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Abstract
Gestational diabetes mellitus (GDM) is one of the pregnancy complications that endangers both mothers and babies. GDM

is usually diagnosed at 22–26 weeks of gestation. However, early prediction is preferable because it may decrease the risk.

The continuous monitoring of the mother’s vital signs helps in predicting any deterioration during pregnancy. The

originality of this research is to provide a comprehensive framework for pregnancy women monitoring. The proposed Data

Replacement and Prediction Framework consists of three layers, which are: (i) Internet of things (IoT) Layer, (ii) Fog

Layer, and (iii) Cloud Layer. The first layer used IoT sensors to aggregate vital signs from pregnancies using invasive and

non-invasive sensors. The vital signs are then transmitted to fog nodes to be processed and finally stored in the cloud layer.

The main contribution in this research is located in the fog layer producing the GDM module to implement two influential

tasks which are as follows: (i) Data Finding Methodology (DFM), and (ii) Explainable Prediction Algorithm (EPM) using

DNN. First, the DFM is used to replace the unused data to free up the cache space for new incoming data items. The cache

replacement is very important in the case of the healthcare system as the incoming vital signs are frequent and must be

replaced continuously. Second, the EPM is used to predict the occurrence of GDM in the second trimester of the

pregnancy. To evaluate our model, we extracted data from 16,354 pregnant women from the medical information mart for

intensive care (MIMIC III) benchmark dataset. For each woman, vital signs, demographic data, and laboratory tests were

aggregated. The results of the prediction model are superior to the state-of-the-art (ACC = 0.957, AUC = 0.942).

Regarding explainability, we used Shapley additive explanation (SHAP) framework to provide local and global expla-

nations for the developed models. Overall, the proposed framework is medically intuitive and allows the early prediction of

GDM with a cost-effective solution.

1 Introduction

GDM is a pregnancy-related irregular glucose-level status.

It is a common pregnancy complication that is recognized

in 3–10% of pregnancies (Risk et al. 2007; Zhu and Zhang

2016). GDM is usually diagnosed between 22 and

26 weeks of gestation and may result in high-risk com-

plications for both women and infants. These complica-

tions include respiratory problems, metabolic disorders,

premature delivery, and the fetus gaining weight that may

hamper the birthing process. Although GDM normally

goes away after birth, women are still at a high risk of

developing type 2 diabetes, with a cumulative incidence of

30–50% within 5–10 years following the index pregnancy

(Zhu and Zhang 2016; Egan et al. 2021). Several studies

have found that high-risk complications can be prevented if

the medical intervention begins in the first or second tri-

mester (Christophi et al. 2008).
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Therefore, early detection of GDM is critical for avert-

ing a range of problems, including: (i) Evidence suggests

that pre-diabetes treatment response varies when GDM

history is taken into consideration (Christophi et al. 2008;

Aroda, et al. 2015). (ii) Individualized risk prediction and

treatment response estimation could also help in the

selection of pre-diabetes treatment (Kent 2015; Herman,

et al. 2017). (iii) Women with a history of GDM can learn

about their future diabetes risk and how metformin and/or

ILI might help (Herman et al. 2017; Intervention and

Metformin 2006). Individual risk estimation could help

doctors make better clinical decisions and make diabetes

prevention programs more efficient, cost-effective, and

patient-centered (Kent 2015; Herman et al. 2017).

There are several models available to assess the risk of

developing diabetes in the general population (Mathur

et al. 2011; Lindstrom 2008). However, few people use

multivariable models to help customize preventive treat-

ments to specific people (Kent 2015; Herman et al. 2017)

Lindstrom 2008; Costa et al. 2012). Predictor variables in

models specifically designed for women with previous

GDM frequently incorporate measurements taken during or

shortly after pregnancy (e.g., insulin use during pregnancy

or breastfeeding history) (Lindstorm 2008; Ekelund et al.

2009; Ignell et al. 2016).

In the last decades, several studies have used data from

electronic health records (EHR) to diagnose and forecast

patient future events, such as mortality prediction (Awad

et al. 2017; El-rashidy et al. 2020), sepsis prediction

(Adams et al. 2015; El-Rashidy et al. 2021a), predict heart

problems (Forkan and Khalil 2016), GDM complications

(Zhang et al. 2020; Ahmadi and Mirbagheri 2019), etc.

However, only a few studies have been conducted to pre-

dict GDM (Burlina et al. 2016; Savvidou et al. 2010). For

example: (i) a recent study developed a model to predict

GDM, which includes pregnancy body mass index (BMI),

and gestational age fasting glucose. (ii) Xiong et al. (Zheng

et al. 2019a) decided to develop a risk prediction mecha-

nism for the first 19 weeks using high-potential GDM

predictors (light GBM), a support vector Machine (SVM)

and a light gradient boosting Machine (iii) Zheng et al.

(2019b) presented a simple method for detecting GDM in

early pregnancy using biochemical markers and the ML

method. (iv) According to Shen et al. (2020), the research

on the best AI approach for GDM prediction required the

least number of clinical devices and trainees to construct an

AI-based application (AI). (D Care 2018; Qiu et al. 2017).

