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Abstract
In recent years, the rapid development of electric vehicles has increased the load power system and brought new challenges

to the safe and stable operation of the gird. Although the vehicle-to-grid technology can reduce the load that electric

vehicles put on the grid, without any incentives, electric vehicle owners are more inclined not to use vehicle-to-grid

services. In this paper, therefore, a new dynamic economic emission model based on electric vehicles (DEED_EV) is

proposed to maximize the electric vehicle user’s revenue, as well as minimize the fuel cost and emission of the thermal

power unit. In the DEED_EV model, the stochastic of electric vehicles user’s travel and wear of the battery, as well as

some constraints such as electric vehicles charging/discharging rate and status, electric vehicles remain power, electric

vehicles travel power capacity, ramp limits, up and down reserves, and the system balance are considered. To solve the

DEED_EV model, a multi-objective evolutionary algorithm based on decomposition with a step-by-step constraint han-

dling strategy is developed. Different test cases based on the 10-unit are simulated to verify the proposed model and

method. The results show that the DEED_EV model not only encourages more electric vehicles to plug into the grid but

also reduces the fuel cost and emission of the thermal power unit. Besides, the electric vehicles in the DEED_EV

completely realizes the peak shaving and valley filling of the load.
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1 Introduction

Green, energy-saving, and environmentally-friendly elec-

tric vehicles (EVs) have developed rapidly over the past

decade, thanks to people’s concern about low-carbon life

and the environment (Amjad et al. 2010; Farahani 2017; Lu

et al. 2017). Various countries have also introduced poli-

cies to promote automobile manufacturers to develop

superior EVs and encourage users to purchase EVs, which

has increased the market share of EVs year by year.

According to the ‘‘Global EV Outlook 2021’’ published by

International Energy Agency (IEA) (Admin 2021), the

global stock of EVs exceeded 10 million in 2020, a 43%

increase over 2019. Despite a drop in global car sales due

to the Covid-19 pandemic, about 3 million EVs were sold

globally in 2020. China had about 4.5 million EVs on the

road by the end of 2020, the largest number in the world. It

is estimated that the global EV fleet (excluding two/three-

wheelers) will reach 230 million in 2030. The expanding

number of EVs will continue to reduce greenhouse gas

(GHG) emissions. In 2030, the global EV fleet is estimated

to reduce GHG emissions by more than one-third compared

to an equivalent internal combustion engine vehicles fleet.

Although the development of EVs brings benefits to the

environment, the use of larger-scale EVs will add addi-

tional load to the power grid, thereby affecting the safe and

stable operation of the power grid. It is worth mentioning

that the battery of the EV could be also used as the energy
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storage unit to store electrical energy. Moreover, EVs can

be also used as a reserve energy storage unit to ensure the

load demand of the system when the power supply of the

generator unit is insufficient or fails. Kempton and

Letendre (1997) proposed the vehicle-to-grid (V2G) tech-

nology, which allows EVs to interact with the power grid

by a charging and discharging mode. Vehicles equipped

with V2G services can be plugged into the grid, when they

are parked at the charging station and plugged into the grid,

and they can be charged or discharged (Peng et al. 2012).

Therefore, the problem of EVs based on V2G services

plugging into the power grid has become hot research.

Reasonable scheduling of generating units in the thermal

power plant can improve the efficiency of power genera-

tion, reduce redundant power, as well as decrease the use of

fossil fuels and reduce pollution emissions. The economic

emission dispatch (EED) problem (Azizipanah-Abar-

ghooee et al. 2012; Nourianfar and Abdi 2019; Xiong et al.

2022; Xu et al. 2021a) aims at decreasing the economic and

emission of the thermal power plants, which is a multi-

objective optimization problem (MOP). In the EED prob-

lem, the output power of each unit is simultaneously

optimized to satisfy certain constraints, to minimize the

economic and emissions. However, due to the different

load demand in each interval, and the ramp limits of the

unit, a dynamic EED (DEED) model that is more suit-

able for the actual dispatch scenario was proposed (Basu

2008; Guo et al. 2012; Li et al. 2021; Niknam et al. 2012).

Many studies about DEED problems have been published

over the past decades (Arul et al. 2015; Hu et al. 2022;

Mason et al. 2017; Zhang et al. 2015). However, there are

few studies considering the V2G service of EVs in the EED

or DEED problems.

Saber and Venayagamoorthy (2010) proposed a V2G-

based unit commitment EED model, in which EVs were

being used as a small portable power plant to strengthen the

security and reliability of the grid. They used particle

swarm optimization (PSO) to optimize the proposed model.

Yang et al. (2014) used EVs as multiple loads and analyzed

the effect of EV charging on DEED. Considering the

charging and discharging dispatching model of EVs

(Zakariazadeh et al. 2014), the model was developed to

minimize the total operating cost and emission of distri-

bution networks. Qu et al. (2017) discussed the behavior of

EV charging and discharging, developing the DEED with

EVs model. Liang et al. (2019) proposed the DEED model

considering EVs for peak shaving and valley filling. The

bat algorithm was used to optimize the proposed DEED

model and analyzed the impact of different V2G and grid

to vehicle loads on DEED. Al-Bahrani et al. (2020) con-

sidered the EVs’ peak shaving and valley filling in the

smart city environment and developed the DEED model

based on load demand management. The orthogonal PSO

was used to balance the cost and emission objective

functions. Qiao and Liu (2021) considered the battery wear

and proposed an economic dispatching model with EVs.

Zhang et al. (2022) proposed a microgrid load scheduling

model including EVs and took the minimum operation

cost, pollution control cost, and load variance as the

objective function. The above literature has verified from

various aspects that large-scale EVs were plugged into the

gird can peak shaving and valley filling for the load.

However, they failed to consider the user’s revenue of EVs

or battery wear cost when EVs are plugged into the grid.

