
Soft Computing (2023) 27:12863–12881
https://doi.org/10.1007/s00500-022-06768-8

FOCUS

A hyper-parameter tuning approach for cost-sensitive support vector
machine classifiers

Rosita Guido1 ·Maria Carmela Groccia1 · Domenico Conforti1

Accepted: 10 January 2022 / Published online: 2 February 2022
© The Author(s) 2022

Abstract
In machine learning, hyperparameter tuning is strongly useful to improve model performance. In our research, we concentrate
our attention on classifying imbalanced data by cost-sensitive support vectormachines.We propose amulti-objective approach
that optimizes model’s hyper-parameters. The approach is devised for imbalanced data. Three SVM model’s performance
measures are optimized. We present the algorithm in a basic version based on genetic algorithms, and as an improved version
based on genetic algorithms combined with decision trees. We tested the basic and the improved approach on benchmark
datasets either as serial and parallel version. The improved version strongly reduces the computational time needed for finding
optimized hyper-parameters. The results empirically show that suitable evaluation measures should be used in assessing the
classification performance of classification models with imbalanced data.

Keywords Multi-objective optimization · Support vector machine · Hyper-parameter optimization · Imbalanced datasets ·
Genetic algorithms

1 Introduction

Classification problems may be encountered in different
domains. One of these is the disease diagnosis, which estab-
lishes the presence or absence of a given disease according
to referred symptoms and results of medical exams. Machine
learning approaches can be employed to support experts in
diseases diagnosis. Many researches aim to propose new
methods to improve or enhance the outcomes of existing
ones.

Support vector machines (SVM) are one of the best
machine learning (ML) models for solving several real-life
classificationproblems (Vapnik 1998;Cristianini andShawe-
Taylor 2000). The choice of hyper-parameters of aMLmodel

Communicated by Dario Pacciarelli.

B Rosita Guido
rosita.guido@unical.it

Maria Carmela Groccia
mariacarmela.groccia@unical.it

Domenico Conforti
domenico.conforti@unical.it

1 Department of Mechanical, Energy and Management
Engineering, University of Calabria, Ponte Pietro Bucci,
87036 Rende, Cosenza, Italy

can significantly affect the resulting model’s performance.
Generally, hyper-parameters are adjusted for each model in
order to find a hyper-parameter setting that maximizes the
model performances and so that the ML model can predict
unknown data accurately. The goal of hyper-parameter opti-
mization is to find a set of values that minimizes a predefined
loss function.

Usually, a good set of hyper-parameters are determined
by a grid search. The grid search strategy is based on
testing all hyper-parameter combinations specified in amulti-
dimensional grid. During the search, the hyper-parameters
are varied,with fixed step-size, in a given range of values. The
performance of a combination of hyperparameters is evalu-
ated using a performance metric. The configuration with the
best performance is selected and used to train the ML model
on the whole dataset. However, this kind of search is very
time consuming and it is suitable for the adjustment of few
hyper-parameters.

Another big challenge in data mining that is attracting
increasing interest of researchers is dealing with imbal-
anced data sets (Japkowicz and Stephen 2002). A dataset is
imbalanced when one or more classes have very low propor-
tions in the data as compared to the other classes. The first
class is called as minority class with respect to the major-
ity class(ess). The main interest is in correctly classifying

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-022-06768-8&domain=pdf
http://orcid.org/0000-0003-1744-2166

12864 R. Guido et al.

the minority class. The existing methods for classification of
imbalanced data can be categorized as algorithm-level cate-
gory, data-level category, and cost-sensitive methods that lie
between the above two categories (Galar et al. 2012). The
first category includes methods modified or designed to han-
dle imbalanced data; the second category includes methods
that try to transform data in order to balance classes and
use then standard classification algorithms. Down-sampling
approaches, which reduce the majority class in the training
subset, and over-sampling approaches, which increase the
size of the minority class in the training subset, belong to
this category. Finally, the third category includes methods
designed for weighting differently the classes by introducing
misclassification costs.

It is important to point out that the most commonly used
model evaluation metric is the accuracy. However, it can be
verymisleadingwhen data are imbalanced. In such cases, dif-
ferent evaluation metrics should be considered. We tested in
(Guido et al. 2021) two evaluation model metrics, i.e., accu-
racy and G-Mean, on two imbalanced benchmark datasets
by optimizing hyper-parameters of support vector machines
by genetic algorithms (GAs). Comparing the results, we
observed empirically thatG-Mean ismore suitable than accu-
racy to evaluate model performance in case of imbalanced
data, especially when data refers to medical domains, like
diagnosis. The results encouraged us to continue exploring
this research field.

This research paper addresses the optimal hyper-
parameters problem as a multi-objective problem. It has a
twofold contribution:

1. The main goal is to investigate methods for improving
hyper-parameter tuning of SVM. We propose a novel
approach for optimal hyper-parameter tuning that con-
sists of a genetic algorithm combined with a decision
tree. The basic idea is that some chromosomes are similar
among them and they have thus the same fitness value.
A decision tree (DT), trained in a suitable manner, is
exploited to reduce the number of k-fold cross-validation
to be performed and thus the overall computational time.
As we will see, GAs were chosen even because they
allow for an easy parallelization of the problem, which is
tremendously helpful. The approach that combines GAs
and DT strongly reduces the overall computational time,
as described in Sect. 5.

2. It focuses on testing and optimizing, at the same time,
more suitable performance measures in addition to the
accuracy. This is important for application domains
where one data class is of more interest than others.

The paper is structured as follows. A short review of the
state-of-the-art of the literature focusing on imbalanced data
sets is in Sect. 2. We give a short description of support vec-

tor machines and decision trees in Sect. 3, and discuss some
metrics commonly used to evaluate model performance. In
Sect. 4, we introduce multi-objective optimization prob-
lems and the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II). In Sect. 5, we detail our approach that com-
bines genetic algorithms and a heuristic procedure based
on decision tree in order to find optimal hyper-parameters.
Three objective functions are optimized. We perform several
computational experiments aimed at finding the best hyper-
parameter tuning for six benchmark datasets. The best results
along with a discussion and comparison with other results of
the literature are reported in Sect. 6. Finally, the conclusions
are given in Sect. 7.

2 Related work on imbalanced data
classification and cost-sensitive learning
problems

Let D = {(x1, y1), (x2, y2), . . . , (xl , yl)}, be a dataset where
xi ∈ �L is a pattern (even called example) drawn from a
domain X and yi ∈ Y is its related class label. An example is
thus a vector. In a binary classification domain, an example
can be either positive, denoted by a label y = 1, or negative,
denoted by y = −1. Generally, the goal of a binary classifier
is to map feature vectors x ∈ X to class labels y ∈ {±1}.
In terms of functions, a classifier can be written as h(x) =
sign[p(x)], where the function p : X → R is denoted as the
classifier predictor.

