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Abstract
In this paper, we focus on a location-routing problem (LRP) in the dairy industry. This problem consists of locating a cold
storage warehouse, from which vehicles of limited capacity are dispatched to serve a given number of supermarkets with
uncertain service requirements, and determining the order of supermarkets served by each vehicle. First, the LRP is solved by
using a classical approach based on a deterministic model where the service requirements, i.e. customer demands, are defined
through sample means. Second, we propose an indifference zone approach to the LRP. The indifference zone procedures are
specific ranking and selection methods aimed at selecting the best option from a set of alternative configurations. In particular,
they attempt to guarantee the probability of correct choice, while minimising the computational effort. The numerical results
presented in the paper highlight the risk of biased decision making when mere sample means are used in a deterministic
model. In addition, they show the effectiveness of indifference zone approaches to the dairy products distribution activity.

Keywords Location-routing · Demand uncertainty · Indifference zone · Confidence interval

1 Introduction

Managing supply chains represents a major challenge due
to the complexity of interactions among the system compo-
nents, incomplete information available for decisionmaking,
the presence of multiple decision makers pursuing differ-
ent objectives and the dynamics of non-stationary conditions
(von Lanzenauer and Pilz-Glombik 2002). Coordinating
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information and material flows in an effective way is fun-
damental to supply chain management. The coordination
can be realised by using optimisation approaches to sup-
port decisions at strategic, tactical and operational levels.
The strategic level designs the logistics network, including
prescribing facility locations, production technologies and
plant capacities. The tactical level specifies material flow
management policies. Finally, the operational level sched-
ules operations to assure in-time delivery of final products
to customers (Schmidt and Wilhelm 2000). Optimisation
technologies underpin the development of decision support
systems in a wide variety of applications (Barbosa Póvoa
et al. 2017). In particular, a large number of logistics prob-
lems in supply chain management can be faced through the
formulation and consequent solution of mathematical mod-
els, characterised by a set of decision variables, of continuous
or discrete type, in function of which the outcome to opti-
mise is defined. In addition, there exists a set of constraints
to satisfy, which are generally equations or inequalities of
the decision variables. In most industrial sectors, real-world
problems usually lead to large-scale models. We refer the
reader to the paper of Grossmann (2014) for a comprehen-
sive survey on enterprise-wide optimisation which involves
optimising the supply, manufacturing and distribution activ-
ities of a company.
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Here we deal with the distribution activity and focus on
the nature of the input parameters used into the mathemati-
cal models that frequently are assumed of deterministic type.
This assumption may lead to unpleasant results from an eco-
nomic prospective. The case that will be examined in this
paper is rather emblematic to demonstrate empirically this
statement. Specifically, we refer to a logistics problemknown
as location-routing problem (LRP) and highlight the impor-
tance of considering uncertainty adequately. TheLRP aims at
determining the best facility locations among a set of poten-
tial facility sites to minimise a total logistics cost which also
includes the transport cost paid to serve the customers from
the activated facilities (Mara et al. 2021). This problem arises
in case of less-than-full-load shipments, when the same vehi-
cle can servemultiple customers; as a result, the transport cost
depends on the order in which the customers to be served
are visited and, consequently, the optimal facility locations
depend on the vehicle routes. The location decision is usu-
ally made at a strategic level, while vehicle routes have to
be defined at an operational level. However, location and
routing decisions are interdependent and many studies in the
scientific literature confirm that the overall logistics cost can
be significantly larger than the minimum if the location of
facilities and the design of routes are tackled separately.

In this paper we consider the case of an LRP solved by
a dairy firm, where the customer demand values are charac-
terised by high variability. We point out that these values
impact on the vehicle capacity and, consequently, on the
number and kind of vehicle routes. In detail, our location
problem involves the evaluation of three different alterna-
tives (i.e. potential sites) where a cold storage warehouse
can be located. Starting from the selected site, some vehicles
have to serve 12 supermarkets distributed in the surround-
ing region. The operational part of the problem deals with
the determination of the daily vehicle routes; to this end, the
company can use its own fleet and, if necessary, activate a
third-party provider to cover demand peaks. For the problem,
we propose two different approaches. The first one fits into
the area of deterministic optimisation and is based on amath-
ematical model where the values of the demands are replaced
by sample means. The second approach fits into the area of
optimisation under uncertainty and is based on ranking and
selection. According to Fu and Henderson (2017), the rank-
ing and selection techniques provide “statistical guarantees”
on the chosen solution and lead to unbiased decisions. For an
introduction to ranking and selection we refer the reader to
the expository paper by Gibbons et al. (1979) where the phi-
losophy of the indifference zone strategy used in our paper is
described in detail. The computational experiments show that
the two approaches lead to significant differences in terms
of outcome and point out the necessity of tackling logis-
tics problems within the framework of optimisation under

uncertainty whenever the customer demand values are char-
acterised by high variability.