The user’s revenue and battery wear cost determine

whether users agree to take part in the V2G service. Usu-

ally, the repeated charge and discharge of the EV will

cause wear of the battery. Consequently, without any

incentives, it is difficult for users to actively participate in

the V2G service. Therefore, in this paper, a novel DEED

model based on EVs (DEED_EV) is proposed, which

considers the maximization of user benefit and the mini-

mization of fuel cost and pollution emission of the thermal

unit. The purpose of the proposed DEED_EV model is to

explore the optimal dispatching scheme considering three

objectives simultaneously. In addition, the stochastic of the

EV user’s travel, and wear of the battery are considered.

Some constraints such as EVs charging/discharging rate

and status, EVs remain power, EVs travel power capacity,

units output power and ramp limits, up and down reserves,

and the system balance are included in the DEED_EV

model. The framework of the DEED_EV model is illus-

trated in Fig. 1. From Fig. 1, the framework of the pro-

posed DEED_EV model is divided into two components.

One is the thermal power plant, and the other is the EV

aggregator fleets, and they interact through the dispatch

center or agency. In the power grid component, it is mainly

to reduce the total fuel cost and emission by controlling the

output power of the thermal power unit under the premise

of ensuring load demand. However, in the EV fleets

component, the charging and discharging behavior of EVs

is determined according to the stochastic of the user’s

travel and the peak and valley state of the load.

The proposed DEED_EV is a non-convex, high-di-

mensional MOP with strong coupling constraints. It is hard

to be solved by the conventional mathematical program-

ming approach. In addition, the pre-handling of the con-

straints could reduce the calculation time and can quickly

make the solutions enter the space domain to search.

Therefore, according to the constraints of different com-

ponents, a step-by-step adjustment constraint handling

method is proposed. Firstly, the charging and discharging

power in EV components is dynamically adjusted. Sec-

ondly, the output power of the thermal unit in the power

grid components is adjusted to meet the power balance.

Finally, the penalty function method (Qiao and Liu 2020)
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is used to weigh the objective functions to get the new

objective functions.

The multi-objective evolutionary algorithm based on

decomposition (MOEA/D) is developed by Zhang and Li

(2007) to solve the unconstraint MOPs. Because of its

superior performance in solving MOPs, MOEA/D has been

applied in many fields (Gopu and Venkataraman 2019;

Wang et al. 2021; Xie et al. 2022; Xu et al. 2021b; Zhu

et al. 2019). In this paper, the MOEA/D with a step-by-step

constraint handling method (MOEA/D-SS) is developed to

solve the proposed DEED_EV problem. And four test

cases based on the 10-unit system are used to verify the

proposed DEED_EV model and the MOEA/D-SS method.

Besides, compared with the vector evaluated particle

swarm optimization (VEPSO) (Greeff and Engelbrecht

2008), multi-objective different evolution algorithm with

self-adaptive parameter and local search operators based on

non-dominant sorting (SaMODE_LS) (Qiao and Liu 2020),

non-dominant sorting multi-objective different evolution

algorithm with self-adaptive parameter (NSDESa) (Qiao

et al. 2021) and dynamic NSGA-II (dNSGA-II) (Kalyan-

moy et al. 2007), the performance of the MOEA/D-SS in

optimizing the proposed DEED_EV with complex con-

straints is verified. The results show that the proposed

DEED_EV model can not only reduce the fuel cost and

emission of the thermal power unit but also maximize the

revenue of EV users. Besides, the EV charging and dis-

charging modes of EV obtained from the proposed model

is the best compared to other modes. Moreover, the EVs in

the proposed model fully realize the peak shaving and

valley filling of the load. Finally, the impact of battery

capital cost and electricity price on the DEED_EV model is

analyzed, respectively.

The rest of this paper is organized as follows. The

proposed DEED_EV model is formulated in Sect. 2. Sec-

tion 3 is the pre-handling of constraints and the imple-

mentation of MOEA/D-SS in DEED_EV. The

experimental and discussion are given in Sect. 4. Finally,

Sect. 5 is the conclusion.

2 Problem formulation

2.1 The stochastic model of electric vehicles

Generally, according to different usage scenarios, the uses

of EVs include commercial vehicles, taxis, private vehi-

cles, commuter vehicles, etc. Because commercial vehicles

can travel at any moment, and taxis are driving almost all

day. Therefore, they could not participate in V2G services

and only exist in the grid as loads. However, private

vehicles and commute vehicles are commonly used for

daily commuting between home and the workplace. Con-

sequently, when their owners are working or resting, they

can participate in V2G services, cut the peak and fill the

valley for the grid load. In this paper, the model of EVs is

mainly private and commuter vehicles. For simplicity,

suppose that an EV commutes only once a day; that is,

there are two periods of driving, namely the periods to go

to work and home. In these periods, EVs could not plug

into the grid. Due to different work schedules, the com-

muting time of EV users is random. Let the time from

home to workplace be the arrival time, and the time from

workplace to home be the departure time. Based on the US

National Household Travel Survey (NHTS 2017), the

stochastic of EVs arrival time and departure time can be

modeled with a normal distribution (Lu et al. 2018; Mohiti

et al. 2019), respectively.

FaðtÞ ¼
1

ra
ffiffiffiffiffiffi

2p
p e

�ðt�laÞ2

2r2
a ; 0\t� 24 ð1Þ

FdðtÞ ¼
1

rd
ffiffiffiffiffiffi

2p
p e

�ðt�ld Þ2

2r2
d ; 0\t� 24 ð2Þ

…

Thermal power plant Dispatch center

EVs aggregators

Load demand

User EV

Charging

DischargingTransmission

Fig. 1 The framework of the

proposed DEED_EV model
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where raandrd are the variances of the arrival time and

departure time.laandld are the means of the arrival time

and departure time, respectively.

