871.51
Skalak and Shonkwiler 7044.32 0.97 0.89 577.81
Joines and Houck 6975.29 1.01 0.89 445.14
Smith and Tate 7031.45 0.98 1.00 649.09
Bean and Hadj-Alouane 7052.44 0.99 0.97 508.46
Deb 7158.43 0.97 0.95 818.38
SMF 6779.56 0.98 0.87 202.12
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and Shonkwiler (1998), Bean and Hadj-Alouane (1992) has
found an over-design structure among all. Although the
result obtained by Smith and Tate (1993) is on the
boundary, interestingly, it has again an over design weight.
The best-converged results among 30 runs by some of the
penalty methods (i.e., Michalewicz and Attia (1994),
Hoffmeister and Sprave (1996) and Joines and Houck
(1994)) are infeasible and need handy modifications with
try-and-errors. For the third example, the standard devia-
tions show that penalties have reported weak distribution of
answers since the deviation is about 6% to 13% for Joines
and Houck (1994) and Morales and Quezada (1998)
methods, respectively. However, the deviation for SMF as
well as Michalewicz and Attia (1994) is very satisfactory
equal to 3% and 2%, respectively. However, the answer
offered by SMF is direct feasible, unlike the one obtained
by Michalewicz and Attia (1994).

6 Concluding remarks

A list of SMF advantages is as below:

(1) It is a new merit function specified for structural
optimization for the first time.

(2) There is no necessity for tuning factors, and no
annoying try and errors are required.

(3) No time-consuming programming is assigned to the
practical use of this method.

(4) Simple versions of meta-heuristics are usable and
straightforward, and there is no necessity for utiliz-
ing co-evolutionary versions.

(5) By utilizing SMF, it does not matter what the
topography of the structure is, what type of the
moment-resisting system is, and which type of
design criteria is governing the design process;
results remain stable and reliable.

(6) The final manual manipulation (or local search) is
eliminated, which is an annoying struggle, and the
final converged results are directly feasible.

(7) Last and foremost, a valuable expedition in conver-
gence can be observed, which provides more facil-
itation in computations of the optimization process.

A prospect list for future works might be as follows:
(a) applying this technique on large-scale truss and con-
crete structures since the type of design variables and
design criteria are somehow different, (b) developing and
investigating different forms of formulation for SMF
technique, (c) apply this technique on continuous problems
instead of skeletal structures.
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