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Abstract
This paper focuses on the home energy management for a residential prosumager with flexible loads. In particular, three
different types of controllable appliances (shiftable, interruptible, thermostatically controllable) have been considered, each
one with a specific representation of energy consumption profile and a potential discomfort rate for the user. The inherent
uncertainty affecting the main model parameters (i.e., non- controllable loads, solar production, external temperature) is
explicitly accounted for by adopting the two-stage stochastic programming modeling paradigm. The model solution provides
the prosumager with the optimal scheduling of the controllable loads and the operation of the storage system that guarantee
the minimum expected energy procurement cost, taking into account the overall discomfort. A preliminary computational
experience has shown the effectiveness of the proposed approach in terms of cost savings and the advantage related to the use
of a stochastic programming approach over a deterministic formulation.

Keywords Home energy management · Stochastic programming · Controllable appliances · User discomfort modeling

1 Introduction

In recent years, home energy management (HEM) has
attracted considerable attention as the residential sector
accounts for a significant portion of the total energy con-
sumption. Solar power generation represents a promising and
sustainable alternative to reduce the household consumption
and the carbon footprint. Supported by continuously decreas-
ing system costs and government incentives, Photovoltaic
(PV) systems are nowadays widely applied, especially at the
residential level. An annual average growth rate of about 50%
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has been observed between 2010 and 20201 confirming the
PV generation as one of the key energy technologies in the
energy transition.

The possibility of consuming the self-produced energy
has changed the role of the end-users in the energy sup-
ply chain. “Prosumer” is the term used to designate this
new entity. PV systems are typically integrated with storage
devices to mitigate the effects of the intermittent and unpre-
dictable nature of solar production. Decoupling production
from consumption, storage systems help to maximize the
self-consumption, reducing the prosumer’s electricity bill.
In addition to new energy solutions, the wide diffusion of
“smart” devices, which can be easily scheduled and con-
trolled, allows the definition of more efficient load profiles
and the implementation of demand response programs. For
this reason, prosumer’s role can go a step further, becoming
now “prosumager,” thanks to the possibility to effectively
plan and manage the local energy resources exploiting the
flexibility of the controllable loads (see Sioshansi 2019;
Lee and Choi 2020). As a further evolution in the energy
sector, new forms of coalitions of heterogeneous end-users
(simple consumers, prosumagers) are emerging worldwide.
These aggregations can have different characteristics on the

1 https://www.seia.org/solar-industry-research-data.
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basis of the availability of resources, like microgrids (Werner
and Remberg 2008) or Virtual Power Plants (VPP) (Martin-
Martínez et al. 2008), and aim at creating a sort of cooperative
system in which single users have economic benefits w.r.t.
the standard retailers market (Ferrara et al. 2021). A coalition
aggregates a number of users to act as a single operator in
the power market and to fully exploit the available resources.
The optimal management and operation of these emerging
forms of aggregation pose new challenging decision prob-
lems. Just to name a few, we mention the management of
shared resources (Beraldi et al. 2018), the definition of the
optimal tariffs for the coalition members (Violi et al. 2018;
Ferrara et al. 2021), the interaction between the aggregation
and the power grid (Heredia et al. 2018). Considering all the
mentioned problems, prosumagers play a crucial role and the
efficient and effective management of the consumption pro-
file and of the available resources becomes of fundamental
importance also at the energy coalition level.

In this paper, we deal with the optimal HEM problem
faced by a prosumager that can control part of the loads (the
flexible ones) and manage the available resources eventually
exchanging the energy produced locally with the distribution
grid. Smart meters enable the real-time monitoring of energy
production and consumption and the activation of household
appliances according to the scheduled plan. The final aim
is the minimization of the total electricity procurement cost
taking also into account the user’s discomfort to shift flexible
appliance load.