The use of a ranking and selection technique, namely a
non-traditional approach to this class of problems, makes
our contribution different to others that focus on LRPs
under uncertainty. We recognise the importance of tradi-
tionalmodelling frameworks like stochastic, robust and fuzzy
optimisation for LRPs, but the approaches based on these
frameworks are generally complex and not immediately
applicable. Instead, we propose a simple indifference zone
method that can work well when perishable products have to
be delivered. In effect, frequently in this context the routes
are enumerable since they are relatively few and small, both
in terms of kilometres and customers to be served. In particu-
lar, our approach can provide, without a high computational
effort, effective and easy-to-be-accepted answers to man-
agers in dairy industry.

The remainder of the paper is organised as follows. Sec-
tion 2 provides a literature review. Section 3 illustrates the
formulation and the two proposed solution approaches. Sec-
tion 4 describes the case study, including the input data,
the computational experiments, and the numerical results.
Finally, Sect. 5 highlights general conclusions and future
research directions.

2 Literature review

The most related studies are reviewed in the next sections.

2.1 Studies on optimisation under uncertainty

In recent decades, the ever-increasing complexity and diffi-
culty of real-world problems resulted in the need for more
reliable optimisation techniques, especially metaheuristic
algorithms (see Abualigah et al. 2021a, c for very recent
metaheuristic schemes). The results presented in the scien-
tific literature are scattered due to the difficulty of finding an
effective modelling framework for real-world problems that
differ greatly from one another. A further complication arises
whenever uncertainty is involved in the decision-making pro-
cess. The problems of optimisation under uncertainty are
characterised by the necessity of making decisions with-
out knowing what their full effects will be (Sahinidis 2004).
The main paradigms dealing with uncertain data in problem-
solving situations are stochastic programming and robust
optimisation. According to De Maio et al. (2021), stochastic
programming deals with cases in which the decision maker
is interested in building a solution that is good on average.
This is highly relevant for repeated decision-making pro-
cesses like portfolio investment. Instead, robust optimisation
is appropriate for processes where one has to decide once
and for all (like network design); in addition, it is frequently
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applied in decisions making with high impact, where “bad
surprises” should be avoided. In the area of logistics and sup-
ply chain management both paradigms are frequently used
(see, for example, Beraldi et al. 2010; Laporte et al. 2010;
Renaud et al. 2017; Hemmati Golsefidi and Akbari Jokar
2020; Sangaiah et al. 2020).

Uncertainty in optimisation also refers to vagueness that
arises in fuzzy environments. Although fuzzy logic has mul-
tiple connotations, the common starting point is the classic
principle of bivalence. It states that any declarative sen-
tence has only two possible truth values: true and false.
Fuzzy logic considers not only these two values, but allows
for additional ones. From this perspective, expressions like
“roughly”, “approximately”, “around” are usual. Practically,
fuzzymodels offer the opportunity tomodel subjective imag-
inations of the decision maker as precisely as a decision
maker will be able to describe them. An example of appli-
cation of fuzzy models to logistics problems is provided by
Zhang et al. (2020). Other modelling frameworks have been
proposed in the literature for optimisation under uncertainty
like simulation and simulation-based optimisation (Bierlaire
2015; Legato et al. 2021). More generally, we can refer to
sampling-based paradigms that do not necessarily use a sim-
ulator. Along with them, a variety of methods have been
developed and used successfully in many applications. For
instance, Fu and Henderson (2017) mention the selection
methods as a collection of techniques for identifying the best
from a (small) set of alternative solutions. Specifically, these
techniques determine howmany samples need to be collected
from each alternative and then which alternative should be
selected as the best based on the sample information. Among
the selection methods, there are the ranking and selection
techniques that provide “statistical guarantees” on the cho-
sen solution. For a comprehensive overview, we refer the
reader to the recent paper by Hong et al. (2021) in which the-
oretical achievements on ranking and selection and practical
applications in the past 20 years are discussed. Hong et al.
(2021) also explain the philosophy of the indifference zone
approach to ranking and selection. This approach has a rich
literature. An extensive amount of research has been pub-
lished since the indifference zone concept was introduced by
Bechhofer (1954). It includes the recent study of Yoon and
Bekker (2019).

