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Abstract
Coronavirus disease 19 (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, which is responsible for the

ongoing global pandemic. Stringent measures have been adopted to face the pandemic, such as complete lockdown,

shutting down businesses and trade, as well as travel restrictions. Nevertheless, such solutions have had a tremendous

economic impact. Although the use of recent vaccines seems to reduce the scale of the problem, the pandemic does not

appear to finish soon. Therefore, having a forecasting model about the COVID-19 spread is of paramount importance to

plan interventions and, then, to limit the economic and social damage. In this paper, we use Genetic Programming to

evidence dependences of the SARS-CoV-2 spread from past data in a given Country. Namely, we analyze real data of the

Campania Region, in Italy. The resulting models prove their effectiveness in forecasting the number of new positives

10/15 days before, with quite a high accuracy. The developed models have been integrated into the context of SVIMAC-

19, an analytical-forecasting system for the containment, contrast, and monitoring of Covid-19 within the Campania

Region.

Keywords COVID-19 � SARS-CoV-2 � Disease spread modeling � Spread forecasting � Genetic programming �
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1 Introduction

On December 31, 2019, China reported a cluster of pneu-

monia cases of unknown etiology in Wuhan city. On Jan-

uary 30, 2020, the World Health Organization (WHO)

declared the new coronavirus Sars-CoV-2 outbreak in

China to be a public health emergency of international

concern (Gorbalenya et al. 2020).

On January 31, 2020, the Italian government proclaimed

a state of emergency and implemented the first measures to

contain the infection on the entire national territory

(Camporesi et al. 2022).

Since then, Coronavirus disease 2019 (COVID-19) has

become an unprecedented public health crisis with a major

impact on the healthcare system. This impact was evident

in Europe, especially in Italy (Paterlini 2020).

In particular, the Campania Region, in Southern Italy,

from the data available at the beginning of 2020, has about

5,870,000 inhabitants, making it the third most populated

Region in Italy and the most populated in the South. The

population density is equal to 429.4 people per Km2, the

highest value at the national level. Furthermore 63.1% of

the population resides in 65 centers with more than 20,000

inhabitants. This makes the Campania Region at high risk

of spreading the disease and saturating the local health

system. Figure 1 shows a map of the population density of

the region (Tuttitalia 2020; Siniscalchi 2018).

In response, since the beginning of the pandemic, the

Campania Region has adopted a preventive management

approach, supporting the use of both the tools available in

the study of infectious epidemiology and the new multi-

disciplinary approaches based on prediction algorithms

through machine learning (Kour and Gondhi 2020).
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In this paper, we describe some models of the SARS-

CoV-2 spread in the territory, and a forecasting formula

then integrated in the SVIMAC-19, an analytical-fore-

casting system for the containment, contrast, and moni-

toring of COVID-19 within the Campania Region (Regione

Campania 2020). Namely, our goal was to predict the

number of the new daily infected people at least 10/15 days

in advance.

Forecasting of a pandemic can be done based on various

parameters such as the impact of environmental factors, the

incubation period, the impact of quarantine, age, gender,

and many others (Shinde et al. 2020; Pak et al. 2020).

However, not all these data are publicly available. In this

study, we used only publicly available data from both

Italian National Health Organization databases and

Regional repositories.

1.1 Methodology

To date, many studies have tried to identify formulas and

rules able to define a mathematical model of the COVID-

19 spread. Although in some cases accuracy was found to

be elevated, the state-of-the-art solutions make use of many

data, such as governments interventions, new drugs, and so

forth, and such information could be not available or reli-

able. As a consequence, the resultant forecasting models

are often difficult to adapt to a specific area (Tu et al.

2020).

On the contrary, our approach intended to build a

forecasting model by mining useful insight from the data

observed over time, without taking into account any type of

external information or human intervention, in the frame-

work of inductive inference (Angluin and Smith 1983;

Rampone and Russo 2012). Such technique assesses the

situations of the past thereby enabling better predictions

about the situation to occur in the future.