Due to its practical relevance, many contributions related
to the HEM problem have been recently proposed, although
amuch greater effort is still required in defining optimization
models including real features in order to improve the accu-
racy of the solutions provided (Benetti et al. 2016). Most of
the contributions propose deterministic formulations that dif-
fer from the real features that aremathematically represented.
Typically two types of load are considered: non-controllable
and controllable. While the former must be activated at fixed
hours of the day (e.g., refrigerator) or their activation can-
not be scheduled (e.g., TV, lighting), the latter may operate
at any time within a time interval specified by the end-user
(e.g., washingmachines, dryers) or the operating cycle can be
intermittent (e.g., electric vehicle). Thus, depending on the
electricity tariffs, it may result convenient to shift or to inter-
rupt the use of some flexible appliances. Martinez-Pabon et
al. proposed in Martinez-Pabon et al. (2018) a deterministic
model for the optimal scheduling of the flexible appliances
aimed atminimizing the total energy cost. Yahia and Pradhan
extended in Yahia and Pradhan (2018) the model by incorpo-
rating the consumer’s preference by a bi-objective function
where the first term accounts for the energy cost, whereas
the second one for the “inconvenience”, measured in terms
of disparity between the preferred and the optimal sched-
ule. Some other authors consider the inconvenience issue by

modeling the consumer’s preferences as a constraint (Sou
et al. 2011). In Wang et al. (2015), the robust-index method
is proposed for the household load scheduling in order to
handle the uncertainty due to the customer behavior while
minimizing the comfort violation.

Some contributions integrate the scheduling with the opti-
mal management of local resources. We mention the recent
paper by Belli et al. 2019 where the authors propose a
mixed-integer problem that also accounts for the manage-
ment of thermal equipment. In Althaher et al. (2015), the
authors deal with the scheduling of appliances and of energy
resources under user’s comfort level constraints by means
of a mixed-integer nonlinear programming model. A home
energy consumption model for smart grid households with
energy storage systems under variable electricity tariffs is
proposed in Rajasekharan and Koivunen (2014). Recently,
in Li et al. (2018) the authors proposed a quality of expe-
rience (QoE)-aware smart appliance control algorithm for
the smart HEM system with renewable energy sources and
electric vehicles in order to reduce the peak load and the
overall procurement cost. A hierarchical deep reinforcement
learning method is proposed in Lee and Choi (2020) for the
optimal scheduling of smart home appliances and distributed
energy resources.

Few papers acknowledge the importance of explicitly
accounting for the inherent uncertainty affecting the main
problem parameters. We cite the contribution by Chen et al.
who proposed in Chen et al. (2013) a stochastic schedul-
ing technique which involves an energy adaptation variable
β to model the stochastic consumption patterns of the vari-
ous household appliances. Correa-Florez et al. proposed in
Correa-Florez et al. (2018) a stochastic programming model
for the optimal management of the prosumer’s resources
without accounting for the scheduling of the controllable
loads. For further references on HEM contributions we
remind to the recent survey in Leitão et al. (2020).

Our paper contributes to the scientific literature by propos-
ing a two-stage stochastic programmingmodel that integrates
the optimal management of the available resources with the
scheduling of heterogeneous controllable loads. This work
extends the preliminary formulation proposed inBeraldi et al.
(2019) by including and modeling the presence of three
kinds of controllable appliances, and for each of them defin-
ing a specific regret measure. The aim is the minimization
of the overall cost, without exceeding a certain discomfort
level for each category of controllable appliances. An exten-
sive computational experience has shown how the flexibility
offered by the decision support model allows a significant
cost reduction and how the attitude of the user for an even-
tual discomfort has an impact from an economic point of
view.

The rest of the paper is organized as follows. Section 2
introduces the problem and the stochastic formulation. Sec-
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tion 3 is devoted to the presentation of the numerical results
carried out by considering a real case study. Concluding
remarks and future research developments are discussed in
Sect. 4.

2 Problem definition and formulation

Weconsider a residential prosumager equippedwith a system
of PV panels and a battery energy storage (BES) device of
given sizes.

The prosumager’s loads are classified into uncontrollable
and controllable (see Fig. 1). Oven, refrigerator and lighting
belong to the first group: they are loads that are not deemed
for control and define the baseline demand assumed to be
uncertain.

The controllable loads can be further divided into three
sets: shiftable noninterruptible (SNI), shiftable interruptible
(SI) and thermostatically controllable. The first set contains
appliances that can be scheduled within a certain time win-
dow, but whose operation cycle cannot be interrupted once
started (for example, washing machine). The second set
includes appliances whose operation can be interrupted as
long as a given amount of energy is supplied during a spec-
ified time slot, e.g., electrical vehicles (EV). Finally, in the
third category there are appliances, such as the air condition-
ing system (AC), that can be switched on/off or supplied at
a fraction of the nominal power according to the parameter-
ization of a thermostat.