2.2 Battery wear model

The heart that drives an EV is the battery component. The

battery lifetime determines the key factor for whether the

user intends to buy an EV, and it also directly affects the

user’s time limit for using the EV. More importantly, it is

also a key factor that determines EV users’ participation in

V2G services. Therefore, it is necessary to study the battery

wear when EVs participate in grid V2G services. At pre-

sent, there are three battery technologies, lead-acid, nickel-

metal hydride, and lithium-ion, that are used most in the

market (Zhou et al. 2011). These technologies have dif-

ferent advantages in capability, safety, life, and cost. In the

same case, lithium-ion technology is widely used by

automobile manufacturers because of its high-power den-

sity (Gonzalez-Castellanos et al. 2020). For simplicity, the

EVs are driven by lithium-lion in this paper. The service

life of the battery will degrade with calendar aging and

cycling, which is mainly caused by irreversible electro-

chemical side reactions. This will result in a reduction in

battery capacity, and the battery needs to be replaced to

ensure the normal users of the EV when reduced to the

standard threshold. Calendar life represents the expected

life of the battery, while cycle life is usually expressed by

the number of charge/discharge cycles (Wang et al. 2016).

In this paper, the revenues of a charge and discharge cycle

of EV users are considered, so only the battery wear caused

by the cycle is analyzed.

The cycle life of the battery is related to ambient tem-

perature and discharge of depth (DoD). However, the

researchers have shown that compared to other technology,

the effect of ambient temperature on lithium-ion is less

obvious (Zhou et al. 2011). In this paper, the ambient

temperature is reasonably ignored, and only the impact of

DoD on battery wear is analyzed. The DoD refers to the

absolute discharge relative to the rated battery capacity,

denoted by Dod, which is related to the state of charge

(SoC). The relationship between battery cycle life and Dod

is defined as follows.

LnðLÞ ¼ �0:795LnðDodÞ þ 6:5425 ð3Þ

where L is the number of battery cycles under Dod. (3) can

be transformed into

L ¼ 694D�0:795
od ð4Þ

The Dod can be calculated by SoC. Therefore, during

discharge, Dod at time t within a cycle is defined as Eq. (5),

which is illustrated in Fig. 2a.

Dt
od ¼ SoCðt � 1Þ � SoCðtÞ; 0\t� 24 ð5Þ

where SoC (0) = 1 means that the initial SoC is 100%.

Figure 2(b) shows that the battery cycle life goes down

with increasing Dod. When each Dod of the battery is 20%,

the cycle life of the battery is approximately 2494. How-

ever, when the battery is fully discharged (Dod is 100%)

each time, its cycle life is only 694. Therefore, the

appropriate Dod of the battery can ensure that EVs have a

long service life.

2.3 Modeling of dynamic economic emission
dispatch with electric vehicles

In this subsection, the DEED_EV model is proposed to

minimize the fuel cost and the population emission of the

thermal power units as well as maximize the revenues of

the EVs user. In the proposed DEED_EV model, the EVs

battery wear cost and the user’s travel stochastic are

included. And some constraints such as system power

balance, EVs remain power, users travel, ramp rates and

spinning reserve are considered.

2.3.1 Objective functions

(1) Fuel cost

The fuel cost of thermal power units is defined in the form

of a quadratic function (Han et al. 2001; Qiao and Liu

2020).

Minimize FC¼
X

T

t¼1

X

N

i¼1

ðai þ biPi;t þ ciP
2
i;tÞ ð6Þ

where T and N are the dispatching period and number of

units, respectively. ai, bi and ci are the coefficients of the ith

unit, and Pi;t is the dispatchable power of the ith unit at

time t.

(2) Emission

The emission of thermal power units is defined as the

sum of the quadratic function and exponential function (Qu

et al. 2018).

Minimize FM ¼
X

T

t¼1

X

N

i¼1

½ðai þ biPi;t þ ciP
2
i;t
þ fiexpðuiPi;tÞ�

ð7Þ

where ai; bi; ci; fi and ui are the emission coefficients of

the ith unit.

(3) EVs users’ revenues

When EVs participated in V2G services, certain rev-

enues will be generated. And the higher the revenue, the
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more incentives users will add their EVs to the V2G ser-

vices. The user’s revenue is defined as follows.

Maximum FR ¼
X

T

t¼1

X

Nev

i¼1

ðPt
Dch;ipt � Pt

Ch;ipt�Pt
Dch;ipbdÞ

ð8Þ

where the first term is the income from EVs discharge. The

second term is the cost of charging EVs. The last term is

the cost of battery wear caused by the discharge. Nev is the

number of EVs. Pt
Dch; i and Pt

Ch; i are the discharging and

charging of the ith EVs at time t, respectively. pt is the

electricity price at time t. pbd is the battery wear cost which

can be calculated as follows.

pbd ¼
Cev

LEcapDod
ð9Þ

where Cev is the battery capital cost in $/kWh. Ecap is the

battery capacity.

2.3.2 Constraints

The DEED_EV problem is subjected to some technology

constraints which are described as follows.

(1) Constraints of EVs

0�Pt
Ch �Pt

Chu
t
Ch; t 2 ½tarr; tdep� ð10Þ

0�Pt
Dch �Pt

Dchu
t
Dch; t 2 ½tarr; tdep� ð11Þ

utCh þ utDch ¼ 1; t 2 ½tarr; tdep� ð12Þ

utCh þ utDch ¼ 0; t 62 ½tarr; tdep� ð13Þ

Rt ¼ Rt�1 þ kCPCh;tDt �
1

kD
PDch;tDt � STrip;t ð14Þ

SoCEcap �Rt � SoCEcap ð15Þ

X

T

t¼1

STrip;t ¼
X

T

t¼1

kCPCh;tDt �
X

T

t¼1

1

kD
PDch;tDt ð16Þ

where Pt
Ch and Pt

Dch are the maximum charging and dis-

charging of the EV at time t. utCh and utDch are binary

variables representing the charging and discharging state of

the battery. tarr and tdep represent the arrival time and

departure time.SoC and SoC are the minimum and maxi-

mum SoC. Rt is the remaining power of the EVs at time

t. kC and kD are the charging and discharging efficiencies.

Dt is the dispatch interval and set to 1 in this paper. STrip,t is

the power consumed in driving EVs at time t, and STrip,t-

= DSLd, where DS is the average power consumption of

EV driving and Ld is the driving distance. Equations (10)

and (11) are the charging and discharging constraints of

EVs, which indicates that EVs could not be overcharged

and over-discharged. Equation (12) indicates that charging

and discharging could not be performed simultaneously.

