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Abstract
In this paper, the quantum technology is exploited to empower theOPTICSunsupervised learning algorithm,which is a density-
based clustering algorithm with numerous applications in the real world. We design an algorithm called Quantum Ordering
Points To Identify the Clustering Structure (QOPTICS) and demonstrate that its computational complexity outperforms that
of its classical counterpart. On the other hand, we propose a Deep self-learning approach for modeling the improvement of
two Swarm Intelligence Algorithms, namely Artificial Orca Algorithm (AOA) and Elephant Herding Optimization (EHO)
in order to improve their effectiveness. The deep self-learning approach is based on two well-known dynamic mutation
operators, namely Cauchy mutation operator and Gaussian mutation operator. And in order to improve the efficiency of these
algorithms, they are hybridized with QOPTICS and executed on just one cluster it yields. This way, both effectiveness and
efficiency are handled. To evaluate the proposed approaches, an intelligent application is developed to manage the dispatching
of emergency vehicles in a large geographic region and in the context of Covid-19 crisis in order to avoid an important loss in
human lives. A theoretical model is designed to describe the issue mathematically. Extensive experiments are then performed
to validate the mathematical model and evaluate the performance of the proposed deep self-learning algorithms. Comparison
with a state-of-the-art technique shows a significant positive impact of hybridizing Quantum Machine Learning (QML) with
Deep Self Learning (DSL) on solving the Covid-19 EMS transportation.

Keywords Quantum machine learning · Quantum ordering points to identify the clustering structure · Deep self learning
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1 Introduction

Quantum mechanics is the theoretical basis of the emerg-
ing field of quantum computing with the aim of speeding-up
calculations. Recent quantum applications are numerous. For
instance, quantumcomputing could enable accelerating diag-
noses in medicine and solve problems in finance. Quantum
algorithms of different disciplines such as neural networks
andoptimization are developing fast.At the same time, indus-
trial firms are working to build and make available quantum
computers (Zahorodko 2021). Quantum machine learning
(QML) is a new research axis in artificial intelligence field
(Bharti et al. 2020; Biamonte 2017;Wittek 2014). It let speed
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up classical machine learning algorithms that deal with big
data.

Quantum mechanics is a rich collection of powerful
theories that provide description of nature. Concepts such
as superposition of states, interference, entanglement are
expected to provide an exponential speed up to solve com-
plex scientific and industrial problems. As QML has a great
attentiveness nowadays, our interest in this paper focuses on
developing a quantum version of a density-based clustering
algorithm, knowing that the latter has practical applications
in numerous domains.

Density-based clustering techniques discover clusters
with arbitrary shape in a spatial database. The yielded clusters
are dense regions of objects in the data space and the objects
outside the clusters are of low density and hence represent
noise. Density-Based Spatial Clustering ofApplicationswith
Noise (DBSCAN) (Ester et al. 1996) is a nice algorithm,
very popular in geographic information systems (GIS). In
one scan, it clusters objects given two parameters represent-
ing, respectively, themaximum distance of the neighborhood
from one object and a number of points representing the
minimumdesired density in an elementary cluster. This algo-
rithm is known to be very sensitive to such parameters,
which usually are unknown et consequently hard to deter-
mine, especially for real-world and high-dimensional data
sets. Intensive experiments should be performed to tune their
values in order to achieve the right clustering. The Order-
ing Points To Identify the Clustering Structure (OPTICS)
(Mihael et al. 1999) which is based on similar principles,
has the advantage to handle a broad range of parameter set-
tings. It can be seen as an extension from DBSCAN. It is a
smart algorithm for automatic and interactive cluster anal-
ysis, allowing the ordering of clusters through an ordered
file that can be graphically viewed. The cluster ordering
allows to extract clustering information such as cluster cen-
ters, arbitrary-shaped clusters and the clustering structure.

On the other hand, up-to-date and topical technologies
of artificial intelligence are emerging and exploited to solve
hard complex problems. Deep learning methods provide a
great hope to solve more effectively and efficiently these
issues.

We proposed four main contributions in this paper. The
first one is a quantumversion ofOPTICSalgorithm, aiming at
gaining efficiency for clustering spatial data. The algorithm is
called Quantum OPTICS (QOPTICS) and its computational
complexity is evaluated and compared to that of the classic
counterpart.

The second one consists of a design of deep learning of
two swarm intelligence algorithms, theArtificialOrcasAlgo-
rithm (AOA) (Bendimerad and Drias 2020) and the Elephant
Herding Optimisation [EHO] (Wang et al. 2015), in order
to achieve effectiveness for problem solving. Two mutation
operators known asCauchy andGaussian operators are intro-

duced in the algorithms for that aim. The designed algorithms
are called Deep Self Learning AOA (DSLAOA) and Deep
Self Learning EHO (DSLEHO).

The third is a hybrid system combining DSLAOA and
DSLEHO respectively with QOPTICS in order to gain more
efficiency for problem solving. Indeed, running DSLAOA
and DSLEHO on just one cluster that is, on a small part of
the dataset is reducing calculation time.

The fourth is an application to emergency transportation
in the context of COVID-19, which helps managing hospi-
tals during crises of this pandemic. In order to optimize the
time transportation of a patient to a health center, QOPTICS
is used to cluster hospitals in regions, each one taking in
consideration a certain number of emergency calls, knowing
that the most important objective for the decision makers in
EMS is to save human lives. For this purpose, responding to
emergency calls by sending ambulances in the shortest time
should be decided quickly. Assigning vehicles to the nearest
calls location may cause some regions to become less cov-
ered than others and hence calls from these zones will wait
a long time to be served. Ambulance dispatching and zones
covering problems are managed jointly in order to optimize
not only the vehicles arriving time to an emergency call but
also the covering of all the calls. DSLAOA and DSLEHO
attempt to respond to this goal.

The originality of the study relies on the fact that the tools
used in each phase of the proposed system are from recent
emerging technologies such as quantum machine learning
and deep learning.

This paper is organized in six sections. The next one
presents backgrounds on the OPTICS algorithm, the basic
quantum algorithms and the dynamic ambulance dispatch-
ing and emergency calls covering. The third section describes
the proposed quantum OPTICS algorithm alongside with its
complexity. The fourth section enchainswith the presentation
of the deep self-learning method on AOA and on EHO. The
fifth describes the adaptation of DSLAOA and DSLEHO to
the EMS transportation issue. The sixth section exhibits the
experimental results obtained by QOPTICS, which consists
in clustering geographical zones containing a great density
of hospitals in the Kingdom of Saudi Arabia (KSA) as well
as emergency Covid-19 calls providing from this country.
The outcomes generated by deep self-learning methods are
also presented and discussed. The article ends with a con-
clusion highlighting the major contributions and future open
questions.

2 Background

This section outlines the basic concepts used in the construc-
tion of our proposals. First, the OPTICS clustering algorithm
is described and discussed. Second, the quantum subroutines
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that helped to design QOPTICS are presented. Third, the
dynamic ambulance dispatching and emergency calls cover-
ing problem is exposed as it serves as an application of the
developed algorithms.

2.1 OPTICS clustering algorithm

Clustering n objects of an unordered set O = {O1, O2, . . .