Other research (Wu et al. 2021; Nuzzo et al. 2021)

sought to develop models based on risk factors discovered

in the first trimester that can predict an abnormal OGTT at

24–28 weeks. They considered various indicators that

predict GDM, including scoring methods, glucose bio-

chemistry assays, and glycosylated hemoglobin (HbA1c)

levels have all been used in different populations with

varying degrees of success (Meertens et al. 2019; Olmedo

et al. 2017). According to a clinical study, GDM can be

prevented if a comprehensive lifestyle change is introduced

before the 20th week of pregnancy (Shen et al. 2016;

Ramos et al. 2019).

Unless the preciously developed models for GDM per-

form well, all of them neglect the explainability issue,

focusing instead on enhancing the performance of the ML

model. Therefore, most of them are not accepted in the

medical field. The importance of explainability in ML

applications has grown since it helps toward providing a

transparent model that could explain the output decision.

Traditional models that deal with hundreds of variables

struggle to understand the impact of each feature on the

overall decision, and the features that make the developed

model shift toward one of the classes. Another important

issue is the ongoing explainability of models, which is used

to determine the variable importance and the effect of

changes in the developed model. Our goal was to develop a

clinical diabetes risk prediction model for women who

have already been diagnosed with GDM.

The prediction model is based on the vital signs

obtained from a set of sensors connected to the woman.

And when we talk about sensors sending data, it leads to

talking about IoT (Talaat et al. 2019). IoT generates a huge

amount of data which must be sent to cloud-based Data

Centers. To minimize the latency, which is a key concern

in such cases like healthcare (Atlam 2018), Fog Computing

(FC) is a mandatory decision. The FC is not a replacement

for Cloud Computing, but rather an extension of it that

makes use of resources from edge devices (Bonomi et al.

2012). Hence, the FC increases QoS parameters such as

bandwidth efficiency and energy consumption while also

lowering the latency (Talaat et al. 2020).

The originality of this research is that it provides a

comprehensive framework for monitoring pregnant

women. The proposed Data Replacement and Prediction

Framework (DRPF) is divided into three layers: (i) IoT, (ii)

Fog, and (iii) Cloud. The first layer used IoT sensors to

obtain vital indicators from pregnant women using invasive

and non-invasive sensors. The vital indicators are trans-

mitted to fog nodes to be processed and finally stored in the

cloud layer. The key contribution in this research is in the

fog layer producing the GDM module to perform two

influential tasks: (i) Data Finding Methodology (DFM),

and (ii) Explainable Prediction Algorithm (EPM) using

DNN. First, the DFM is used to replace the unused data to

free up the cache space for new incoming data items. The

cache replacement is very important in the healthcare

system since incoming vital signs are frequent and must be

replaced continuously. Second, the EPM is used to predict
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the occurrence of GDM that may occur in the second tri-

mester of the pregnancy.

2 Background and basic concepts

This section introduces some concepts in the field of

Probabilistic Neural Networks (PNN), fog in healthcare

applications, and data caching in fog.

2.1 Probabilistic neural networks (PNN)

A probabilistic neural network (PNN) is a type of feed

forward neural network that is commonly used to solve

classification and pattern recognition tasks. A Parzen

window and a non-parametric function are used to

approximate the parent probability distribution function

(PDF) of each class in the PNN method. PNN is organized

into a four-layer multilayered feed-forward network (Kar-

thikeyan 2008; Venkatesh and Gopal 2011): (i) Input layer:

is made up of nodes that each have a collection of metrics.

(ii) Pattern layer: Each example in the training data set has

its own neuron. It calculates the test case’s Euclidean

distance from the neuron’s center point, then uses the

sigma values to apply the Radial Basis Function (RBF)

kernel function. (iii) Summation layer: For each class,

executes a sum operation on the outputs from such as the

highest-scoring label node. PNN has a number of advan-

tages, including: (Karthikeyan 2008): (1) PNN networks

predict target probability scores with high accuracy, and (2)

As the size of the representative training set grows, it is

guaranteed to converge to an optimal classifier second

layer. (iv) Output layer: takes all of the summation nodes’

outputs and outputs the maximum.

PNNs are a scalable alternative to classic back-propa-

gation neural networks in classification and pattern recog-

nition applications. They don’t require the massive forward

and backward calculations that regular neural networks do.

They can also deal with a variety of training data. These

networks leverage the concept of probability theory to

reduce misclassifications when applied to a classification

problem.

2.2 Explainability and interpretability of deep
learning models

Explainable AI (XAI) is a framework that is used to open

the black box of machine learning and help in under-

standing the output of the machine learning models (Vel-

lido 2019). Explainability is also defined as the degree to

which humans could understand the ML decision (Zheng

et al. 2019), provide insights on the ML model, and discuss

the logic behind this decision. Applying XAI provides

three main advantages include (1) provides a clear expla-

nation and boosts trust in the developed model. (2) Enables

model troubleshooting (3) specifies the source of the model

basis. Explainability and accuracy are considered two

separate issues that should be maintained when building

ML models. Generally, algorithms with high accuracy

performance cannot provide a coherent explanation for

their decisions and vice versa. The two main types of AI

explainability include a global method that is used to

understand the overall behavior of the model and the effect

of each feature in the output decision and a local method is

used to clarify the decision of the model for each instance

(El-Sappagh et al. 2021). The interpretable model is very

critical, especially in the medical domains, to translating

the output decision into human-understandable language.