2.2 Studies on location-routing

Asmentioned in Sect. 1, the LRP is a logistics problem aimed
at optimising two different decisional levels in an integrated
way: the strategical decision on facility location and the
operational decision on routing. Watson-Gandy and Dohrn
(1973) were the first to clearly consider the cost of visiting
customers while locating depots. Specifically, in order to rep-
resent the multi-drop nature of the journeys performed by the

drivers, these authors used a nonlinear function of distance
rather than straight-line distances. However, the discussion
on the interdependency of location and routing decisions has
already started earlier (see, for example, von Boventer 1961).
Meanwhile, many managers at that time were realising the
drawbacks on separating these decisions, as affirmedbyRand
(1976) “Many practitioners are aware of the danger of subop-
timising by separating depot location from vehicle routing”.
Then,when the renownedworkbySalhi andRand (1989)was
published, the advantage of considering location and routing
problems simultaneously was fully realised. The discussion
about the LRP has gained popularity in the subsequent years
and led to a huge quantity of scientific works. Many studies
focus on practical applications of LRPs, e.g. delivery services
(Perl and Daskin 1984; Bruns et al. 2000; Wasner and Zäpfel
2004), military equipment location (Murty and Djang 1999),
waste collection (Kulcar 1996) and postbox location (Labbé
and Laporte 1986).

The literature also proposes many surveys dedicated to
this topic. For instance, Nagy and Salhi (2007) present a
classification of the LRPs and describe exact and heuristic
methods for the basic version and its extensions. Prodhon
and Prins (2014) and Drexl and Schneider (2015) introduce
a more precise classification and consider further variants:
multi-echelon, mobile depots, trucks and trailers, multiple
objective, inventorymanagement andmulti-periodproblems.
Hassanzadeh et al. (2009), Schneider and Drexl (2017), and
Mara et al. (2021) present other surveys. In particular, Mara
et al. (2021) perform a review of recent LRP research from
222 journal papers published from 2014 to 2019.

Since both location and routing problems are NP-hard
under most scenarios, accordingly, their combination leads
mostly to an NP-hard problem where the solution space
increases exponentially with the size. Then, large-sized
instances can hardly be solved by exact approaches (excep-
tion being the round-trip location problem, where routes only
have to service pairs of nodes, to which polynomial time
algorithms have already been proposed as pointed out by
Lopes et al. (2013)). To date, the metaheuristic algorithms
represent the most popular option to solve an LRP model.
Most studies examined by Mara et al. (2021) (i.e. 67.12%)
are based on metaheuristic schemes. In particular, Mara
et al. (2021) specify that the variants of simulated anneal-
ing and genetic algorithm are favoured for single-objective
LRP, while non-dominated sorting genetic algorithm II and
multi-objective particle swarm optimisation are the preferred
paradigms for multi-objective LRP. An interesting com-
parison among algorithms based on different paradigms is
proposed by Lopes et al. (2013) with respect to three widely
used sets of benchmark instances; for these algorithms the
authors report the average computing time and the average
percentage gap between the obtained results and the best-
known lower bound.
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It is worth noting that most studies in the scientific lit-
erature are based on deterministic modelling frameworks.
In contrast, the operational part of the LRP (i.e. routing)
is subject to a high variability when the input parameters
change. Moreover, since the location decision has an impact
on the medium–long planning horizon, it is difficult to pre-
dict these parameters deterministically in an accurate way.
Therefore, there is a growing interest in formulating LRPs
through the modelling frameworks described in Sect. 2.1.
Uncertain parameters (demand levels, presence of customers,
travel times, etc.) can be represented as random variables,
whose probability distributions are evaluated on the basis of
historical data.