Classifiers generally perform poorly on imbalanced
datasets and, as a consequence, often they classify almost
all instances as negative. In recent years, imbalanced data
classification has been studied by many researchers with dif-
ferent methods (Jo and Japkowicz 2004; Galar et al. 2012).
These methods can be distinguished into two categories
based on data and algorithms. Data-based methods focus on
data pre-processing to reduce imbalanced data. For instance,
up-sampling and under-sampling are two methods that mod-
ify instance distribution. Up-sampling methods increase the
minority samples, whereas under-sampling methods reduce
the majority samples. Synthetic Minority Oversampling
Technique is an oversampling method that balances data by
generating new samples similar to the minority samples and
their neighbors (Chawla et al. 2002).

Hereafter, a positive instance belongs to theminority class,
whereas a negative instance to the majority class. In many
real-world applications, misclassifications may have differ-
ent costs, such as for instance disease diagnosis and business
decision making. The related classification problem, called
cost-sensitive learning problem, aims at minimizing the total
misclassification costs. The issue of classifying imbalanced
data by an SVMwas addressed in (Veropoulos et al. 1999) by
a biased-SVM. This method uses two penalty coefficients for

123

A hyper-parameter tuning approach... 12865

misclassified positive instances and negative instances. Since
the positive instances usually belong to the minority class,
the used penalty coefficient for this class is bigger than the
penalty coefficient associated with the majority class. In this
way, the SVM classifier aims at reducing misclassification
rate of the minority class.

The performance of an SVM model even depends, for
instance, on the used kernel function, which maps instances-
vectors from the original input space to higher dimensional
spaces to dealwith nonlinearly separable data (Scholkopf and
Smola 2001). Accordingly, two parameters of SVM, i.e., C
and the kernel parameter were found by an exhaustive search
approach in (Mehrbakhsh et al. 2019). Iranmehr et al. (2019)
extended the SVM with cost-sensitive learning consider-
ing example dependent costs. They performed experimental
analysis on class imbalance, cost-sensitive learning with
a given class and example costs and showed that their
proposed algorithm provides superior generalization perfor-
mance compared to conventional methods. Qi et al. (2013)
proposed a new Cost-Sensitive Laplacian SVM and tested its
effectiveness via experiments on public datasets. They eval-
uate the algorithms performance by the Average Cost. Tao
et al. (2019) developed a novel self-adaptive cost weights-
based SVM cost-sensitive ensemble for imbalanced datasets
classification tasks. The approach was tested on synthetic
datasets and on public datasets showing higher classification
accuracy than the other existing imbalanced classification
methods in terms of G-Mean and F-Measure.

Evolutionary algorithms are flexible and commonly used
for a plethora of machine learning problems and tasks
(Bergstra et al. 2011; Goldberg and Holland 1988). Evolu-
tionary optimization-based techniques solve the filter design
task as an optimization problem. They are used success-
fully in different real-world optimization problems related
to Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) digital filters design. The goal is to minimize
an error function that quantifies deviation between a filter and
a desired response. This error is reduced by updating itera-
tively a set of filter coefficients such that given specifications
are met. Dwivedi et al. (2018) provided a comprehensive
review of the various evolutionary optimization-based tech-
niques for FIR filter design. Approaches to design IIR filters
based on evolutionary techniques were proposed in (Agrawal
et al. 2018, 2017). Evolutionary algorithms are even used
to automatically tune several parameters. Lessmann et al.
(2005) used a GA in order to tune SVMs. Phienthrakul and
Kijsirikul (2010) improved the accuracy of SVM by a non-
linear combination of multiple RBF kernels to obtain more
flexible kernel functions. The hyperparameters are chosen
by an evolutionary strategy where the objective functions are
based on training accuracy, bounding of generalization error,
and subset cross-validation on training accuracy. The result-

ing kernel allows better discrimination in the feature space
than that of a single RBF kernel.

One of the first research papers on cost-sensitive approach
tackled with an evolutionary process is due to Turney (1995).
Recently, Noia et al. (2020) applied SVM, k-Nearest Neigh-
bors and k-means as clustering techniques to predict the
probability of contracting a given disease starting from both
workplace-related (using Ateco and Istat codes) and worker-
related characteristics (i.e., age at hiring, age at disease
certification, gender, employment duration). They used a GA
to find the best values of the used methods. Misclassifica-
tion error rate is used as fitness function. However, since the
classes were not evenly distributed among the instances, they
used a second fitness function that reduces the misclassifica-
tion error rate of the minority class.

An exhaustive search of papers addressing evaluation of
ML algorithms on classification is due to Sokolova et al.
(2006). These authors showed that the clear “leaders” are
those papers in which evaluation is performed on data from
the UCI repository, in biomedical and medical sciences,
visual and text classification, and language applications.
The most used evaluation measures are accuracy, precision,
recall, F-score, and the Receiver Operating Characteristic
(ROC).

3 Learningmodel classifiers

Weoptimize hyper-parameters of SVMclassifierswithGaus-
sian kernel in order to correctly compare our results found on
public and well-known datasets with those reported in the lit-
erature. Our approach, as it is better detailed in Sect. 5, trains
and uses random trees to reduce the overall computational
time.

In this section, we briefly introduce SVM and decision
trees. Thus, we report themost used performancemetrics of a
MLmodel and discuss their suitability in case of imbalanced
datasets.

3.1 Support vector machine

The SVM was introduced by Cortes and Vapnik (1995) and
is based on statistical learning theory (Vapnik 1998). SVMs
are a class of algorithms for classification, regression and
other applications (Cristianini and Shawe-Taylor 2000) and
they are among the most used ML techniques.

