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Abstract
Forecasting volumes of incoming calls is the first step of the workforce planning process in call centers and represents a
prominent issue from both research and industry perspectives. We investigate the application of Neural Networks to predict
incoming calls 24 hours ahead. In particular, aMachine Learning deep architecture known as Echo State Network, is compared
with a completely different rolling horizon shallow Neural Network strategy, in which the lack of recurrent connections is
compensated by a careful input selection. The comparison, carried out on three different real world datasets, reveals better
predictive performance for the shallow approach. The latter appears also more robust and less demanding, reducing the
inference time by a factor of 2.5 to 4.5 compared to Echo State Networks.

Keywords Call center arrivals · Time series forecast · Machine learning · Artificial neural networks · Echo state networks

1 Introduction

Call centers represent major components for today’s organi-
zations, with a huge market size ( Statista Research Depart-
ment 2021) and millions of employees worldwide. The set
of activities that a company carries out to optimize employee
productivity is calledWorkforce management (WFM).WFM
plays a key role in call center industry, as labour costs typ-
ically comprise the largest portion of the total operating
budget. Furthermore, it offers a surprisingly rich application
context for several operations management methodologies,
such as forecasting, capacity planning, queueing and per-
sonnel scheduling. In fact, there is a huge scientific literature
concerning withWFM in call centers and we refer the reader
to surveys by Koole and Li (2021), Aksin et al. (2007) and
Gans et al. (2003). The general goal of call centers WFM is
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to find a satisfactory trade-off between the Level of Service
(LoS) provided to customers and personnel costs.

This is a complex task due to several sources of uncer-
tainty, such as intra-day/intra-week seasonality and variabil-
ity of the actual number of employees. These fluctuations
cannot be managed at operational (real-time) level unless
some (expensive) overcapacity has been introduced at plan-
ning level. Therefore, the first fundamental step of a suc-
cessful WFM consists in making an accurate forecast of the
highly uncertain incoming/outgoing call volumes.

The prediction of the incoming/outcoming call volumes in
a given time horizon (for instance, one day), subdivided into
equal time intervals (say one hour) can be naturally modeled
as a Time Series Forecast problem (Box et al. 2015). It can
refer tomonthly or yearly forecasts (i.e., long-term forecasts)
to guide strategic planning decisions, or to short-term fore-
casts, i.e., weekly, daily or hourly forecasts, mainly devoted
to support staffing decisions and work-shift scheduling.

Call volume forecasts can also be categorized according
to three different features: the call type (incoming or out-
going); the lead time, i.e. how much time in advance the
forecast is performed with respect to the prediction time and
the duration, that is, the time granularity of the forecast (e.g.,
hourly or daily). For example, we address the forecasting of
incoming calls with 24 hours lead time and hourly duration.

Today’s call centers are part of multi-channel contact
centers, in which the customer, before interacting with an
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agent by phone, is assisted through a dedicated website,
can send/receive emails and can even be engaged in a
virtual conversation through an interactive chatbot. All of
these interactions are a valuable source of information to
support accurate call volumes forecasts and, although sev-
eral researches concern time series forecasts, relatively few
attempts have been made to harness these exogenous factors
in call volumes prediction.

In this paper, after reviewing the literature on call center
forecasting (Sect. 2), we investigate two algorithms based on
Neural Networks (Sect. 3). These algorithms are well suited
to capture the complex nonlinear relationships between time
series to be predicted and values observed on the exoge-
nous factors, leading to better forecasting accuracy. They
embody twooppositemethodological lines. The firstmethod,
proposed in Bianchi et al. (2015), is based on Echo State Net-
works (ESN), a deep architecturewith strong representational
power which is very suitable for time series (see Sect. 3.1),
but also highly sensitive to hyperparameters tuning. Indeed,
ESNs combine the high computational power of its archi-
tecture with an easy training phase, but require an expensive
external optimization of the network hyperparameters.

The second method is a shallow Single Layer Feedfor-
ward Network (SLFN) (e.g., Grippo et al. (2015)), that is, a
Neural Network with a simpler structure, preferable for prac-
tical implementations thanks to its stability and ease of use.
In general, the structure of SLFNs is not suited to reproduce
complicated temporal patterns. Inspired by the recentwork of
Manno et al. (2022), we show that with an appropriate input
selection strategy, based on simple autocorrelation analyses
(Sect. 3.2), one can make the performance of the shallow
SLFN fully competitive with that of ESNs while requiring
less computation workload and maintaining ease of imple-
mentation. These findings are drawn by first comparing the
two approaches on a benchmark dataset from the Machine
Learning literature (Sect. 4), then by experimenting themeth-
ods on two publicy available call centers datasets (Sect. 5).
Finally, in Sect. 6 some concluding remarks are presented.

2 Literature review

Far from being exhaustive (the interested reader is referred to
Gans et al. (2003); Aksin et al. (2007); Ibrahim et al. (2016)),
we reviewsomeknownapproaches so as to highlight themain
features of the various classes of forecasting models.

The process of inbound calls has been often modeled
as a Poisson arrival process (see e.g., Garnett et al. 2002;
Gans et al. 2003; Wallace and Whitt 2005), by assuming
a very large population of potential customers where calls
are statistically independent low-probability events. How-
ever, these assumptionsmay not be consistent with real world
call centers, characterized by evident daily and weekly sea-

sonality. Moreover, it has been observed that call centers
arrivals exhibit a relevant overdispersion (see e.g., Jongbloed
and Koole 2001; Steckley et al. 2005; Aldor-Noiman et al.
2009), in which the variance of arrivals tends to dominate its
expected value.

Two typical ways to overcome the previous drawbacks
are: a nonhomogeneous Poisson process, with non-constant
arrival rate which is a deterministic function of the time, may
be adopted to cope with the seasonalities (see e.g., Brown
et al. 2005; Green et al. 2007); while a doubly stochastic
Poisson process (see e.g., Avramidis et al. 2004; Liao et al.
2012; Ibrahim and L’Ecuyer 2013), in which the arrival rate
is itself a stochastic process, can be shown to have variance
larger than mean (Ibrahim et al. 2016).