, On} consists in grouping the similar objects in the same
cluster and the dissimilar ones in different clusters. To mea-
sure the similarity between objects, a distance function is
defined. Ordering Points To Identify the Clustering Structure
(OPTICS) (Mihael et al. 1999) is an unsupervised density-
based clustering algorithm. It can be seen as an improved
version of DBSCANwith additional advantages. It computes
an ordering of the objects, while associating with each object
its core-distance and its reachability distance. This ordering
allows the extraction of all clusterings with respect to any
distance smaller than the distance parameter. The computa-
tional complexity of OPTICS is O(n2) (Mihael et al. 1999).

2.2 Quantum operators and subroutines

Quantum computing uses quantum mechanics as a theoret-
ical basis, where the concepts of superposition of states,
density matrices representing states and the entanglement
phenomenon are fundamental. A state in quantum mechan-
ics encompasses statistical information about its position in
a n-dimensional Hilbert space. Based on the Dirac notation,
it is represented by a vector as in Eq. 1.

|� >=
∑

i

αi |bi > (1)

αi for all i are complex numbers representing the amplitudes
of the basis states |bi > under the normalization condition∑

i αi
2 = 1. The linear combination of all the basis states is

called superposition. It denotes the fact that the states exist
simultaneously all of them in the superposition.

A qubit (quantum bit) is a quantum state that represents
the smallest unit of quantum information storage. It consists
of a superposition α1|0 > +α2|1 > of two basis states that
are |0 > and |1 > such that α1

2 + α2
2 = 1. The main

advantage of the quantum computer is that its computing
power is exponential in terms of the number of qubits. In
fact, two combined qubits are in a superposition of four states
α1|00 > +α2|01 > +α3|10 > +α4|11 >, with α1

2 +α2
2 +

α3
2 + α4

2 = 1. With n qubits, a superposition of 2n states
can be created. So when an operator is applied to the set of
qubits, it is applied to 2n states at the same time, which is
equivalent to a parallel calculation on 2n data.

One important operation in quantum computing is the
measurement, which allows to get a state component with
a probability proportional to its weight. For instance, when
measuring the value of the qubit, the only answers that can
be obtained are 0 or 1. The probability of measuring state 0
is α2

1, while that of measuring state 1 is equal to α2
2. After

measurement, the qubit is in the measured state in classical
computing.

Except the measurement operation, all the quantum oper-
ators are unitary and are represented by gates. A quantum
algorithm is then designed as a classical algorithm using
Toffoli gates involving in some places quantum operators
or subroutines in order to speed up the algorithm calculation.

A quantum state is entangled if it cannot be expressed by a
combination of all its basis states. Another important concept
is the quantum register, which belongs to the Hilbert space
with 2n states and n qubits. Using the Dirac notation, it is
represented as |� >= ∑i=2n−1

i=0 αi |i > under the normal-
ization condition

∑
i αi

2 = 1. The basis state |i > expresses
the binary encoding of i .

2.2.1 Quantum operators

Quantumcomputers use quantumcircuits composed of quan-
tum gates or operators. Among quantum operators is the
Toffoli gate that can perform all the operations of classi-
cal circuits. The n-bit Toffoli gate is a generalization of the
Toffoli gate. It has n input bits (x1, x2, . . . , xn) and n output
bits. The first n − 1 output bits are unchanged whereas the
last one is (x1 AND…AND xn−1) XOR xn . The Hadamard
gate transforms the pure state |0 > into the superposed state
1√
2
|0 > + 1√

2
|1 > and the pure state |1 > into the super-

posed state 1√
2
|0 > − 1√

2
|1 >. The measurement in this case

will have the same probability of giving 1 or 0. The applica-
tion of a Hadamard gate to each qubit of an n-qubit register
in parallel is equivalent to the Hadamard transform Hn .

Another important and extensively used gate is the
Grover diffusion operator as it has the ability of searching
for an element in an unordered list, in just one quantum
operation.

2.2.2 Quantum subroutines

Numerous basic quantum subroutines have been developed
and published in the recent literature. Those that are used
for devising the quantum OPTICS algorithm are described
below.

The Grover’s algorithm (Grover 1996) is a quantum sub-
routine that searches for an element x0 belonging to an
unordered set S of n elements. Using a classical algorithm,
the best complexity to perform such search is O(n), as in the
worst case all the elements will be tested before encounter-
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ing x0. TheGrover’s algorithmperforms the same taskwithin
O(

√
n) time complexity. The algorithm considers a function

F : {0, 1, 2, . . . , n − 1} → {0, 1} that returns 1 for x0 and
0 for all the other elements, that is for only x0, F(x0) = 1.
It uses Hadamard gates to create a uniform superposition of
all the states at the beginning and then the Grover operator.

In Boyer et al. (1998), the authors provide a generalization
of Grover’s algorithm, which is a new technique for counting
the number of occurrences of x0 in the list, with the same
computational complexity O(

√
n).

Quantum amplitude amplification algorithm (Brassard
et al. 2002) is another generalization of Grover’s algorithm.
Used as a subroutine, it helps to quadratic speedup over
several classical algorithms. The quantum amplitude amplifi-
cation algorithm does not start in a uniform superposition but
only initializes states, when information is available on the
states. If the probability to find an element a of S is pa (and
not 1

n as in Grover’s algorithm) and the sum of probabilities

of all elements is
∑|S|

1 pi , the computational complexity is
O( 1√

pa
).

Using the quantum exponential searching algorithm
(Boyer et al. 1998), the authors in Durr and Hoyer (1996)
devised a quantum algorithm that yields the minimum of an
unordered set with a computational complexity O(

√
n).

In Durr et al. (2006), Durr et al. developed a quant_find_
smallest_values subroutine for finding the c closest neighbors
of a point in O(

√
c × n) time.

Although its numerous advanced developments, QML
remains rich in open questions. Quantum OPTICS or QOP-
TICS studied in this paper is one of them.

2.3 The dynamic ambulance dispatching and
emergency calls covering

The dynamic ambulance dispatching and emergency calls
covering (DADECC-COVID19) system that we propose is
described and depicted in Fig. 1. It considers a set of ambu-
lance stations geographically dispersed, a set of hospitals
and a set of real time incoming emergency calls. It receives
emergency calls and controls the movement of all the vehi-
cles from the station towards the call point and then from
this point to the selected hospital. More precisely, when an
emergency call arrives, the system makes a decision about
the vehicle to send to assist this call. To respond to calls in
an optimal time, the system should guarantee a good cover-
ing rate of all the zones from where the calls can come. A
vehicle can be idle when it is at station, on route towards a
call where it can be deviated to serve another call, arriving
to a call location and finishing service to become available.

Fig. 1 Dynamic ambulance dispatching and emergency calls covering
system (DADECC-Covid19)

The real-time emergency vehicle dispatching problem in this
work is dynamic. The destination of vehicles for example
can change at any time if their diversion improves the ser-
vice quality, especially the response time. To avoid deviating
the same vehicle many times or deviating too much vehicles
with the aim to preserve the emergency crews and the caller
from disturbances, a limit is imposed by accepting only reas-
signments that bring in an important saving of time or calls
covering. The proposed solvingmethods are based on newAI
technologies and adapt to this dynamism. Figure 2 illustrates
the chain of treatments of an emergency call by DADECC-
COVID19.