In the paper of Albareda-Sambola et al. (2007) an uncer-
tain LRP is formulated as a stochastic programwith recourse
and solved through a two-stage approach: in the first stage
both the selected depots and the routes are defined, in the sec-
ond stage a recourse action is applied to adapt the routes to
the set of customers requiring service, once they are known.
Klibi et al. (2010) deal with an LRP characterised by multi-
ple transport options, multiple demand period and stochastic
demands. Their problem is also formulated as a stochastic
program with recourse and solved by a hierarchical heuristic
approach. Other contributions focusing on uncertain param-
eters consider: probabilistic travel times (Ghaffari-Nasab
et al. 2013), fuzzy travel times and time windows (Zarandi
et al. 2011), fuzzy demands (Golozari et al. 2013), stochastic
facility availability (Hassan-Pour et al. 2009) and stochas-
tic inventory (Ahmadi-Javid and Azad 2010). Examples of
LRPs under uncertainty in arc routing contexts are reported
in the very recent survey of De Maio et al. (2021). For
instance, Mirzaei-Khafri et al. (2020) propose a robust opti-
misation model for a location-arc routing problem in which
the demand of each road is associated with a value that
belongs to a bounded uncertainty set.

Finally,we point out that the theoretical analyses proposed
in the scientific literature have been tested on instances not
derived from real-world cases, with few exceptions. An inter-
esting practical application that brings uncertainty on input
parameters for an LRP is proposed by Chan et al. (2001).
Specifically, the authors refer to a medical evacuation case
study of the US Air Force.

3 The location-routing problem

The LRP considered in this paper deals with a single facil-
ity to be selected from a list I of potential sites. The facility
serves a set V of customers. Each customer j ∈ V is charac-
terised by a demand d j , whose value is not known and can
only be estimated from a sample of finite size. Let d̄ j be the
corresponding sample mean.

For the sake of simplicity, assume that the costs, which
are dependent on the selected location i ∈ I , are only those
related to vehicle routing. Let Ki be the set of plausible
routes, each of which starting from i , serving a subset of cus-
tomers respecting all the deterministic constraints involved
in the problem (i.e. time duration of the route). Let akj be a
binary constant, used to identify if a customer j ∈ V is served
by route k ∈ Ki (in this case akj = 1) or not (akj = 0). Let ck
be the cost associated with route k ∈ Ki . Each route k ∈ Ki

is assigned to a vehicle of capacity q and there are n vehi-
cles of this type. A plausible route becomes feasible if the
capacity constraint is satisfied for the sample values of the
demand associated with the customers served by the route.
If a customer j ∈ V cannot be served by the available fleet
of vehicle, it is possible to outsource the service delivery to a
third-party provider at a cost equal to f j . Let yk be a binary
decision variable equal to 1 if the corresponding route k ∈ Ki

is selected, 0 otherwise. Let x j be a binary decision variable
equal to 1 if the corresponding customer j ∈ V is served
by the third-party provider, 0 otherwise. By considering the
sample mean d̄ j of the demand d j for each customer j ∈ V ,
it is possible to consider a deterministic version of the LRP
by solving for each site location i ∈ I the following binary
programming model:

Minimise
∑

k∈Ki

ck yk +
∑

j∈V
f j x j (1)

subject to
∑

k∈Ki

ak j yk + x j ≥ 1, j ∈ V (2)

⎛

⎝q −
∑

j∈V
ak j d̄ j

⎞

⎠ yk ≥ 0, k ∈ Ki (3)

∑

k∈Ki

yk ≤ n (4)

yk ∈ {0, 1}, k ∈ Ki (5)

x j ∈ {0, 1}, j ∈ V . (6)

Constraints (2) ensure that each customer is served. Con-
straints (3) ensure the feasibility of the routes in terms of
vehicle capacity. In particular, if (q − ∑

j∈V ak j d̄ j ) < 0 for
some k ∈ Ki , then the vehicle capacity constraint is violated
and, consequently, yk should be 0. Constraint (4) limits to n
the number of identical vehicles that can be used.

A possible drawback of formulation (1)–(6) is that the
number of variables yk , k ∈ Ki , may be very large especially
for weakly constrained problems. However, there exist appli-
cations in which |Ki | is relatively small, for each i ∈ I ,
like the case examined in this paper. For example, if the
number of customers along a route is at most three, then

|Ki | = O
((|V |

3

) + (|V |
2

) + (|V |
1

)) = O(|V |3), for each i ∈ I .
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The optimal objective function value of formulation (1)–
(6) corresponds to an average routing cost indicated by z̄i ;
this value is associated with the choice of opening the facility
in site i ∈ I . By solving the same model for each possible
facility location within the set of potential sites, it is possible
to determine, in a deterministic way, the best site i∗ as

i∗ = argmin
i∈I z̄i .

