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Abstract
It is well-known that relatively pseudocomplemented lattices can serve as an algebraic semantics of intuitionistic logic.
To extend the concept of relative pseudocomplementation to non-distributive lattices, the first author introduced so-called
sectionally pseudocomplemented lattices, i.e. lattices with top element 1 where for every element y the interval [y, 1], the
so-called section, is pseudocomplemented. We extend this concept to posets with top element. Our goal is to show that
such a poset can be considered as an algebraic semantics for a certain kind of a more general intuitionistic logic provided
an implication is introduced as shown in the paper. We prove some properties of such an implication. This implication is
“unsharp” in the sense that the value for given entries need not be a unique element, but may be a subset of the poset in
question. Using this implication we show that we can even recover the order of the original poset. Further, a new “unsharp”
operator � of conjunction can be introduced which is adjoint to “unsharp” implication and hence we obtain an “unsharp”
residuated poset.

Keywords Poset · Section · Relative pseudocomplement · Poset with pseudocomplemented sections · Intuitionistic
implication · Unsharp implication · Unsharp conjunction · Unsharp residuation

1 Introduction

Relatively pseudocomplemented lattices, often called Heyt-
ing algebras (see, e.g. Iturrioz 1977 and Köhler 1980) or
Brouwerian lattices (see, e.g. Köhler 1981), arise from intu-
itionistic logic and were first investigated by T. Skolem about
1920, see also Frink (1962) and Balbes (1973). For a detailed
development see, e.g. Curry (1977). Within this context, the
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relative pseudocomplement x∗y of x with respect to y is usu-
ally considered as intuitionistic implication, see, e.g. Nemitz
(1965) or Curry (1977).

Hence, in relatively pseudocomplemented lattices we
define

x → y := x ∗ y.

It is well-known that every finite pseudocomplemented lat-
tice is distributive. This fact can be rather restrictive because
not every algebraic semantics of a propositional logic forms
a distributive lattice, e.g. the logic of quantum mechanics is
not distributive. In order to extend investigations in intuition-
istic logic also to the non-distributive case, the first author
introduced so-called sectionally pseudocomplemented lat-
tices, seeChajda (2003) andChajda andRadeleczki (2003). If
P = (P,≤, 1) is a poset with top element 1 and if y ∈ P then
we call the interval [y, 1] a section. There are lattices with
top element 1 where for every element y and each x ∈ [y, 1]
there exists a pseudocomplement x y of x with respect to y,
see, e.g. Chajda (2003). Putting

x → y := (x ∨ y)y (1)
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Fig. 1 Non-distributive lattice with pseudocomplemented sections.

the situation becomes formally analogous to the case of rel-
atively pseudocomplemented lattices. For the typical case,
consider the lattice depicted in Fig. 1.

It is evident that this lattice has pseudocomplemented
sections, but the lattice is neither relatively pseudocom-
plemented (since the relative pseudocomplement of c with
respect to a does not exist) nor distributive.

The operation tables for x y and → look as follows:

x y 0 a b c 1
0 1 − − − −
a b 1 − − −
b c − 1 − −
c b a − 1 −
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 b 1 1
b c a 1 c 1
c b a b 1 1
1 0 a b c 1.

The notion of relatively pseudocomplemented lattices was
extended to posets, see, e.g. Chajda et al. (2020b). It is use-
ful when a reduct of intuitionistic logic is considered where
one studies only the connective implication but no other con-
nectives like disjunction or conjunction. Let us note that in
intuitionistic logic, the connectives implication, conjunction
and disjunction are independent.

2 Posets with pseudocomplemented
sections

In numerous caseswhen studying non-classical propositional
logics, only the logical connective implication is consid-
ered. It means that we study only a reduct of the ordered
structure where the implication is defined. Hence, the inves-
tigation of posets with pseudocomplementation in sections
plays an important role. In order to extend our study also

to (not necessarily relatively pseudocomplemented) posets
with pseudocomplemented sections, let us introduce several
necessary concepts.

Let (P,≤) be a poset, a, b ∈ P and A, B ⊆ P . We say
A < B if x < y for all x ∈ A and y ∈ B. Instead of
{a} < {b}, {a} < B and A < {b} we simply write a < b,
a < B and A < b, respectively. Analogously we proceed
with the relational symbols ≤, > and ≥. Denote by

L(A) := {x ∈ P | x ≤ A} and U (A) := {x ∈ P | A ≤ x}

the so-called lower and upper cone of A, respectively.
Instead of L({a}), L({a, b}), L(A ∪ {a}), L(A ∪ B) and
L
(
U (A)

)
we simply write L(a), L(a, b), L(A, a), L(A, B)

and LU (A), respectively. Analogously, we proceed in simi-
lar cases. Denote the set of allminimal andmaximal elements
of A by Min A and Max A, respectively.