2.3 Fogs in healthcare applications

Healthcare services and applications are delay-sensitive.

They deal with the private data of the patients (Aazam et al.

2015). The patients’ data contain very sensitive and per-

sonal information, so the data location must be secured.

High latency may cause many problems in tele-health and

telemedicine applications, which makes FC a suit-

able paradigm in healthcare applications (Khan et al. 2021;

Ahmadi et al. 2021). A simple sensor-to-cloud architecture

is impractical for many health informatics applications.

Regulations prohibit the storage of patient data outside a

hospital in specific instances(Quy et al. 2021; Gupta and

Dhurandher 2021). Because of patient safety concerns in

the event of network and data center failures, reliance

exclusively on remote data centers is also unsuitable for

some applications (Habibi et al. 2020). FC is one possi-

bility for bridging the gap between sensors and analytics in

health informatics.

2.4 Data caching in fog

Reduced latency is a critical issue in the fog computing

paradigm as the number of time-sensitive applications

grows(Gupta and Dhurandher 2021; Shahid et al. 2020). As

a result, one of the goals of an effective IoT application is

to reduce fog computing latency(Khan et al. 2021; Unger

et al. 2019). This approach uses popularity-based caching

to achieve this goal, with a strong emphasis on the users’

interests.

Data caching is a crucial topic in FC for boosting data

availability and decreasing access latency. Because each

Fog Node (FN) is so small, cache replenishment is a key

concern. Cache replacement achieves load balancing in the

FC context by ensuring data availability. The most com-

mon data caching approach in FC is cooperative caching.

In this case, each FN’s local cache is shared with its
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neighbors, resulting in a large unified cache. Each node in a

cooperative caching system can obtain data not only from

its local cache but also from the caches of its neigh-

bors(Kraemer et al. 2020; Quy et al. 2021; Lloret 2019).

As a result, the data availability is maximized, the

access delay is minimized, and the response time for the

end-user layer is reduced. FNs share data in various fog

applications, including healthcare (Ali et al. 2020), smart

homes (Elhayatmy et al. 2018), industrial systems (Pop

et al. 2020; Shahid et al. 2020), and intelligent traffic sig-

nals (Rahul and Aron 2021). As a result, sharing cache

content among FNs has numerous advantages. The cache

replacement method reduces response time by selecting a

suitable set of data for caching. When the cache fills up, a

data item must be removed to create room for the data that

must be fetched (El-Rashidy et al. 2021b, 2020). The

performance will improve if the least used data object is

used.

3 Related work

3.1 Utilizing fog computing in healthcare
systems

Real-time monitoring is required for healthcare applica-

tions. The cloud cannot meet real-time requirements

(Verma and Sood 2018; Khaloufi et al. 2020). This cloud is

ineffective for latency-sensitive applications. FC has been

presented as a solution to these problems. Ahmad et al.

(2016) proposed a health fog system in which FC serves as

an intermediary layer between the cloud and the end-user.

With this three-layer architecture, communication expenses

are reduced.

Dilibal et al. (2020) proposed a smart FC architecture to

reduce network latency and traffic. In this three-layer

design, requests can be processed locally before being

transmitted to the cloud. FC serves as an intermediary layer

that improves network services while reducing the down-

sides of IoT health. Fog nodes are used in the healthcare

IoT, to reduce latency (Khan et al. 2021). Greco et al. (Yi

et al. 2015; Gupta and Dhurandher 2021) proposed a lay-

ered architecture aimed at addressing health monitoring

issues. There are two types of health monitoring problems:

static and dynamic monitoring.

Alli et al. (2020) proposed an IoT-Fog-Cloud ecosys-

tem. It is an intriguing architecture in which IoT devices

respond to user requests. The end devices are at the bottom,

the fog layer is in the middle, and the cloud layer is at the

top. This architecture supports localized computation, fog-

edge computing, and remote computing. Abdelmoneem

et al. (2021) described a system that dynamically dis-

tributes healthcare tasks across cloud and FC. This

architecture will handle a wide range of health conditions

and a large number of individuals.

3.2 Utilizing deep learning in predicting GDM

Predicting pregnancy deterioration is considered a critical

issue in the medical field. Several researchers have recently

used ML and DL to predict GDM and its consequence. For

example, Wang (2021) predicts GDM using various ML

algorithms including random forest (RF), SVM, and arti-

ficial neural network (ANN). The model, which was tested

using data collected from different hospitals in Eastern

China, resulted in inaccuracies ranging from 81 to 86%.

Another study (Qiu et al. 2017) used patient EHR to predict

GDM during early pregnancy based. The authors first

employed six ML to improve accuracy (SVM, NN, logistic

regression (LR), Bayesian network, and CHAID tree) and

then developed a cost-effective hybrid model. The accu-

racy for training and testing was 86.5% and 84.7%,

respectively. Similarly, Sumathi (Sumathi and Meganathan

2022) proposes a voting ensemble classifier based on

multiple ML techniques such as (LR, SVM, RF, and

k-nearest neighbor) that results in an accuracy of 94.24%.