Namely, the approach used in this study relies on the so-

called Evolutionary Algorithms, and in particular on the

Genetic Programming (GP) (Koza 1994; Schmidt and

Lipson 2009), by improving a random population of solu-

tions (formulae) in an evolutionary way. The performance

of other algorithms widely used was also valued and

compared (Fix and Hodges 1951; Altman 1992; Zhang

et al. 2017).

1.2 Related works

Given its massive impacts on lives globally, the COVID-19

pandemic is a major focus of research interest at present

(Doornik et al. 2022) and the list of related works is nec-

essarily incomplete.

On March 16, 2020, the White House, collaborating

with research institutes and tech companies, issued a call to

action for global artificial intelligence (AI) researchers for

developing novel text and data-mining techniques to assist

COVID-19-related research (Alimadadi et al. 2020). Sev-

eral studies investigated the kinetics of coronavirus spread

through human populations (Remuzzi and Remuzzi 2020;

Li et al. 2020), and the basic reproductive ratio of the virus

has been estimated (And̄elić et al., 2021).

Koza (1994) laid the foundations of Genetic Program-

ming (GP) (Affenzeller et al. 2009) and since then several

variations have been made (Katoch et al. 2020; D’Angelo

and Palmieri 2021).

There are numerous applications of GP in the predictive

field (Rampone et al. 2021; Rampone and Valente 2021).

The GP application on publicly available COVID-19 data

to obtain the estimation of confirmed, deceased, and

recovered cases and the epidemiology curve for countries

such as China, Italy, Spain, and the USA and as well as on

the global scale was afforded among others by And̄elić

et al. (2021) and Salgotra et al. (2020).

Del Giudice et al. (2020) implemented a regressive

model investigating some consequences of the COVID-19

pandemic in the Campania Region, taking into account

how the event might affect the regional activity.

1.3 Paper outline

This paper is organized as follows: In Sect. 2, we resume

the method set up, the formulae obtained, the test results,

and the comparisons with some alternative methods; in

Sect. 3, we show the model tuning and the experimental

results during the pandemic; Sect. 4 is devoted to the

Discussion and Conclusions.

2 Model set up

We aimed to find a model, expressed as a set of explicit

formulae, describing the number of new infected people in

Campania Region (Italy) at least 10/15 days before the

occurrence. More specifically, the model we intended to

build should be able to perform the prediction by starting

only from information on the current infected people.

3 Reference data

The initial data were taken from an officially published set

of the Campania Region.1 The data were in according to

the daily national summary of health monitoring prepared

1 https://dati.regione.campania.it/catalogo/datasetdetail/covid-19-

monitoraggio-situazione-dati-di-dettaglio-relativi-alla-regione-

campania
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by the Department of Civil Protection and made available

on the website http://www.protezionecivile.gov.it/ follow-

ing the official communication via a press conference at

6.00 pm by the Head of the Department of Civil Protection

as extraordinary Commissioner.

The data describe in successive lines the daily situation

in the Campania Region in terms of number of infected

people (hospitalized, in intensive care, in home isolation,

currently positives, new positives, discharged, cured,

deceased, total) and swabs and cases tested.

At the time of use, the dataset included daily data from

February 24, 2020 to December 31, 2020 (312 rows).

From each row, we defined a feature vector, adding a

label, named Forecast, representing the new positives after

ten days from the current date. The feature vector structure

is reported in the Table 1.