Let X , be a dataset with L instances X = (x1, . . . , xL),
where xi ∈ �m, denotes an instance with m features, and
yi ∈ {±1} its label, i = 1, . . . , L . In a binary classification
problem, an SVM basically searches for an optimal hyper-
plane that separates patterns of the twoclasses bymaximizing
the margin w ∈ �m . Finding the optimal hyperplane means
solving the quadratic programming model (1)-(3), which is
known as soft-margin SVM

123

12866 R. Guido et al.

min
1

2
||w||2 + C

L∑

1

ξi (1)

yi (w
Tφ(xi) + b) − 1 + ξi ≥ 0 i = 1, . . . , L (2)

ξi ≥ 0 i = 1, . . . , L (3)

where C , named penalty parameter, is a trade-off between
the size of the margin of separation w and the training errors
ξ ; b is the bias and it indicates the offset of the hyperplane
from the origin. Constraints (2) state that when a training
example xi lies on the wrong side of the hyperplane, the
corresponding slack variable ξi is greater than 1. Small values
of C increase the training errors, whereas larger values bring
it closer to the hard-margin SVM. In case of nonlinearly
separable datasets, the SVM basically maps input vectors
into high-dimensional feature spaces by the so-called kernel
functions (Hofmann et al. 2008). A kernel function, denoted
as K (xi , x j) = 〈

φ(xi), φ(x j)
〉
, is an inner product in a feature

spacewhere it measures similarity between any pair of inputs
xi and x j . A kernel function can take many different forms
(Hofmann et al. 2008), such as

• Linear kernel K (xi , x j) = (xTi x j)
d

• Polynomial kernel K (xi , x j) = (xTi x j + a)d

• Radial Basis Function (RBF) kernel K (xi , x j) =
exp(−γ ‖xi − x j‖2)

The decision function, i.e., the classifier, is specified by a
subset of training instances, the so-called support vectors,
that are the only vectors that “support” the optimal separating
hyperplane.

It is well known that the performance of most machine
learning algorithms on a given dataset depends onwell-tuned
hyper-parameter. In setting up an SVM model, for instance,
two problems are encountered: (1) how to select the kernel
function, and (2) how to select its hyper-parameter. An SVM
with polynomial kernel has three parameters that need to be
optimized: the regularization parameter C , the parameter a,
and the degree d. The optimization of these three parameters
if 50 steps should be performed, requires an amount of time
to test the total 503 = 125000 combinations. The greater the
number of parameters to be set, the greater is the number of
combinations.

The cost-sensitive SVM (CS-SVM) uses two penalty
weights for the two classes. LetC1, be the cost of a false nega-
tive. It penalizesmisclassification of instances of theminority
class. Analogously, let C−1, be the cost of a false positive. It
penalizes misclassification of instances of the majority class.
The optimization model CS-SVM is (4)-(6).

argmin
w,b,ξ

1

2
‖w‖2 + C[C1

∑

i |yi=1

]ξ i + C−1

∑

i |yi=−1

ξi] (4)

yi (w
T x + b) ≥ 1 − ξi i = 1, . . . , L (5)

ξi ≥ 0 i = 1, . . . , L (6)

Observe that the cost matrices has the diagonal elements
as zero— because of the assumption that a correct classifica-
tion has no cost—and the off-diagonal elements are positive
numbers. However, the range of possibilities for CS-SVM
hyper-parameter can be huge.

Datta and Das (2015) proposes a Near-Bayesian Sup-
port VectorMachine (NBSVM) for imbalanced classification
problems by combining decision boundary shift and unequal
regularization costs. Extensive comparison with standard
SVM and some state-of-the-art methods is furnished as a
proof of the ability of the NBSVM to perform competitively
on imbalanced datasets.

3.2 Decision tree

A decision tree is a supervised learning algorithm for regres-
sion and classification problems (Breiman et al. 1984) and is
the most popular form of rule-based classifiers (Witten and
Frank 2005). It has a set of elements called nodes and is built
top-down from a root node. Each node represents a single
input attribute: leaf nodes contain an output attribute, which
is used to make a prediction; the other nodes are split points
of an attribute. The data is partitioned into homogeneous sub-
sets, i.e., they contain instances with similar values. Given
a new input, the tree is traversed by evaluating the specific
input started at the root node of the tree.

3.3 Performance evaluation and some limitations

To estimate the generalization performance of an SVM
model, generally one evaluates accuracy measure on data
not used for training the model. The k-fold cross-validation
(k-CV) is the most used procedure. It consists on partitioning
data into k disjoint sets of approximately equal size. An SVM
is thus trained k times: at the i − th iteration, all the disjoint
sets are used as training set except the i − th set, which is
used to evaluate the performance of the model. The errors
observed in this process are averaged yielding the k-fold CV
error.

Before introducing the most used evaluation measures, it
is useful to revise the confusionmatrix of binary classification
problems. A general confusion matrix is illustrated in Table
1. The two columns refer to the predicted classes, whereas the
two rows refer to the actual classes. True Positives (TP) is the
number of positive instances correctly classified and False
Negatives (FN) is the number of positive instances incor-
rectly classified as negative. These two numbers refer to the
minority class. Similarly, True Negatives (TN) is the number
of negative instances correctly classified, and False Positives

123

A hyper-parameter tuning approach... 12867

Table 1 Confusion matrix for a binary problem

Predicted

positive class negative class

Actual positive class TP FN

negative class FP TN

(FP) is the number of negative instances incorrectly classi-
fied as positive class. These two numbers refer to themajority
class. Observe that, in case of data related to patients, a false
negative means that patient has the disease but the diagnosis
result says that it does not have.

The most common evaluation measures used are listed
below.

Accuracy defined as the ratio between the number of
instances correctly classified and the total number of instances.
It assesses the overall effectiveness of the model by showing
the probability of the true value of the class label

Accuracy = T P + T N

T P + FP + Tn + FN

Other twomeasures that separately estimate a classifier’s per-
formance on different classes are sensitivity and specificity.
They are often employed in medical and bio-medical appli-
cations.

Sensitivity (true positive rate) is defined as the ratio between
the number of positive instances correctly classified as such
and the number of positive instances

Sensi tivi t y = T P

T P + FN

Specificity (true negative rate) is defined as the ratio between
the number of negative instances correctly classified as such
and the number of negative instances

Speci f ici t y = T N

T N + FP

Precision is defined as the ratio of TP to the number of all
instances predicted as positive

Precision = T P

T P + FP

As reported especially recently in some papers (e.g., Tao
et al. 2019), the accuracy-based evaluation measure is not
suitable for classification of imbalanced data as the minority
class has very little effect on the accuracy compared to the
majority class. For imbalanced classification problems, the
correct classification of instances of theminority class is usu-
ally themost importantmeasure. There are further interesting

classification evaluation measures that allow to balance false
positive rate and false negative rate. Here, among these mea-
sures, we evaluate even F-Measure, the Geometric Mean, the
average cost, the Youden’s index, and the balanced accuracy.
They are defined as follows.

F-Measure integrates sensitivity and precision into an aver-
age by a harmonic mean

F − Measure = 2Sensi tivi t y × Precision

Sensi tivi t y + Precision

The harmonic mean of two numbers tends to be closer to the
smaller number. A high F-Measure value means that both
Sensitivity and Precision are high.