Equation (13) represents not participating in V2G when

EV is driving. The remaining power calculation and con-

straint are Eqs. (14) and (15), respectively. Equation (16)

represents the travel constraint of EVs, which ensures that

EVs have sufficient travel power.

(2) Constraints of power system

Pi;t �Pi;t �Pi;t ð17Þ

X

N

t¼1

Pi;t þ
X

Nev

i¼1

Pt
Dch;i¼PD;t þ PL;t þ

X

Nev

i¼1

Pt
Ch;i ð18Þ

PL;t ¼
X

N

i¼1

X

N

j¼1

Pi;tBijPj;t þ
X

N

i¼1

Pi;tBi0 þ B00 ð19Þ

(a) (b)

SoC(t-1) SoC(t)

Dod
t

SoC=1 SoC=0

Fig. 2 Definitions of the Dod and cycle life. a The relationship between Dod and SOC, and b The relationship between Dod and the cycle of life
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Pi;t � Pi;t�1 �URtDt
Pi;t�1 � Pi;t �DRtDt

�

ð20Þ

X

N

i¼1

min min Pi;t;Pi;t�1 þ URtDt
� �

� Pi;t;
URt

6

� �

� SuR;t þ #u

X

Nev

i¼1

Pt
Dch;i þ Pt

Ch;i

� 	

ð21Þ

X

N

i¼1

min Pi;t � max Pi;t;Pi;t�1 � DRtDt
� 	

;
DRt

6

� �

�#d

X

Nev

i¼1

Pt
Dch;i þ Pt

Ch;i

� 	

ð22Þ

where Pi;t and Pi;t are the minimum and maximum power

of the ith unit, respectively. PD,t is the load demand. PL,t is

the system loss at time t, which is calculated by Eq. (19),

and Bij, Bi0, and B00 are the coefficients. URt and DRt are

the increase and decrease rates at time t. Su R,t is the up

spinning reserve at time t. #u and #d are the reserve coef-

ficients of EVs, respectively. Equation (17) is the output

limit of the thermal power unit. Equation (18) is the power

balance constraint of the system. Equation (20) is the up

and down ramp constraints, which indicates that the power

change in adjacent intervals could not exceed the set

threshold. The system’s up and down reserve constraints

are defined as Eqs. (21) and (22), which means that the

generator is conked or the power supply is interrupted, and

the system can respond quickly to maintain the continuity

of the grid power supply.

3 Implementation of MOEA/D-SS
for dynamic economic emission dispatch
with electric vehicles

3.1 Constraint handling method

The proposed DEED_EV model has three objective func-

tions, which are to minimize fuel cost and emission of the

thermal power unit and maximize the user’s revenue. To

optimize these three objective functions at the same time,

the function of the user’s revenue Eq. (8) is transformed

into the form of minimum F
0

R=1=FR. Therefore, the opti-

mization of the DEED_EV problem could be transformed

into the following form:

Minimize ½FC;FM ;F
0

R�
Subject to Constraints ð10Þ � ð22Þ

�

ð23Þ

There are many constraints in the proposed DEED_EV

model, and these constraints are highly coupled. Therefore, if

the constraints are not processed in advance, infeasible

solutions will be generated, which will lead to difficulty in

optimization and a waste of calculation time. The constraint

handling method with the step-by-step adjustment is adopted

in this paper, and the detailed processes are given as follows.

When EVs participate in V2G services, they must always

be plugged into the grid except for the driving, and there

should be enough power for the users to travel. Therefore, the

travel constraint (16) in constraints of EVs should be

adjusted first. The detailed adjustment process for EVs

constraints is shown in Algorithm 1. Lines 1 and 2 are

operations before constraints adjustment. Lines 3–14 are

step-by-step adjustment operations. When the adjustment of

PCh,t, andPDch,t is completed (lines 8 and 9), judge whether it

is out of bounds (lines 10 and 11). Finally, when the k and

jvilok
evj meet the preset threshold (Kev and eev), the adjust-

ment is terminated (lines 5–7). After performing Algorithm

1, new PCh,t, PDch,t and jvilok
evj will be output, and then

Eq. (14) constraint violation viloR will be calculated.

When the EVs constraint handling is completed, new

PCh,t and PDch,t are added to the constraint handling of the

power system. The constraint handling procedure of the

power system is shown in Algorithm 2, in which the loss

PL,t is calculated first (line 2), and then the value vilok
P to be

adjusted is obtained (line 3). Through iterative adjustment

(lines 4–24), the dynamic update of Pi,t (lines 9–20) is

realized. However, when the adjustment is completed
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(lines 9–13), it is necessary to further determine whether

Pi,t crosses the boundary (lines 14–20).

After performing Algorithm 2, new Pi,t and jvilok
Pj will

be output, and then calculate Eqs. (21) and (22) constraint

violations vilou and vilod. Therefore, the proposed DEE-

D_EV model total constraint violations vilo ¼ jvilok
evjþ

jviloRj þ jvilok
Pj þ jvilouj þ jvilodj. The multi-objective

problem with constraint (23) is transformed into an

unconstrained optimization problem (26) through the pen-

alty function method (Ding et al. 2015). It is obvious that

when vilo = 0 all objective functions are minimum, and the

corresponding solutions are the feasible solutions.

Minimize Fj ¼ FQ þ s � vilo; j;Q ¼ C;M;R ð26Þ

where s is the penalty coefficient.

3.2 Implementation of MOEA/D-SS in DEED_EV

MOEA/D has been proved to have a very significant effect

in solving unconstrained MOPs. In order to optimize the

proposed DEED_EV model with strong constraints,

MOEA/D-SS is developed by combining the step-by-step

constraint handling method with MOEA/D. In MOEA/D-

SS, the decomposition method of Tchebycheff is adopted

to decompose the MOP into a series of subproblems and

optimize the subproblems to obtain the final solutions.
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Different from the method of generating weight vectors for

two objectives, here, the Latin hypercube sample method is

used to generate weigh vectors for three objectives. The

specific procedure of implementation of MOEA/D-SS in

DEED_EV is shown in Algorithm 3. Lines 1–8 are the

initialization process of MOEA/D-SS, and its detailed

iterative operations are lines 9–19. Besides, the

flowchart of the proposed MOEA/D-SS to optimize the

DEED_EV problem is shown in Fig. 3. Genmax and gen

represent the maximum number of iterations and the

number of iterations.