In the context of COVID-19, numerous studies have been
published, the aim being to explore in a way or another some
aspects of this unpredictable pandemic.Artificial intelligence
has been largely explored in this context. Castillo and his
co-author worked on the forecast for the countries based on
the COVID-19 time series of confirmed cases and deaths
(Castillo andMelin 2020). They also developed a method for
a COVID-19 classification of countries based on an intelli-
gent fuzzy fractal approach (Castillo andMelin 2021). For the
case of Mexico, an application for predicting the COVID-19
time series was also undertaken (Melin 2020). In this inter-
esting study, a multiple ensemble neural network model with
fuzzy response aggregation is proposed. In Mansour (2021),
the authors propose an unsupervised deep learning model
based on image recognition to detect and classify COVID-
19. A preprocessing technique is introduced to enhance the
image quality for the diagnosis and another one for the clas-
sification.
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Fig. 2 Emergency call response chain

The present study is conducted for KSA but with another
concern, which is managing the emergency transportation
during COVID-19 crises.

3 Quantum ordering points to identify the
clustering structure

The QOPTICS algorithm we devise stores its input data
in a quantum random access memory (QRAM) and makes
use of the quantum minimum searching subroutine and the
quant_find_smallest_values subroutine among other quan-
tum routines. The details are described in the next subsec-
tions.

3.1 Data storage in quantum random access
memory

QRAM(Giovannetti et al. 2008) is used to store the input data
of QOPTICS algorithm. As input data, the algorithm han-
dles the distance matrix D containing the distances between
objects in addition to the parameters eps andMinPts. To store
thematrix D inQRAM, an address register and an output reg-
ister are defined. As there are n2 elements in D, the address
register is composed of qubits and is a superposition of n2

addresses as shown in Eq. 2.

k=n2−1∑

k=0

1

n
|k >a (2)

The output register is also composed of qubits and is a super-
position containing the distances correlated to the address
register as shown in Eq. 3.

k=n2−1∑

k=0

1

n
|k >a

QRAM−−−−→
k=n2−1∑

k=0

1

n
|k >a |disti, j >r

(3)

where k = (i − 1) ∗ n + j − 1.
With QRAM, it takes O(log n2) that is O(log n) time to

access a distance as there are log n2 = 2 log n number of
qubits in the address register.

The output of QOPCTICS is an ordered file where the
objects are ordered within the clusters they belong to. Each
object contains its core-distance and its reachability distance.
The file can be stored using a superposition of address and
output register as shown in Eq. 4.

k=n−1∑

k=0

1√
n
|k >a

QRAM−−−−→

k=n−1∑

k=0

1√
n
|k >a |corek >r |reachabili t yk >r

(4)

where core and reachability are two different superpositions
of n items.

3.2 QOPTICS algorithm

The algorithms below highlight the theoretical constructs
of the quantum version of QOPTICS using quantum sub-
routines such as Quant-Min-Search (Durr and Hoyer 1996)
and Quant_find_smallest_values (Durr et al. 2006). Algo-
rithm 1 is the quantum algorithm of OPTICS. It calls the
quantum subroutines Algorithm 2 and Algorithm 3. Algo-
rithm 2 produces MinPts neighbors of an object p that
are away from p by a distance equal to eps. Algorithm
3 calculates the core distance of the current object and
the current reachability distance of the objects existing
in eps-Neighbors. Seeds has no needs to be ordered as
the quantum subroutine Quant-Min-Search can be invoked
to retrieve the object with the minimum reachability dis-
tance. A quantum oracle O is created and used in Algo-
rithm 3 to transform the index |q > belonging to eps-
Neighbors into a state |q.reachabili t y > defined as in
Eq. 5.
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Algorithm 1 QOPTICS Algorithm
input: D, eps, MinPts /* D is the dataset and eps and MinPts are

parameters
output: Ordered list of Clusters of objects with their core and

reachability distances
1: for each point p of D not processed do
2: p.processed = true
3: eps-Neighbors = Quant-eps-Neighbors(p, eps)
4: p.reachability = undefined
5: p.core = Quant-Core-Distance(p, MinPts, eps-Neighbors)
6: OrderedList[p] = (p.core, p.reachability)
7: Seeds = empty
8: if p.core �= undefined then
9: for each q in eps-Neighbors do Seeds = Seeds ∪

{q, q.reachability}
10: end for
11: end if
12: while Seeds not empty do
13: Quant-Min-Search(p, Seeds) /* p has the minimum

reachability distance
14: Seeds = Seeds - {p, p.reachability} /* retrieve p from Seeds
15: p.processed = true
16: eps-Neighbors = Quant-eps-Neighbors(p, eps)
17: p.reachability = undefined
18: p.core = Quant-Core-Distance(p, MinPts, eps-Neighbors)
19: OrderedList[p] = (p.core, p.reachability)
20: if p.core �= undefined then
21: for each q in eps-Neighbors do Seeds = Seeds ∪

{q, q.reachability}
22: end for
23: end if
24: end while
25: end for
26: Store in QRAM (OrderedList, p, p.core, p.reachability)

Algorithm 2 Quant-eps-Neighbors
input: D, p, eps
output: eps-neighbors of p, set of points q such that distp,q <= eps
1: eps-neighbors = empty
2: built = false
3: D’ = D
4: while not built do
5: using Quant-Min-Search, find q of D’ such that distp,q is min-

imum
6: if distp,q <= eps then
7: eps-neighbors = eps-Neighbors ∪ {q}
8: retrieve q from D’
9: else built = true
10: end if
11: end while
12: return eps-Neighbors

Algorithm 3 Quant-Core-Distance
input: D, p, MinPts, eps-Neighbors
output: core-distance of p
1: using Quant_find_smallest_values, determine MinPts-Neighbors,

the MinPts nearest neighbors of p
2: p.core = max(distp,q ), q belonging to MinPts-Neighbors
3: using Hadamard transform, create the uniform superposition of

all states distp,q for q in eps-Neighbors
4: using the oracle O , determine q.reachability for all q in MinPts-

Neighbors
5: return p.core

q.reachabili t y =
{
p.core if distp,q ≤ p.core

distp,q otherwise
(5)

Lemma 1 The computational complexity of Quant-eps-
Neighbors subroutine is O(logn

√
n).

Proof Quant-eps-neighbors Algorithm calls Quant-Min-
Search subroutine a number of times equal to the number of
eps-neighbors. The worst-case access time to eps-neighbors
is O(logn) as the maximum size of eps-neighbors is n. The
computational complexity of Quant-min-search is O(

√
n),

then the computational complexity of Quant-eps-Neighbors
is O(logn

√
n). �	

Lemma 2 The run time of Quant-Core-Distance subroutine
is O(

√
MinPts × n).