Flexible loads allow the prosumager to control, to some
extent, the energy consumption patterns by properly defining
the time of operations. For example, dishwasher can operate
during hours with higher solar energy supply or when the
electricity rates are lower.

The integration of the scheduling decisions makes the
overall problem more involved entailing the use of binary
decision variables. Moreover, the problem is clearly affected
by uncertainty since the main input data, e.g., the solar pro-
duction, the temperature used to control the thermostatic
loads, are not known being influenced by the meteorolog-
ical conditions.

We model the HEM problem with flexible loads by
the stochastic programming paradigm and we represent the
uncertain parameters by random variables defined on a given
probability space (�,F , IP).Under the assumption of discrete
distributions, we consider a setS = {1, . . . , S} of future real-
izations, “scenarios”, each one occurring with a probability
π s .

The problem is solved every day with updated data and
provides the optimal operation of the household resources
and the scheduling of the flexible loads for the next day.
We assume that the daily horizon T is divided in time steps
(typical hours or fractions) t = 1, . . . , T and we denote by

Dts the base load at time t under scenario s. As for the flexible
appliances, some preference data, eventually changing from
day to day, may be specified.

We denote by K = {1, . . . , K } the set of the SNI loads.
For each appliance k ∈ K, we denote by [lk, uk] the comfort
time window and by stk the preferred starting time. More-
over, we assume that the operation cycle is divided in nk
stages andwe denote by dkq the required energy at each stage
q = 1, . . . , nk . This general representation (see, for exam-
ple, Soares et al. (2020)) allows to more faithfully model the
actual operation cycle overcoming the unrealistic assumption
to supply an appliance with a constant amount of energy for
service completion. The activation of some SNI appliances
can be constrained by precedence relations. For example,
the operation of a clothes dryer follows that of the wash-
ing machine. To mathematically represent these relations,
we introduce a binary parameter fki taking the value 1 if
load k cannot start before load i (k, i ∈ K), and 0 otherwise.
Moreover, we denote with gki the minimum number of time
steps of delay (if any) between the operation of k and i .

We further denote by J = {1, . . . , J } the set of the SI
appliances. For each j ∈ J the prosumager can specify a
working time window [l j , u j ], during which a given amount
of energy, denoted by d j , should be supplied.

As for the thermostatically controllable loads, we model
an AC system. Its operation (see, for example, Lee and Choi
2020; Liu et al. 2019; Soares et al. 2020) depends on some
specific environmental and technical parameters, represented
by the coefficients α and β, and by the uncertain outdoor
temperature denoted, for each time step t and scenario s, by
θO
ts .
The proposed model takes into account the possibility of

limiting the discomfort due to the appliance scheduling. Due
to the nature of the loads, we consider different regret mea-
sures and we assume a maximum cumulative dissatisfaction
value for each type. In particular, for the appliances k ∈ K
we define a unit regret rate rk for each time step shifting
from the preferred starting time stk . As for the SI appliances,
the regret is related to the number of time steps to complete
the operation cycle, assuming that a shorter time is prefer-
able. Finally, for the AC we model the user’s regret in terms
of deviation of the indoor temperature from a user-defined
reference value �ref

t for each time step t .
For each time step t , the overall demand is satisfied at least

partially by the production from the PV panels, denoted, for
each scenario s, by Rts . Unused energy can be stored in the
BES and used later or eventually fed back, if convenient. We
denote by C the nominal capacity of the BES and by ηin and
ηout the efficiency rate for energy injection and withdrawal.
Moreover, we indicate by ϕLB and ϕUB the BES operative
range in terms of minimum and maximum percentage of the
nominal capacity. We assume that the prosumager belongs to
an energy aggregation and that can purchase and/or selling
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Fig. 1 Overview of the prosumager’s home loads and resources

electricity at known rates, denoted by Pt andWt , respectively
(Ferrara et al. 2021).