Recall that a pseudocomplemented poset is an ordered
quadruple (P,≤, ∗, 0) where (P,≤, 0) is a poset with bot-
tom element 0 and ∗ is a unary operation on P such that
for all x ∈ P , x∗ is the greatest element of (P,≤) satis-
fying L(x, x∗) = 0. (Here and in the following, we often
identify singletons with their unique element.) This means
that x ∧ x∗ exists for each x ∈ P and x ∧ x∗ = 0. It
is worth noticing that pseudocomplemented structures are
studied recently by several authors, see, e.g. Chajda et al.
(2020b) and Venkatanarasimhan (1971) for pseudocomple-
mented posets, Nimbhorkar and Nehete (2021) and Talukder
et al. (2021) for pseudocomplemented semilattices and Rao
(2012) for pseudocomplemented distributive lattices.

Let us mention that in every logic, both classical or
non-classical, a prominent role plays the logical connective
implication. The reason is that implication enables logical
deduction, i.e. the derivation of new propositions from given
ones. In order to study a logic based on a poset, one cannot
expect that the result of implication will be uniquely deter-
mined. This means that the result of the implication x → y
for given elements x and y of a given poset P would be
a subset of P , not necessarily a singleton. This is the rea-
son why we will call such an implication “unsharp”. On the
other hand, we ask such an unsharp implication to satisfy
the rules and properties usually satisfied by an implication
and, moreover, the results of our implication should be as
high as possible. We introduce such an unsharp implication
within the next section. In Proposition 2.4 we show that our
implication satisfies properties similar to those satisfied by
the standard implication. We also show that the values of
results of our implication are usually higher than those for
implication of intuitionistic logic based on relative pseudo-
complementation. In the last section we introduce also an
unsharp connective conjunction which is connected with our
implication via a certain kind of adjointness.
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It is worth noticing that implication in a propositional
logic which is not distributive was already investigated, e.g.
in Finch (1970), in bounded posets also in Zeman (1979) or in
fuzzy posets in Ojeda-Hernández et al. (2022). Implication
in sectionally pseudocomplemented posets was studied in
Cı̄rulis (2008) and a certain kind of adjointness was treated
in Cornejo et al. (2021). Our method applied here is dif-
ferent. At first, we define the connective implication in an
“unsharp” version contrary to the above mentioned papers.
The essential advantage of our approach is that our impli-
cation is everywhere defined. Although the results of our
unsharp implication are subsets, these contain only elements
with the highest truth value. Hence, we consider also the
case when there does not exists the greatest possible value
of implication for given entries but several maximal values
which are incomparable because of maximality.

Definition 2.1 A finite poset with pseudocomplemented sec-
tions is an ordered quadruple

(
P,≤, (y; y ∈ P), 1

)
where

(P,≤, 1) is a finite poset with top element 1 and for every
y ∈ P , ([y, 1],≤, y, y) is a pseudocomplemented poset. For
every y ∈ P and every subset B of [y, 1] put By := {by | b ∈
B}. Finally, for all x, y ∈ P define the implication x → y as
follows:

x → y := (
MinU (x, y)

)y
.

A finite poset with 0 and pseudocomplemented sections is
an ordered quintuple

(
P,≤, (y; y ∈ P), 0, 1

)
where

(
P,

≤, (y; y ∈ P), 1
)
is a finite poset with pseudocomplemented

sections and 0 is the bottom element of (P,≤).

Observe that because of 1 ∈ U (x, y) we have Min
U (x, y) �= ∅.
Remark 2.2 If

(
P,≤, (y; y ∈ P), 1

)
is a finite poset with

pseudocomplemented sections, b ∈ P and a ∈ [b, 1] then

ab = max{x ∈ P | L(a, x) ∩ [b, 1] = b}.

Hence, in general,→ is not a binary operation on P but an
operator assigning to each element of P2 a non-empty subset
of P . The almost obvious relationship between the sectional
pseudocomplementation and the operator → is as follows.