Proof Algorithm 3 calls Quant_find_smallest_values in
O(

√
MinPts × n) according to Durr et al. (2006). The

reachability distance is calculated for each object in MinPts-
neighbors in O(logn) time. The Hadamard transform is
computed in O(1) time, as it is a quantum logic gate. The
application of a Hadamard gate to each qubit of an n-qubit
register in parallel is equivalent to the Hadamard transform
Hn . This operation is obtained in log(n) steps. The computa-
tional complexity ofQuant-Core-DistanceAlgorithm is then
O(

√
MinPts × n). �	

Theorem 1 The running time of QOPTICS is O(logn√
MinPts × n).

Proof QOPTICS calculates for each point its eps-neigh-
borhood with a complexity of O(logn

√
n). As the worst

case of the eps-neighborhood considered in Lemma 1 was n,
this complexity stands also for all the objects. The algorithm
computes also for each object its core distance and its reach-
ability distance with a complexity of O(

√
MinPts × n). As

the points can be accessed in O(logn), its time complexity
is then O(logn

√
MinPts × n).
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In order to highlight the gain in execution time brought
by QOPTICS, let consider the case of our dataset, where n is
the number of hospitals, which is equal to 279 and MinPts =
1 hospital. If the unit of time is 1 millisecond, then OPTICS
runtime is 2792= 77 841 milliseconds, which is equal to 77
seconds and QOPTICS runtime is log279

√
279 = 16 mil-

liseconds or 0,016 seconds. The gain is evenmore significant
for larger datasets. �	
Theorem 2 The spatial complexity ofQOPTICS is O(log2n).

Proof QOPTICS uses a QRAM to store the distances from
twodistinct points in a register,which is a superposition of the
distances. Its size is O(log2n2), as the number of distances
that separate two points is O(n2). It is then O(log2n) as
log2n2 = 2log2n. The reachability distance is calculated
by an oracle and is stored in memory of size log2n, as the
reachability distance is calculated for each point. Therefore,
in total the spatial complexity of QOPTICS is O(log2n). �	

4 Deep self learning AOA and EHO

This section presents the proposed Deep Self-Learning
approach on Artificial Orcas Algorithm (AOA) (Bendimerad
and Drias 2020) and on Elephant Herding Optimization
(EHO) (Wang et al. 2015). First, AOA is briefly described
followed by its improved version using deep self-learning.
The deep self-learning EHO is based on the same principle.

4.1 Artificial Orca algorithm (AOA)

Swarm Intelligence Algorithms have received a lot of atten-
tion these last decades. In Bendimerad and Drias (2020),
the authors proposed one of these algorithms mimicking
orcas in their living environment. Recently, in order to
add the cultural dimension of orcas, AOA was hybridized
with the cultural algorithm (CA) to develop an algorithm
called OCA (Drias et al. 2021). The social organization of
orcas includes several clans containing in their turn pods
of individuals. Orcas practice echolocation to detect preys
and perform various types of hunting strategies to reach
their prey. All these phenomena are simulated in an algo-
rithm called Orcas Artificial algorithm (AOA). The artificial
orcas are directed by a matriarch which is considered as
the fittest individual in the pod. In addition to this, each
hierarchical structural level is distinguished by a degree of
closeness. The pods are closer to themselves than to the clans.
AOA is featured by making an excellent balance between
two very important phases of evolutionary algorithms; the
search intensification and the search diversification. The
Original AOA is outlined in Algorithm 4.

Algorithm 4 Artificial Orcas Algorithm AOA
input: D, empirical parameters
output: an optimal solution or a solution of high quality
1: Using the empirical parameters of the social structure that is the

number of individuals per pod, the number of pods per clan, the
number of clans in a population and the distance separating the
different hierarchical levels, initialize a population.

2: Evaluate the population by calculating the fitness of all its individ-
uals.

3: Sort the individuals of the podsw.r.t their fitness value and determine
the matriarch of each pod.

4: Update the individuals fitness using the intensification search, com-
posed of the echolocation search represented in Equations 6, 7 and
8 and the hunting strategy update using Equations 9, 10 and 11.

5: Update the worst individual of each pod using Equation 12.
6: Evaluate the new individuals by calculating their fitness value.
7: if stopping criteria is reached then
8: return the best individual of the population else go to 3.
9: end if

fgroup = fmin + ( fmax − fmin) (6)

vtpi = vt−1
pi + fi × Dp + fc × Dc + f pop × Dpop (7)

xtpi = xt−1
pi + vtpi (8)

xttemp,pi = A×sin

(
2 × �

L
×xt−1

pi

)
×cos

(
2 × �

T
×tx

)

(9)

xtm,p =
∑ j=n

j=1 xtemp,p j

n
(10)

xtpi = x∗
p − β × xtm,p (11)

xtnew,pi = γ × xpoprand1 + ω × xtcrand2
2

(12)

t indicates the current iteration. xtpi is the individual at posi-
tion i in the pod p. vtpi is the velocity of the individual at
position i in the pod p. fmin and fmax are respectively the
minimum and themaximum frequencies and are used to gen-
erate a random frequency fgroup in this range. Note that
group corresponds either to p, c or pop in order to deter-
mine the frequency for the pod, the clan and the population
to which the individual belongs. α, γ andω are random num-
bers in interval [0,1]. The population levels are respectively
distant from each other by the distances Dp, Dc and Dpop

defined as follows.

– Dp = |xt−1
pi − x∗

p| where x∗
p is the matriarch of the pod

to which xt−1
pi belongs.

– Dc = |xt−1
pi − x∗

c | where x∗
c is the matriarch of the clan

to which xt−1
pi belongs.

– Dpop = |xt−1
pi − x∗

pop| where x∗
pop is the matriarch of the

population.
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For the hunting strategies, A is a parameter depending on
the problem modeling, L is a parameter representing the
wave length and T is an empirical parameter that represents
the wave period during the chasing activity. xtnew,pi is the
new solution of the individual i in the pod p. xtpop,rand1 is
a random individual in the population at position rand1 and
xtc,rand2 is a random individual in the clan c of the current
pod at position rand2.

4.1.1 Analysis of AOA complexity

The number of operations of AOA denoted TCAOA and
presented in Eq. 13 depends on the maximum number of
iterations Max I ter , the population size n and the number
of pods #pods. Note that the sorting method used in the
algorithm is heapsort and its computational complexity is
O(nlogn).

TCAOA =
Max I ter∑

i=1

(nlogn + n + #pods + n) (13)

nlogn operations are needed for Instruction 3, n operations
for Instruction 4 and Instruction 6 and #pods operations for
Instruction 5. As the size of the population n = #clans ×
#pods × #orcas, n > #pods, we conclude that:

TCAOA <
∑Max I ter

i=1 (nlogn+3n) and therefore the com-
putational complexity of AOA is O(Max I ter × nlogn)

4.2 Elephant herding optimization (EHO)

Elephant Herding Optimization (EHO) is a Swarm Intelli-
gence-based method inspired by the herding behavior of
elephants and proposed to solve optimization problems.
Since it was firstly proposed in 2015 byWang et al. (2015), it
has received significant attention from scholars in the world
(Li et al. 2020). Several EHO improvements and hybridiza-
tion have been recently published (Tuba et al. 2018; Li et al.
2019; Moayedi et al. 2020; Houacine and Drias 2021).