Y. Liu et al. first studied the impact of several types of

features and multiclass feature combinations on predicting

GDM (Ali et al. 2020). They developed a feature screening

method to automatically filter the appropriate number of

features based on the importance of traits. Then, they

vectorized features using depth representation methods like

network embedding, analyzed the relationship between

features using a similarity measurement method, and

finally applied it to the classification model for prediction.

This approach could automatically learn some aspects

based on both domain knowledge rather than artificial

rules, resulting in superior results, unless the enhanced

performance of the developed model necessitates extra

time and money to manage data by humans.

When the features are filtered by Wideband Bandpass

Filters as in Elhayatmy et al. (2018), the accuracy, F1

value, and AUC value of LR are 0.809, 0.881, and 0.825,

respectively, representing a 12% gain over when the fea-

ture is not used. The findings showed that a data drive

based on electronic medical records can significantly

improve the accuracy of predicting gestational diabetes.

Zhong et al. (Pop et al. 2020) developed a method to assess

the risk of GDM in second-trimester pregnancy. This

model, which is based on several risk factors, has a high

predictive value for developing GDM in pregnant Chinese

women and may be useful in directing future clinical

practice. However, there was no significant difference in

terms of liver function between the two groups, which is an

important indicator of visceral fat metabolism (especially

hepatic fat metabolism).
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Schwartz et al. (2021) developed and internally verified

a therapeutically effective prediction model for women

with past GDM, that includes fasting glucose, HbA1c,

BMI, treatment arm, and BMI by treatment arm interac-

tion. Integrating personalized diabetes risk prediction into

pre-diabetes therapy decision-making should help

researchers better understand the benefits of ILI and/or

metformin in diabetes prevention. A clinical prediction

model was devised for personalized decision-making in the

management of pre-diabetes in women with past GDM. For

women with a prior GDM, the estimated incidence of

diabetes without therapy was 37.4%, compared with 20.0%

with comprehensive lifestyle modification or metformin

treatment. It is officially predicated on the presumption of a

lady who has previously undergone a GDM. In most cir-

cumstances, it is not very accurate. Guo et al. developed a

simple nomogram for pregnant Chinese women (Guo et al.

2020), which can be used to predict the likelihood of

developing GDM during the first antenatal visit. This

method can detect GDM early, allowing for more effective

management to improve maternal outcomes. On the other

hand, the AUC statistic is concerned just with prediction

accuracy. A model with a higher AUC but a little lower

sensitivity might be a better choice for clinical application.

As a result, we used decision-analytic approaches based on

our findings and theory to assess the worthiness of a model

or other alternatives.

4 The proposed data replacement
and prediction framework (DRPF)

One of the most significant applications related to the goals

of IoT is an efficient healthcare system. In this regard,

many factors should be taken into consideration, such as

time, the privacy of data, and accuracy. The healthcare

system should be reliable and accessible at all times.

Accordingly, this research is concerned with designing an

IoT-Fog-based healthcare system, as shown in Fig. 1. The

proposed DRPF consists of three layers, which are: (i) IoT

Layer, (ii) Fog Layer, and (iii) Cloud Layer. The IoT layer

combines the IoT devices (pulse oximeter, ECG monitor,

etc.) to observe the user status. The fog layer is responsible

for handling the incoming requests and forwards them to

the appropriate FN. The fog layer is divided into a set of

fog regions, and layer 3 is the cloud datacenters. The roles

of the proposed layers are detailed in the following

subsections.

4.1 IoT layer

IoT devices are used because they provide a wide range of

flexibility, for example, if a patient requires constant care,

he or she can remain at home rather than in a hospital and

be monitored frequently using IoT technology. The data

transferred from the sensor to the control device and then to

the monitoring center are affected by noise, impairing the

data quality. Monitoring a large number of users on the IoT

demands more storage and infrastructure, which can be

avoided by storing data in the cloud.

4.2 Cloud layer

Cloud data centers are located at a remote distance away

from IoT devices, which leads to high latency. This issue

negatively affects the response time for real-time applica-

tions such as critical health monitoring systems, traffic

monitoring, and emergency fire. Furthermore, IoT sources

are geographically extended and can generate a large vol-

ume of data sent to the cloud for processing, which results

in overloading. The edge computational resources can

address the previously described challenges in IoT systems.

The patient data generated from the IoT sensors are

delivered to the user application that uses the proposed

GDM module. The used application sends its data to be

processed in the fog layer. The main module called GDM

Module is implemented and runs in the fog layer, as shown

in Fig. 2. The GDM module is used to predict GDM with

low latency.

4.3 Fog layer

Fog can be considered a computing paradigm that performs

IoT applications at the network’s edge. The Fog improves

the QoS metrics such as (bandwidth efficiency and energy

consumption) and reduces latency(Ghosh et al. 2020). The

main mission of fog is to deliver data and bring it closer to

the user.