Lemma 2.3 Let
(
P,≤, (y; y ∈ P), 1

)
be a finite poset with

pseudocomplemented sections and a, b ∈ P. Then, the fol-
lowing hold:

(i) If a ∨ b exists in (P,≤) then a → b = (a ∨ b)b,
(ii) if b ≤ a then a → b = ab.

Proof (i) If a ∨ b exists in (P,≤) then

a → b = (
MinU (a, b)

)b

= (
MinU (a ∨ b)

)b = (a ∨ b)b.

(ii) if b ≤ a then because of (i) we have a → b = (a ∨ b)b

= ab.
��

In what follows we list some elementary but important
properties of this implication. We can see that these are
analogous to know properties of implication in classical and
non-classical propositional calculus.

Proposition 2.4 Let
(
P,≤, (y; y ∈ P), 1

)
be a finite poset

with pseudocomplemented sections and a, b ∈ P. Then, the
following hold:

(i) a ≤ b if and only if a → b = 1,
(ii) if a ∨ b exists then (a ∨ b) → b = a → b,
(iii) 1 → a = a,
(iv) a ≤ b → a,
(v) a → (b → a) = 1.

Proof (i) The following are equivalent:

a ≤ b,

MinU (a, b) = b,

x = b for all x ∈ MinU (a, b),

xb = 1 for all x ∈ MinU (a, b),
(
MinU (a, b)

)b = 1,

a → b = 1,

(ii) if a ∨ b exists then

(a ∨ b) → b = (
MinU (a ∨ b, b)

)b

= (
MinU (a ∨ b)

)b

= (
MinU (a, b)

)b = a → b,

(iii)

1 → a = (
MinU (1, a)

)a = (
MinU (1)

)a = 1a = a,

(iv) a ≤ (
MinU (b, a)

)a = b → a,
(v) this follows from (iv) and (i)

��
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The next result shows that under appropriate assumptions
our unsharp implication satisfies important properties already
known from standard implication.

Proposition 2.5 Let
(
P,≤, (y; y ∈ P), 1

)
be a finite poset

with pseudocomplemented sections and a, b, c ∈ P. Then,
the following hold:

(i) If a ≤ b and a∨c exists in (P,≤) then b → c ≤ a → c,
(ii) if a ∨ b exists in (P,≤) then a ≤ (a → b) → b,
(iii) if a ∨ b exists in (P,≤) then a → b = (

(a → b) →
b
) → b.

Proof (i) Since a ∨ c exists in (P,≤), we have a → c =
(a ∨ c)c according to (i) of Lemma 2.3. Now, by (P2),
everyone of the following assertions implies the next one:

a ≤ b,

U (b, c) ⊆ U (a, c),

MinU (b, c) ⊆ U (a ∨ c),

a ∨ c ≤ x for all x ∈ MinU (b, c),

xc ≤ (a ∨ c)c

= a → c for all x ∈ MinU (b, c),

b → c = (
MinU (b, c)

)c ≤ a → c

(ii) Because of (P3) and (i) and (ii) of Lemma 2.3 and (iv)
of Proposition 2.4 we have

a ≤ a ∨ b ≤ (
(a ∨ b)b

)b = (a → b) → b.

(iii) Because of (i) of Lemma 2.3, (P4), (iv) of Proposition
2.4 and (ii) of Lemma 2.3 we have

a → b = (a ∨ b)b =
((

(a ∨ b)b
)b)b

= (
(a → b) → b

) → b.

��
Let P = (P,≤) be a poset and a, b ∈ P . Recall the

following definitions.

• The greatest element x of P satisfying L(a, x) ⊆
L(b) is called the relative pseudocomplement a ∗ b of
a with respect to b. The poset P is called relatively
pseudocomplemented if any two elements of P have a
relative pseudocomplement, see Chajda et al. (2020b)
and Venkatanarasimhan (1971).

• The greatest element x of P satisfying L(U (a, b), x) =
L(b) is called the sectional pseudocomplement a ◦ b of
a with respect to b. The poset P is called sectionally
pseudocomplemented if any two elements of P have a
sectional pseudocomplement.

Remark 2.6 Let (P,≤, 1) be a poset with top element 1 and
a, b ∈ P with b ≤ a. Further assume that the sectional
pseudocomplement a ◦b of a with respect to b and the pseu-
docomplement of ab of a in [b, 1] exist. Then a ◦ b ≤ ab.