However, this approach is too simplistic in practical applica-
tions. It is worth observing that considering only the sample
mean of the demand values flattens the variability in the
demand realisations. For instance, in model (1)–(6) a generic
customer is expected to be always served by a company
vehicle or a third-party provider whereas, in practice, both
situations can happen in different time periods on account of
the effective realisations of its demand over the time.

Actually, the demand values are subject to fluctuations
that cannot be effectively represented by deterministic mod-
els. The demand is naturally affected by uncertainty and this
aspect should be incorporated in the LRP solution process.
Then, an alternative approach is based on the following con-
siderations. Since the customer demand can be represented
by a vector�of randomvariables, the outcome for each alter-
native site i ∈ I can be seen as a function gi of the vector �

corresponding to the unknown data. Hence, the outcome is a
random variable itself, denoted as Zi :

Zi = gi (�), i ∈ I .

In this case, the best site i∗ is defined as

i∗ = argmin
i∈I E�[Zi ],

and corresponds to the location characterised by the least
expected cost.

Since the probability function of� is not known, but only
m observations of � are known, the choice of the site asso-
ciated with the least expected cost is complex. In effect, the
value E�[Zi ] corresponding to site i ∈ I is not known and
can only be estimated from the corresponding outcome sam-
ples zi1, zi2, . . . , zim . A point estimate of E�[Zi ] is provided
by the sample mean

Zi = 1

m

m∑

k=1

zik . (7)

In addition, it is also required computing the confidence
interval for the expected outcome, i.e. the interval in which
E�[Zi ] falls with a prescribed confidence level (1 − α).
Indeed, a point estimate does not necessarily coincide with
the real expected value, while a confidence interval is more

reliable. The confidence interval at (1− α) level of E�[Zi ],
i ∈ I , is defined as

Pr

(
Zi − tα/2,m−1

Si√
m

≤ E�[Zi ] ≤ Zi + tα/2,m−1
Si√
m

)

= 1 − α,

or, equivalently,

Pr

(
E�[Zi ] < Zi − tα/2,m−1

Si√
m

or E�[Zi ] > Zi + tα/2,m−1
Si√
m

)

= α,

where tα/2,m−1 is the quantile of order (1-α/2) of the Stu-
dent’s t-distribution with m − 1 degrees of freedom and Si
is the sample standard deviation

Si =
√√√√ 1

m − 1

m∑

k=1

(zik − Zi )2. (8)

Therefore, the confidence interval (1− α) of E�[Zi ], i ∈ I ,
is

[
Zi − tα/2,m−1

Si√
m

, Zi + tα/2,m−1
Si√
m

]
.

When the confidence intervals overlap, selecting the best
solution should correspond to select the alternative i∗ in I
of least expected cost with a certain confidence level (1−α).
To this end, an indifference zone method like the Rinott’s
procedure can be used (Hong et al. 2021). The difficulty in
applying the procedure depends on how much i∗ is better
than the other alternatives. If i∗ is considerably better, then it
should be easy to identify. In contrast, if there is at least one
site very close to i∗, it may be difficult to select the correct
solution using sample data. However, if two or more alterna-
tives are so close to being the best, it will be irrelevant which
one is selected as the best. The Rinott’s procedure, as well
as the other indifference zone methods, exploits this idea: it
is assumed that the decision maker is indifferent to selecting
an alternative that does not yield the least cost if its expected
value falls into an indifference zone defined by parameter δ.
Given a sample size m of the demand vector, the Rinott’s
procedure allows to select the alternative with the least sam-
ple mean as the best (or an alternative with an outcome lying
within δ of the best one) with probability (1 − α); m obser-
vations could be insufficient to evaluate an alternative and
extra observations could be required to draw a conclusion.
The details can be found in Algorithm 1. Specifically, given
the input values α, |I |, m, and δ, RINOTT(α, |I |, m, δ, b,
i∗) returns i∗ and a vector b with |I | components. The i th

component of b, i.e. bi , corresponds to the number of sam-
ples (observations) used to evaluate alternative i , i ∈ I . The
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procedure initially determines the Rinott’s parameter r by
solving the following equation:

∫ ∞
0

[∫ ∞
0

�

(
r

[(m − 1)(1/x + 1/y)]1/2
)

f (x)dx

]|I |−1
f (y)dy

= (1 − α), (9)

where f represents the density of a χ2 random variable with
m−1 degrees of freedom and�(x) represents the cumulative
distribution function of the standard normal distribution. For
more details, see Wilcox (1984).