Geometric Mean(G-Mean) is suggested as the balanced per-
formance between the two classes. It is intrinsically defined
as the geometric mean of sensitivity and specificity. If the
G-Mean value is high, both Sensitivity and Specificity are
expected to be high simultaneously

G − Mean = √
Sensi tivi t y × Speci f ici t y

Average Cost(AC) is expressed as

Average Cost = C1 × FN + C−1 × FP

T P + T N + FP + FN

where C1 and C−1 are the two costs used in the objective
function of CS-SVM.

Youden’s index Y equally weights the algorithm’s perfor-
mance on positive and negative instances:

Y = sensi tivi t y + speci f ici t y − 1

Balanced accuracy(BA) is the average of sensitivity and
specificity:

Balanced accuracy = sensi tivi t y + speci f ici t y

2

4 Multi-objective optimization problems
and Genetic algorithms

Multi-objective optimization problems consist of more than
one criterion, often conflicting, for which any solution exist-
ing on the Pareto front of criterion trade-offs is considered
optimal.

In this section, we introduce multi-objective optimization
problems and the cornerstone concept of Pareto optimality.

A multi-objective problem consists of minimizing and/or
maximizing two or more objective functions subject to

123

12868 R. Guido et al.

inequality and/or equality constraints. The objective func-
tions are conflicting among them and a solution is a trade-off
in the objective function space.

Definition 1 A solution is defined Pareto optimal if there
does not exist any other solution in the objective space which
improves the value of any of its objective functions without
deteriorating at least one other objective function value.

In other words, a non-dominated solution provides a suit-
able compromise between all objectives without degrading
any of them. The multi-objective optimization process is
looking for a set of alternative solutions that represent the
Pareto optimal solution. A set of non-dominated individuals
form a Pareto-optimal front.

From the mathematical point of view, the definition of
the dominance between two solutions x1 and x2 is that x1 is
no worse than x2 in all objectives fi , i ∈ {1, . . . ,m} of the
problem. This concept can be expressed as x1 dominates x2
if fi (x1) ≤ fi (x2) ∀i ∈ {1, . . . ,m} and ∃ j ∈ {1, . . . ,m} :
f j (x1) ≤ f j (x2).
The genetic algorithmswere developed byHolland and his

collaborators (Holland 1975) as a model based on Charles
Darwin’s theory of natural selection. They are heuristic
search techniques, successfully applied to different domains
(e.g., Guido and Conforti 2017; Bao-De et al. 2021). Fur-
thermore, they demonstrated a large amount of inherent
parallelism that makes them attractive mainly for solving
problems defined in large feature spaces, as that one here
addressed. The evolutionary process usually starts from a
population of randomly generated individuals, which are the
chromosomes. It is an iterative process. One iteration is one
generation. In each generation, the fitness of every individual
in the population is evaluated. The fitness value of a chromo-
some is a measure of its goodness. The fitness is usually the
value of the objective function in the optimization problem
being solved. Usually, operators such as selection, crossover,
mutation and recombination are applied during the evolu-
tionary process over the generated populations to find better
chromosomes, which optimize the fitness function till a ter-
mination condition is reached. The offsprings in a population
act like independent agents so that they explore the search
space in many directions.

As well known, genetic algorithms have some disadvan-
tages mainly due to the choice of parameters such as the
mutation rate and crossover rate that should be carried out
carefully. The crossover operator is one of the most impor-
tant operators because it determines the global convergence
of the genetic algorithm.

4.1 NSGA-II

Srinivas and Deb (1994) proposed an algorithm based
on non-dominated sorting for solving multiobjective prob-

lems. This algorithm was called non-dominated sorting
genetic-algorithm (NSGA). Deb et al. (2002) improved it
by proposing NSGA-II. The key features of NSGA-II are
elitism, diversity-preserving mechanisms, and emphasis on
non-dominated solutions. In NSGA-II, the N offsprings are
created from the N parents using standardgenetic algorithms.
The new population at the next generation is given by select-
ing the non-dominated solutions for the Pareto front with the
highest diversity while discarding the rest of the solutions.

Tournament selection This is a procedure that imitates sur-
vival of the fittest in nature. Indeed, each individual competes
in two tournaments with randomly selected individuals. The
crowded tournament selection is based on ranking and dis-
tance: if a solution has a better rank than another one, it will
be selected; if the ranks are the same but the crowding dis-
tance is not, the solution with better crowding distance is
selected.

Crowding distance The crowding distance metric of an indi-
vidual proposed by Deb and Goel (2001) aims to select
potential individuals to construct a new population. It is
essentially based on the cardinality of a solution sets and
their distance to solution boundaries. More specifically, it
is defined as the perimeter of the rectangle with its nearest
neighbors at diagonally opposite corners. Two individuals
with a same rank are better if they have a larger crowding
distance.

Crossover and mutation Crossover and mutation are
employed to obtain the offspring population.

Algorithm 1 shows the framework of NSGA-II. The main
steps of NSGA-II can be summarized as follows:

Step 1 Create a new population by combining parents and
offsprings and apply non-dominated sorting

Step 2 Identify different fronts
Step 3 Generate the new population by exploiting the fronts

given at the previous step until size N
Step 4 Use the crowd distance to carry out a crowding sort

applied to the fronts
Step 5 Generate new offspring from the current population

via the genetic operators crossover, mutation, and
selection

5 Proposed approach

In this section, is firstly introduced a basic approach for
hyper-parameter optimization. Then, a novel algorithm for
hyper-parameters tuning based on GA and DT is proposed.
The core of the algorithm is a fitness function evaluation
procedure along with a similarity procedure.

123

A hyper-parameter tuning approach... 12869

Algorithm 1 NSGA-II
Require:

Random population P0; a child population Q0 is generated from the
population of parents P0 using genetic operators such as crossover
and mutation

1: while any stopping criterion is not reached do
2: Rt = Pt ∪ Qt
3: fast-non-dominated-sort (Rt)
4: Pt+1 = ∅; i = 1;
5: while |Pt+1|+|Fi |< N do
6: Apply crowding-distance-assignment Fi
7: Pt+1 ← Pt+1 ∪ Fi
8: i ← i + 1
9: end while
10: Sort (Fi ,< N)

11: Pt+1 ← Pt+1 ∪ Fi [1 : (N − |Pt + 1|)]
12: Qt+1 ← create NewPop Pt+1
13: t ← t + 1
14: end while

Fig. 1 Main steps of NSGA-II

5.1 Basic approach

The basic approach consists on using NSGA-II algorithm for
solving amulti-objective hyper-parameter tuning problem.A
set of hyper-parameter codified as a chromosome is evalu-
ated by a k-fold CV approach. A fitness function evaluation
is thus performed at each generation, i.e., each chromosome
has its fitness functions evaluated. However, this approach is
quite time consuming. Indeed, let N , be the number of chro-
mosomes of a population, and G the number of generations.
At each generation, the number of carried out k-fold CV is
N , one per each chromosome. The overall number of per-
formed k-fold CV is thus N × G. For example, if N = 24
and G = 200, the overall number of k-fold CV to be carried

Fig. 2 Framework of the improved hyper-parameters algorithm

out is 4800 and the computational time may be extremely
high.