In Mandelbaum et al. (1999) and Aguir et al. (2004) call
center arrival processes have been approximated as fluid
dynamic models described as systems of differential equa-
tions, which can be solved by specific numerical methods
(see e.g., Arqub and Abo-Hammour 2014).

Although stochastic processes have the advantage of being
computed analytically, they are not suited to include impor-
tant relationships between the target time series and some
highly correlated exogenous factors.

Moving towards time series forecasting approaches, many
Authors adopted autoregressive linear models, like seasonal
moving average (e.g., Tandberg et al. 1995), autoregressive
integrated moving average (ARIMA) (e.g., Andrews and
Cunningham 1995; Bianchi et al. 1998; Antipov and Meade
2002; Taylor 2008) and Exponential Smoothing (e.g., Tay-
lor 2010; Barrow and Kourentzes 2018), in order to predict
future incoming call volumes as linear combinations of past
occurrences of the target time series. These methods are both
simple and easy to implement. Moreover, they can include
important external factors (like calendar effects or advertis-
ing campaigns) by considering additive/multiplicative terms,
covariates and transfer functions. However, they require a
certain degree of users’ knowledge of the system in order to
make some a priori modeling decisions. Consequently, they
are not flexible with respect to environmental changes and
they are not able to capture hidden and often highly non-
linear relationships involving correlated exogenous factors.
For these reasons, they are more suited to forecasting regular
working periods.

Only recently, to overcome the previous drawbacks, some
Neural Networks (NNs) methodologies have been proposed.
While poorly interpretable, NNs prediction models have a
strong flexibility and representational power, which have
stimulated their application in many different fields (e.g.,
Biswas et al. 2016; Dong et al. 2018; Avenali et al. 2017;
Sun et al. 2003; Chelazzi et al. 2021). In these contexts, NNs
allow to automatically capture/model nonlinear interactions
between the target time series and the correlated exogenous
factors, exempting the user frommaking deliberatemodeling
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choices. This aspect is crucial whenever exogenous factors
strongly affect the target time series observations in a non-
trivial way, as it is often the case in call centers arrivals.
Moreover, NNs quickly adapt to changes in the system. Thus,
they represent a promising instrument for call volumes fore-
casting in contact centers.

Millán-Ruiz et al. (2010) applied momentum backprop-
agation NN algorithm (LeCun et al. 2012) to forecast
incoming volumes in a multi-skill call center. As NN inputs,
they selected some lagged observations of the incoming vol-
umes and some static exogenous factors (like the day of the
week), basedona relevance criterion computedvia theMann-
Whitney-Wilcoxon test (e.g., Nachar et al. 2008). Their
proposed NN approach seems to outperform the ARIMA
method in all the skills’ groups. Barrow and Kourentzes
(2018) adopted a single layer feedforward network (SLFN)
(e.g., Grippo et al. 2015) method in which sinusoidal waves
and special dummyvariable inputs are combined to copewith
respectively the seasonalities and the outliers (like special
days or singular) of the target time series (see alsoKourentzes
and Crone 2010). This SLFN methodology has been shown
to outperform linear models like ARIMA and exponential
smoothing, however it requires a prior knowledge of outliers
periods, which are often unpredictable.

As an alternative to shallow NNs, Deep Learning (DL)
methods may be considered. In particular, Recurrent Neural
Networks (RNNs) (e.g., Goodfellow et al. 2016) fit very well
time series forecasting problems. Indeed, their feedback con-
nections are able to reproduce temporal patterns which may
repeat over time. Nonetheless, the training of RNNs is a very
complicated task, due essentially to vanishing/exploding gra-
dient phenomena as highlighted in Pascanu et al. (2013), and
to bifurcation problems (see e.g., Doya 1992).

Jalal et al. (2016) adopted an ensemble NN architecture
by combining an Elman NN (ENN) (Elman 1990), a semi-
recurrent NN structured as a SLFN enriched with feedback
connections where the latter may not be trained, and a Non-
linear Autoregressive Exogenous Model (NARX) NN, i.e. a
SLFN in which the inputs are lagged values of the target time
series and exogenous factors (Chen et al. 1990). They favor-
ably compared their ensemble method with a time-lagged
feed-forward network (a SLFN where the only inputs are
lagged values of the target time series) to forecast the incom-
ing volumes on 15minutes intervals for an Iranian call center.
However, the combination of ENNwith NARX-NN does not
look straightforward and also efficiencymay become an issue
as ENNs are known to suffer from slow training convergence
(see e.g., Cheng et al. 2008).

Bianchi et al. (2015) used Echo State Networks (ESNs) to
the 24 hours ahead forecast of the call volumes hourly access-
ing an antenna of a mobile network, where data are taken
from the Data for Development (D4D) challenge (Blondel
et al. 2012). As will be better specified in Sect. 3, ESNs are

DL methods which try to retain the benefits of RNNs while
mitigating their training issues. In Bianchi et al. (2015) ESNs
outperform ARIMA and exponential smoothing on the D4D
dataset by automatically leveraging 6 exogenous time series
(as well as the target time series), where an external genetic
algorithm is used to determine the better network configura-
tion.

Motivated by the aforementioned advantages of NNs-
based methods, mainly in terms of prediction accuracy and
flexibility, aim of this work is to identify suitable NNs able to
leverage exogenous factors to forecast call volumes in prac-
tical settings. The first method considered is the ESN-based
method by Bianchi et al. (2015). It has the high compu-
tational power of a deep architecture along with an easy
training phase. However, it requires a careful and costly (in
terms of CPU time) external optimization of network hyper-
parameters, preventing straightforward implementation by
unskilled users. The second is a new NARX-like shallow
SLFN approach, in which a simpler and easy-to-use model is
adopted. Despite its simplicity implies less representational
power, we are able to combine the SLFN model with a sim-
ple but effective input selection strategy that keeps the SLFN
performance competitive with respect to ESNs, speeding-up
significantly the inference time and being less sensitive to
hyperparameters tuning.

3 Methodologies

In this section we review ESNs general principles and
describe the competing shallow SLFN methodology, with
particular focus on the lagged input selection.