Proof Since b ∈ L(b) = L
(
U (a, b), a ◦ b

)
, we have b ≤

a ◦ b. Moreover,

L(a, a ◦ b) ∩ [b, 1] = L
(
U (a), a ◦ b

) ∩ [b, 1]
= L

(
U (a, b), a ◦ b

) ∩ [b, 1]
= L(b) ∩ [b, 1] = {b}.

Hence a ◦ b ≤ ab. ��
Let us note that the sectional pseudocomplement is not the

same as the pseudocomplement in the corresponding section.
For example, consider the poset depicted in Fig. 2. Then
a /∈ [b, 1]. Thus, the pseudocomplement of a in the section
[b, 1], i.e. ab, does not exist. On the other hand, the sectional
pseudocomplement a ◦ b of a with respect to b exists and
is equal to b because b is the greatest element x satisfying
L
(
U (a, b), x

) = L(b) since U (a, b) = {c, d, 1}. It is worth
noticing thata◦b differs fromour unsharp implicationa → b
because a → b = {c, d}.
Example 2.7 The poset shown in Fig. 2 has pseudocomple-
mented sections and is simultaneously relatively pseudocom-
plemented. The tables for x y , → and ∗ look as follows:

Fig. 2 Relatively pseudocomplemented poset with pseudocomple-
mented sections
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x y 0 a b c d 1
0 1 − − − − −
a b 1 − − − −
b a − 1 − − −
c 0 d d 1 − −
d 0 c c − 1 −
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 {c, d} 1 1 1
b a {c, d} 1 1 1 1
c 0 d d 1 d 1
d 0 c c c 1 1
1 0 a b c d 1

∗ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 a b 1 d 1
d 0 a b c 1 1
1 0 a b c d 1.

The intuitionistic implication, i.e. the relative pseudocom-
plement ∗ differs from our “unsharp” implication →, e.g.
a∗b = bwhereasa → b = {c, d}. Hence, althougha → b is
an “unsharp” implication because its result is a two-element
subset of P , its values c and d are greater than the value of
intuitionistic implication a ∗ b.

Example 2.8 The poset shown in Fig. 3 has pseudocomple-
mented sections, but is not relatively pseudocomplemented
since the relative pseudocomplement of b with respect to a
does not exist. The tables for x y and → look as follows:

Fig. 3 Poset with pseudocomplemented sections that is not relatively
pseudocomplemented

x y 0 a b c d e 1
0 1 − − − − − −
a c 1 − − − − −
b c a 1 − − − −
c b − − 1 − − −
d 0 a e e 1 − −
e 0 a d d − 1 −
1 0 a b c d e 1.

→ 0 a b c d e 1
0 1 1 1 1 1 1 1
a c 1 1 {d, e} 1 1 1
b c a 1 {d, e} 1 1 1
c b a {d, e} 1 1 1 1
d 0 a e e 1 e 1
e 0 a d d d 1 1
1 0 a b c d e 1.

It is a question if, having an operator → on a finite set
A, this set can be converted into a poset with pseudocom-
plemented sections. For this, we introduce the following
structure.

3 Implication algebras

Our next goal is to show that this unsharp implication in fact
determines the given finite poset with pseudocomplemented
sections. For this purpose we define the following concept.

Definition 3.1 A finite I-algebra is an ordered triple (A,→
, 1) with a finite set A, an operator →: A2 → 2A \ {∅} and
1 ∈ A satisfying the following conditions:

(I1) x → x ≈ x → 1 ≈ 1,
(I2) x → y = y → x = 1 ⇒ x = y,
(I3) x → y = y → z = 1 ⇒ x → z = 1,
(I4) y → z = z → x = z → (x → y) = 1 ⇒ z = y,
(I5)

(
y → x = y → u = 1 and (y → z = z → x = z →
u = 1 ⇒ z = y)

) ⇒ u → (x → y) = 1,
(I6) x → y = {z → y | x → z = y → z = 1, and x →

u = y → u = u → z = 1 ⇒ u = z}.

Now we can state and prove the following result.

Theorem 3.2 Let P = (
P,≤, (y; y ∈ P), 1

)
be a finite

poset with pseudocomplemented sections and put x → y :=(
MinU (x, y)

)y
for all x, y ∈ P. Then I(P) := (P,→, 1) is

a finite I-algebra.