Algorithm 1 RINOTT(α, |I |, m, δ, b, i∗)
1: Compute the Rinott’s constant r by using (9);
2: for i ∈ I do
3: Compute the sample mean Zi and the sample standard deviation

Si on the basis of them observations available for each alternative
i by using (7) and (8), respectively;

4: Set γ = �( r Si
δ

)2	 (number of observations needed for alternative
i);

5: if γ > m then
6: Take γ − m more observations for alternative i ;
7: Set bi = γ ;

8: Set Zi = 1
bi

bi∑
k=1

zik ;

9: Set Si =
√

1
bi−1

bi∑
k=1

(zik − Zi )2;

10: else
11: Set bi = m;
12: end if
13: end for
14: Select the alternative of least cost, i.e. i∗ = argmin

i∈I Z i ;

15: return b, i∗;

4 The case study

The case study illustrated in this section deals with the sector
of the dairy products. The farm is headquartered in France
and the problem consists of locating a cold storage ware-
house. It will be supplied directly by the main production
plant and used to serve daily 12 supermarkets of differ-
ent sizes located in the region of Auvergne (see Table 1).
The daily demand of the dairy products requested by each
supermarket can be estimated by using historical data; the
minimum, the maximum and the most probable values (mea-
sured in kilograms) are reported in Table 1. It is worth
observing that the data entries show a constant trend with
a weekly seasonality and a significant (±20%) random com-
ponent. To have a more precise idea of the variability of the
demand pattern, Fig. 1 is helpful; it depicts the plot of the
corresponding time series for each supermarket in a time
horizon of 21 days (three weeks). The values of the complete

time series are available from the corresponding author upon
request.

Three different potential sites are considered to host the
cold storage warehouse (i.e. I = {1, 2, 3}). They are located
in the towns of Ennezat, Vic-le-Comte and Saint Ours,
respectively (see Fig. 2 and Table 2). The warehouse is also
used as a depot for the fleet of four identical refrigerator vans,
each of which has a capacity of 1,100 kilograms.

The company produces and distributes the following types
of finishedproducts: fresh bottledmilk, long shelf-life bottled
milk, ricotta, mozzarella, long shelf-life cheese, fresh cheese.
In the distribution activity, the company utilises three differ-
ent forms of packaging: plastic boxes, cartons and palletized
unit loads (i.e. pallets of one metre long and wide). In order
to standardise the three types of unit loads and determinate
the vehicle load capacity, the equivalent unit load (EUL) is
introduced (pallet with an average weight of 300 kilograms).
Consequently, the load capacity of each vehicle is 3.66EULs.
The weights of each plastic box and carton are 17.80 kilo-
grams and 24.19 kilograms on average, equal to 0.06 EULs
and 0.08 EULs, respectively. We observe that 3.66 EULs
generates a volume always less than the van volume; there-
fore the only physical characteristic to consider in the van
packing is the weight.

A set Ki of plausible routes can be preliminarily iden-
tified for each potential site i ∈ I . Each route starts at the
selected depot, serves at most three supermarkets and ends at
the depot. This means that |Ki | = (12

1

) + (12
2

) + (12
3

) = 298,
i ∈ I . It is worth observing that each route satisfies the van
capacity constraint, with respect to the most probable values
of the daily demand of dairy products associated with the
supermarkets served by the route. The cost of each route can
be computed by considering a unit cost of 0.25 euros for kilo-
metre multiplied by the length of the route. Note that only the
minimum-length route is considered for each subset of cus-
tomers. The kilometric lengths of all plausible routes are data
available from the corresponding author upon request. The
company can use a third-party service provider that serves,
if necessary, the unserviced customers through direct routes,
at a cost that is composed of a fixed term of 30 euros, plus
a variable part which is proportional to the distance between
the potential site and the supermarket, with a unit cost equal
to 1.23 euros for kilometre for trips longer than 50 kilometres
and to 1.43 euros for kilometre for trips with length less than
or equal to 50 kilometres.