The computational complexity of MOEA/D-SS is ana-

lyzed as follows. The major computational costs of Algo-

rithm 1 are to calculate Pt
Dch;i and Pt

Ch;i by Eq. (16).

Therefore, the total computational complexity of Algo-

rithm 1 is O(KevlogN). In the same way, the computational

costs of Algorithm 2 are to calculate Pi,t and PL,t by

Eqs. (18) and (19), and its computational complexity is

O(KplogN) and O(2KplogN), respectively. The total com-

putational complexity of Algorithm 2 is O(KplogN). The

computational costs of MOEA/D are to generate Np trial
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solutions, the computational complexity of MOEA/D is

(mTN), where m is the number of the objective functions

and T is the dimensional of close weight. Therefore, the

computational complexity of MOEA/D-SS is O(mTN).

4 Experimental results and discussion

In this section, four test cases based on the 10-unit system

are used to demonstrate the availability of the proposed

DEED_EV model and the performance of the MOEA/D-

SS. The thermal power unit parameters and load demand

are given in (Qiao and Liu 2020) and (Basu 2014).

Assuming that all EVs in the model are the same type, and

all times are participated in V2G service dispatching except

the driving periods. In addition, let each EV have an SoC of

100% before the start of the first commute time, that is, the

EV is full power before daily use. Therefore, SoC(1) =

100%, and the SoC(2) = 1 - Ld=L
max
d , Lmax

d is the maxi-

mum driving distance when SoC is 100%. The EV

parameters are listed in Table 1. Due to the Pt
Ch and Pt

Dch

are 0.2Ecap, the Dod is 0.8 of each EV. Su R,t is set to

0.1PD,t, and one dispatch is 24 h. Kev and KP are both set to

10, s is set to 100. eev and eP are set to 1e - 6. laandld are

set to 8 and 18, respectively. raandrd are set to 1. The load

demand PD,t (Qiao and Liu 2020) and electricity price pt
(Zakariazadeh et al. 2014) are shown in Fig. 4. All tests are

performed in MATLAB 2019a environment on a PC with

Core I5-6500 CPU, 8G RAM. In each case, the iteration is

set to 3000, and the Np is set to 300. Each algorithm runs

independently 31 times and records the corresponding

results.

4.1 Case 1

In this case, the 10-unit system with 50,000 EVs is simu-

lated to verify the proposed MOEA/D-SS. In order to

further demonstrate the performance of MOEA/D-SS, the

VEPSO (Greeff and Engelbrecht 2008), SaMODE_LS

(Qiao and Liu 2020), NSDESa (Qiao et al. 2021), and

dNSGA-II (Kalyanmoy et al. 2007) are compared with it.

Fig. 3 The flowchart of MOEA/D for DEED_EV

Table 1 The EVs parameters

Ecap(kW�h) Cev ($/kW�h) Pt
Ch, Pt

Dch, SoC SoC

24 0.50 0.2 Ecap 1 Ecap

DS(kW�h/km) Ld(km) kC, kD #u, #d

0.15 25 0.9 0.3

Fig. 4 The profiles of the load demand and electricity price. A and B

are two different peak load periods
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The median value of the minimum values of each objective

function obtained by all algorithms is listed in Table 2. The

minimum value of the objective function obtained by each

algorithm is the extreme solution of the objective function,

and the corresponding row indicates the values of other

objective functions under this value. Besides, in this paper,

the best values are highlighted in bold. It can be seen from

Table 2, in terms of the median value, dispatching solutions

obtained by SaMODE_LS and NSDESa can maximize

users’ revenue. However, in terms of the cost and emission

of the objective function, the median value of the optimal

value obtained by the proposed MOEA/D-SS is the best

compared with those of other algorithms. Besides, although

dNSGA-II (3.8288E ? 05) obtained those users’ revenue

18.65% higher than MOEA/D-SS (3.2271E ? 05). How-

ever, the cost and the emission decreased by 5.75% and

9.82%, respectively, compared with MOEA/D-SS. There-

fore, for the median indicator, the performance of the

proposed MOEA/D-SS is better than those of other

Table 2 The median solution of

all algorithms
Indicator Methods Cost ($) Emission (lb) Revenue ($)

Median VEPSO 2.4401E ? 06 3.0897E ? 05 2.6348E ? 05

2.4961E ? 06 2.8999E ? 05 2.8034E ? 05

2.5355E ? 06 3.0582E ? 05 3.0841E ? 05

dNSGA-II 2.4325E ? 06 2.8922E ? 05 2.6103E ? 05

2.4727E ? 06 2.8299E ? 05 2.5343E ? 05

2.5389E ? 06 3.1148E ? 05 3.8288E ? 05

NSDESa 2.4127E ? 06 2.9273E ? 05 3.5182E ? 05

2.4635E ? 06 2.8134E ? 05 3.4092E ? 05

2.4956E ? 06 2.9856E ? 05 4.5211E ? 05

SaMODE_LS 2.4057E ? 06 2.9227E ? 05 3.9228E ? 05

2.4795E ? 06 2.7846E ? 05 4.6141E ? 05

2.4919E ? 06 2.7762E ? 05 4.6433E 1 05

MOEA/D-SS 2.3916E 1 06 2.8672E ? 05 3.2696E ? 05

2.4770E ? 06 2.7323E 1 05 3.0125E ? 05

2.4099E ? 06 2.8362E ? 05 3.2271E ? 05

Table 3 The evaluation

indicators of the objective

functions obtained by all

algorithms

Indicators Methods Cost ($) Emission (lb) Revenue ($)