There are two main issues: the first one is related to the
time needed to carry out k-fold CV; the second one, is related
to the fact that often a chromosome is slightly different from
another one already evaluated and with equal fitness. We
try to overcome these two issues by introducing a proce-
dure in the NSGA-II algorithm that exploits a suitable and
trained DT. The proposed algorithm, described in the follow-
ing, reduces considerably the overall number of performed
k-fold CV by combining NSGA-II with a DT. The goal is to
evaluate only a small set of chromosomes at each generation
by a k-foldCV.This procedure does not affect convergence of
the algorithm and strongly reduces the overall computational
time.

5.2 Improved hyper-parameters algorithm

The above basic approach has been modified in order to
evaluate the fitness function only of some individuals of a
population by a k-fold CV. Figure 2 provides an intuitive
understanding of the proposed algorithm framework.

Each chromosome consists of a number of genes that
represent the hyper-parameters of CS-SVM. The algorithm

123

12870 R. Guido et al.

starts from an initial population Pop0. It consists of the fol-
lowing five main steps.

Algorithm 2 Proposed hyper-parameters algorithm
1: Step 1 Initialization
2: Step 1.1 Define GenSet as a set of numbers of generations
3: Step 1.2 Create an initial population Pop0
4: Step 2 (Fitness function evaluation) Evaluate the fitness value of

each chromosome in the current population.
5: if the current generation Gen ∈ GenSet then go to Step 2.1
6: else go to Step 2.2
7: end if
8: Step 2.1 Perform a k-CV
9: Step 2.2 (Similarity procedure) Compare each chromosome with

the ones of the previous population
10: if Similarity= True then assign a fitness value to it by the trained

DT
11: else go to Step 2.1
12: end if
13: Step 3Termination criteria. If at least one of the stopping conditions

is meet, the algorithm stops
14: Step 4 Train Decision Tree. The current population is used to train

a Decision Tree.
15: Step 5 Reproduce a new population. The operators of selection,

crossover and mutation are applied over the generated population to
find better chromosomes.

The core ofAlgorithm2 is the fitness evaluation procedure
at Step 2, explained in the following.

Step2: Fitness evaluation procedure The aim of the fitness
evaluation step is to provide a procedure that reduces the
number of fitness evaluations and consequently the number
of carried out k-fold CV. To this purpose, a DT is trained
at each generation and used to predict the fitness value of
some chromosomes, as explained below. Indeed, the fitness
of a chromosome in a population is evaluated or assigned:
A whole population is evaluated by k-fold CV only at those
generations well-defined in the set GenSet . This means that
the cost-sensitive learning classifier SVM-based is built using
thehyper-parameters codified as chromosomesof the popula-
tion; for every chromosomes, a k-fold CV is used to estimate
the generalization ability of the related build model. The set
GenSet has at least two elements, i.e., the first and the last
generation. A procedure based on a learned DT takes place
at those generations not in the set GenSet .

The fitness evaluation procedure is depicted in Fig. 3. To
reduce the overall computational time, the procedure verifies
if each chromosome has already a fitness value (because it
has been evaluated previously). If so, the procedure analyzes
next chromosome; otherwise, the chromosome is compared,
at Step 2.2, with the chromosomes of the previous popu-
lation in order to discover similarity. If the chromosome is
similar at least to one chromosome, the DT trained on the
previous population predicts its fitness value; this value is
thus assigned as predicted value. Otherwise, if no similarity

Fig. 3 Fitness evaluation procedure

is found, a cost-sensitive learning classifier SVM-based is
built and the fitness value is evaluated by k-fold CV.

Similarity between two chromosomes can be estimated by
various distance measurement methods. Here, we designed
a procedure that evaluates similarity between two chromo-
somes as follows. Let chr1 and chr2, be two chromosomes
represented as vectors. The procedure compares each corre-
sponding couple of genes of chr1 and chr2, as detailed in
Algorithm 3. More specifically, the difference between the
i−th geneof chr1 and the correspondinggeneof chr2 is com-
puted. If this difference is less than a given threshold ti , the
next couple of genes of the two chromosomes are compared;
otherwise, the procedure stops and the two chromosomes are
not similar.

Figure 4 depicts an example of DT trained to predict a
given fitness function.

6 Experimental results and analysis

In this study, we test the proposed Algorithm 2 for on six
benchmark imbalanced datasets binary classification task to
compare the performance of different classification methods

123

A hyper-parameter tuning approach... 12871

Fig. 4 An example of trained
decision tree

Algorithm 3 Similarity procedure
Require:

Two chromosomes chr1, chr2 ∈ Rk . Threshold ti , i = 1, . . . , k.
1: i = 1; similari t y ← true
2: while i ≤ k do
3: if |chri1 − chri2|< ti then
4: i ← i + 1
5: else
6: i ← k
7: similari t y ← f alse
8: end if
9: end while
10: return similari t y

in the literature with our results. They are related to medical
diagnosis represented as binary classification problems and
have different sample sizes, attributes, and imbalance ratio
(IR), defined as m/M (Amin et al. 2016), where m is the
number of the minority instances and M is the number of
majority instances.

We conducted experiments to answer the following
research questions empirically:

1. Doesmulti-objective optimizationfindmuch sparser solu-
tions without a major loss in predictive performance
compared to single-objective optimization?

2. Are there alternative metrics to the accuracy?
3. May the computational time be reduced by a machine

learning technique?

A brief description of the datasets is in Sect. 6.1. Details on
the algorithms embedded in our approach and the hyper-
parameter spaces of the several CS-SVM that are being

investigated and tuned over are reported in Sect. 6.2. Exper-
imental results are listed in Sect. 6.3.

6.1 Benchmark datasets

The datasets are from the University of California Irvine
(UCI) Repository of Machine Learning Databases
(https://archive.ics.uci.edu/ml/datasets.php).Theyhavediver-
sity in the number of attributes and imbalance ratio. More-
over, the datasets have both continuous and categorical
attributes, and some of them have missing values.

Appendicitis dataset consists of 106 instances and 8
attributes. The attributes are results of laboratory test.

Haberman dataset describes the five-year or greater sur-
vival of breast cancer patients. The study was conducted
between 1958 and 1970 at the University of Chicago’s
Billings Hospital. The dataset consists of 306 instances and
4 attributes. The outcome is patient survival. There are no
missing values.