4.3.1 The proposed GDM module

The proposed GDM module is composed of two main sub-

modules: (i) Data Finding Methodology (DFM), and (ii)

Explainable Prediction Algorithm (EPM) using DNN.

4.3.1.1 Data finding methodology (DFM) The DFM is

used to replace the unused data to free up the cache space

for the new incoming data items. The cache replacement is

very important in the case of the healthcare system since

the incoming vital signs are frequent and must be replaced

continuously. Caching in a fog environment is constrained

by bandwidth limitations, power limitations, and cache

space limitations. A good replacement mechanism is nec-

essary to discriminate between data items that should be

preserved in the cache and those that should be discarded

when the cache is full.

Prediction of gestational diabetes based on explainable… 11439

123

RETRACTED A
RTIC

LE



The network is divided into fog regions and each region

has a Master Node (MN) that manages the communication

in each fog region. The MN collects the required features

of each FN, such as (i) Existing Data (ED), (ii) Time-To-

Live (TTL), and (ii) cache size. The MN periodically

checks each data feature to delete the data items with zero

TTL. If the Fog cache’s server is full and there is incoming

data, the MN can decide to delete a data item according to

some criteria. As shown in Table 1, each FN has a

table called Data Cache Table, which contains information

about each di in its cache memory such as: (data item (di),

Access Time (TA), Size of data (S), Access Frequency

(FA), Access Count (AC), TTL, and Cache Free Size

(CFS).

The DFM leads to periodically update the cache and

decrease the latency. The suggestive measures have been

taken into account to measure the performance of the

cashing schemes are: (i) Hit Ratio (HR), (ii) access latency,

and (iii) power consumption. The access latency is defined

as the average packet delay over a multi-hop route. It is

used as a measure of the accessibility of the nodes.

The algorithm can use PNN to decide to remove a data

item and replace it with new incoming data according to its

features. The inputs to the PNN are TA, AC, and FA. The

output of PNN is Data Replace (DR). DR can be either Yes

or No. The steps of PNN-based cache replacement strategy

are shown in Algorithm 1.

Using PNN, algorithm can decide to remove a data item

and replace it with new incoming data according to its

features. The input to the PNN is: TA, AC, and FA. The

output of PNN is Data Replace (DR). DR can be Yes or

No. The steps of PNN-based cache replacement strategy

are shown in Algorithm 1.

Fig. 1 The proposed effective

prediction methodology (EPM)
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Fig. 2 Explainable prediction algorithm (EPM) using DNN

Table 1 Data Cache Table (DCT)

Data item

(di)

Access time (TA) Size

of

data

(S)

Access frequency (Fa) Access count (AC) Time-to-live (TTL) Cache

free size

(CFS)

Refers to

data

item’s

number

The time at which

data item enters

the cache of the

FN

Size

of

data

item

The value of how many

times di was accessed. It

indicates the importance of

the di

Each data item maintains a

count which gives the

number of FNs having the

same data

TTL is a time period

given to each di when

it is located at this

cache

The free

space

in the

cache
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Input: 
o Accessing Time (TA), Accessing Count (AC), Accessing Frequency (FA)
Output: 
o Data Replacement (DR)
Steps: 

// for training: 

int PNN(int X, int Y, int Z, float S, bool test_example[T], float Examples[Y][T]){

int MS = -1; float largest = 0;

float sum[ X ], Product[ d ], sump[ d ], SumS[ YL ];

float sump, ExSum;

// The OUTPUT layer which computes the Gaussian functions (G) for each class X
for ( int L=0; L<X; L++ ){

sum[ L ] = 0;

// The SUMMATION layer that accumulates the Gaussian functions (G)
// for each example from the particular class L
for ( int M=0; M<YL; M++ ){

float product = 0;

// The PATTERN layer that computes Eculidean distance
// for each parameter from the particular class 
for ( int N=0; N<d; N++ ){

Product[N] = test_example[N] - Examples[M][N];

Product[N] = (product[N]* product[N]) / (S * S);

Product[N] = exp( product[N] );

sump += product[N];}

SumS[M] = sump;

ExSum+=SumS[M];}

sum[ L ] = ExSum;

sum[ L ] /= YL;}

Target=sum[0];

for ( int L=1; L<=X; L++ ){

if ( sum[ L ] > largest ){

largest = sum[ L ];

MS = L;}

PNN-based cache replacement strategy

4.3.1.2 Explainable prediction algorithm (EPM) using
DNN This section proposed an EPA model that detected

the prevalence of GDM among pregnancies. Furthermore,

to provide an understandable explanation of the predicted

output, we evaluated our model based on the MIMIC III

dataset (Alistair et al. 2016; Saeed et al. 2002) as shown in

Fig. 3. The proposed EPM consists of four main steps:

(a) Data Collection: collecting the required dataset using

PostgreSQL, extracting data from various tables such as

(patients, chart events, D_itmes, lab-events, and input_e-

vents), (b) Data Preprocessing: The output from the first

step is cleaned and preprocessed using various steps

including (removing outliers, standardization, and balanc-

ing), (c) Feature Extraction: using DNN to develop a

classification model that could detect the occurrence of

GDM. (d) Developing DL model: The output decision then

Fig. 3 Selected data

11442 N. El-Rashidy et al.

123

RETRACTED A
RTIC

LE



used SHAP explainer to provide an understandable expla-

nation of the developed decision. The performance of our

model was evaluated using unseen data to ensure that the

efficiency of the proposed model is promising, accurate,

and explainable.