In nature, elephants have a social structure composed of
clans, where the elephants of each clan are under the lead-
ership of a matriarch. Females live in family clans, while
male elephants leave their group once they grow up. These
two behaviors are formalized into EHO through two main
operators: Clan updating operator and Separating operator.

Also, EHO is characterized by a maximum number of
generations (iterations), the influence rate of the matriarch
on elephants (α), and the influence rate of the clan’s gravity
center on the matriarch (β). EHO algorithm is summarized
in Algorithm 5.

Algorithm 5 Elephant Herding Optimization EHO
input: D, empirical parameters
output: an optimal solution or a solution of high quality
1: Using the empirical parameters of the social structure that is the

number of elephants per clan and the number of clans in a
population, initialize a population.

2: Evaluate the population by calculating the fitness of all its
individuals (elephants).

3: Sort the elephants of the clans w.r.t their fitness value and
determine the matriarch and the male elephant of each clan.

4: Update the best elephant of each clan using Equation 14 and 15.
5: Update the worst elephant of each clan using Equation 16.
6: Update the rest of elephants of each clan using Equation 17.
7: Evaluate the new elephants by calculating their fitness value.
8: if stopping criteria is reached then
9: return the best individual of the population else go to 3.
10: end if

xt+1
i, j = β × xt+1

center , j (14)

Xcenter ,i = 1

#E
∗

∑
Xi, j (15)

xt+1
worst, j = xmin + (xmax − xmin) × rand (16)

xt+1
i, j = xti, j + α × (xt+1

best, j − xti, j ) × r (17)

#C and #E are the number of clans and the number of
elephants in each clan, respectively. xti, j , x

t+1
i, j , respectively

represent the actual and newly updated i-th elephant’s solu-
tion of the j-th clan. xtbest, j , x

t
worst, j are the best and theworst

elephant’s solution of the j-th clan. xmax , xmin are the upper
and lower bound of a solution, xcenter , j gives the gravity cen-
ter of clan j , rand, r are random numbers ∈ [0,1], and α,
β ∈ [0,1].

4.2.1 Analysis of EHO algorithm complexity

The number of operations of EHO algorithm at worst is given
in Eq. 18 and is based on the maximum number of iteration
Max I ter , the population size n which is equal to the product
of the number of clans #C by the number of elephants #E .

TCEHO =
Max I ter∑

i=1

#C × #E × log(#E) + 2n + const

(18)

#C ×#E × log(#E) operations are needed for Instruction
3, n operations for Instruction 6 and Instruction 7 and a con-
stant const for Instruction 4 and Instruction 5. We deduce
that:
TCEHO = Max I ter × (nlog(#E) + 2n + const). The
computational complexity of EHO algorithm is then
O(Max I ter × nlog(#E)).
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Fig. 3 Gaussian distribution in interval x ∈ [−5, 5]

4.3 Mutation based on Gaussian and Cauchy
distributions

Evolutionary algorithms are known to have limited poten-
tial to solve very complex real-world problems (Kechid and
Drias 2020). One possible way to strengthen their perfor-
mance and to allow them to escape from local optima is to
introducewithin the algorithm self-learning strategies (Wang
et al. 2020) that have proved recently their usefulness. Gaus-
sian and Cauchy distributions are two operators used for that
purpose.

4.3.1 Mutation based on Gaussian operator

The theoretical basis of Gaussian mutation (Jakubik et al.
2021) is based on the Normal density probability function
defined inEq. 19 anddepictedwith its cumulative distribution
function in Fig. 3.

P(x) = 1

2

(
1 + er f

(
x − μ

σ
√
2

))
(19)

μ represents the mean, σ the standard deviation and er f the
error function, which is defined in Eq. 20.

er f (x) = 2√
�

∫ x

0
e−t2 .dt (20)

4.3.2 Mutation based on Cauchy distribution function

Similarly, the Cauchymutation operator (Paiva et al. 2017) is
based on theCauchy distribution function presented in Eq. 21
and shown with its cumulative function in Fig. 4.

P(x) = 1

2
+ 1

�
arctan

(
x − x0

γ

)
(21)

DSLAOA and DSLEHO

The designed deep self-learning on AOA and EHO are
called respectivelyDeepSelf-LearningAOA(DSLAOA) and
Deep Self-Learning EHO (DSLEHO). In what follows, the
approach is detailed for AOA. The mutation operators are
integrated in AOA after the fourth step of the algorithm
between the intensification and the diversification phases.
The matriarch of each pod is deeply improved using Eq. 22
expressed in terms of two random individuals of this pod.
In addition, a new parameter called Depth is introduced to
define the depth of learning. For EHO, The matriarch of each
clan is deeply improved using the same equation.

xtnew,pmatriarch
= MO × (xtp,rand1 − xtp,rand2) + xtpmatriarch

(22)

MO corresponds either to Gaussian Mutation Operator or
Cauchy Mutation Operator. Algorithm 6 outlines the Deep
Self-Learning algorithm.

Algorithm 6 Deep Self-Learning for AOA and EHO
input: Depth parameter, Solution S, Solution Dimension k
output: Solution S after improvement
1: for i = 1 to Depth do
2: for j = 1 to k do
3: Calculate Snew[ j] by applying Equation 22 for current k.
4: end for
5: if Snew is better than S then
6: S = Snew
7: end if
8: end for
9: Return S
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Fig. 4 Cauchy distribution in interval x ∈ [−5, 5]

4.3.3 Analysis of DSLAOA algorithm complexity

The computational complexity of Algorithm 6 depends
greatly on the depth parameter Depth. This parameter
involves adding a loop to AOA to repeat applying Eq. 22
to the matriarch of each pod of the population. The computa-
tional complexity of DSLAOA is then obtained by adding
to the complexity of AOA the operations of the intro-
duced loop, that is #Clans × #pods × Depth. It is then
O(Max I ter(nlogn + #Clans × #pods × Depth), Which
is at worst O(Max I ter × nlogn × Depth).

The Depth parameter, as its name suggests, is supposed
to be a large number that allows the improvement of the
best solution due to several executions of the mutation oper-

ators (GAUSS or CAUCHY). Accordingly, the complexity
of DSLAOA is more likely to be greater that that of AOA.

4.3.4 Analysis of DSLEHO algorithm complexity

With similar reasoning as that done for the computational
complexity calculation of DSLAOA, we obtain that the com-
putational complexity of DSLEHO algorithm is at worst
O(Max I ter × nlog(#E) × depth).

5 Adaptation of DSLAOA and DSLEHO for
Covid-19 EMS transportation

In this section, the Covid-19 EMS transportation problem
is described and formulated mathematically. Thereafter, the
adaptation of DSLAOA and DSLEHO for the issue is pre-
sented.

5.1 Related work

Ambulance fleet management is an essential tool to avoid
severe problems in emergencymedical services (EMS).Early
studies have been undertaken for the issue of the emergency
vehicle dispatching problem with different static approaches
based among others on the minimization of the total travel
time in the system, the priority of the call and the first come
first served strategy (Bandara et al. 2014; Lee 2017). On
the other side, the covering demand problem has also been
investigated using static models. These approaches are well
reported in a recent survey (Belanger et al. 2019), which
focuses on operations research (OR) approaches applied to
EMS. Researchers are still interested in this issue as it can be
applied to fire departments, police stations and human rescue
in natural disasters such as earthquakes. Very recent works
(Belanger et al. 2020; Usanov et al. 2019) and (Carvalho
et al. 2020) proposed new methods based on OR strategies
such as Markov decision process and heuristic information.
Interesting case studies were realized for Amsterdam and
Lisbon.