Proof Let a, b ∈ P . According to (i) of Proposition 2.4,
a ≤ b if and only if a → b = 1, and according to (ii)
of Lemma 2.3, b ≤ a implies a → b = ab. Now (I1)
follows since≤ is reflexive and 1 is the top element of (P,≤),
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(I2) and (I3) follow by antisymmetry and transitivity of ≤,
respectively. Let x, y, z, u ∈ P . If y ≤ z ≤ x and z ≤ x y

then z ∈ L(x, x y)∩[y, 1] = {y}, i.e. z = y which shows that
(I4) holds.Now for x, u ∈ [y, 1] the following are equivalent:

y → z = z → x = z → u = 1 ⇒ z = y,

z ∈ L(x, u) ∩ [y, 1] ⇒ z = y,

L(x, u) ∩ [y, 1] ⊆ {y},
L(x, u) ∩ [y, 1] = {y}.

Since for x, u ∈ [y, 1], L(x, u) ∩ [y, 1] = {y} implies u ≤
x y , we have (I5). Finally, (I6) follows from the definition
of →. ��

However, also the converse of Theorem 3.2 is true, see the
following result.

Theorem 3.3 Let A = (A,→, 1) be a finite I-algebra and
define

x ≤ y :⇔ x → y = 1,

x y := x → y whenever y ≤ x

(x, y ∈ A). Then P(A) := (
A,≤, (y; y ∈ A), 1

)
is a finite

poset with pseudocomplemented sections.

Proof Because of (I1) – (I3), (A,≤, 1) is a finite poset with
top element 1, because of (I4), L(x, x y)∩[y, 1] ⊆ {y} for all
x, y ∈ I with y ≤ x and hence L(x, x y)∩[y, 1] = {y} for all
x, y ∈ I with y ≤ x , and because of (I5), y ∈ A, x, u ∈ [y, 1]
and L(x, u) ∩ [y, 1] = {y} imply u ≤ x y . Hence for all
y ∈ A, ([y, 1],≤, y, y) is a pseudocomplemented poset. ��
Remark 3.4 In the above proof, condition (I6) of Defini-
tion 3.1 is not needed. We need this condition in order to
prove that the above described correspondence is one-to-one.

Now we show that the assignments from Theorems 3.2
and 3.3 are mutually inverse.

Theorem 3.5 The correspondencedescribed inTheorems3.2
and 3.3 is one-to-one.

Proof Let P = (
P,≤, (y; y ∈ P), 1

)
be a finite poset with

pseudocomplemented sections, put

I(P) = (P,→, 1),

P
(
I(P)

) = (
P,≤′, (y; y ∈ P), 1

)

and let a, b ∈ P . Then because of the definition of ≤′ and (i)
of Proposition 2.4 the following are equivalent:

a ≤ ′b,
a → b = 1,

a ≤ b.

If b ≤ a then because of the definition of ab and (ii) of
Lemma 2.3 we have ab = a → b = ab This shows
P
(
I(P)

) = P. Now let A = (A,→, 1) be a finite I-algebra,
put

P(A) = (
A,≤, (y; y ∈ I ), 1

)
,

I
(
P(A)

) = (A,⇒, 1)

and let a, b ∈ A. Then

a ⇒ b = (
MinU (a, b)

)b

= {xb | a, b ≤ x, and a, b ≤ y ≤ x implies y = x}
= a → b

because of the definition of ≤ and (I6). This shows
I
(
P(A)

) = A. ��
In every finite poset

(
P,≤, (y; y ∈ P), 0, 1

)
with 0 and

pseudocomplemented sections one can define ¬x := x → 0
for all x ∈ P . Observe that¬x = max{y ∈ P | L(x, y) = 0}
for all x ∈ P and hence ¬x = x0 for all x ∈ P . Due to
the fact that ¬x is the pseudocomplementation as defined
usually (see, e.g. Balbes 1973 or Venkatanarasimhan 1971),
it satisfies the known properties as follows:

(P1) ¬0 = 1 and ¬1 = 0,
(P2) x ≤ y implies ¬y ≤ ¬x ,
(P3) x ≤ ¬¬x ,
(P4) ¬¬¬x = ¬x .

Remark 3.6 Condition (P2) expresses the fact that our nega-
tion and implication satisfy the contraposition law, i.e.

if x → y = 1 then also ¬y → ¬x = 1.

At the end of this section we show that every bounded
pseudocomplemented poset contains a subposet where the
unary negation ′ is a complementation. This is in fact analo-
gous to the Glivenko Theorem (see, e.g. Birkhoff 1979) for
pseudocomplemented lattices.