Let us first introduce the supervised learning framework,
where we assume to have a dataset of p + 1 time series
(x1[t], x2[t], . . . , xp[t], ŷ[t]), with t = 1, . . . , H ; where
ŷ[t] is the target time series we are aimed to predict, while
x1[t], x2[t], . . . , xp[t] are exogenous time series that may
provide information to build the prediction model. The latter
may have an aleatory nature (e.g. the number of outgoing
calls from a call center division), or may be deterministic
(e.g. the time series representing the timestamp in which the
time series values are observed).

The goal is to train a ML model to predict a lagged value
of the target time series at timestamp t + k with k ∈ N+
by leveraging all observations of exogenous and target time
series collected until the current timestamp t . Formally, let
us consider a training set T R of available data

T R := {(x1 [t] , x2 [t] , . . . , xp [t] , ŷ [t] , ŷ [t + k]),

t = 1, . . . , HT R}, (1)

where HT R is the length of the training horizon. The pre-
dictive model is trained on the basis of T R and tested on a
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similar set of data, referred to as testing set (T S), for which
the lagged target time series values are also known but whose
samples have not been used during the training phase. As it
is often the case in time series forecasting applications, the
samples of T R are temporarily consecutive and provided in
an increasing order, and T S consists in a subsets of data cor-
responding to the tail of the whole period of data collection,
i.e.

T S := {(x1 [t] , x2 [t] , . . . , xp [t] , ŷ [t] , ŷ [t + k]),

t = HT R + 1, . . . , HT R + HT S}, (2)

where HT S is the length of the testing horizon. As will be
clarified later, ESNs, being dynamical systems, require data
to be provided with such a temporal order both in T R and
T S. Differently, for SLFNs, this requirement is not strictly
necessary for T R while it is for T S, as a sequential rolling
horizon strategy is adopted in the testing phase.

In this work we consider hourly timestamps and a predic-
tion advance of 24 hours, i.e. k = 24.

3.1 Brief summary on ESNs

ESNs are composed of three main layers:

– A standard input layer as in SLFNs,
– A deep hidden layer, denoted as reservoir,
– A standard linear output layer, denoted as readout.

The reservoir is a recurrent layer made up of a large vari-
ety of connection patterns (including feedforward, feedback
and loop connections) connecting r hidden units and repro-
ducing multiple temporal dynamics. ESNs act as a dynamic
system in which, at current time step t , the input signal
x [t] ∈ R

p is propagated from the input layer to the reservoir
bymeans of feedforwardweighted connections,withweights
Wr

p ∈ R
p×r . In the reservoir, the signals pass through a

sparse set of weighted recurrent connections (with weights
Wr

r ∈ R
r×r ), as the reservoir connectivity should be very

low to avoid signal explosions after a certain number of time
steps. Finally, the signals exiting the reservoir reach the out-
put layer through further feedforward weighted connections
(with weights wo

r ∈ R
r ), producing the output of the net-

work y [t]. More formally, the current output y [t] of a ESN
is computed as follows. At first, the state of the units of the
reservoir, say h [t] ∈ R

r , is updated as

h [t] = f (Wr
p
T x [t] + Wr

r h [t − 1]), (3)

whereWr
p
T x [t] is the result of propagating the current input

signal x [t] through the input-reservoir weighted connec-
tions,Wr

r h [t − 1] represents the propagation of the previous

Fig. 1 A schematic depiction of a simplified ESN

reservoir states, i.e. the memory of the network, and f :
R
r → R

r is a nonlinear function (typically sigmoidal). The
values of Wr

p and Wr
r are randomly assigned in a previous

initialization phase. Notice that the update of the states is
univocally determined by the selected f and the random
assignment for Wr

p and Wr
r .

Then, the current output is computed as

y [t] = wo
r
T h [t] . (4)

The weightswo
r are the only trained ones. Figure 1 represents

a schematic structure of an ESN, where the dotted connec-
tions correspond to theweights which are assigned at random
in the initial phase, and the solid connection represents the
only involved in the training phase. Some ESNs may have
also further random feedback connections from the output
layer to the reservoir, and trainable feedforward connections
from the input to the output layers, but for the sake of sim-
plicity they are not considered here.

Concerning thewhole training process, consider a training
set of m input-output pairs

(x [1] , ŷ [1 + h]), (x [2] , ŷ [2 + h]), . . . , (x [m] , ŷ [m + h]),

(5)

where the input signals x [i] with i = 1, 2, . . . ,m are associ-
ated to m consecutive time instants, h is the a priori selected
forecast lead time, and ŷ [i + h] is the observed output at time
instant i + h. As anticipated before, in the first initialization
step the input and reservoir weightsWr

p andW
r
r are assigned

randomly (remaining unaltered during the training process),
so that, in the second step denoted as warming, the sequence
of reservoir states h [1] , h [2] , . . . , h [m] can be computed
according to (3) and (4). The warming phase is performed to
get rid of the transient, which is due to the fact that the initial
state of the ESN, h [0], is meaningless. In other words, the
first internal states and the first outputs are dropped, as they
are influenced by h [0].
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The sequence of states can be organized into am×r matrix
H as follows

H =

⎡
⎢⎢⎢⎣

h [1]T

h [2]T

...

h [m]T

⎤
⎥⎥⎥⎦ , (6)

and the observed outputs can be arranged into the m-
dimensional vector ŷ as

ŷ =

⎡
⎢⎢⎢⎣

ŷ [1 + h]
ŷ [2 + h]

...

ŷ [m + h]

⎤
⎥⎥⎥⎦ . (7)

Then, in the final learning step, the training problem can be
conveniently formulated as the one of determining the output
weights wo

r by solving the following regularized linear least
squares (RLLS) convex problem

wo
r = argmin

w∈Rr

1

2
‖Hw − ŷ‖2 + λ

2
‖w‖2, (8)

with λ ∈ R
+.

Therefore, the ESN training involves computationally
irrelevant initialization and warming steps, along with the
solution of a relatively easy convex unconstrained opti-
mization problem in the learning step. Training the readout
weights can be interpreted as the problem of determining the
proper linear combination of the nonlinear reservoir states in
order to reproduce the desired temporal patterns of the target
time series.