As far as we know, few studies have been dedicated to
integrate the ambulance dispatching and the demand cover-
ing problems jointly in the samemodel. Except thework held
in Ibri et al. (2012), the majority of the efforts have adopted
OR approaches with simple heuristics. None of the previous
works have used sophisticated bio-inspired approaches such
as DSLAOA or DSLEHO. Also, none of them have explored
the decomposition of the territory into sub-territories with
a data science technique such as the OPTICS clustering
method.
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5.2 EMS problem formulation

The main target of the problem is to assign an ambulance
to each emergency call so that there is no unanswered call
in due time. To tackle the issue, the problem is modeled as
follows.

• The day is a sequence of several periods of times p, rep-
resenting respectively the calls arrival times.

• A listC of the calls that arrive at each period of time. The
calls are specified by their positions and their priority.

• A list S of stations defined by hospital positions.
• Each station contains a list A of ambulances, among them
only Z ambulances are available.

• A list E of edges representing the distance between a call
c ∈ C and a station s ∈ S.

• The travel time tas that keeps an ambulance as belonging
to Station s busy is expressed by Eq. 23.

tas = 2 ×
(
Unit Per Hour × Distance(as, c)

vs
+ p

)
(23)

c is the call to which as is responding. vs represents the
emergency vehicle speed (in km/h) and Unit Per Hour is
the number of time units in 1h. p represents the time it takes
to deal with the emergency and distance(c, s) is the spheri-
cal distance between two geographical points calculated by
Eq. 24.

distance(c, s) = 2 × arcsin√

sin

(
δc − δs

2

)2

+ cos δc × cos δs × sin
(γ

2

)2 × R

(24)

δ and γ represent, respectively, the radians of the latitude
and longitude of each point and R the earth radius. Based on
these assumptions, the problem can be defined by the multi-
objective function of Eq. 25.

F = Obj1 + Obj2 + Obj3 (25)

Obj1 is to minimize the predicted travel time, which can be
expressed as:

∑
j∈S

∑
i∈C ti, j × xti, j

Obj2 is to minimize waiting calls, which can be expressed
as:∑

i∈C qti
Obj3 is to minimize unserved priorities, which can be

formulated as:∑
i∈C Priori t yi × qti

where:

xti, j =
{
1 if an ambulance from Station j is assigned to Call i at time t

0 otherwise

qti =
{
1 if Call i is waiting for an assignment of an ambulance

0 otherwise

These objective functions are subject to the following con-
straints:

1. Assignment uniqueness:
∑

i∈C xti,a + ∑
j∈C xtj,a = 1.

2. Reachability constraint: E(i, a) �= φ where i represents
the position of the incoming call and a an ambulance
assigned to i .

5.3 Solution description

A solution S is a sequence of sub-solutions, where each sub-
solution xi represents a pair of points (ci , a j ), ci belongs to
C and a j to an ambulance of Station j . A sub-solution (Call,
Ambulance) is characterized by its geographical position
(Longitude, Latitude). AOA, DSLAOA, EHO and DSLEHO
deal with the update of the solution using arithmetic opera-
tors. Adapting these operators to the current solution consists
in updating the latitude and longitude of the call and the
ambulance of each sub-solution.

5.4 DSLAOA and DSLEHO for Covid-19 EMS
transportation

The Covid-19 EMS problemwe are dealing with is dynamic,
that is, the emergency calls arrive in real-time at differ-
ent period of time. For this purpose, the system updates
the data (Covid-19 incoming calls and occupation time of
ambulances) at each period of time. When calls arrive and
ambulances are released, the developed algorithms calculate
the best solution consisting in an assignment of an ambu-
lance to a call respecting the multi-objective fitness function
defined in Eq. 25. Algorithm 7 highlights the dynamic aspect
of the approach that addresses DADECC-COVID19 prob-
lem.

Algorithm 7 DSLAOA and DSLEHO for DADECC-
COVID19
input: Empirical Parameters of DSLAOA/DSLEHO, Dataset and List

of different Unit-of-time
output: Solution S
1: for each Unit-of-Time t do
2: Update Dataset
3: incoming-calls = unsatified-calls[t-1]+Dataset[t]
4: update occupation time of ambulances
5: update the list of available ambulances of each hospital
6: Launch DSLAOA/DSLEHO
7: Best Solution= DSLAOA/DSLEHO (incoming-calls, available

ambulances, empirical parameters)
8: end for
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6 Experiments

QOPTICS is designed tohelp solving theNP-hardDADECC-
COVID19 problem. An application has been developed to
simulate the case of EMS transportation of KSA in the con-
text of Covid-19 crisis. QOPTICS is used in a first phase of
the program to locate the zones that condense an important
number of hospitals. Also, the emergency calls have been
clustered in order to treat the issue in one local region and
thus to reduce this way the complexity of the problem solv-
ing. Once, these regions are identified, DADECC-COVID19
has been addressed using the intelligent methods DLSAOA
and DSLEHO presented previously.

6.1 Datasets construction

The objects to be clustered are the KSA hospitals and the
resulted outcome is the spatial clusters representing dense
regions of hospitals. The dataset is built using the data infor-
mation available on the Open Data portal of Saudi Arabia
(2021). The data have undergone a preprocessing step where
redundant data, maternity centers and mental patient centers
were removed and GPS position of each hospital according
to Google Maps was added. This way, an instance of the
dataset is composed of a hospital and its geographic coordi-
nates. As we are dealing with geolocation data, Eq. 24 was
used to calculate the distance between two hospitals. The
dataset containing the distances was generated to be used as
input for QOPTICS.

The second dataset provides emergency calls we gener-
ated on the basis of the highest number of infected cases
per day in Rami (2021). Figure 5a presents the evolution
of the cases of Covid-19 pandemic noted until August 3,
2021. The peak encountered happened on June 17, 2020
with 4919 new cases. The emergency calls were built with
these cases while respecting their distribution in their region
as depicted in Fig. 5b. These calls are represented by their
region, their geographical position and a priority of call as
(Region, (Longitude, Latitude), Priority). The datasets we
built can be found in Datasets for DADCC (2021).

6.2 Experimental results

The performed experiments consist of two parts. First, we
present the clustering results to validate QOPTICS and then
the outcomes of the execution of DSLAOA and DSLEHO
applied to Covid-19 emergency transportation.

6.2.1 Clustering results

As all hospitals should be exploited for hosting the call-
ing patients, outliers are unauthorized. Therefore, MinPts
is set to 1. To fix eps the distance that determines the

Fig. 5 Dataset construction

Table 1 Parameters ’ setting for clustering hospitals

MinPts 5 10 15 20 25 30 35 40

eps 144 119 108 98 91 81 75 72

eps-neighbors, various tests were performed on values of
MinPts (the number of hospitals in the eps-neighborhood)
ranging from 5 to 40km by step equal to 5. The experimental
outcomes are shown in Table 1.