Data collection Medical Information Mart for Intensive

Care III (MIMIC III) is a benchmark dataset developed by

MIT Lab. It includes HER data for patients inside the

intensive care unit. MIMIC III is accessible by obtaining

confirmation from Physionet Organization. MIMIC III

includes the data for 53.422 distinct patients. 4750 mea-

surements and 390 laboratory tests were included in the

MIMIC III dataset. As shown in Fig. 3, we extract data

from the MIMIC III dataset in this research, including

patient’s demographics (i.e., age, gender, BMI), vital signs

(i.e., heart rate, respiratory rate, glucose level, etc.), and

laboratory tests (i.e., Albumin, Creatine, Cholesterol,

sodium, etc.).

The present study was conducted on 8740 pregnant

women according to inclusion criteria including: (i) female

gender that was adult (age[ 20). (ii) Recorded as pregnant

in mimic iii database (item_id (pregnant = 225,082, preg-

nant due date = 225,083). Gestational age between 6 and

26 weeks. Existing of required vital signs and laboratory

tests. Features used in EPM are detailed in Table 2.

The output from the first step is cleaned and prepro-

cessed using different steps including removing outliers,

standardization, and balancing (Li et al. 2010). The steps of

data preprocessing are as follows: (i) Data balancing: Class

imbalance is a common problem, especially with the

medical dataset. In MIMIC III, a minor number of pregnant

women have GDM, which may lead to the problem of an

imbalanced dataset. Two main techniques commonly used

to handle this issue include oversampling (Mao et al. 2019)

and under-sampling (Kaur and Gosain 2018). Oversam-

pling techniques are used to increase the number of sam-

ples in the minority class, such as the synthetic minority

oversampling technique, whereas under-sampling tech-

niques such as Tomek link and random under-sampling are

used to remove samples from the majority class. In this

study, we used the random under-sampling technique to

keep the data balance. The main advantage of using the

under-sampling technique is that it does not introduce noise

into the dataset. (ii) Handle missing values: The MIMIC

dataset has approximately 15–20% of missing data. Several

statistical techniques have been used to impute the missing

Table 2 Features used in EPM

Feature_ID Feature_Name UOM Average for GDM Average for non-GDM P_Value

BMI – 28 ± 6.2 21.66 ± 3.2 \ 0.05

3692 Weight Change kg 12 ± 12.8 10 ± 7.9 \ 0.05

3583 Previous Weight Kg 75 ± 15.3 66 ± 7.2 \ 0.05

3446 Gestational age 24.4 ± 1.2 18 ± 2.3 \ 0.05

1127 WBC (4–11,000) (*103 /lm) 9.48 ± 2.6 8.87 ± 1.3 \ 0.05

626 Neutrophil % 69.21 ± 8.9 71 ± 8.7 \ 0.05

220,635 PCT % 0.20 ± 0.05 0.17 ± 0.61 \ 0.01

220,645 Sodium mEq/L 142 ± 3.2 135 ± 4.2 \ 0.05

223,830 PH (Arterial) – 7.45 ± 0.2 7.35 ± 2.2 \ 0.01

223,751 Non-Invasive Blood Pressure mmHg 125 ± 5.8/90 ± 5.6 115 ± 3.8/75 ± 3.4 \ 0.05

2381, 220,045 Heart rate Bit per M 70 ± 23 60 ± 22 \ 0.05

646, 5820 Spo2 % 95 ± 4.2 95 ± 5

1126 Platelet (9 103/lm) 231.0 ± 62.6 198.0 ± 62.6 \ 0.05

783 lymphocyte % 25.9 ± 7.4 24.8 ± 6.9 \ 0.05

772,227,456 Albumin ([ 3.2) (g/L) 44 ± 9.8 3412.2 \ 0.05

1529 Glucose mg/dL 100 ± 25.3 90 ± 22.7 \ 0.05

1525 Creatinine mg/dL 0.7 ± 0.5 . 0.6 ± 0.2 \ 0.02

1523 Chloride (mEq/L) 100 ± 3.2 96 ± 4.4 \ 0.05

3684 Vitamin E mg/l 9.20 ± 2.37 10.80 ± 5.01 \ 0.05

1522 Calcium mg/dL 9.3 ± 1.8 8.6 ± 2.2 \ 0.05
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values, such as expectation maximization (Moon 1996),

hot decking encoding (Joenssen and Bankhofer 2012), etc.

In this study, we removed data with more than 50%

missing data. We only selected patients who had at least

one record for each vital sign per day. Then, the forward

and backward filling are used to fill the patient’s data. (iii)

Scaling data: The extracted features have different values,

which may vary in their value. These variations usually

affect classifier performance. Therefore, we scaled all

features to a range from 0 to - 1 using Minmax scales

(Rachkidi 2015; Jäger et al. 2021).