Alternative strategies have been considered to train the
readout weights in the learning phase, for example by replac-
ing (8) with an Elastic Net Penalty problem (Zou and Hastie
2005) to obtain sparse solution, or to use a further ML algo-
rithm like Support Vector Machines (e.g., Shi and Han 2007;
Manno et al. 2016). However, only the RLLS formulation is
considered in this work.

Once trained, the ESN can be used to the step by step
forecast associated to the future time instants.

ESNs, retaining the advantages of complex nonlinear
RNNs models with a much simpler training, are well suited
for the short-term forecast of time series (for long-term fore-
cast simpler models may perform better), mainly when some
correlated exogenous time series are provided to the model.

On the other hand, ESNs need a careful selection of many
hyperparameters to produce accurate forecast. Specific atten-
tion should be devoted to the matrix of reservoir weightsWr

r .
Although randomly determined,Wr

r should respect the echo
state property (Lukoševičius and Jaeger 2009), i.e. the influ-
enceof current input signal x [t] and stateh [t] on future states

should vanish in a finite number of time steps. This property
is ensured if the spectral radius ofWr

r , that is ρ(Wr
r ), satisfies

ρ(Wr
r ) < 1. (9)

From a practical point of view (9) can be enforced by sim-
ply rescaling Wr

r after the initialization, nonetheless ρ(Wr
r )

should not be too far from 1 to avoid the opposite behavior,
i.e., a too fast vanishing influence of the current state. It can
be shown that if echo state property is satisfied, ESNs have a
universal approximation property in the sense that they can
realize every nonlinear filter with bounded memory arbitrar-
ily well (Maass et al. 2007).

Further important hyperparameters are the number of the
reservoir units, the reservoir connectivity (i.e. the number
of nonzero weights connections), the scaling of the input
weights Wr

p, and the subset of exogenous time series to be
considered as input.

To determine the optimal value of these critical hyperpa-
rameters, we use the genetic algorithm applied in Bianchi
et al. (2015). Such a choice is driven by the fact that the
performance evaluation for a given combination of hyperpa-
rameters is a result of an ESN training process, so it has to
be treated as a black-box function.

3.2 Shallow SLFNs with lagged inputs

As for the shallow SLFN approach, a NARX strategy has
been adopted where the network is provided with the current
values of exogenous factors along with the lagged inputs of
the target and exogenous time series, the selection of which
strongly affects the prediction quality.

Differently fromother sophisticated and/or time-consuming
approaches (e.g.,Weng and Liu 2006; Kourentzes and Crone
2010; Karasu et al. 2020), the adopted methodology is based
on automated simple filters applied to correlations and auto-
correlations coefficients (Box et al. 2015), whose thresholds
canbe easily adapted to the specific applicationdomain,with-
out particular optimization/forecasting skills.

The method is based on two main steps:

1. A two-phase preprocessing for exogenous factors and
lagged input selection;

2. A SLFN rolling horizon training.

3.2.1 Preprocessing

The preprocessing step is divided into two sequential phases
denoted, respectivelySelectExogenous andSelectLag
(see Algorithm 1).

In SelectExogenous the exogenous time series are
selected, based on their correlations with the target time
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series. Firstly, a test is performed on ŷ [t] to check stationarity
(e.g. MacKinnon 1994). Two cases are possible.

i) ŷ [t]is stationary.
In such a case a normality test is applied to determine if
ŷ [t] is also normally distributed.1 Then, for each exoge-
nous time series xi [t] the pair xi [t] , ŷ [t] is analysed and
if both the series passed the normality test, their correla-
tion coefficient c is computed via the parametric Pearson
test (Pearson 1895), otherwise via the rank-order Spear-
man test (Zar 2005). If c is greater than a certain threshold
σ > 0 then xi [t] is selected by adding its index i to the
(initially empty) output list L .

ii) ŷ [t]is non-stationary.
Then, for each exogenous time series xi [t], a cointegra-
tion test (e.g. MacKinnon 1994), which is more suited
for non-stationary time series, is applied to the pair
xi [t] , ŷ [t]. If they are cointegrated, xi [t] is selected by
adding its index i to the (initially empty) output list L .

After the execution of SelectExogenous, Select
Lag is applied to the target time series and to the exoge-
nous time series returned by SelectExogenous in order
to select their lagged values to feed the SLFN. By observing
the autocorrelation plot (Box et al. 2015) of this kind of time
series (see e.g., Fig. 2) it is possible to appreciate two dif-
ferent kind of intuitive temporal patterns: a daily pattern, i.e.
high correlations at lags which are multiple of 24 hours, and
high correlations with adjacent/proximal lags. This suggest
a “time-window logic” in the selection of the lagged inputs.
In particular, considering a time series, the idea is to itera-
tively select the past lagged values of multiple of 24 hours
(t−24, t−48, t−72, . . . ), referred to as daily-lags, as long as
autocorrelation values are above a certain threshold γ1 > 0.
Then, for each selected daily-lag, a window is constructed
by iteratively select forward and backward adjacent lags (F
and B in the scheme) as long as their autocorrelation values
are above threshold γ2 > 0. At the end of SelectLag a
window of consecutive lagged inputs is determined for each
selected daily-lag (W in the scheme).

Example 1 Suppose one wish to predict the time series value
at hour 13 of a generic day d (the black slot in Figs. 3 and
4). The outer loop in SelectLag selects the first two auto-
correlation values lagged at 24 hours multiples as they are
larger than γ1. Then, the time series values at hour 13 of days
d−1 and d−2 are added to the set of lagged inputsW (gray
slots in Fig. 3). The loop ends at d − 3 where a3·24 < γ1.
Now, assuming that for each of the two selected lagged inputs
only the adjacent autocorrelation values (the previous and the

1 Generally time series are not normally distributed due to their tem-
poral dependencies so the normality test can be removed. However, to
have a more general method we have included it in the algorithm.