The best setting is the one that minimizes both the num-
ber of clusters and eps in order to make the calls positions
close to the hospitals. According to the results presented in
Table 1, the most appropriate setting would be eps = 15km,
which allows the formation of 108 clusters. The dispersion
of the 108 clusters on the KSAmap is shown in Fig. 6a. Each
cluster is represented by a distinct color. The reachability
plot resulting from clustering with the best parameterization
found is depicted in Fig. 6b, which shows the structure of
the data in clusters with different densities. The correspon-
dence between the representation of the 50th cluster (which
includes 43 hospitals) on themap and on the reachability plot
is illustrated in Fig. 7.
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Fig. 6 Hospitals clustering with MinPts = 1 hospital and eps =
15km

Fig. 7 Amapping of a hospitals cluster between its geographic position
and the reachability plot

The second set of experiments concern the clustering of
the Covid-19 emergency calls. As for hospitals clustering,
we varied eps from 5 to 40 by step = 5 and tested the algo-
rithm to tune this parameter. The results of the experiments
are reported in Table 2. According to these outcomes, the
clustering of the 4919 emergency calls that seems the most
suitable is obtained with Minpts = 1 and eps = 15, which
correspond to 1237 clusters. Figure 8a and b shows respec-

Table 2 Parameters ’ setting for clustering emergency calls

MinPts 5 10 15 20 25 30 35 40

eps 4210 2619 1237 518 248 124 80 63

Fig. 8 Calls clustering with MinPts = 1 hospital and eps = 15km

Fig. 9 Amapping of a calls cluster between its geographic position and
the reachability plot

tively the clusters in the geographic map and the reachability
plot. Themapping between a cluster and the reachability plot
is depicted in Fig. 9.
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Table 3 Empirical parameters of deep self-learning AOA

Population size 60

Number of clans 5

Number of pods per clan 2

Number of orcas per pod 6

Wave length L 10

Wave period T 1000

fmin 0

fmax 1

The maximum number of iterations 20

The learning depth 100

Table 4 Empirical parameters of deep self-learning EHO

Population size 150

Number of clans 15

Number of individuals per clan 10

α 0.6

β 0.8

The maximum number of iterations 50

The learning depth 100

6.2.2 Results of deep self-learning AOA and EHO

The empirical parameters of AOA and EHO and the depth
parameter of the Deep Self-learning have been first tuned.
The values of these parameters for AOA are shown in Table 3
while those of EHO are presented in Table 4.

Recall that the Deep Self-Learning framework is based
on two mutation operators: Cauchy and Gaussian. The algo-
rithms that exploit the Cauchy operator are called DSLAOA-
C and DSLEHO-Cwhile the algorithms that are based on the
Gaussian operator are called DSLAOA-G and DSLEHO-G.
For better describing the dispatchingmechanism,we focused
on the region with the largest cluster of calls. the following
tasks illustrate the whole process.

Step 1. The ambulance base formation.
Each cluster of hospitals is represented by a centroid to form
a base. The resources of hospitals in the same cluster are
grouped together and shared between them. Thus, the cen-
ter of gravity of each hospital cluster is used to represent an
ambulance base. Figure 10 takes as example the blue clus-
ter of 37 hospitals whose center of gravity is estimated at
(Latitude: 20.44837719, Longitude: 40.879243798).

Step 2. Emergency calls assignment to ambulances bases.
In order to decentralize and parallelize the dispatching sys-
tem to different KSA regions, it was necessary to distribute a
certain number of bases per emergency call cluster. For this
purpose, the databases and call clusters have been grouped
together. As the dispatching at the level of the different clus-

Fig. 10 Representation of each cluster of hospitals by an ambulance
base

Fig. 11 Zoom in on the largest cluster of emergency calls

Fig. 12 Positions of the ambulance bases and the emergency calls of
the prominent cluster

ters is independent and carried out in parallel, we have chosen
to treat the largest cluster shown in pink in Fig. 11. Figure 12
shows the result of regrouping the bases and emergency calls
of the prominent cluster, this corresponds to 675 calls and 15
bases.

Step 3. DSLAOA/DSLEHO experimental results on the
prominent cluster.
This step provides the results of the execution of DSLAOA/
DSLEHO on the largest group (Calls, Ambulances). First the
experiments undertaken on the parameter depth are exhib-
ited followed by the outcomes yielded by these algorithms.
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Fig. 13 Evolution of DSLAOA’s overall fitness with different Depth
values

Fig. 14 Evolution of DSLAOA’s execution time with different Depth
values

A comparative study with a state-of-the-art method is per-
formed at last.

Step 3.1. Impact of the parameter Depth.
In this part, we carried out experiments on the impact of the
Depth parameter. We fixed the number of ambulances to 5
per base, and varied the Depth value in [50, 100, 200].

The influence of theDepth parameter on DSLAOA-C and
DSLAOA-G in terms of performance and execution time are
illustrated in Figs. 13 and 14, respectively. Figure 14 shows
that the greater value of Depth the higher execution time for
all the DSLAOA algorithms. However, Fig. 13 reveals that
Depth = 100 performs the best results in almost all the time,
with very few instances where its performance is equal to the
onewithDepth equal to 200. Consequently, we found out that
the optimalDepth value is 100 in both terms performance and
time execution.

Figures 15 and 16 illustrate the impact of Depth variation
on DSLEHO-C and DSLEHO-G in terms of performance
and execution time, respectively. Figure 16 shows that as for
the DSLAOA results, the execution time increases with the
growth of Depth value. While from Fig. 15, it appears that
Depth = 100 andDepth = 200 perform the best results, with
a negligible better fitness with depth = 200 until the 100th

Fig. 15 Evolution of DSLEHO’s overall fitness with different Depth
values

Fig. 16 Evolution of DSLEHO’s execution time with different Depth
values

time unit. Then, from time unit 100 to 144, DSLEHO-C with
Depth = 100 and 200 fluctuate in the same ranges and are
equivalent. Thus, it comes out that a Depth value set to 200
does not improve sufficiently EHO performance to cover its
growing time consumption. Therefore, setting Depth at 100
appears to be the best performance versus time ratio.
According to these experiments concerning both DSLAOA
and DSLEHO, we set the depth to the best found value (100)
for the remainder of the experiments.

Step 3.2. Comparing DSLAOA/DSLEHO with their origin
models.
Original AOA and EHO as well as their Deep Self-
Learning versions (DSLAOA-C, DSLAOA-G, DSLEHO-C,
and DSLEHO-G) are compared on the basis of their exe-
cution time for the dispatching problem with 5 and 10
ambulances per bases.