The main decisions in the proposed formulation refer to
the scheduling of the different types of household appliances,
the management of the local resources and the eventual pur-
chase (or sale) of energy from the aggregation. While some
choices should be taken in advance without knowing the
realization of the random parameters, other decisions can
be postponed and used as corrective actions to guarantee
the satisfaction of the stochastic constraints under each sce-
nario. In the proposed model, first stage decisions refer to
the scheduling of the flexible loads. In particular, for each
k ∈ K we denote by δkqt the binary variable taking value 1
if the load appliance k is “on” in the stage q at time t and
0 otherwise. Similarly, for the appliance j ∈ J , the binary
variable γ j t is 1 if the SI appliance is “on” at time step t .
Finally, we denote by E jt the energy amount reserved to j
at time t .

Second stage decisions are scenario-dependent actions.
They refer to the AC operation, the management of the stor-
age system and the buy and selling decisions. In particular,
for each scenario s and time step t , we denote by E AC

ts the
amount of energy consumed for regulating the indoor tem-
perature denoted by θ I

ts . As regards the BES, we indicate
by SLts the state of charge and by SI Nts and SOUTts the
amount charged in and discharged from the system at time t
under scenario s. Finally, xts and yts represent the amount of
energy to purchase from and sell to the coalition at time step

t under scenario s, respectively. The proposed mathematical
formulation is reported below.

min z =
S∑

s=1

π s
T∑

t=1

(Pt xts − Wt yt ) (1)

s.t .

xts + SOUTts − SI Nts − yts = Dts − Rts

+
K∑

k=1

nk∑

q=1

dkqδkqt +
J∑

j=1

E jt + E AC
ts

∀t ∈ T ,∀s ∈ S (2)

δk(q+1)(t+1) ≥ δkqt

∀k ∈ K, q = 1, . . . , nk − 1, lk ≤ t ≤ uk − 1 (3)
uk∑

t=lk

δkqt = 1 ∀k ∈ K, q = 1, . . . , nk (4)

uk−nk+1∑

t=lk

δk1t = 1 ∀k ∈ K (5)

nk∑

q=1

δkqt ≤ 1 ∀k ∈ K, lk ≤ t ≤ uk (6)

δk1t ≤
t−gki∑

h=lk

δi1hlk ≤ t ≤ uk, ∀(k, i) ∈ K| fki = 1 (7)

u j∑

t=l j

E jt = d j ∀ j ∈ J (8)
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EMin
j γ j t ≤ E jt ≤ EMax

j γ j t ∀ j ∈ J , l j ≤ t ≤ u j(9)

θ I
ts = θ I

t−1s + α(θO
ts − θ I

t−1s) + βE AC
ts

∀t ∈ T ,∀s ∈ S (10)

θMin
t ≤ θ I

ts ≤ θMax
t ∀t ∈ T , ∀s ∈ S (11)

E AC
ts ≤ E AC,Max∀t ∈ T , ∀s ∈ S (12)

SLts = SLt−1s + ηinSI Nts − SOUTts
ηout

∀t ∈ T ,∀s ∈ S (13)

ϕLBC ≤ SLts ≤ ϕUBC∀t ∈ T , ∀s ∈ S (14)
J∑

j=1

u j∑

t=l j

γ j t ≤ V SI (15)

K∑

k=1

rk |stk −
uk∑

t=lk

tδk1t | ≤ V SN I (16)

S∑

s=1

πs

T∑

t=1

|θ I
ts − θ

ri f
t | ≤ V AC (17)

xts, yts, E AC
ts , θ I

ts, SLts, SI Nts, SOUTts ≥ 0

∀t ∈ T ,∀s ∈ S (18)

δkqt ∈ {0, 1}
∀k ∈ K, q = 1, . . . , nk, lk ≤ t ≤ uk (19)

γ j t ∈ {0, 1} ∀ j ∈ J , l j ≤ t ≤ u j (20)