In this way, we obtained 302 labelled instances from

February 24, 2020 to December 21, 2020 (302). It is to

point out that there is a negative value of new positive

Fig. 1 Map of the population density of the Campania Region (inhabitants per Km2)

Table 1 Labelled instances structure

Feature

name

Description

F1 Number (F1): a number representing the day the data was entered. It is expressed as an integer, starting on February 24, 2020 (1)

until December 21, 2020 (302)

F2 Hospitalized with symptoms (F2): the number of people that are hospitalized with symptoms

F3 Intensive care (F3): the number of people that are hospitalized in intensive care

F4 Total hospitalized (F4): the total number of people that are hospitalized also out of intensive care

F5 Home isolation (F5): the number of people that are in home isolation

F6 Total positives (F6): the total number of infected

F7 Variation (F7): the variation in the number of infected people compared to the previous day

F8 New positives (F8): the number of new people infected

F9 Discharged healed (F9): the number of people healed

F10 Deceased (F10): the number of people deceased

F11 Cumulative total cases (F11): the number of people infected since the start of the pandemic

F12 Molecular swabs (F12): the number of molecular swabs performed during the day

Forecast New positives (F8) after ten days from the current date (F1 ? 10)
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(- 229) in the data of June 02, 2020, which is probably a

correction of the previous data. We left it unchanged.

3.1 Cross-validation and fitness measure

To build the formulae avoiding bias, we divided the dataset

of Sect. 2.1 into 5 sub-sets according to the k-fold cross-

validation approach (Devijver and Kittler 1982). In this

way, the whole dataset was divided into 5 folds, and, in

turn, one fold was used as validation set, while the

remaining folds were used as training set.

As fitness measure leading GP (Affenzeller et al. 2009)

we chose the minimum Root Mean Square Error (RMSE),

where

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

yi � ŷið Þ2

m

s

ð1Þ

where ŷi is the prediction and yi he true value, while m is

the number of samples.

3.2 GP hyperparameters tuning

The GP experiments were made in the Matlab environment

(Higham and Higham 2016).

To run GP, several hyperparameters were set, such as

the population size, the maximum number of generations,

the tournament type and its size, the maximum depth of

trees, the maximum number of genes allowed in an indi-

vidual, the permitted operators. We remark that the choice

of these parameters significantly affect the final result

(Sipper et al. 2018).

These choices are generally made in a manual or auto-

matic way. In the former, the values of the hyperparameters

are randomly chosen by using a trial-and-error method

through an extensive series of experiments and evaluation

of the corresponding performance. The latter makes use of

intelligent logic able to find out the appropriate values of

the hyperparameters through an iteration-based method. In

this study, we used the second approach by first defining

the upper and lower bounds of each hyperparameter and

then choosing them by following the workflow used by the

Talos library implemented for running Tensorflow-based

app in Python language.2 More specifically, we used 70%

of the dataset for calibrating these parameters.

The selected hyperparameters and their ranges are

reported in Table 2.

3.3 GP formulae

In the GP experiments, we were looking for formulae f()

that would satisfy

Forecast ¼ f F1;F2; . . .;F12ð Þ ð2Þ

from the described data.

As aforementioned, we performed 5 main experiments,

according to the fivefold cross-validation. Each experiment

was repeated 100 times, and the best solution was con-

sidered. Besides, GP was applied on the whole dataset.

The resulting formulae, for each cross-validation

experiment and for the whole dataset experiment, are

reported in Table 3.

Table 4 shows the RMSE for each experiment, the mean

value of the 5 cross-validation results and the RMSE value

when the entire dataset was considered. Figure 2 graphi-

cally shows the expected and actual values of the new

positives in the experiments. In particular, the graph of Exp

2 highlights the negative value of June 02, 2020 and its

impact on forecasts.

Table 5 shows how the considered features are dis-

tributed among the formulae carried out in the experiments.

With reference to the occurrences reported in Table 5, the

most significant characteristics seem to be F7, F8, F10 and

F12, i.e., the number of new positives at 10 days from the

moment of observation seems strongly dependent on the

current variation in the number of infected people, newly

infected, deceased people and molecular swabs performed

at the time of observation.