Algorithm 1: Preprocessing
Phase 1: SelectExogenous
Data: T R set as in (1), parameter σ > 0
begin

L ← ∅;
apply stationarity_test to ŷ [t] for
t = {1, . . . , HT R};

if ŷ [t] is stationary then
apply normal_test to ŷ [t] for t = {1, . . . , HT R};

end
for i ∈ {1, . . . , p} do

if ŷ [t] is stationary then
apply normal_test to xi [t] for
t = {1, . . . , HT R};

if (xi [t] is normal) and (ŷ [t] is normal) then
c =Pearson_corr_coeff(xi [t] , ŷ [t]);

else
c=Spearman_corr_coeff(xi [t] , ŷ [t]);

end
if c > σ then

L := L ∪ {i};
end

else
apply cointegration_test to xi [t], ŷ [t]
for t = {1, . . . , HT R};

if xi [t], ŷ [t] are cointegrated then
L := L ∪ {i};

end
end

end
end
return L;

Phase 2: SelectLag
Data: Time series S [t], parameters γ1, γ2 > 0;

maxLags ∈ N+
begin

W ← ∅, k := 1;
determine the autocorrelation values vector
a ∈ [−1, 1]maxLags by computing the autocorrelation
values of S [t] for maxLags time lags;

while ak·24 > γ1 do
B ← ∅, F ← ∅, kB , kF := 1 ;
while ak·24−kB > γ2 do

B := B ∪ k · 24 − kB ;
kB := kB + 1 ;

end
while ak·24+kF > γ2 do

F := F ∪ k · 24 + kF ;
kF := kF + 1 ;

end
W := W ∪ {B, k · 24, F};
k := k + 1;

end
end
return W;

next) are larger than γ2, the inner loop adds to W the time
series values at hour 12 and 14 of days d − 1 and d − 2 as
lagged inputs (they correspond to the light gray slots in Fig.
4). The final set of lagged inputsW is represented by all gray
slots in Fig. 4.
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Fig. 2 The autocorrelation plots for the target time series of the case studies. In the x-axis the lagged timestamps (hours) are reported, while the
y-axis represent the autocorrelation value

d, h = 13d − 1, h = 13d − 2, h = 13d − 3, h = 13

a1·24 > γ1

a2·24 > γ1

a3·24 < γ1

Fig. 3 Example of lagged inputs selected at 24 hours multiples

Notice that, for notation simplicity, the SelectLag
scheme is reported for a single generic time series S [t].
SelectLag is not applied to the deterministic exogenous
series for which lagged inputs would provide no information.

3.2.2 SLFN rolling horizon training

OnceSelectExogenous andSelectLag have selected
the exogenous factors, and the lagged values for both the tar-
get and exogenous time series, sets T R and T S can be built
accordingly. Clearly, besides the lagged values, also the cur-
rent values of the target and of the exogenous factors are
included in each sample. Then, the hyperparameters of the
SLFN are heuristically estimated by means of a simple grid-
search method with k-fold cross-validation (see e.g., Bishop

2006). Similarly to ESNs, an expensive external optimization
procedure could be applied to determine the optimal values
of those hyperparameters. Nevertheless, as shown in the per-
formed experiments, the SLFNs are more robust with respect
to hyperparameters selection, so that they obtain good per-
formance even if a cheaper grid-search procedure is applied.

The training phase has been organized by a rolling horizon
procedure. In particular, at each rolling horizon step k corre-
sponding to a certain current day d, a SLFN model is trained
on the basis of the current training set, say T Rk and it is used
to generate the 24 predictions for day d + 1. Then, at step
k + 1, the 24 samples associated to day d + 1 are included in
the training set, while samples form the less recent day are
removed. Formally, being Ad the set of 24 hourly samples
associated to day d, T Rk+1 = (

T Rk \ Ad−HT R+1
) ∪ Ad+1,

and so on. In the experimental setting presented in the sequel,
starting from the basic ordered and consecutive T R and T S
in the first rolling horizon step the SLFN is trained on a train-
ing set T R0 = T R and the predictions are generated for the
24 hours associated to the first 24 samples of T S, i.e. AHT R+1

(see (2)). Then, T R1 = (
T R0 \ Ad−HT R+1

) ∪ AHT R+1, the
SLFN is trained again, and the predictions are produced for
the hours associated to samples AHT R+2, and so on.
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Fig. 4 Example of lagged
inputs selected by procedure
SelectLag

d, h = 13d − 1, h = {12, 13, 14}d − 2, h = {12, 13, 14}

a1·24−1 > γ2, a1·24+1 > γ2a2·24−1 > γ2, a2·24+1 > γ2

Table 1 Fields description for
the D4D dataset

Name Description

ts1 Number of hourly incoming calls

ts2 Volume in minutes of hourly incoming calls received by the selected antenna

ts3 Number of hourly outgoing calls sent by the selected antenna

ts4 Volume in minutes of hourly outgoing calls sent by the selected antenna

ts5 Hour of the day to which this CDR refers

ts6 Day of the week to which this CDR refers

It is worth noticing that, in our setting, the grid-search
procedure is performed only once on the initial T R, even if
alternative choices can be considered.

4 Benchmarking on a challenge dataset

The two considered methodologies are first calibrated and
assessed on a benchmarking dataset known as D4D.

4.1 D4D dataset description

D4D is an open data challenge on anonymous call patterns
of Orange’s mobile phone users in Ivory Coast. It contains
anonymized Call Detail Records (CDR) of phone calls and
SMS exchanges between customers in a cell covered by an
antenna of a telecommunication company. Data are collected
in the period ranging fromDecember 2011 toApril 2012. The
dataset is taken from Blondel et al. (2012) and, in particu-
lar, it is the one labeled with as “antenna-to-antenna traffic
on an hourly basis”. We restricted our attention on the CDR
related to the antenna labeled 1. Although this dataset did
not originate from a call center, its features are fully com-
parable with the features associated to call volumes, making
the experiment meaningful and, at the same time, directly
comparable with results in the literature. The time series of
the D4D dataset are reported in Table 1.
ts1 is the target time series, ts2, ts3 and ts4 are the exogenous
aleatory time series, while ts5 and ts6 are the exogenous
deterministic time series.

The dataset is organised so that data of the first 109 days
are inserted in T R (2616 hourly samples), while data of the
last 20 days (480 hourly samples) are inserted in T S.