The objective function (1) aims at minimizing the expected
value of the difference between total cost of energy purchased
and the revenue for energy selling. Constraint (2) represents
the energy balance in each time step t under each scenario
s, by pairing the overall demand with the energy procured
from all the available sources. Conditions (3)–(5) ensure that
the operation cycle of appliance k is performed in exactly nk
consecutive time steps. In particular, with (3) the following
condition is modeled: if the appliance k is “on” at time t and
stage q (< nk), then it must be “on” at time t + 1 and stage
q + 1. The execution of each stage q just once is guaranteed
by (4), while Condition (5) imposes that the appliance must
be activated within its time window. Constraints (6) impose
that the load can be operating in at most one operation stage
in each time period. Constraints (7) model the precedence
relation and the eventual delay between two SN I loads, by
imposing that if the operation cycle of k is conditioned by that
of i ( fki = 1) then k can start at least gki time steps after i .
Conditions (8) assure that the overall demand of the SI loads
will be satisfied within the operating time window. By Con-
dition (9) we impose upper and lower bounds (EMax

j , EMin
j )

on the energy amount absorbed by a SI load if it is active.
Equation (10) models the indoor temperature dynamics,

i.e., the value at the end of time t is a function of both indoor
and outdoor temperatures at t−1 and of the energy consumed
by the AC operation. Parameters α and β denote the thermal

condition surrounding the AC system and its coefficient of
performance (see also Antunes et al. 2020). The modeling of
the temperature dynamics we are considering is suitable for
both heating and cooling mode: the difference is in the value
of parameter β, which is negative when the AC operates
for cooling and positive otherwise. Constraints (11) set the
feasible range for the indoor temperature. By (12) we impose
that the energy devoted to the AC operation cannot exceed
the maximum value allowed for the system (E AC,Max ).

Conditions (13)–(14) model the technological constraints
of the storage system. In particular, (13) states the energy
level balance from one time step to the next one. We note
that for t = 1, the state of charge at previous time is a known
value. Constraint (14) bounds the energy levelwithin its oper-
ative range defined as function of the nominal capacity. The
regret limits for the different sets of flexible appliances are
modeled by means of (15)–(17). By (15) we impose that the
overall regret for the SI loads, measured in terms of number
of activation time steps, cannot exceed a user-defined thresh-
old V SI . Similarly, Condition (16) limits to the value V SN I

the overall regret due to the shifting of the start-up time of the
SN I appliances from the preferred starting time. The regret
related to the indoor temperature is modeled by (17), where
the expected value of the temperature gap from the desired
value for all the day is bounded by a threshold V AC . Finally,
constraints (18)–(20) define the nature of decision variables.

Regret constraints (16) and (17) are clearly nonlinear, due
to the presence of the absolute value operator, but they can
be easily linearized by considering additional nonnegative
variables, ε+

k and ε+
k for the SN I appliances and ϑ s+

t and
ϑ s−
t for the AC system, and Conditions (21)-(26):

K∑

k=1

rk(ε
+
k + ε−

k ) ≤ V SN I (21)

ε+
k ≥ stk −

T∑

t=1

tδkt ∀k ∈ K (22)

ε−
k ≥

T∑

t=1

tδkt − stk ∀k ∈ K (23)

S∑

s=1

πs

T∑

t=1

(ϑ s+
t + ϑ s−

t ) ≤ V AC (24)

ϑ s+
t ≥ θ

I ,s
t − θ

ri f
t ∀s ∈ S,∀t ∈ T (25)

ϑ s−
t ≥ θ

ri f
t − θ

I ,s
t ∀s ∈ S,∀t ∈ T (26)

The mathematical formulation belongs to the class of
mixed-integer linear problems and depending on the number
of considered scenarios the solution process can be compu-
tationally demanding. However, for the test cases considered
hereafter, the use of off-of-the-shelf software is still possible
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Fig. 2 Purchasing prices for the different seasons

Table 1 SN I devices
parameters

Device Time Default Working Hourly energy Regret
Window Starting time Hours Consumption [kWh] Rate

Washing machine 9–13 9 2 {1, 1.2} 1

Tumble dryer 9–15 11 3 {2, 2.4, 1.8} 2

Dish washer 14–17 15 2 {2, 1.5} 0.5

Vacuum cleaner 10–16 15 1 {1} 1

and allows to obtain the optimal solution in a limited amount
of time.

3 Computational experience

In this section, we report on the computational experiments
carried out with the aim of evaluating the effectiveness of the
proposed approach as tool to support the prosumager’s deci-
sions. First, we introduce the case study and then we present
and discuss the numerical results. Themodel has been imple-
mented by integrating GAMS 24.7.12 as algebraic modeling
language, with CPLEX 12.6.13 as solver for mixed-integer
linear problems, andMATLABR20154 for the scenario gen-
eration and parameter setup phases. All the test cases have
been solved on a PC Intel Core I7 7700 HQ (2.80 GHz) with
16 GB of DDR4 RAM.