Table 2 GP selected

hyperparameter
Hyperparameter Lower bound Upper bound Selected

Population 100 1000 100

Generations 100 500 100

Tournament size 0 100% 30%

Crossover probability 0 1 0.8

Mutation probability 0 1 0.4

Trees depth 1 10 5

Maximum number of genes 1 10 2

2 https://github.com/autonomio/talos/wiki/Workflow.
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3.4 Result comparison

To compare the results, we repeated the experiments by

using several algorithms widely used in the literature, that

is k-Nearest Neighbors (KNN-Regression), Multi-Layer

Perceptron (MLP), Support Vector Machines (SMO

Regression), and Regression Tree (REPTree). All experi-

ments were carried out by using the Waikato Environment

for Knowledge Analysis (WEKA) by using the same Folds

as for GP testing (Witten et al. 2016).

Table 6 shows the results. As depicted, the RMSE val-

ues are comparable with those obtained from GP, while

these algorithms are not capable to provide a representation

of the relationship among features involved, given their sub

symbolic nature (Ilkou and Koutraki 2020).

4 Experimental results during the pandemic

In order to integrate the results into the SVIMAC-19 sys-

tem, extending the forecast interval to 15 days, a new GP

formula was produced with a new set of data available. We

considered the Campania Region data available at the

following link:https://raw.githubusercontent.com/pcm-dpc/

COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.

csv.

At the time of use, the dataset included daily data from

February 24, 2020 to April 01, 2021 (403 rows). The

considered features are the same of Table 1 except for the

Forecast label, changed in the number of new positives at

15 days from the time of observation as reported in

Table 7.

In this way, we obtained 388 labelled instances from

February 24, 2020 (1) to March 17, 2021 (388).

The GP formula was built by using the whole dataset,

and it is reported in Table 8.

Figure 3 plots real and predicted data. The RMSE

achieved was 436.88 (variation explained 84.2035%).

As it can be derived by Table 8, also in this case the

most significant feature is F8 which is present with a very

high coefficient (3.222) in the equation, while F3 is less

representative due to its medium coefficient (1.611), and

lastly, F1 and F2 are very unrepresentative due to a very

small coefficient (0.001135).

Then the formula has been integrated in the SVIMAC-

19 system where it is still operating. The performances are

valued both by the RMSE and by 4 standard measures of

forecast error for both scientific and applicative fields:

Mean Error (ME), i.e., the arithmetic mean of the errors:

ME ¼ 1

m

X

m

t¼1

et ð3Þ

Mean Squared Error (MSE), i.e., the arithmetic mean of

the squares of the errors:

MSE ¼ 1

m

X

m

t¼1

e2t ð4Þ

Mean Absolute Error (MAE), i.e., the arithmetic average

of the errors taken as an absolute value:

Table 3 GP formulae for each experiment

Experiment f()

Exp 1 Forecast = 0.4054*F2 - 1.62*F1 ? 0.81*F7 - 0.0008*F8 - 0.81*F10 ? 0.0016*F12 ? 51.77

Exp 2 Forecast = 0.003128 * F7 - 0.01877 * F5 ? 0.7048 * F8 ? 0.009384 * F - 2.118 *

F10 ? 0.003128 * F12 ? 27.18

Exp 3 Forecast = 0.8768 * F8 - 0.02289 * F5 - 9.645 * F1 - 0.8768 * F10 - 0.02289 *

F11 ? 0.005722 * F12 ? 155

Exp 4 Forecast = 2.221 * F1 ? 2.221 * F3 ? 0.352 * F7 - 1.869 * F10 ? 0.002304 * F12 ? 9.558

Exp 5 Forecast = 0.2076 * F6 ? 0.2071 * F3 ? 0.00222 * F4 - 0.00222 * F5 - 0.0005551 *

F6 ? 0.6195 * F7 ? 0.4136 * F8 ? 0.0005551 * F12 - 112

Exp all data Forecast = 1.948 * F8 ? 52.29/(F8 ? 2.038) - (3.436 * (2 * F8 ? F9) * (0.149 * F8 ? 1) *

(0.214 * F8 ? 4.308))/(107) - 18.2 (7)

Table 4 The RMSE for each experiment and the mean value of the 5

cross-validation results

Experiment RMSE

Exp1 73,31

Exp2 359.39

Exp3 88.00

Exp4 577.16

Exp5 1144.64

Mean 448,50

Exp all data 278.45
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MAE ¼ 1

m

X

m

t¼1

etj j ð5Þ

Mean Absolute Percentage Error (MAPE), that is the

arithmetic mean of the relative percentage errors, taken

as an absolute value:

MAPE ¼ 1

m

X

m

t¼1

etj j
yt
100 ð6Þ

where yi is the true value.