Feature extraction In this section, we extracted two

feature subsets A, and B as shown in Table 3. The feature

set A: included the main vital signs (heart rate, glucose

level. SPo2, blood pressure, etc.), and some laboratory tests

include (PCT, total bilirubin, etc.). The feature set B:

included all features in feature A, and other pregnancy-

related features such as Gestational age, weight change,

and other laboratory features such as Lymphocyte, Sodium,

Vitamin E, Neutrophil, etc. These features have a critical

effect on GDM detection. For example, Vitamin E is a

critical measure to maintain the metabolism of the body

and scavenging radical activities. The deficiency of Vita-

min E among pregnancies may lead to vascular endothelial,

the incidence of GDM, and hypertension, in addition to

placental and premature birth (Kraemer et al. 2020).

Therefore, considering vitamin E is important in GDM

prediction. The same is true for lymphocytes, the count

decreases during the first and the second trimesters and

increases during the third. Increased lymphocytes could

potentially contribute to irregular glucose levels.

Developing DL model The Dl model includes 20 input

dimensions using dense and dropout layers. Dense layers

are considered neural networks that are deeply connected.

Each neuron in each layer receives an output from the

previous layers. Dense layers are also used to change the

vector dimension. A dropout layer is a regularization

technique that is used to avoid overfitting by randomly

ignoring some neurons during the training process (Smieja

et al. 2018). As shown in Fig. 4, in the hidden layers, we

used the activation function rectified linear activation

function or ‘‘ReLU,’’ it is a linear activation function that

produces the input directly if it is positive, otherwise, it will

produce zero. In the last layer, we used the sigmoid acti-

vation function for binary classification (Khan et al. 2021).

This produces a robust network with a good generalization

ability and minimum likelihood to overfit. (Khan et al.

2021).

5 Results

To predict GDM, we used the basic feature set in model A,

such as the patient’s age, heart rate, blood pressure, and

other vital signs. EPM achieves adequate performance

(Accuracy = 0.902%, AUC = 0.912%). Model B used the

same features as model A, in addition to other features

including gestational age, weight change, and other

Table 3 Features used in model A and model B

Model Features

Model

A

Age, BMI, Respiratory rate, Heart Rate, Glucose level, SPO2, blood pressure, Calcium, Sodium, PH (Arterial), Total Bilirubin, PCT

Model

B

Age, BMI, Weight change, Gestational age, Respiratory rate, Heart Rate, Glucose level, blood pressure, BUN, PH (Arterial), SPO2,

PTT, Vitamin E, Neutrophil, Lymphocyte, Glucose, Creatinine, Creatinine, Calcium, Sodium, PCT

Fig. 4 Deep learning Model

Table 4 Features used in model

A and model B
DL Model Accuracy (%) Precision (%) Recall (%) F-score (%) AUC (%)

Model A 0.926 0. 9321 0. 8431 0.902 0.912

Model B 0.957 0.949 0.892 0.937 0.942
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laboratory tests such as Albumin, and vitamin E, which

have an impact on GDM incidence. The results demon-

strate that the performance increased when adding weight

change and gestational change (Accuracy = 0.957%, AUC

= 0.942%). From the previous experiments, we observed

the following: (i) patients with GDM ranged from 25 to 45

years (average 32.12 ± 5.6). (ii) GDM usually appeared in

gestational age between (19 and 26 weeks). (iii) Both BMI

and weight change during pregnancy is highly associated

with GDM (GDM average for BMI was 28 ± 6.2 and for

non-GDM was 21.66 ± 3.2). (iv) GDM in pregnant women

was associated with a significant difference (P\ 0.05) in

liver and kidney functions that reflected in high values for

Albumin, BUN, SBP, TC, etc. The overall results are

illustrated in Table 4 and Fig. 5.

5.1 Statistical analysis

To ensure the superiority of the developed DNN model,

both model a and b are compared using Freidman test

Fig. 5 Results of DL model

a accuracy and loss results for

model A, b accuracy and loss

results for model B

Fig. 6 Critical difference between the Model A and model B

Fig. 7 Global explainability of

proposed DL model
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(Dem 2006). Freidman test is non parametric test that is

used to determine if there is significant difference between

models. In order to choose the best performance model

according to statistical test, the average rank for each

model is calculated based on the Nemenyi test (Friedman

1990). Results of the Nemenyi test could be visualized

using the critical difference diagram. Figure 6 shows a

comparison between classification models based on the

critical difference calculated based on the results of the

Nemenyi test for all models. The test shows a significance

difference between the developed models (Statis-

tics = 9.855, P\0:005). Figure 7 shows that model B give

the improved performance over model A (i.e., AUC =

0.942, P\0:005) followed by the same feature set after.