4.2 D4D experimental settings and preprocessing
outputs

Concerning theESN, following the standard practice adopted
in Bianchi et al. (2015), a constant fictitious time series ts0
with all values set to 1 is added, acting as a bias for the
individual neurons of the network. The ESN hyperparam-
eters have been determined by the same genetic algorithm
used in Bianchi et al. (2015), i.e. the one presented in Deep
et al. (2009) which is able to handle both continuous and
discrete variables, and whose implementation is available at
https://github.com/deap. The hyperparameters optimization
has been carried out by extracting a validation set consist-
ing in the last 10% of samples of T R to compute the fitness
function, and training the ESN on the remaining T R data.
Table 2 reports the adopted values for the genetic algorithm
parameters, together with their short descriptions.

Table 3 reports the ESN hyperparameters optimized
through the genetic procedure, together with their lower
and upper bounds and best value found. For details of
all the hyperparameters meaning the reader is referred to
Løkse et al. (2017) or to the website https://github.com/
siloekse/PythonESN where the Python ESN implemen-
tation adopted in this work is freely available. A ridge
regression method has been used to train the output weights.

Concerning the SLFN, it has been implemented by
exploiting the method MLPRegressor() of the scikit
-learn Python package. The stationarity, normality
and cointegration tests of the SelectExogenous proce-
dure have been carried out through the statsmodel and
scipy Python packages. In particular, the stationarity
Augmented Dickey-Fuller test (Fuller 2009) has been per-
formed through the adfuller() function, the normality
D’Agostino-Pearson test (Pearson et al. 1977) through func-
tion normaltest(), and the cointegration Augmented
Engle-Granger test (Engle and Granger 1987; MacKinnon
1994), through function coint(). All time series resulted
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Table 2 Parameters used for the
genetic algorithm

Param. name Description Value

Population_Size size of the population 50

n_Generations number of generation 20

n_Offsprings number of children to produce at each generation 35

Mutpb Probability that an offspring is produced by mutation 0.2

Cxpb Probability that an offspring is produced by crossover 0.5

Mu_1 Mean of the Gaussian distribution used to mutate individuals 0.0

Mu_2 Number of individuals to select for the next generation 50

Parallel Enable multi-threading false

Table 3 Hyperparameters spaces for ESN model

Hyperparameter name Lower bound Upper bound Best

Connectivity 0.25 0.25 0.25

n_drop 50 50 50

Input_shift 0 0 0

Teacher_shift 0 0 0

n_internal_units 100 500 429

Teacher_scaling 0.1 0.9 0.758

Noise_level 0.0 0.1 0.0065

Input_scaling 0.1 0.9 0.349

Spectral_radius 0.5 1.4 0.799

Feedback_scaling 0.0 0.6 0.580

Regularization 0.001 1.0 0.238

to be stationary and not normal with a 5% significance level
(this is valid for all the three considered case-studies). The
hyperparameters of the SLFN have been obtained by a sim-
ple grid-search procedure with a 5-fold cross-validation in
which the validation set has been determined by extract-
ing randomly the 10% of samples of T R. the correlation
threshold σ in SelectExogenous, has been set to 0.3
as, commonly, correlations coefficients below this value are
considered not relevant (see e.g., Asuero et al. 2006). As far
as for SelectLag, high correlation thresholds above the
values 0.7 have been considered, i.e γ1 = 0.8 and γ2 = 0.7.
The remarkably high γ1 value is to avoid to go back toomany
days in the lagged input selection, whichmay cause potential
training and applicability issues, as the autocorrelation daily
pattern remains stably high for a long time (see Fig. 2).

When applied to the D4D, the preprocessing phases
selected all exogenous time series except for ts6, and selected
lagged inputs made up of 3 values (the central, one backward
and one forward) up to 9 days before.

Concerning the data normalization, all data have been
normalized in the interval [0, 1], except for the ts5 time
series which, in SLFNs, has been transformed with a one-
hot-encoding. The considered hyperparameters for the SLFN
grid-search are reported in Table 4.

For ESNs, all experiments have been carried out with and
without seasonal differencing all aleatory time series, as a
very light first-order trend can be noticed from the autocor-
relation plots.

4.3 Performancemeasures

Analogously to the code used in Bianchi et al. (2015), the
Normalized Root Mean Squared Error (NRMSE) has been
considered as performance measure. This can be computed
as

NRMSE(ŷ, y) =
√

1
n

∑n
i=0

(
ŷi − yi

)2
std(ŷ)

, (10)

where ŷ is the vector of observed values, y is the vector of
predicted ones, std(ŷ) is the standard deviation of ŷ, and n
is the number of samples of ŷ and y .

NRMSE tends to penalize large errors more than other
measures like theMean Absolute Error (MAE) (computed as
1
n

∑n
i=0 |ŷi − yi |), resulting more meaningful in call centers

operations, where large errors are undesirable as they greatly
affect service level. However, bothNRMSE andMAEappear
not completely suited to compare call centers predictionmod-
els and for operational purposes as they are sensitive to call
volumes, which can have a large variability range between
heterogeneous call centers, and between week days of the
same call center. For this reason, we have also considered
a specific version of the better “interpretable” Mean Abso-
lute Percentage Error (MAPE) (see e.g., Manno et al. 2022),
denoted as daily Mean Absolute Percentage Error (dMAPE)
and computed as

dMAPE(ŷ, y) = 1

n

n∑
i=0

∣∣∣∣
ŷi − yi
M(di )

∣∣∣∣ , (11)

where di is the day corresponding to observation i , andM(di )
is the mean of the observed values in the 24 hours associated
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Table 4 The considered
hyperparameters for the SLFN
grid-search

Hyperparam. name Description Grid values Best

Hidden_layer_sizes Number of hidden layer neurons {25, 50, 100} 25

Alpha Regularization coefficient {0, 0.1, 0.01, 0.001} 0.1

Solver Loss function optimizer {lbfgs,adam} lbfgs

Activation function Hidden layer neurons activation function {Logistic,tanh,relu} tanh

Max_iter Maximum number of optimizer iterations {200, 400} 200

to di and computed as

M(di ) = 1

24

∑
j∈di

ŷ j . (12)

dMAPE overcomes the “infinite error” issue affecting the

MAPE. Indeed, being the latter computed as 1
n

∑n
i=0

∣∣∣ ŷi−yi
ŷi

∣∣∣,
it generates huge or infinite errors when one ormore observa-
tions tend to the zero value, and thismay be the case in hourly
call center data. Moreover, dMAPE seems to be more suited
for daily scheduling decisions, as normalizing the error with
respect to the daily mean of the hourly calls seems to have a
more relevant impact from an operational point of view.