Hepatitis dataset is used to classify patients with hepati-
tis in the two classes, live or die. It consists of 155 instances
and 19 attributes, 14 nominal attributes and 6 multi-valued
attributes. It requires the determination of whether patients
with hepatitis will either live or die. The problem aims to pre-
dict the presence or absence of hepatitis by using the results
of various medical tests carried out on a patient. The dataset
has missing values.

Pima Indian Diabetes dataset is used to predict whether
or not a patient has diabetes. All patients are female, are at
least 21 years old, and are of Pima Indian heritage. It has 8
laboratory features.

123

12872 R. Guido et al.

Table 2 Datasets and their main characteristics in terms of number of
attributes (No. A), number of the minority instances (m), number of the
majority instances (M), index ratio I R = m/M

Dataset No. A m M I R

Appendicitis 8 21 85 0.25

Haberman 4 81 225 0.36

Hepatitis 19 70 85 0.82

Pima 9 268 500 0.53

WDBC 10 241 458 0.53

WPBC 32 47 151 0.33

Wisconsin Diagnostic Breast Cancer (WDBC) dataset
consists of 30 features computed by digitized image of fine
needle aspirate of a breast mass index. The problem aims to
predict whether or not the patient has breast cancer.

Wisconsin Prognostic Breast Cancer (WPBC) dataset has
198 instances that represent follow-updata for onebreast can-
cer case, only those cases exhibiting invasive breast cancer
and no evidence of distant metastases at the time of diagno-
sis. It is used in this paper to classify patients as recurrences
before 24 months (positive class) or non-recurrence beyond
24 months (negative class). We removed the feature named
“Time” from the dataset because it is the recurrence time for
instances in the positive class and the disease-free time for
the instances of the negative class.

Table 2 summarizes, per each dataset, the number of
attributes, the number of minority instances (diseased exam-
ples), the number of the majority instances (non-diseased
examples), and the index ratio.

6.2 Learning algorithms and hyperparameters
optimization

Weconsidered severalmodel classifiers CS-SVMwithGaus-
sian kernel tuned by the optimization algorithm proposed.
The experiments were performed by the ML algorithms of
Waikato Environment for Knowledge Analysis (WEKA).
WEKA is an open-source collection of ML algorithms and
data processing tools.We used Sequential minimal optimiza-
tion algorithm for SVM and Random Tree algorithm for
DT. For that concerning NSGA-II algorithm, we used the
framework named Java Class Library for Evolutionary Com-
putation (JCLEC) Ramírez et al. (2015, 2019), which is a
Java suite for solving multi-objective optimization problems
using evolutionary algorithms.

Algorithm 2 has been coded in Java using the NSGA
II algorithm of the JCLEC framework. We executed both
the sequential and the parallel version of the NSGA-II. The
parallel version is more efficient since it performs function
evaluations of different individuals in parallel. The experi-

Fig. 5 Representation of a chromosome

ments were run on a PC Intel Xeon E5 1620 CPUs with 4
cores at 3.50 GHz and 32 GB RAM.

6.2.1 Parameter setting

Algorithm 2 starts from an initial population Pop0 of chro-
mosomes randomly generated. Each chromosome has four
genes representing the hyper-parameter of CS-SVM, as
depicted in Fig. 5. All experiments have the same random
initial population; the number of generations is the only one
stopping criterion.

Table 3 lists the searchpopulation size, crossover probabil-
ity pc, gene mutation probability pm , number of generations
along with the design parameters (decision variables) and
the range of their variations. We tested two population sizes
and created the initial parent population randomly by select-
ing solutions from the ranges defined for the parameters
C,C1,C2, γ , where C1 and C2 are the costs of the minority
class and majority class, respectively.

The multi-objective problem that we formulated and
solved has three fitness functions (7–9), given by accuracy,
G-mean, and Average Cost, respectively:

f1 = max
T P + T N

T P + FP + T N + FN
(7)

f2 = max
√
Sensi tivi t y × Speci f ici t y (8)

f3 = min
C1 × FN + C2 × FP

T P + T N + FP + FN
(9)

All the experiments are conductedby10-fold cross-validation.

6.3 Computational results

To assess our approach, we performed both Algorithm 1 and
Algorithm 2 on the six datasets and compared the results.
The computational experiments were carried out using the
JCLEC sequential algorithm and its parallelized version. The
only difference we noticed was the reduced computational
time of the parallelized version with respect to the sequential
algorithm. We report in this section only the results found by
the parallel version.

Table 4 reports the best fitness values per each dataset.
From the second to the fourth column there is the value of
accuracy, G-Mean, and average cost, respectively. We com-
pare in this table our results with the best ones of the literature
by selecting those papers that optimized hyper-parameter of

123

A hyper-parameter tuning approach... 12873

Table 3 NSGA-II parameters
and hyper-parameters spaces of
CS-SVM with RBF kernel

NSGA-II parameters CS-SVM hyper-parameter space

Popsi ze pc pm Num Gen Cost γ

24 0.8 0.25 100 C ∈ {1 − 50} {0.001 − 1}
48 200 C1 ∈ {1 − 20}

1000 C2 ∈ {1 − 10}

Table 4 Best metric values by
the optimized hyper-parameters
compared to the best results of
the literature. [1] (Yu and Wang
2017); [2] (Qi et al. 2013);
[3](Tao et al. 2019). Hyphen
means that the authors did not
test that dataset

Dataset Accuracy G-Mean AC Acc AC G-Meana G-Meanb

[1] [2] [3] [3]

Appendicitis 89.62 82.54 0.11 – –

Haberman 76.14 67.70 0.26 – – 60.77±3.89 66.71±1.67

Hepatitis 87.10 84.06 0.14 83.22 0.208

Pima 78.13 76.54 0.22 76.27 0.457 64.60±3.16 75.13±1.67

WDBC 97.42 97.73 0.03 – – 92.41±2.44 96.91±1.79

WPBC 77.78 61.54 0.22 81.28 – 27.38±11.69 67.53±3.71

Bold indicates the best accuracy values

SVM with RBF kernel. Under these conditions, experimen-
tal evidence shows that our algorithm finds similar results or
outperforms the other algorithms proposed in the literature.
The best results in terms of accuracy on Hepatitis, Pima, and
WPBCdatasets are found in (Yu andWang 2017) by optimiz-
ing the parameters of the SVM with RBF kernel by a novel
ensemble differential evolution approach that they proposed.
Several approaches were tested in (Tao et al. 2019) and the
results were reported in terms of G-Mean. In Table 4, we
denoted with G-Meana and G-Meanb the values found by
CS-SVM and their self-adaptive cost weights-based support
vector machine cost-sensitive ensemble approach, respec-
tively. It is helpful to notice that they reported these results
on the datasets by modifying imbalanced data ratio of 10:1.