First, the objective function value corresponding to each
alternative i ∈ I was determined by using a deterministic
approach, i.e. considering d j equal to the average demand
in kilograms for each supermarket j (see the last column of
Table 1). Specifically, model (1)–(6) was solved for each of
the three candidate sites to host the cold storage warehouse.
We used GAMS 24.7.4 (GAMS Development Corporation)
as algebraic modelling system, with CPLEX 12.6 (IBMCor-
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Table 1 Geographical coordinates and demand characteristics of each supermarket

Supermarket Id Latitude Longitude Minimum demand (kg) Maximum demand (kg) Average demand (kg)

1 45.9167820762827 2.6682355704796 156 381 255

2 45.8766406890607 3.5086896171367 216 525 355

3 45.7713709583362 3.2093121952883 264 639 426

4 45.5767197363509 3.7398078237765 264 639 429

5 45.9290511483901 3.1183272949744 210 516 344

6 45.8302793429363 3.1316894350502 279 672 448

7 45.5617051790017 2.9229492143118 228 549 369

8 45.8379339374907 3.0135864154219 144 360 240

9 45.8034799706812 3.0685180524584 156 378 252

10 45.7824142728244 3.5436767128234 150 366 243

11 45.6174443249854 2.9504150328301 144 360 239

12 46.2055287600722 3.4554948273149 222 546 366

Fig. 1 Daily demand (in kilograms) of the dairy products required by the 12 supermarkets

poration) as solver. All the experiments were carried out on
a PC Intel Core i7 (2.3 GHz) with 12 GB of RAM. The com-
putational times were quite short. Therefore, they are not
reported here.

The average daily transport costs (in euros), obtained by
solving to optimality the model (1)–(6) for each of the three
alternatives correspond to 131.93, 139.73 and 144.25 respec-
tively for Ennezat, Vic-le-Comte and Saint Ours. Note that
the costs donot include thefixed and thevariable facility costs
which are constant. The best solution corresponds, therefore,
to the site located inEnnezat. The daily variable transport cost

corresponds to the sum of the costs associated with the acti-
vated routes.We point out that no external service is selected.

However, this solution does not capture the variability of
the daily demand for dairy products. For this reason, the
Rinott’s procedure was introduced. Consequently, a confi-
dence interval on the expected daily cost was also computed,
with a confidence level (1 − α) = 0.95 and an indiffer-
ence zone of 6 euros. The optimisation model was solved
m = 480 times for each potential town selected as depot, on
the basis of the different realisations of the daily demand. It
is worth observing that, considering α = 0.05, m = 480
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Fig. 2 French region where the three potential facilities are located (image taken from Googlemaps®)

Table 2 Geographical coordinates of the three potential sites

Potential site Latitude Longitude

Ennezat 45.9219755703321 3.2226196167101

Vic-le-Comte 45.6712672424955 3.2509691228137

Saint Ours 45.8740299569840 2.8867817259801

and |I | = 3, the Rinott’s constant r is equal to 2.7704.
Therefore, the following values were computed: �( r S1

δ
)2	 =

�( 2.7704×37.80
6 )2	 = 305, �( r S2

δ
)2	 = �( 2.7704×39.05

6 )2	 =
326, and �( r S3

δ
)2	 = �( 2.7704×40.32

6 )2	 = 347. Since they
were less than m, no additional observation on the daily
demand was required to draw a conclusion about the site
selection.

The results obtained by applying the second approach,
based on the indifference zone philosophy, are summarised
in Table 3. Because of the variability of the daily demand, the
van capacity constraint is not satisfied for some realisations
and the fleet of vans is not sufficient to serve all supermar-

kets. In this case, the best solution corresponds to the site
located in Vic-le-Comte. This solution is different from the
one obtained by only considering the average daily demands.
Although Vic-le-Comte has the largest service provider acti-
vation percentage, it remains the most competitive solution
in terms of daily transport cost.