We finally look at a third performance measure, namely,
the Mean of Maximum Daily Error (MMDE), chosen for its
operational relevance. It is computed as

MMDE(ŷ, y) = 1

m

m∑
j=0

max_p_err j (ŷ, y), (13)

where m is the number of days associated to vectors ŷ and
y, and max_p_err j (ŷ, y) is the maximum daily percentage
error associated to day j , say d j , and computed as

max_p_err j = max
{ ∣∣∣∣

ŷi − yi
M(di )

∣∣∣∣ : i ∈ d j
}
. (14)

Being an upper bound on the forecasting error, MMDE is a
goodmeasure for the reliability of the predictionmodels, and
it is also a robust indicator for daily staffing decisions.

Other commonly used performance indexes, like the
aforementioned MAE, seem more suited for different kinds
of applications (see e.g., Adnan et al. 2021).

4.4 Numerical results on D4D

The results of the experiments on the D4D dataset are
reported in Table 5. It is worth mentioning that in Bianchi
et al. (2015) ESNs have been favorably compared with
standard forecasting methods like ARIMA and Exponential
Smoothing on the same D4D dataset.

Since both the ESNs and SLFNs trained models vary, in
general, with the initialization, all the reported results are

Table 5 Comparison results for D4D

D4D NRMSE dMAPE % MMDE %

ESN 0.3769 17.60 54.27

SLFN 0.3691 16.75 50.65

SN 0.3909 17.82 60.89

The best results are highlighted in bold

averaged on 30 runs characterized by different random selec-
tions of the reservoir weights for ESNs, and different random
starting solutions for the SLFNs training optimization prob-
lem.

The performance of the ESN and SLFN models are com-
pared with those of a simple Seasonal Naive (SN) (see e.g.,
Barrow and Kourentzes 2018) with seasonal cycle equal to
24, in which the 24 hourly predictions of a certain day cor-
respond to the 24 values observed in the previous day. The
motivation of comparingwith SN is to verify if themore com-
plicated NNs-based models are able to leverage exogenous
factors to improve the predictive performance with respect
to an extremely simple prediction model requiring no com-
putation. Moreover, as also specified below, all target time
series considered here exhibit a low correlation with the day
of the week and a high correlation with the hour of the day,
and this may imply good performance of the SN model with
a 24 hours seasonal cycle.

All the experiments have been carried out on a laptop
Intel(R) Core(TM) i7-6700HQ CPU @ 2.60G with 8 GB of
RAM.

The reported results for the ESN correspond to the sea-
sonal differencing case as they were slightly better than the
ones without differencing.

First of all we notice that the NRMSE obtained with ESN
are comparablewith those reported inBianchi et al. (2015) on
the same dataset. Concerning the three performance, SLFN
achieves always the best ones and SN the worst ones. How-
ever, a little surprisingly, the performance difference between
themore sophisticatedESNandSLFNmodels against the SN
is not so remarkable in terms of dMAPE (around 1%), and
this can be connected with the aforementioned fact the day of
the week (ts5) has no relevant correlation with the target time
series, making all days quite similar. Nonetheless, a certain
difference may be noticed in terms of NRMSE and mainly in
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Table 6 Fields description for
the ACD dataset

Time series name Description

ts1 Number of hourly received calls by the call center.

ts2 Number of hourly handled calls by all the operators in the call center.

ts3 Number of hourly answered calls by all the operators in the call center.

ts4 Number of hourly routed or queued per operator.

ts5 Number of hourly received calls by satisfying.

ts6 Hour of the day to which this CDR refers.

ts7 Day of the week to which this CDR refers.

Table 7 Fields description for
the SF dataset

Time series name Description

ts1 Number of hourly received calls by the call center.

ts2 Number of hourly received calls belonging to category Passing Call.

ts3 Number of hourly received calls belonging to category Traffic Stop.

ts4 Number of hourly received calls belonging to other categories.

ts5 Hour of the day to which this CDR refers.

ts6 Day of the week to which this CDR refers.

terms ofMMDE.Considering the latter, which is very critical
from an operational point of view, ESN improves the perfor-
mance up to more than 6% with respect to the SN, while
SLFN up to more than 10%. In terms of CPU-time, the ESN
requires about 40 minutes to determine the hyperparame-
ters through the genetic algorithm, and the SLFN grid-search
about 15 minutes. For both methods, the training times are
irrelevant with respect to the hyperparameter selection phase.
Clearly, the SN CPU-time can be considered null.

5 Comparisons on call center datasets

In this sectionwe compare the performance of the considered
forecasting techniques on two real-world datasets, which are
freely available on the Kaggle website (https://www.kaggle.
com/).

5.1 Call center datasets description

The first dataset contains incoming calls information for a
tech support call center. The CDR are in the form of a
dump from anAutomatic Calls Distribution (ACD) software.
Hence, this dataset is shortly referred to as ACD. The avail-
able data are relative to 2019 year, starting from the 1st of
January to the 31th of December.

The time series of the ACD dataset are reported in Table 6.
ts1 is the target time series, time series from ts2 to ts5 are the
aleatory exogenous ones, while ts6 and ts7 the deterministic.

By considering that a subset of data related to the final
weeks of the year have been removed as their values were
anomalous (probably due to the holidays), the final training

set T R corresponds to 258 days (6192 hourly samples) and
the testing set T S corresponds to 45 consecutive days (1080
hourly samples).

The second dataset, which is referred to a SF, contains
information about incoming calls to a San Francisco police
switchboard. The SF dataset spans across different years,
starting fromMarch 2016 to July 2019. The dataset has been
selected to see how the models behave with a bigger data set.
The time series involved in SF are reported in Table 7. ts1
is the target time series, time series from ts2 to ts4 are the
aleatory exogenous ones, while ts5 and ts6 the deterministic.

The final training set T R corresponds to 1095 days (26280
hourly samples) and the testing set T S corresponds to 193
consecutive days (4632 hourly samples).

5.2 Call centers experimental settings and
preprocessing outputs

The experimental settings are the same as those described in
Sect. 4.