Best VEPSO 2.4705E ? 06 2.8684E ? 05 3.4110E ? 05

dNSGA-II 2.4559E ? 06 2.8144E ? 05 4.1790E ? 05

NSDESa 2.4003E ? 06 2.7784E ? 05 4.6770E ? 05

SaMODE_LS 2.3828E ? 06 2.7484E ? 05 4.9607E 1 05

MOEA/D-SS 2.3807E 1 06 2.7090E 1 05 3.5203E ? 05

Worst VEPSO 2.4817E ? 06 2.9249E ? 05 2.7751E ? 05

dNSGA-II 2.4143E ? 06 2.9154E ? 05 3.2952E ? 05

NSDESa 2.4347E ? 06 2.8401E ? 05 4.2707E ? 05

SaMODE_LS 2.4305E ? 06 2.8257E ? 05 4.5074E 1 05

MOEA/D-SS 2.4065E 1 06 2.7465E 1 05 2.7350E ? 05

Avr VEPSO 2.4430E ? 06 2.9071E ? 05 3.0533E ? 05

dNSGA-II 2.4328E ? 06 2.8473E ? 05 3.8664E ? 05

NSDESa 2.4384E ? 06 2.8506E ? 05 3.7636E ? 05

SaMODE_LS 2.4534E ? 06 2.8017E ? 05 4.4575E 1 05

MOEA/D-SS 2.3928E 1 06 2.7307E 1 05 3.1601E ? 05

Std VEPSO 1.9246E ? 04 3.2579E ? 03 2.0707E ? 04

dNSGA-II 1.1691E ? 04 3.3955E ? 03 2.6531E ? 04

NSDESa 7.5046E ? 03 1.5181E ? 03 1.0885E 1 04

SaMODE_LS 1.1397E ? 04 1.7471E ? 03 1.1272E ? 04

MOEA/D-SS 6.2493E 1 03 8.9455E 1 02 2.2732E ? 04
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algorithms and only slightly worse than those of SaMO-

DE_LS and NSDESa in terms of user’s revenue.

The evaluation indicators such as the best and worst of

the objective functions, as well as the average (Avr) and

standard deviation (Std) of the best value, are listed in

Table 3. From Table 3, compared with VEPSO, dNSGA-II,

and NSDESa, the corresponding objective function value

of the dispatch solutions obtained by SaMODE_LS is the

best among all indicators. However, in the best, worst, and

Avr indicators corresponding to objective functions cost

and emission, the proposed MOEA/D-SS is superior to

SaMODE_LS. Besides, among the three objective func-

tions, MOEA/D-SS only performs worse than SaMO-

DE_LS on objective function user revenue. The same

conclusion above can be also drawn from the best com-

promise solution, and the best compromises obtained by

five algorithms are shown in Table 4.

The Pareto front of MOEA/D-SS and the best compro-

mise of the five methods are illustrated in Fig. 5. It is

obvious that those results obtained by MOEA/D-SS are

superior to those of other methods. Consequently, the

MOEA/D-SS’s performance is better than that of VEPSO

and dNSGA-II’s and, in terms of the objective functions of

the cost and emission, is better than NSDESa and

SaMODE_LS. The best compromise solutions obtained by

MOEA/D-SS are given in Table 5, and the negative in the

V2G item indicates EV charging. Besides, constraints

checking for the compromise solution are shown in Fig. 6,

which shows that the dispatch solution obtained by MOEA/

D-SS satisfies the power balance.

4.2 Case 2

The different charging and discharging control behavior

are studied in this case. In case 1, the charging and dis-

charging modes are smartly selected, and the system

intelligently selects the charging or discharging time

according to the load. The charging and discharging time

are fixed according to different peak loads. In the fixed

scenario, let the EVs perform discharge operation during

the peak periods of the load, that is, the periods included in

A and B in Fig. 4. Then charge it during periods other than

A and B. The median of results is listed in Table 6. It is

obvious that the results in the smart scenario are better than

in the fixed scenario. In particular, the user’s revenue

objective, when the EV chooses the charging and dis-

charging time according to the system intelligence, the

user’s revenue in the best compromise is increased by

48.1%, compared to the fixed scenario, and the best

extreme is increased by 45.6%. Therefore, in V2G services,

EVs choose smart charging and discharging modes, which

not only can improve the user’s income, but also reduce the

fuel cost and pollution emission of the thermal power unit.

The arrival time of EVs at the workplace and the cor-

responding number of EVs can be calculated according to

(1). The distribution of the first commute time and the

number of 50,000 EVs are shown in Fig. 7. It can be seen

from Fig. 7 that the travel time to work is between 04:00

and 12:00 and reaches a peak at 08:00. Besides, assume

that EVs participating in V2G services complete a charge

and discharge cycle within a period, and it is ensured that

the SoC is 100% when using the EV for the first time each

day. Figure 8 illustrates the SoC curves for two charging

and discharging scenarios with different travel times. The

solid black line in Fig. 8 represents the total SoC (tSoC) of

all EVs in a period. The tSoC of the two scenarios can meet

the changing trends of discharging during the peak load

and charging in the valley. The difference is that in the

smart scenario in Fig. 8a, the EVs have only one moment

in a period, the SoC is 100, that is, the moment before

travel. However, in the fixed scenario in Fig. 8b, because

the charge and discharge time is fixed, it will appear that

when the SoC is 100%, it has not yet reached another state

(charging or discharging state). This results in multiple

moments where the SoC is 100 in a period. Consequently,

the user’s revenue in the fixed scenario is less than in the

smart scenario. These prove that the proposed DEED_EV

Table 4 The best compromise obtained by five algorithms

Methods Cost ($) Emission (lb) Revenue ($)

VEPSO 2.4450E ? 06 2.9075E ? 05 3.1840E ? 05

dNSGA-II 2.4276E ? 06 2.8430E ? 05 3.0568E ? 05

NSDESa 2.4268E ? 06 2.8351E ? 05 3.6657E ? 05

SaMODE_LS 2.4416E ? 06 2.8218E ? 05 4.0368E 1 05

MOEA/D-SS 2.4145E 1 06 2.7913E 1 05 3.2883E ? 05

Fig. 5 The MOEA/D-SS Pareto front and five algorithms best

compromise
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model, which generates the EVs charging and discharging

scheme, can improve the user’s revenue.