Figures 17, 18, 19, and 20 show the execution time of
AOA and EHO and their respective enhanced versions of
deep self learning with both Cauchy and Gaussian mutation
operators when dealing with 5 and 10 ambulances per base.
It is clear that the deep approaches take much longer time
than the original version of both AOA and EHO algorithms.
These results reflect the accuracy of the theoretical study of
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Fig. 17 Execution time of AOA and its improvement over 144 time
units with 5 ambulances

Fig. 18 Execution time of AOA and its improvement over 144 time
units with 10 ambulances

Fig. 19 Execution time of EHO and its improvement over 144 time
units with 5 ambulances

Fig. 20 Execution time of EHO and its improvement over 144 time
units with 10 ambulances

Fig. 21 Evolution of overall fitness over 144 time units (24h) with 5
ambulances per base

computational complexity. It shows that the proposed deep
self-learning approaches have a disadvantage compared to
the basic methods because it performs with a higher compu-
tational time (a quantity value of Depth

#orcas for AOA and Depth
#E

for EHO ). However, as long as this time problem remains
polynomial, it can be easily circumvented either by switch-
ing to a GPU-based parallel implementation or by proposing
a quantum approach.

Step 3.3. Comparing the six algorithms with a state-of-the-
art method.
The performances of the six algorithms (AOA, DSLAOA-C,
DSLAOA-G, EHO, DSLEHO-C, DSLEHO-G) were com-
pared with the classical algorithm of the state-of-the-art
(Closest-first policy) (Bandara et al. 2014). The executions
were repeated 3 times on 5 different datasets. The overall
fitness is calculated from the sum of the 3 sub-fitness Travel
time, Unsatisfied calls and Priority of unsatisfied calls pre-
viously normalized between [0, 1] in order to balance the
weight of each sub-fitness. The results of the minimization
of the overall fitness spread over the 144 time units are pre-
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Fig. 22 Evolution of overall fitness over 144 time units (24h) with 10
ambulances per base

Fig. 23 Performances of the different algorithms for “Travel time” base

sented in Figs. 22 and 21. It is clear that in the long termwhen
resources are limited (5 Ambulances per Base), the “Closest-
first” (Nearest) algorithm records the highest fitness function
scores, knowing that the latter should be minimized. When
a large number of Covid-19 calls are received at the center
level, the proposed Deep Self-Learning approaches perform
better. These DSL-based approaches compete with each
other, such that we remark very good results by DSLAOA
(Cauchy and Gauss) up to time unit 79, where DSLEHO
(Cauchy and Gauss) regain the upper hand.

Figure 21 shows over time units, that the Deep Self-
Learning approacheswith the twomutationoperatorsCauchy
and Gauss improve the results obtained by AOA and EHO.
Also, we note peaks at certain units of time: between the 40th
and 60th and from the 118th unit, which corresponds to the
period of high demand (urgent calls). Looking closely at the
performance of the different algorithms, we find that the two
variants of Deep Self-Learning AOA outperform both the
Closest-first approach and the EHO-based approaches with
a slight amelioration for DSLAOAG.

Figures 23 and 24 summarize the performances of the 7
algorithms with respect to “Travel time” on the 144 time
units with 5 and 10 ambulances per base, respectively. From

Fig. 24 Performances of the different algorithms for “Unsatisfied calls”
with 5 ambulances per base

Fig. 25 Performance of the different algorithms for “missed priorities”
with 5 ambulances per base

these figures, we notice that the three AOA-based algorithms
and the three EHO-based algorithms follow the same trend,
which is explained by the common strategy of updating their
solutions. Also, when the number of ambulances is equal to
10,more thanhalf of the “Travel time” scores recordedduring
the 144 units of time by the Algorithm Nearest (closest-first
policy) vary over a considerably large interval, which denotes
an inability to provide solutions in a more or less stable man-
ner unlike the other approaches.

Figures 25 and 26 represent the statistical distributionwith
boxplot of Unsatisfied calls over the 144 time units. Clearly
with 10 ambulances there are enough ambulances per hos-
pital to cover all incoming calls. On the other hand, for 5
ambulances, we note that DSLAOAC represents the method
which achieves the best scores in terms of the number of
“Unsatisfied calls”, the smallest in the long term.

As the number of ambulances = 10 yields no “Unsatis-
fied call” with the different compared approaches, Fig. 27
also presents no “missed Priorities”. However Fig. 28 shows
that Nearest algorithm does not prioritize the choice of the
emergency calls and therefore obtains the worst results. Con-
cerning the approaches based on AOA and EHO, it is clear
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Fig. 26 Performances of the different algorithms for “Travel time”with
10 ambulances per base

Fig. 27 Performances of the different algorithms for “Unsatisfied calls”
with 10 ambulances per base

Fig. 28 Performances of the different algorithms for “missedPriorities”
with 10 ambulances per base

that they take into account the impact that the priority of emer-
gency calls can have. Nonetheless, we note that the ranges
of variation of EHO, DSLEHOC, and DSLEHOG are lower
than the others which means better results for this sub-fitness
function.

7 Conclusion

In this paper, a quantum algorithm for the Ordering Points
To Identify the Clustering Structure is designed. Its compu-
tational complexity is calculated and is shown to be reduced
relatively to its classical counterpart. Experiments have been
performed for an application of emergency transportation
consisting in dispatching ambulances and covering urgent
calls in case of Kingdom of Saudi Arabia during Covid-19
crisis. With the aim of gaining scalability for the problem
solving method, clustering hospitals and clustering emer-
gency calls have been performed in order to distribute the
problem solving execution on the different clusters. First the
parameters MinPts and eps were tuned by experiments for
both clusterings. The obtained results helped to undertake
the second part of the study very efficiently.

Afterwards, to cope with the hard issue of EMS trans-
portation, we have proposed four novel algorithms, namely
DeepSelf-LearningOrcasArtificialAlgorithmusingCauchy
operator (DSLAOA-C), Deep Self-Learning Orcas Arti-
ficial Algorithm using Gaussian operator (DSLAOA-G),
Deep Self-Learning EHOusingCauchy operator (DSLEHO-
C) and Deep Self-Learning EHO using Gaussian operator
(DSLEHO-G). A second set of experiments was carried out
on the real life EMS transportation. The empirical parame-
ters were first fixed by extensive experiments prior to test the
performance of the proposed methods. Results proved the
superiority of DSLAOA-C on both DSLAOA-G and orig-
inal AOA for the three objectives. The integration of the
Gaussian mutation operator has not brought improvement
to original AOA as it was expected. Similar outcomes have
been observed for DSLEHO-C and DSLEHO-G and original
EHO. And when comparing DSLAOA-C and DSLEHO-C,
we notice a better outcome for DSLAOA-C. At last, the
most significant result is that all the proposed algorithms
outperform the state-of-the-art algorithm namely nearest in
the illustrated curves.

For future work, we will integrate other quantum sub-
routines and operators in the proposed quantum clustering
algorithm in order to further improve its overall efficiency.
In this work, OPTICS was experimented using Python Pro-
gramming Language as it computes the same results as
QOPTICS. In order to appreciate the gained calculation
time in practice, we plan to code QOPTICS using Qiskit,
the language proper to quantum computing that needs more
investigation. Moreover, we will extend our research to
develop other deep learning strategies to solve the Covid-19
EMS transportation problem. Another perspective would be
to test the deep self-learning framework with larger learning
depth parameter value to improve the outcomes performance.
Also Quantum versions of DSLAOA and DSLEHO will be
developed in order to overcome the calculation time. Another
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alternative would be to code the procedures using CUDA and
execute them on a GPU.
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