SelectExogenous discarded the time series related to
the day of theweek for bothACDandSF,whileSelectLag
selected lagged inputs made up of windows of 3 values and
up to 9 days before for ACD and 44 for SF.

The hyperparameters determined (by the genetic algo-
rithm) for the ESN are reported in Table 8, while the ones
obtained by the grid-search for the SLFN are reported in
Table 9.
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Table 8 The selected hyperparameters for the ESN model

Hyperparameter name ACD SF

Connectivity 0.25 0.25

n_drop 50 50

Input_shift 0 0

Teacher_shift 0 0

n_internal_units 375 436

Teacher_scaling 0.493 0.211

Noise_level 0.0009 0.003

Input_scaling 0.886 0.196

Spectral_radius 0.557 1.000

Feedback_scaling 0.137 0.282

Regularization 0.115 0.372

Table 9 The selected hyperparameters for the SLFN model

Hyperparameter name ACD SF

Hidden_layer_sizes 50 100

Alpha 0.1 0.001

Solver adam adam

Activation function relu relu

Max_iter 400 400

Table 10 Comparison results for ACD and SF datasets

ACD NRMSE dMAPE % MMDE %

ESN 0.3834 21.49 83.23

SLFN 0.3502 19.28 73.63

SN 0.4237 23.45 89.24

SF

ESN 0.3775 12.60 39.19

SLFN 0.3582 11.97 38.04

SN 0.4808 16.00 51.58

The best results are highlighted in bold

5.3 Numerical results on the call center datasets

The results for the call center datasets are reported in Table
10. The best performance of the ESN (the ones reported) are
obtained with the seasonal differencing for ACD andwithout
seasonal differencing for SF.

The results show that, similarly to the D4D benchmark
case, the SLFN model performs better with respect to all
the performance measures. In terms of dMAPE ESN and
SLFN are comparable (mainly in SF) and they both perform
better than SN (for both datasets SLFN improves the SN
results by almost 4%). However, the more significant differ-
ence between the NNs-based approaches and the SN is found

Table 11 The time needed by each method to determine the values of
the hyperparameters (genetic algorithm for ESN, grid-search for SLFN)

Dataset ESN time (min.) SLFN time (min.)

D4D 40 15

Calls 90 30

S.Francisco 400 84

Table 12 Comparison on the outliers days for SF

SF outliers dMAPE MMDE

SLFN 13.02 36.80

SN 19.24 54.87

The best results are highlighted in bold

in MMDE, where SLFN improves the SN performance by
more than the 15% for ACD and more than 13% in SF (the
improvements for the ESN are respectively of the 6% and
of the 12%). As mentioned before, a MMDE improvement
is very relevant from an operational point of view, as it may
incide on the personnel sizing policy. Also theNRMSEof the
ESN and SLFN models are significantly better than SN, and
comparable to each other, even if SLFN is always preferable.

Comparing ESNs and SLFNs, another important aspect
from an operational point of view is the inference time,
intended as the sum of the time required to set the hyper-
parameters, train the model and generate the forecast. In the
considered case-studies the inference time can be approxi-
mated with the time needed only to set the hyperparameters
(through genetic optimization for ESNs and grid-search for
SLFNs), as the latter dominates the times needed for training
and forecasting. Table 11 reports the CPU-time in minutes
required to set the hyperparameters by both NNs-basedmod-
els on the three datasets. The computational workload for
SLFN is significantly lower than for ESN.

Summing up, by considering all the accuracy performance
and the time needed to run the method, the SLFN strategy
appears to be the most promising one. Moreover, its simplic-
ity and ease of implementation make it appealing from an
industrial point of view.

Concerning the SLFN, we remark that, for datasets Calls
and SF, we adopted the same threshold values σ , γ1, and γ2
as in D4D, highlighting the robustness and stability of the
method.

5.4 Numerical results for outlier days

A further analysis has been performed to compare the SLFN
model (which is themost performing one) with the SNmodel
(the cheapest one) on potential outlier days for the SF dataset.
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Since no information about outliers days were available for
the investigated datasets, we have tried to impute them by
using simple statistics techniques. In particular a sigma-
clipping procedure (e.g., Akhlaghi and Ichikawa 2015) has
been used to determine the days of T S whose overall daily
calls belong to the tails of an estimated normality distribu-
tion with a 95% of confidence. The normality assumption
for the overall daily calls has been confirmed by a standard
normality test.

The size of the investigated testing sets made this type of
analysis significant only for the SF dataset, for this reason it
has been applied only to the latter.

The method detected 5 outlier days out of 193 (4 days cor-
responding to very low values and 1 day to a very high value).
The results reported in Table 12, show that the performance
difference between the SLFNmodel and the SN one tends to
increase for difficult-to-handle outliers days. This suggests
a certain robustness of the SLFN model with respect to the
outliers, even if the special days are not explicitly handled
by the method, as done in Barrow and Kourentzes (2018).

6 Concluding remarks

Exploiting exogenous factors may be an option to improve
the accuracy of call forecasts in call centers, mostly in mod-
ern multi-channel contact centers where many such factors
are available. We have shown that both ESNs and SLFNs
are able to leverage exogenous time series to improve the 24
hours ahead forecast accuracy of hourly incoming calls with
respect to the simple SNmethod, which only uses data of the
target time series. The improvement is particularly significant
for the Mean of Maximum Daily Error (MMDE), which is a
relevant indicator for staffing decisions. Moreover, the per-
formance gap between the SLFN method and the SN seems
to grow in the prediction of statistically detected anomalous
days.

We have also documented that, implementing a care-
ful, yet relatively simple, input selection procedure, SLFNs
slightly outperform ESNs, which, in principle, have stronger
computational power and are more structured to reproduce
complex temporal patterns. Additionally, SLFNs turn out to
be 2.5 to 4.5 times faster than ESNs (in terms of inference
time).

This outcome is also relevant in practice, as the SLFN
method looks like a good candidate for industrial imple-
mentations. In fact, it is less sensitive to hyperparameter
configuration, requires limited computational effort, and can
properly be managed by ML non-experts. As an open direc-
tion, it would be interesting to investigate the application of

the proposed SLFN methodology to different industrial con-
texts.
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