The most important role of EVs plugging into the power

grid with V2G is to cut the peak and fill the valley of the

system load. Figure 9 shows the profiles of load change

when the system is plugged into the EVs in two scenarios.

The gray areas represent the load reduced during peak load

and the increase during the low valley, respectively. It can

be seen from Fig. 9 that both scenarios can play the role of

peak shaving and valley filling. In addition, in the smart

scenario in Fig. 9a, the discharge power of EVs has

reduced the load value in the peak areas of 08:00–15:00

and 19:00–22:00, respectively. These areas exactly match

the peak areas (A and B) defined in Fig. 4. However, in the

fixed scenario in Fig. 9b, the discharge power of EVs has

reduced the load value in the peak areas of 08:00–14:00

and 17:00–22:00, respectively. But the 17:00–22:00 area

contains part of the valley area, that is, the 17:00–19:00

area. Therefore, the peak shaving and valley filling per-

formance of EVs in the fixed scenario is weaker than that

of the smart scenario. This also proves that the proposed

DEED_EV model can not only reduce the cost and emis-

sion of the thermal power unit but also have high peak

shaving and valley filling performance.

Table 5 The best compromise solutions obtained by MOEA/D-SS

t P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 V2G PL PD

1 151.75 136.62 111.60 111.12 166.74 149.85 122.60 116.64 76.43 53.19 - 135.64 24.91 1036

2 151.97 142.83 146.15 140.11 208.01 156.50 129.81 119.42 79.27 53.76 - 187.45 30.39 1110

3 155.01 157.67 172.89 169.83 223.23 159.73 128.23 119.26 79.11 53.96 - 126.30 34.62 1258

4 164.59 181.59 194.92 219.35 242.72 160.00 130.00 119.91 80.00 55.00 - 100.80 41.27 1406

5 169.45 176.65 202.20 211.40 230.19 158.56 129.05 118.78 79.09 54.66 - 9.70 40.34 1480

6 218.56 229.74 230.81 224.88 223.91 159.59 129.89 120.00 79.23 55.00 5.32 48.93 1628

7 234.06 254.71 260.48 260.29 243.00 159.90 129.65 119.87 79.96 55.00 - 38.20 56.72 1702

8 252.00 274.16 287.36 283.05 242.80 159.85 129.72 119.78 79.73 54.80 - 44.66 62.59 1776

9 260.44 283.73 303.72 281.86 242.13 159.17 129.10 119.20 79.19 54.05 76.14 64.74 1924

10 279.64 285.45 305.07 299.05 243.00 159.99 130.00 119.95 79.98 55.00 132.81 67.94 2022

11 284.24 310.80 306.61 299.81 242.48 159.89 129.88 119.86 79.90 54.79 188.17 70.42 2106

12 291.31 309.90 325.82 300.00 243.00 160.00 130.00 120.00 80.00 55.00 184.34 72.38 2127

13 279.08 308.29 309.95 299.82 242.89 159.90 129.81 119.86 79.87 54.55 158.00 70.04 2072

14 257.97 284.71 302.84 299.33 242.58 159.79 129.81 119.80 79.72 54.80 58.57 65.94 1924

15 219.42 268.89 270.48 291.27 243.00 160.00 130.00 119.98 80.00 55.00 - 2.76 59.27 1776

16 197.93 219.67 255.21 255.82 242.95 159.94 129.99 119.94 80.00 54.99 - 111.26 51.18 1554

17 195.77 207.08 209.67 236.68 242.82 159.64 129.83 119.79 79.47 54.70 - 108.99 46.45 1480

18 237.30 237.72 244.87 224.67 225.54 160.00 130.00 120.00 80.00 55.00 - 35.36 51.73 1628

19 235.66 268.00 271.71 275.94 242.82 159.82 129.82 119.82 79.80 54.81 - 2.74 59.45 1776

20 254.60 281.87 298.57 299.69 242.87 159.85 129.98 119.98 79.87 54.98 115.01 65.26 1972

21 237.35 265.51 291.68 294.31 242.89 160.00 129.95 119.98 79.85 54.89 109.46 61.88 1924

22 208.33 230.17 252.37 237.98 242.97 159.96 129.94 119.96 79.97 54.97 - 37.23 51.40 1628

23 162.63 167.18 195.37 167.79 242.44 160.00 130.00 120.00 80.00 55.00 - 110.63 37.77 1332

24 150.49 136.15 131.60 141.38 176.52 157.39 129.17 118.31 79.19 54.80 - 62.96 28.02 1184

Fig. 6 Constraints checked MOEA/D-SS for the best compromise

solutions
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4.3 Case 3

The battery capital cost Cev is one of the factors that users

should consider when buying an EV. Therefore, different

Cev from 200 to 800 is studied in this case. Table 7 lists the

average values including three objective functions, EVs

battery wear cost caused by V2G, and the battery wear cost

of normal driving. And the change trends are shown in

Fig. 10. It can be seen from Table 7 and Fig. 10 that the

cost and emission of the thermal power unit have only

slight changes when Cev increases. Since the battery wears

cost and drive wear cost are positively related to Cev.

Therefore, when Cev increases, its corresponding battery

wears cost and drive wear cost also increase. However, the

user’s revenue changes with Cev are not monotonous. In

Fig. 10, the user’s revenue reaches the highest peak when

Cev is 500. In addition, as can be seen in Table 7, the use’s

revenue is much higher than wear cost and drive wear cost.

Consequently, the wear of the battery in the proposed

DEED_EV model is negligible for EVs plugged into V2G

services. And the user can choose an EV with appropriate

battery capital cost to ensure the best revenue when it is

plugged into the grid.