We report the experimental results during nine months

of operation, i.e., from March 18, 2021 to December 18,

2021. The error measures are reported in Table 9, while the

Fig. 4 reports the plot of predicted and real values.

5 Conclusions

In this paper, we used Genetic Programming to evidence

dependences of the SARS-CoV-2 spread from past data in

the Campania Region, in Italy. Our approach aimed to

build a forecasting model by mining useful insights from

the data observed over time, without taking into account

any type of external information or human intervention.

Furthermore we based the prediction only from a few

information, such as infected people (hospitalized, in

intensive care, in home isolation, currently positives, new

positives, discharged, cured, deceased, total) and swabs and

cases tested.

According to our experimental results, which provide an

explicit representation of relationships from the data, the

number of future new positives appears to be independent

from the number of people that are currently hospitalized

Exp 1 Exp 2

Exp 3 Exp 4 

Exp 5 Exp all data
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with symptoms or in intensive care, and also from the

number of people in home isolation, as well as from the

total number of infected people since the start of the pan-

demic. On the contrary, the incidence of the current num-

ber of newly infected is evident.

The resulting models proved their effectiveness in pre-

dicting the number of new positives 10/15 days earlier.

Then, thanks to the model adoption within a monitoring

system, the experimental data were analyzed in the long

term by evaluating different error measures such as Root

Table 5 Feature occurrences for each formula

Experiment F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Exp 1 1 1 0 0 0 0 1 1 0 1 0 1

Exp 2 0 0 0 0 1 0 1 1 1 1 0 1

Exp 3 1 0 0 0 1 0 0 1 0 1 1 1

Exp 4 1 0 1 0 0 0 1 0 0 1 0 1

Exp 5 0 0 1 1 0 1 1 1 0 0 0 1

Exp all data 0 0 0 0 0 0 0 1 1 0 0 0

Occurrences 3 1 2 1 2 1 4 5 2 4 1 5

Occurrence% 50% 17% 33% 17% 33% 17% 67% 83% 33% 67% 17% 83%

Table 6 RMSE values for each compared method in all the experiments and the mean value of the 5 cross-validation results

Experiment KNN-Regression MLP SMO Regression REPTree

Exp1 271.75 158.24 473.01 245.12

Exp2 304.44 240.22 483.39 344.06

Exp3 364.48 311.49 444.77 345.63

Exp4 263.79 241.20 386.64 283.14

Exp5 375.88 308.67 502.30 410.00

Mean 316.07 251.96 458.02 325.59

Exp all data 313.76 169.98 444.15 214.62

Table 7 Label of the new instances

Forecast New positives (F8) after fifteen days from the current date

(F1 ? 15)

Table 8 GP formula for the whole dataset

f()

Forecast = 3.222 * F8 - 1.611 * F3 ? 0.001135 * F1 * (F2 - 2

* F8) ? 0.001128 * F2 * (F3 - F8) - 6.045
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Fig. 3 Plot of predicted and real values

of new positives at 15 days for the GP

formula. In the picture, the real values
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Mean Square Error, Mean Error, Mean Squared Error,

Mean Absolute Error, Mean Absolute Percentage Error.

The general adherence of the forecast curve to the real

trend is rather surprising. In fact, in line with the initial

choices, the model has not been modified following the

strengthening of the vaccination policy and the occurrence

of virus mutations. This suggests that the latter have an

impact mainly on the severity of the disease rather than on

the spread of the virus, and this will be a topic for future

work.
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