2 www.gams.com.
3 www.ibm.com/analytics/cplex-optimizer.
4 www.mathworks.com.

3.1 Experimental setting and data

The considered case study refers to a residential prosumager
equipped with a system of PV panels of nominal power of 6
kWp and a Li-Po battery with a nominal capacity of 10 kW.
Other technical parameters of the BES referring to ηin, ηout,
φLB and φLB are set to 0.89, 0.99, 0.2, 0.9, respectively.

Different test cases have been generated by considering
seasonal variations, which have an impact on the expected
baseline demand, the self-production, the external tempera-
ture and so on. In particular, for each season we have run
the model for one reference day, then annual values of costs
have been derived by aggregating and properly scaling the
results. For the sake of simplicity, the elementary time step
has been set to 1 h. However, a different time granularity can
be considered as well.

The purchasing and selling prices are assumed to be
known in advance and vary according to a Time of Use block
structure. In the Italian market, taken as reference, the hours
of each day are typically divided into three blocks (F1, F2
and F3), i.e., peak, intermediate and off-peak. Figure 2 shows
the purchasing prices for the typical reference days.

We have considered 6 flexible appliances, 4 are classi-
fied as SN I loads and 2 as SI ones. Tables 1 and 2 report
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Table 2 SI devices parameters

Device Time Overall energy Max hourly
Window Consumption [kWh] Energy [kWh]

Electric car 1–16 18 2.3

E-bike 8–20 1 0.5

Table 3 AC system operating conditions

Season α β θri f θMin θMax

Spring 0.15 0.85 22 18 26

Summer 0.15 − 0.85 22 18 26

Autumn 0.15 0.85 20 17 23

Winter 0.15 0.85 20 17 23

the main operation characteristics. We have considered one
precedence constraint relating the first two SN I loads. In
particular, the tumble dryer is required to start at least 2 h
after the washing machine.

We have considered an AC system with a nominal power
of 3 kW that can operate in both heating and cooling mode.
The operating conditions for each season are reported in
Table 3.Without any loss of generality, the values of parame-
ters θri f , θMin and θMax have been considered constant over
the day in each season. From an analysis of expected values
of external temperatures, we have assumed that just during
summer days the AC system works in cooling mode, that is
with a negative value of β.

The results reported in the following have been collected
by considering regret thresholds equal to 7, 15 and 60 for the
SN I , SI appliances and the AC system, respectively. These
values have been set by considering an average discomfort
for the end-user. For example, V SN I = 7 means that for the
4 SN I appliances the overall deviation with respect to the
default starting time cannot exceed 7 h. Similarly, the overall
maximum charging time for the SI loads has been set to 1.5
times theminimumvalue. As regards the indoor temperature,
we have allowed an average deviation of less than 3 degrees
for each hour. An analysis of the results for different values
of regret thresholds is reported in Sect. 3.2.

As in any stochastic programming formulation, scenario
generation represents a critical issue that impacts the robust-
ness of the solutions (Beraldi et al. 2010). In our model, the
uncertain parameters refer to the baseline loads, the external
temperature and the PV production. This latter is influenced,
in turn, by the solar radiation and, thus, by themeteorological
conditions (Algieri et al. 2021). Since the problem is solved
on a daily basis, new scenario sets are iteratively generated by
using each time updated and more reliable forecasts. In par-
ticular, for the solar radiation and external temperature, we
have considered random variations in the range of [±5%]

with respect to the forecast values. As for the base load,
starting from the average values computed considering the
hourly consumption of the last month, scenarios are gener-
ated by considering random variations of [±10%]. Figure
3 reports the values of the PV production, baseline demand
and external temperature for each hour in a typical summer
day. Starting from the original tree, the scenario reduction
technique proposed in Beraldi and Bruni (2013) have been
applied to reduce the cardinality of the scenario set. The
results reported hereafter have been collected by consider-
ing for each test case a set of 500 scenarios.