Proposition 3.7 Let P = (P,≤, ′, 0, 1) be a bounded pseu-
docomplemented poset. Then (P ′,≤, ′, 0, 1)with P ′ := {x ′ |
x ∈ P} is a complemented poset.

Proof Clearly, P ′ = {x ∈ P | x ′′ = x}. Let a, b ∈ P ′.
Then a′ ∈ P ′. Moreover, L(a, a′) = 0. If b ∈ U (a, a′) then
b′ ∈ L(a′, a′′) = L(a, a′) = 0 and hence b = b′′ = 0′ = 1.
This shows U (a, a′) = 1, i.e. a′ is a complement of a. ��
Example 3.8 If (P,≤, ′, 0, 1) is the bounded pseudocomple-
mented poset of Example 2.8, then the complemented poset
(P ′,≤, ′, 0, 1) is depicted in Fig. 4.
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4 Adjointness of implication with unsharp
conjunction

It is known that every relatively pseudocomplemented lattice
is residuated, in fact it is a “prototype” of a residuated lattice
where the operationmultiplication is considered as the lattice
meet and the relative pseudocomplement as a residuum. As
mentioned in the introduction, we define sectionally pseudo-
complemented lattices in the sake to extend the concept of
relative pseudocomplementation to non-distributive lattices.
The question concerning residuation in sectionally pseudo-
complemented lattices was answered by the authors and
J. Kühr (2020a) as follows.

A lattice L = (L,∨,∧,�,→, 1) with top element 1 and
with twobinary operations� and→ is called relatively resid-
uated if

(i) (L,�, 1) is a commutative groupoid with 1,
(ii) x ≤ y implies x � z ≤ y � z,
(iii) (x ∨ z) � (y ∨ z) ≤ z if and only if x ∨ z ≤ y → z.

It is worth noticing that the class of relatively residuated
lattices forms a variety, see Chajda et al. (2020a). Namely,
under condition (i), conditions (ii) and (iii) are equivalent to
the identities

(iv) x � z ≤ (x ∨ y) � z,

(v) z ∨ y ≤ x →
((

(x ∨ y) � (z ∨ y)
) ∨ y

)
,

(vi) (x → y) � (x ∨ y) ≤ y.

Unfortunately, we cannot adopt this definition for posets
(P,≤) because we cannot use the lattice operations and,
moreover, our implication is not an operation but an opera-
tor, i.e. its result need not be a singleton. However, we can
proceed as follows. Having in mind that → is unsharp, we
can introduce an unsharp connective conjunction as follows:

x � y := Max L(x, y)

Fig. 4 Complemented poset corresponding to the poset from Example
2.8

and for non-singleton subsets A, B of P we define A� B :=
Max L(A, B). One canmention that this conjunction reaches
the maximal possible values for given entries x and y. More-
over, the operator � is idempotent since for every x ∈ P we
have

x � x = Max L(x, x) = Max L(x) = x .

Now we can define the following concept.

Definition 4.1 A poset P = (P,≤,�,→, 1) with top ele-
ment 1 and two operators � and →, both mappings from P2

to 2P , such that

(i) � is commutative and associative and x � 1 ≈ x ,
(ii) if x ≤ y and z ∈ P then there exists some t ∈ y � z

with x � z ≤ t ,
(iii) z ∈ x � y if and only if (z ≤ x, y and x ≤ y → z)

will be called unsharply residuated. Condition (iii) will be
called unsharp adjointness. We call an unsharply residuated
poset P divisible if for all x, y ∈ P with x ≥ y we have that
x → y is a singleton and

(
x � (x → y)

) ∩ [y, 1] = {y}.
We are going to show that finite posets with pseudocom-

plemented sections are unsharply residuated and divisible.

Theorem 4.2 Let
(
P,≤, (y; y ∈ P), 1

)
be a finite poset with

pseudocomplemented sections and for x, y ∈ P define

x � y := Max L(x, y),

x → y := (
MinU (x, y)

)y
.

Then (P,≤,�,→, 1) is unsharply residuated and divisible.