It is worth noting that the scenario analysis allows the
logistics manager to focus on a critical aspect of the distri-
bution activity, that is, the necessity to outsource part of the
delivery service. We observe that in the 43.54% of the cases
(i.e. 209 over the 480 tests) it is necessary to use a third-party
provider for serving at least one supermarket. Note that 53 of
the 209 cases involve external service for two supermarkets,
and only in one case it is necessary to serve simultaneously
three supermarkets. This aspect does not arise in the first case
and highlights the need to manage demand peaks in a more
structured way. On the basis of the high percentage of deliv-
eries given in outsourcing, the logistics manager could assess
cost-convenient contracts with a third-party provider to avoid
excessive costs or stock-outs in certain circumstances. Alter-
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Table 3 Summary of the results
obtained by considering the 480
scenarios

City

Ennezat Vic-le-Comte Saint Ours

Sample mean (e/day) 164.92 162.36 177.90

Sample standard deviation (e/day) 37.80 39.05 40.32

Confidence interval (e/day) (161.53; 168.31) (158.85; 165.86) (174.28; 181.51)

Third-party provider activation (%) 43.54 43.54 42.92

natively (or additionally), the manager could carry out an
investment evaluation for the long-term horizon, in order to
expand the internal fleet of vehicles and avoid (or reduce) the
cost of outsourcing.

In summary, in the location-routing context, the applica-
tion of a ranking and selection method can lead to several
advantages from a managerial prospective. First, it offers the
opportunity to make specific and robust decisions by consid-
ering uncertainty and avoiding day-to-day emergencies (e.g.
the need to frequently contact a service provider). Second,
the application of a ranking and selectionmethod is generally
associated with a short computational time when the num-
ber of alternative solutions is not large. Finally, it leads to
easy-to-be-accepted decisions for a non-expert audience and
provides “statistical guarantees” on the solution. More gen-
erally, a ranking and selection approach can be successfully
applied to other logistics problems inwhich strategical or tac-
tical decisions have to be made also considering operational
issues (inventory-routing problems, production-inventory-
routing problems, etc.).

5 Conclusions

In this paper, we have considered a location-routing prob-
lem (LRP) with the aim of locating a cold storage warehouse
in the dairy industry. From this warehouse, some refrigera-
tor vans of limited capacity are dispatched to serve a set of
local supermarkets. The demands associated with the super-
markets are characterised by high variability. In this case, the
approaches based on paradigms of optimisation under uncer-
tainty seem to bemore adequate than the classical approaches
based on deterministic models where sample means are used
as input parameters. Specifically, we have proposed for the
LRP a ranking and selection method exploiting the concept
of indifference zone. The method is based on an indifference
zone parameter, which refers to the smallest mean differ-
ence worth detecting. Several alternatives may have means
that fall into the indifference zone, i.e. be good alternatives.
According to the definition of indifference zone, the decision
maker should be indifferent if one of these good alterna-
tives is selected as the best (Hong et al. 2021). The solution
obtained by the ranking and selectionmethod is differentwith

respect to the solution of the deterministic counterpart. Our
computational experience has confirmed that the ranking and
selection method quickly provides responses that are unbi-
ased and easy to be accepted for the managers. In addition, it
meets the need of a lean and fast computational analysis and
can be adopted to effectively manage unexpected demand
peaks in the supply chain.

It is possible to imagine future developments for the
work presented in this paper. As mentioned in Sect. 2, there
exist alternative ways to tackle uncertainty in the LRP. For
instance, there are some contexts in which the size of the
instances is such that the ranking and selection method pro-
posed in this paper would result ineffective. This may arise
for non-perishable products that do not require daily deliv-
eries, especially, early in the morning. When high-quality
routes for the specific problem are not easily enumerable,
other methods may result more effective. For instance, it is
possible to design a simulation–optimisation framework for
LRPs under uncertainty in supply chains of different nature.
These frameworks frequently incorporate ranking and selec-
tion procedures to evaluate the correct number of simulation
runs (see, for example, Laganà et al. 2006;Ghiani et al. 2007).
An alternative future research direction focuses on analysing
LRPs in different supply chains by using stochastic program-
ming or robust optimisation.

Finally, further research may focus on the opportunity of
delivering dairy productswithin a smart city scheme (Abuali-
gah et al. 2021b; Evtodieva et al. 2020) or, alternatively,
modelling the problem as a green LRP (Dukkanci et al. 2019;
Wang et al. 2020).
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