3.2 Numerical results

The problem solution provides the prosumager with the
optimal daily operation strategy by taking into account the
flexibility of the controllable loads. Figure 4 reports the solu-
tion for a typical summer day under a given scenario. We
may observe that, compatible with the time windows, flexi-
ble loads are scheduled during the central hours of the day
when the solar supply is higher. The amount in excess to
demand is either stored in the battery and used in the evening
or fed back to the grid achieving a revenue that impacts on
the daily procurement costs.

At least for the summer day, the self-sufficient rate, com-
puted as the ratio of energy produced over amount consumed,
is very high, highlighting the advantage of the integrated
energy procurement planning and flexible loads manage-
ment.

To further investigate the benefits deriving from the load
flexibility, we have compared the solutions provided by the
proposed model (referred to as FF) with those obtained con-
sidering as controllable only the SN I loads, as proposed in
Beraldi et al. (2019). In this case, both the SI loads and the
AC system are included in the baseline loads. In particular,
the load of the SI appliances is added to the hourly demand
within the corresponding operation time windows and the
indoor temperature has been set to the reference value �ri f .
We refer to this second model where the flexibility is only
partially exploited as FP. Table 4 shows a comparison of the
FF and FP models in terms of procurement daily costs for
the different typical days. The last row reports the yearly cost
considering the number of typical days in each season. As
can be seen from the results, exploiting the flexibility of the
load allows for significant savings. The advantage is more
evident for spring and summer days when PV production is
greater and the prosumer has a greater flexibility in energy
allocation.

Additional experiments have been carried out to inves-
tigate how the variation of the regret thresholds for the
different categories of controllable appliances, impact the
solution. Table 5 reports the procurement cost for the sum-
mer reference day obtained by varying one of the three regret
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Fig. 3 Production, demand levels and external temperature in a summer day

Fig. 4 Operation plan for a summer day

Table 4 Procurement cost [e]
comparison: FP versus FF

Season FF FP

Spring 2.34 4.92

Summer 1.97 4.19

Autumn 5.29 7.54

Winter 12.02 14.54

Year 1959.75 2832.69

thresholds at a time. Similar results have been obtained also
for the other reference days.

As expected, for each category of controllable appliances
a less restrictive regret threshold allows to increase the eco-
nomic benefit. For example, for the SN I loads, we recall that
a value V SN I = 0 states that appliances cannot be controlled
and their starting time is fixed to the standard hour. As we
increase the value of V SN I , a more flexible scheduling can
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Table 5 Solutions for different regret thresholds

V SN I V SI V AC Daily procurement cost [e]

20 3.83

40 2.89

7 15 60 2.17

80 1.85

100 1.85

12 2.18

15 2.17

7 18 60 2.17

20 2.15

22 2.15

0 3.28

2 2.92

4 15 60 2.56

7 2.17

10 2.12

Table 6 Value of stochastic solution (%)

Spring Summer Autumn Winter Year

47% 57% 13% 15% 22%

be obtained achieving higher savings in terms of electricity
procurement cost. The same behavior can be observed for
the other regret thresholds. In particular, for the indoor tem-
perature regret the greater procurement cost variability has

been observed. This analysis outlines the need to find the
best trade-off between economic benefit from the possibility
to control various types of devices and the potential discom-
fort due to the scheduling and/or the operation conditions of
these appliances. Under this respect, the proposed approach
provides valuable support.

3.2.1 Impact of stochastic solution

Additional experiments have been carried out to evaluate the
benefit deriving from the solution of the stochastic formu-
lation with respect to a deterministic counterpart. To this
aim, we have computed the value of the stochastic solution
(VSS for short) (see, for example, Ruszczyński and Shapiro
(2003)). This measure is defined as the difference between
the objective function value of the stochastic model and the
one obtained by solving the same stochastic problemwith the
first-stage variables fixed to the values of the optimal solution
of the deterministic problem, which considers the expected
values of the uncertain parameters. Table 6 reports the rela-
tive VSS expressed in percentage for the different reference
days.

The results show the advantage of the stochastic formu-
lation for each reference day and for the entire year. As
expected, in spring and summer, when the solar production
is higher and more flexibility is allowed, the VSS values are
larger.

The value of explicitly dealing with uncertainty is con-
firmed by a further analysis carried out on an out-of-sample
basis. In particular, we have compared the solution provided

Fig. 5 Out-of-sample analysis
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Table 7 Solution process statistics for the summer day instance

S Before preprocessing After preprocessing
Rows Col. (bin.) Rows Col. (bin.)