Proof Let a, b, c ∈ P . Then

a � 1 = Max L(a, 1) = Max L(a) = a

and, clearly, � is commutative. Moreover,

(a � b) � c = Max L
(
Max L(a, b), c

)

= Max
(
L
(
Max L(a, b)

) ∩ L(c)
)

= Max
(
L(a, b) ∩ L(c)

) = Max L(a, b, c)

= Max
(
L(a) ∩ L(b, c)

)

= Max
(
L(a) ∩ L

(
Max L(b, c)

))

= Max L
(
a,Max L(b, c)

) = a � (b � c).

Thus � satisfies (i) of Definition 4.1. If a ≤ b then

a ◦ c = Max L(a, c) ⊆ L(a, c) ⊆ L(b, c)
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and hence there exists some d ∈ Max L(b, c)with a�c ≤ d.
This shows (ii) of Definition 4.1. Now unsharp adjointness
remains to be proved. Because of Lemma 2.3 (ii) the follow-
ing are equivalent:

c ∈ a � b,

c ∈ Max L(a, b),

L(a, b) ∩ [c, 1] = {c},
c ≤ a, b and a ≤ bc,

c ≤ a, b and a ≤ b → c.

Now assume a ≥ b. Then a → b = ab and

(
a � (a → b)

) ∩ [b, 1]
= (

Max L(a, ab)
) ∩ [b, 1] ⊆ L(a, ab) ∩ [b, 1] = {b}.

On the other hand, b ∈ L(a, ab) and if b ≤ c ∈ L(a, ab)
then c ∈ L(a, ab) ∩ [b, 1] = {b}, i.e. c = b. This shows that
b ∈ Max L(a, ab) and hence b ∈ (

Max L(a, ab)
) ∩ [b, 1],

thus

(
Max L(a, ab)

) ∩ [b, 1] = {b}.

proving divisibility of (P,≤,�,→, 1). ��
Divisibility has an essential influence on the logic for

which the considered unsharply residuated poset is an alge-
braic semantics. Namely, if we know the truth values of x
and x → y and we know that y ≤ x then the truth value of y
is exactly the conjunction of x and x → y, which is just the
derivation ruleModus Ponens.

If an unsharply residuated poset is a lattice, then clearly
we have

x � y = Max L(x, y) = Max L(x ∧ y) = x ∧ y

and the fact that z ≤ x, y can be expressed by x ∨ z = x and
y ∨ z = y. Then unsharp adjointness can be formulated as
follows:

(x ∨ z) � (y ∨ z) = z if and only if x ∨ z ≤ (y ∨ z) → z.

However, by (ii) of Proposition 2.4 we know that

(y ∨ z) → z = y → z,

and

(x ∨ z) � (y ∨ z) ≥ z

automatically holds. Hence the left-hand side of (iii) is equiv-
alent to (x ∨ z) � (y ∨ z) ≤ z. Altogether, we obtain

(x ∨ z) � (y ∨ z) ≤ z if and only if x ∨ z ≤ y → z

which is just relative adjointness as defined in Chajda et al.
(2020a) andmentioned above. Thismeans that Definition 4.1
is compatible with the corresponding definition for lattices.

Example 4.3 Let us consider the poset from Example 2.8.
The table for � looks as follows:

� 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 a a 0 a a a
b 0 a b 0 b b b
c 0 0 0 c c c c
d 0 a b c d {b, c} d
e 0 a b c {b, c} e e
1 0 a b c d e 1.

Wecan see that d�e = {b, c} is not a singleton, and b ∈ d�e
implies b ≤ d, e and d ≤ d = e → b; also, conversely,
c ≤ e, d and e ≤ e = d → c imply c ∈ {b, c} = e � d.

5 Conclusion

We constructed a binary operator on a finite poset with pseu-
docomplemented sections which can serve as an unsharp
implication. It satisfies important properties required for
implication in various sorts of propositional logics. More-
over, a negation derived bymeans of this implication satisfies
the properties of negation in intuitionistic logic, thus our
poset with this unsharp implication can be recognized as an
algebraic semantics of a general case of intuitionistic logic.
This approach enables us to introduce an algebraic semantics
of intuitionistic logic which need not be distributive. This
is not possible when traditional methods using, e.g. Heyt-
ing algebras are applied. Moreover, an unsharp conjunction
is introduced having similar properties as those satisfied by
the connective conjunction in propositional calculus. This
unsharp conjunction together with the mentioned unsharp
implication forms an adjoint pair. It means that a certain ver-
sion of the derivation rule Modus Ponens can be considered
in this logic. Hence, the logic based on such a poset can be
considered as a fairly general kind of substructural logic.
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