4.4 Case 4

In the proposed DEED_EV model, the time-of-use elec-

tricity price is used to calculate the charging cost and

Table 6 The results of the DEED_EV in smart and fixed scenarios

Scenario Best extreme Best compromise

Cost ($) Emission (lb) Revenue ($) Cost ($) Emission (lb) Revenue ($)

Fixed 2.4348E ? 06 2.8080E ? 05 2.2169E ? 05 2.4465E ? 06 2.8388E ? 05 2.2206E ? 05

Smart 2.3916E ? 06 2.7323E ? 05 3.2271E ? 05 2.4145E ? 06 2.7913E ? 05 3.2883E ? 05

Fig. 7 The distribution of the arrival time and the number of EVs

(a) (b)

Fig. 8 SoC curves for different arrival times. a Smart scenario, and b fixed scenario

Multi-objective economic emission dispatch of thermal power-electric vehicles considering user’s… 12845

123



discharging income. The time-of-use electricity price is

shown in Fig. 4, in which the minimum Minpt is 17$/MW

and the maximum Maxpt is 572$/MW. In this case, the

effect on the DEED_EV model is analyzed when the

electricity prices are 0.1pt, 0.5pt, 1pt, 2pt, Minpt, and

Maxpt, respectively. The average values are listed in

Table 8. The user’s revenue is the highest when the elec-

tricity price is 2pt. But when the electricity price is fixed at

Minpt (17$/MW) and Maxpt (572$/MW), respectively,

instead of the time-of-use price. The user’s revenue only is

315.6996$ at Minpt and 6.6830E ? 03$ at Maxpt, which is

much lower than that of the time-of-use price.

In the cost objective, when the electricity price is 1pt,
compared with 0.1pt, 0.5pt, and 2pt, the fuel cost of the

thermal power unit is reduced by 0.021%, 0.076%, 0.088%,

and only increased by 0.001% compared to 1.5pt. Besides,

the fuel cost of the thermal power unit corresponding to the

time-use-of electricity price is better than fixed prices

Minpt and Maxpt. In the emission objective, the different

emission of the thermal power unit in time-of-use prices is

only reflected after the percentile. In addition, the emission

in fixed prices Minpt and Maxpt are increased by 6.34%

and 3.00%, respectively, compared to 1pt. Therefore,

compared with the fixed price, the time-use-of price

enables the EVs to get higher revenue by participating in

the V2G services. Moreover, the higher the time-of-use

price, the more the user’s revenue.

5 Conclusions

In this paper, to promote the enthusiasm of users to par-

ticipate in V2G services, considering the maximization of

EV user’s revenue, a new dynamic economic emission

dispatch model with EVs (DEED_EV) is proposed for the

minimum fuel cost and emission of the thermal power unit.

In the DEED_EV, the travel randomness and battery wear

of EVs users are considered. To quickly get the solutions

into the decision space, a multi-objective method MOEA/D

with a step-by-step constraint handling method (MOEA/D-

SS) is developed. To verify the proposed model and

method, four test cases based on the 10-unit are simulated,

as well as the VEPSO, SaMODE_LS, NSDESa, and

dNSGA-II are compared to MOEA/D-SS. The results show

that the performance of MOEA/D-SS is better than

VEPSO, SaMODE_LS, NSDESa, and dNSGA-II. In

(a) (b)

Fig. 9 Change profiles of system load demand in different scenarios. a Smart scenario and b fixed scenario

Table 7 The values of objective

function under different battery

capital costs

Cev Cost ($) Emission (lb) Revenue ($) Wear cost ($) Drive wear cost ($)

200 2.3968E ? 06 2.7346E ? 05 3.0983E ? 05 17.82 4.71

300 2.3931E ? 06 2.7333E ? 05 3.1159E ? 05 26.00 7.07

400 2.3924E ? 06 2.7327E ? 05 3.1422E ? 05 35.05 9.42

500 2.3928E ? 06 2.7307E ? 05 3.1601E ? 05 43.84 11.78

600 2.3943E ? 06 2.7346E ? 05 3.0153E ? 05 52.71 14.14

700 2.3945E ? 06 2.7339E ? 05 3.1066E ? 05 59.40 16.49

800 2.3942E ? 06 2.7338E ? 05 3.0509E ? 05 70.62 18.85
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addition, the DEED_EV model not only reduced the fuel

cost and emission but also increased the revenue of EV

users. Furthermore, the smart charging and discharging

mode from the DEED_EV model is the best compared to

the fixed mode, and the EVs fully realize the peak shaving

and valley filling of the load. Moreover, the effect of bat-

tery capital cost on the DEED_EV is analyzed. The results

show that the user’s revenue is the highest when the battery

capital cost is 500$/kW. Finally, only by adopting a rea-

sonable time-of-use electricity pricing strategy EV users

can obtain higher revenues, thereby incentivizing more EV

owners to add their EVs to V2G services. However, there

are two major limitations in this study that can be

addressed in future research. First, the study focused on a

complete charging and discharging process of EVs in a

dispatch cycle; that is, SoC changes from 100 to 0% and

(a)The objective functions of cost and emission (b)The profile of revenue for EVs users

(c)  Cost of battery wear caused by charging/discharging and normal driving

Fig. 10 The changing trend of objective function under different battery capital costs

Table 8 Different electricity price

Electricity price 0.1pt 0.5pt 1pt 1.5pt 2pt Minpt Maxpt

Cost ($) 2.3933E ? 06 2.3946E ? 06 2.3928E ? 06 2.3926E ? 06 2.3949E ? 06 2.4029E ? 06 2.3997E ? 06

Emission (lb) 2.7296E ? 05 2.7326E ? 05 2.7307E ? 05 2.7378E ? 05 2.7379E ? 05 2.7539E ? 05 2.7417E ? 05

Revenue ($) 3.1030E ? 04 1.5513E ? 05 3.1601E ? 05 4.5787E ? 05 5.9859E ? 05 315.6996 6.6830E ? 03
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then to 100%, but based on the psychological effect on

users, they may not choose the V2G service when the

power is still sufficient. Second, the study only considers

thermal power units. With the development of low-carbon

energy sources, renewable energy power will become the

main power supply in the future. Therefore, in our future

work, we will deeply study the influence of different SoCs

of EVs, as well as the flexible interactive dispatching

mechanism between renewable energy and EVs.
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