1 522 497 (125) 170 344 (95)

50 17, 133 11,228 (125) 5994 10,888 (95)

100 34, 083 22,178 (125) 11, 943 21,637 (95)

250 84, 933 55,028 (125) 26, 883 53,647 (95)

500 169, 683 109,778 (125) 59, 503 107,530 (95)

by the proposed stochastic model with the respect to its
deterministic counterpart. For each reference day, we have
solved the stochastic and the deterministic model and imple-
mented the first stage decisions. Then, on the basis of the real
values observed for the uncertain parameters, an energy bal-
ance has been performed for each time step, by considering
first the available storage system energy level and its resid-
ual capacity. If this adjustment was not feasible, because of
some constraint violation, a second balancing has been per-
formed by buying and selling energy from the grid. After
the energy balancing, costs and eventual revenues related to
implemented decisions have been economically evaluated.
Figure 5 shows the comparison between the stochastic model

and the deterministic one, in terms of overall procurement
cost for each reference day.

Looking at the results, we may notice the clear advantage
deriving from the adoption of the stochastic model over the
deterministic counterpart.

We finally comment on the computational effort that typ-
ically represents the main concern limiting the application
of stochastic formulations. We notice that in our case the
computational burden is quite limited and that off-of-shelf
solvers can be applied to get the optimal solution in a lim-
ited amount of time. In particular, in our experiments we
have used CPLEX with default settings and just one thread.
We point out that in the formulation first-stage linking vari-
ables refer to the scheduling of the flexible loads and are
limited in number. In particular, their maximum number is
T (nkK + J ), but the actual number is lower since outside
the time windows the corresponding variables can be set
to 0. Other reductions come from the eventual precedence
relations. Overall, the number of variables and constraints
before and after the preprocessing phase applied by CPLEX
is reported in Table 7. The results refer to a typical winter
day, but similar performance has been observed also for the
other tested cases. Figure 6 shows the solution time (in sec-
onds) for an increasing number of scenarios and the number
of nodes explored during the application of the Branch &

Fig. 6 Solution time [s] and number of B&C nodes
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Cut algorithm. Looking at the results, we may appreciate the
impact of a more faithful representation of the uncertainty
on the computational time. The increase in the solution time
for a higher number of scenarios is significant but not so rel-
evant: for example, from 250 to 500 scenarios the growth
is less than 300%, making the problem still affordable (less
than 25 min). This is due to the fact that all the binary vari-
ables refer to first-stage decisions and are not related to the
scenario number. Additionally, we outline how the integral-
ity gap at the root node is quite low (about 20%) for all the
reported instances. Finally, even for the largest test case a
good in-sample stability has been observed.

4 Conclusions

The paper addresses the problem faced by a residential
prosumager in the optimal operation of an integrated PV-
BES system by exploiting the flexibility of the controllable
loads. In particular, three main classes of loads have been
considered: shiftable, interruptible and thermostatically con-
trollable, each onewith a specific representation of the energy
consumption profile and a potential discomfort rate for the
user. The proposed stochastic programming model allows to
account for the inherent uncertainty affecting themainmodel
parameters. The solution provides the prosumager with the
optimal scheduling of the controllable loads and the opera-
tion of the BES that guarantee the minimum expected energy
procurement cost, taking into account the overall comfort.

Preliminary computational experiments have been carried
out by considering a real case study and different seasonal
conditions have been evaluated. The results have shown that
significant savings can be achieved when the flexibility of
the controllable loads is exploited. Moreover, by varying
the regret threshold values different solutions can be gained
reflecting a different importance attributed to the user’s com-
fort. The value of the VSS and the out-of-sample analysis
highlight the importance of explicitly taking into account
uncertainty in model parameters.

An interesting line of research would consider the inte-
gration of other technologies that could be present at pro-
sumager’s home.While the model only considers the electric
load, it could be extended to also account for the thermal
demand. In this case, the management of a boiler, eventually
integrated with solar collectors, and a thermal energy stor-
age system could be considered. The integrated configuration
would lead to additional savings contributing in the direction
of designing more sustainable energy solutions.
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