Fig. 8 Local explainability of proposed DL model

Table 5 List of abbreviations

Term Description

GDM Gestational diabetes mellitus

DL Deep learning

AUC Area under the roc curve

PHR Patient health record

HER Electronic health record

PA Predictive analytics

PNN Probabilistic neural networks

FC Fog computing

CC Cloud computing

IOT Internet of things

Table 6 The Performance metrics to evaluate the proposed DSP scheme

Metric Definition

Hit ratio (HR) The number of successful requests per time interval T to the total number of requests during the same time interval

Access latency Defined as the average packet delay over a multi-hop route. It is used as a measure of the accessibility of the nodes

Power consumption The average power consumed over a multi-hop route

Table 7 Four data items parameters located at DCT

Data item

(di)

Access time

(TA)

Size of data

(S)

Access frequency

(FA)

Access count

(AC)

Time-to-live

(TTL)

Energy

(E)

Distance

(D)

Cache free size

(CFS)

d1 0.936 0.213 0.769 0.0455 0.245 0.0818 3 0.120

d2 0.5 0.0833 0.324 0.264 0.748 0.136 2 0.0005

d3 0.155 0.824 0.287 0.973 0.985 0.791 5 0.610

d4 0.5 0.62 0.528 0.973 0.145 0.482 2 0.487

Table 8 Comparing of DFM

with the top state-of-the-art

caching strategy

Algorithm Year Hit ratio (HR) % Access latency Power consumption

DFM 2022 92.11 1.007 3747

DSP (Li et al. 2010) 2019 91.54 1.541 3815

11446 N. El-Rashidy et al.

123

RETRACTED A
RTIC

LE



5.2 Evaluation of explainability of DL model

5.2.1 Global explainability

In this section, we use SHAP summary plots to show the

behavior of the developed model in terms of different

values of several features. Figure 7 shows one feature per

horizontal line and the number of dots represents the cor-

relation between the feature and the overall decision. The

color of the dots represents the correlation (Red for high,

and blue for low). We can draw the following observations

from Fig. 7. (i) Albumin and weight change correlate sig-

nificantly with GDM prediction, and higher values have a

positive impact on predicting GDM. (ii) High PTT values

have a negative effect on GDM prediction. (iii) The sum-

mary plot allows the specification of the effect of the

outliers. For example, while the weight change is not the

most important feature, it does have an impact in some

circumstances. This appeared in the extended tail that was

distrusted in both directions.

5.2.2 Local explainability

In this section, we use SHAP plots to explain the output

decision in each case (local explainability). Figure 8 shows

a GDM case with probability of 73% having GDM. It also

shows the most influential feature values that move the

result toward the positive class such as gestational age =

19, albumin = 56.75, neutrophil = 96.47, and other fac-

tors that move the decision not to have GDM, including

weight change = 2.31.

The all-previous mentioned abbreviations are listed as

shown in Table 5.

5.3 The performance metrics for DFM

The common performance metrics which are used to

measure the performance of the cashing schemes are:

(i) Hit Ratio (HR), (ii) access latency, and (iii) power

consumption. Table 6 summarizes the definitions of the

performance metrics.

Assume the four data items located at the DCT have the

parameters values shown in Table 7. And a new incoming

data item (dinew) needs to be located at the DCT. The size

of dinew is 0.204 MB.

The performance of DFM comparing with the top state-

of-the-art caching strategy is shown in Table 8.

From Table 7, it is shown that DFM has achieved the

highest HR, the lowest access latency, and the lowest

power consumption due to the high accuracy of using the

PNN.

6 Conclusion

This research provided a comprehensive framework for

monitoring pregnant women. The proposed DRPF consists

of three layers, which are: (i) IoT Layer, (ii) Fog Layer, and

(iii) Cloud Layer. The first layer used IoT sensors to

aggregate vital signs from pregnancies using invasive and

non-invasive sensors. Vital signs are transmitted to fog

nodes for processing and finally stored in the cloud layer.

The main contribution of this research is in the fog layer

producing GDM module to implement two influential tasks

which are: (i) DFM, and (ii) Explainable Prediction

Algorithm (EPM) using DNN. First, the DFM is used to

replace the unused data to free the cache space for the new

incoming data items. The cache replacement is very

important in the case of the healthcare system as the

incoming vital signs are frequent and must be replaced

continuously. Second, the EPM is used to predict the

occurrence of GDM that may occur in the second trimester

of pregnancy. The first DL model (model A) is based on

vital signs, laboratory tests, and patient demographics. The

second DL model (model B) used the same features, in

addition to other pregnant features including weight

change, gestational age, Lymphocyte, Sodium, Vitamin E,

Neutrophil, etc. Utilizing Fog computing provides reduced

latency when compared to cloud computing due to the use

of only low-end computers, mobile phones, and personal

devices in fog computing. The proposed system monitors

the preganant’s vital signs i ( body temperature, heart rate,

and blood pressure values, etc.) that obtained from the

sensors that are embedded into a wearable device and

notifies the doctors or caregivers in real time if there occur

any contradictions in the normal threshold value using the

machine learning algorithms. The notification can also be

set for the patients to alert them about the periodical

medications or diet to be maintained by the patients. The

cloud layer stores the big data into the cloud for future

references for the hospitals and the researchers. Our study

findings reported that patients’ age, BMI, blood pressure,

and Lymphocyte vitamin E are mainly associated with

GDM diagnosing. The proposed model achieves accurate

and promising results from an academic perspective.

However, we still need to close from real-world scenarios.

Therefore, in the future, we intend to apply our model on a

large scale of pregnant patients to ensure the generalization

ability of our research.
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