Tables 5, 6, 7, 8 list only someof the foundnon-dominated
solutions of the Pareto front of our experimental results.
These results refer to the experiments carried out with the
related parallelized version of Algorithms 1 and 2. The first
and second column of these tables report the population size
and the number of carried out generations; the next three
columns show the fitness function values associated with
the optimal hyper-parameter configuration, which is reported
in the next four columns. The eleventh and twelfth column
reports the sensitivity and specificity values, whereas the next
four columns report the ROC area, the F-Measure, the bal-
anced accuracy, and theYouden’s index, respectively. Finally,
the last column shows the average computational time, in
minutes.

As already observed in the literature, the accuracy is not
a suitable measure for imbalanced data. Indeed, we noticed
that in the Haberman dataset, for instance, there is a hyper-
parameter configuration that allows to have a good accuracy
equal to 75.53%, but the specificity is zero as well as the

G-mean value. Similar cases are on the Hepatitis andWPBC
datasets.

Tables 5 and 6 show the results found by Algorithm 1
on the six datasets along with the related optimized hyper-
parameter configuration. For the Appendicitis dataset, for
instance, the best accuracy in Table 5 is f1 = 89.62; the best
G-Mean is f2 = 82.54, and the best average cost is f3 =
0.11. As expected, the improvement of a fitness function
implies a worsening in the other two. We observe that the
single optimal fitness values are found with different hyper-
parameter tuning. Moreover, the best results are found in
all the experiments even if number of population size and
generation number is increased.

Tables 7 and 8 show the results found by Algorithm 2
on the six datasets along with the related optimized hyper-
parameter configuration. These results were found in very
contracted computational time if compared to the previous
ones. Observe that there has been a reduction over 70%
in some experiments. These results show that the proposed
Algorithm 2 is efficient.

The results evidenced that: (1) both algorithms converge
and find the same best values for the three fitness functions;
(2) the number of optimal non-dominated solutions of the
Pareto front found by Algorithm 1 is greater than the num-
ber found by Algorithm 2. To better understand our finding,
we illustrate in Figs. 6 and 7 the Pareto points of Tables 7
and 8 per each dataset with the six performance measures.
The Pareto points are shown considering decreasing Sen-
sitivity. As depicted in these two figures, generally balance
accuracy decreases as Sensitivity decreases while Sensitivity
increases. The best Pareto points related to medical datasets,
as those tested in this paper, should be the points with high
balance accuracy or high sensitivity values.

123

12874 R. Guido et al.

Ta
bl
e
5

A
lg
or
ith

m
1:

E
xp

er
im

en
ta
lr
es
ul
ts
on

A
pp

en
di
ci
tis
,H

ab
er
m
an
,a
nd

H
ep
at
iti
s
da
ta
se
ts

D
at
as
et

G
en
.p

ar
am

.
Fi
tn
es
s
fu
nc
tio

ns
O
pt
im

iz
ed

H
yp

er
-p
ar

Pe
rf
or
m
an
ce

m
et
ri
cs

T
im

e

Po
p
si
ze

G
en

f 1
f 2

f 3
C

γ
C
1

C
2

Se
ns

Sp
ec

R
O
C
ar
ea

F-
M

B
A

Y

A
pp
en
di
ci
tis

24
10
0

89
.6
2

77
.2
8

0.
18

33
0.
01

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

0.
76

86
.7
9

82
.5
4

0.
27

9
0.
38

1
4

0.
76
2

0.
89
4

0.
82
8

0.
7

0.
82
8

0.
65
6

88
.6
8

74
.2
5

0.
11

45
0.
18

1
1

0.
57
1

0.
96
5

0.
76
8

0.
67

0.
76
8

0.
53
6

20
0

89
.6
2

77
.2
8

0.
18

2
0.
18

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

1.
42

86
.7
9

82
.5
4

0.
27

9
0.
38

1
4

0.
76
2

0.
89
4

0.
82
8

0.
7

0.
82
8

0.
65
6

88
.6
8

74
.2
5

0.
11

10
0.
38

1
1

0.
57
1

0.
96
5

0.
76
8

0.
67

0.
76
8

0.
53
6

10
00

89
.6
2

77
.2
8

0.
18

2
0.
18

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

7.
09

86
.7
9

82
.5
4

0.
27

9
0.
38

1
4

0.
76
2

0.
89
4

0.
82
8

0.
7

0.
82
8

0.
65
6

88
.6
8

74
.2
5

0.
11

15
0.
38

1
1

0.
57
1

0.
96
5

0.
76
8

0.
67

0.
76
8

0.
53
6

48
10
0

89
.6
2

77
.2
8

0.
18

39
0.
01

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

1.
44

89
.6
2

74
.7

0.
1

39
0.
12

1
1

0.
57
1

0.
97
6

0.
77
4

0.
69

0.
77
3

0.
54
7

86
.7
9

82
.5
4

0.
27

10
0.
4

1
4

0.
76
2

0.
89
4

0.
82
8

0.
7

0.
82
8

0.
65
6

88
.6
8

81
.4
8

1.
3

3
0.
01

5
18

0.
71
4

0.
92
9

0.
82
2

0.
71

0.
82
15

0.
64
3

20
0

89
.6
2

77
.2
8

0.
18

26
0.
01

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

2.
83

89
.6
2

74
.7

0.
1

39
0.
12

1
1

0.
57
1

0.
97
6

0.
77
4

0.
69

0.
77
3

0.
54
7

10
00

89
.6
2

77
.2
8

0.
18

26
0.
01

1
2

0.
61
9

0.
96
5

0.
79
2

0.
7

0.
79
2

0.
58
4

14
.1
3

89
.6
2

74
.7

0.
1

39
0.
12

1
1

0.
57
1

0.
97
6

0.
77
4

0.
69

0.
77
3

0.
54
7

86
.7
9

82
.5
4

0.
27

11
0.
4

1
4

0.
76
2

0.
89
4

0.
82
8

0.
7

0.
82
8

0.
65
6

H
ab
er
m
an

24
10
0

75
.8
2

62
.2
2

0.
39

49
0.
86

1
2

0.
44
4

0.
87
1

0.
65
8

0.
49

0.
65
7

0.
31
5

4.
41

70
.9
2

65
.7

2.
19

49
0.
53

4
13

0.
56
8

0.
76

0.
66
4

0.
51

0.
66
4

0.
32
8

73
.8
6

34
.4
3

0.
26

48
0.
74

1
1

0.
12
3

0.
96

0.
54
2

0.
2

0.
54
1

0.
08
3

20
0

75
.8
2

62
.2
2

0.
39

46
0.
86

1
2

0.
44
4

0.
87
1

0.
65
8

0.
49

0.
65
7

0.
31
5

9.
02

71
.2
4

65
.8
9

2.
18

38
0.
53

4
13

0.
56
8

0.
76
4

0.
66
6

0.
51

0.
66
6

0.
33
2

73
.8
6

34
.4
3

0.
26

29
0.
74

1
1

0.
12
3

0.
96

0.
54
2

0.
2

0.
54
1

0.
08
3

10
00

75
.8
2

62
.2
2

0.
39

46
0.
86

1
2

0.
44
4

0.
87
1

0.
65
8

0.
49

0.
65
7

0.
31
5

37
.9
6

71
.2
4

66
.9
1

2.
12

13
0.
86

4
13

0.
59
3

0.
75
6

0.
67
4

0.
52

0.
67
4

0.
34
9

74
.1
8

34
.5
1

0.
26

23
0.
86

1
1

0.
12
3

0.
96
4

0.
54
4

0.
2

0.
54
35

0.
08
7

123

A hyper-parameter tuning approach... 12875

Ta
bl
e
5

co
nt
in
ue
d

D
at
as
et

G
en
.p

ar
am

.
Fi
tn
es
s
fu
nc
tio

ns
O
pt
im

iz
ed

H
yp

er
-p
ar

Pe
rf
or
m
an
ce

m
et
ri
cs

T
im

e

Po
p
si
ze

G
en

f 1
f 2

f 3
C

γ
C
1

C
2

Se
ns

Sp
ec

R
O
C
ar
ea

F-
M

B
A

Y

48
10
0

76
.1
4

62
.3
8

0.
39

49
0.
94

1
2

0.
44
4

0.
87
6

0.
66

0.
5

0.
66

0.
32

6.
78

69
.2
8

67
.5
7

1.
09

39
0.
42

2
7

0.
64
2

0.
71
1

0.
67
7

0.
53

0.
67
6

0.
35
3

73
.8
6

37
.5
4

0.
26

49
0.
94

1
1

0.
14
8

0.
95
1

0.
55

0.
23

0.
54
9

0.
09
9

20
0

76
.1
4

62
.3
8

0.
39

49
0.
94

1
2

0.
44
4

0.
87
6

0.
66

0.
5

0.
66

0.
32

13
.3
5

69
.2
8

67
.5
7

1.
09

39
0.
42

2
7

0.
64
2

0.
71
1

0.
67
7

0.
53

0.
67
6

0.
35
3

73
.8
6

37
.5
4

0.
26

49
0.
94

1
1

0.
14
8

0.
95
1

0.
55

0.
23

0.
54
9

0.
09
9

74
.1
8

32
.8
1

0.
26

47
0.
52

1
1

0.
11
1

0.
96
9

0.
54

0.
19

0.
54

0.
08

10
00

76
.1
4

62
.3
8

0.
39

49
0.
94

1
2

0.
44
4

0.
87
6

0.
66

0.
5

0.
66

0.
32

66
.9
2

72
.5
5

67
.7

2.
07

2
0.
94

4
13

0.
59
3

0.
77
3

0.
68
3

0.
53

0.
68
3

0.
36
6

73
.8
6

37
.5
4

0.
26

49
0.
94

1
1

0.
14
8

0.
95
1

0.
55

0.
23

0.
54
9

0.
09
9

H
ep
at
iti
s

24
10
0

86
.4
5

80
.5
4

0.
33

40
0.
01

3
2

0.
71
9

0.
90
2

0.
81
1

0.
69

0.
81
0

0.
62
1

0.
94

83
.8
7

82
.8
8

0.
59

8
0.
01

9
2

0.
81
3

0.
84
6

0.
82
9

0.
68

0.
82
9

0.
65
9

85
.8
1

75
.7
8

0.
14

47
0.
01

1
1

0.
62
5

0.
91
9

0.
77
2

0.
65

0.
77
2

0.
54
4

20
0

86
.4
5

80
.5
4

0.
33

39
0.
01

3
2

0.
71
9

0.
90
2

0.
81
1

0.
69

0.
81
0

0.
62
1

1.
78

83
.8
7

82
.8
8

0.
59

8
0.
01

9
2

0.
81
3

0.
84
6

0.
82
9

0.
68

0.
82
9

0.
65
9

85
.8
1

75
.7
8

0.
14

47
0.
01

1
1

0.
62
5

0.
91
9

0.
77
2

0.
65

0.
77
2

0.
54
4

10
00

87
.1

80
.9

0.
32

35
0.
01

3
2

0.
71
9

0.
91
1

0.
81
5

0.
7

0.
81
5

0.
63

9.
03

83
.8
7

84
.0
6

0.
29

8
0.
01

5
1

0.
84
4

0.
83
7

0.
84
1

0.
68

0.
84
0

0.
68
1

85
.8
1

75
.7
8

0.
14

47
0.
01

1
1

0.
62
5

0.
91
9

0.
77
2

0.
65

0.
77
2

0.
54
4

48
10
0

87
.1

80
.9

0.
32

32
0.
01

3
2

0.
71
9

0.
91
1

0.
81
5

0.
7

0.
81
5

0.
63

1.
82

85
.1
6

83
.6
8

0.
49

10
0.
01

7
2

0.
81
3

0.
86
2

0.
83
7

0.
69

0.
83
7

0.
67
5

85
.8
1

74
.1
8

0.
14

10
0.
32

1
1

0.
59
4

0.
92
7

0.
76

0.
63

0.
76
0

0.
52
1

20
0

87
.1

80
.9

0.
32

32
0.
01

3
2

0.
71
9

0.
91
1

0.
81
5

0.
7

0.
81
5

0.
63

3.
45

85
.1
6

83
.6
8

0.
49

10
0.
01

7
2

0.
81
3

0.
86
2

0.
83
7

0.
69

0.
83
7

0.
67
5

85
.8
1

75
.7
8

0.
14

47
0.
01

1
1

0.
62
5

0.
91
9

0.
77
2

0.
65

0.
77
2

0.
54
4

10
00

87
.1

80
.9

0.
32

32
0.
01

3
2

0.
71
9

0.
91
1

0.
81
5

0.
7

0.
81
5

0.
63

16
.8
6

83
.8
7

84
.0
6

0.
29

8
0.
01

5
1

0.
84
4

0.
83
7

0.
84
1

0.
68

0.
84
05

0.
68
1

85
.8
1

75
.7
8

0.
14

47
0.
01

1
1

0.
62
5

0.
91
9

0.
77
2

0.
65

0.
77
2

0.
54
4

123

12876 R. Guido et al.

Table 6 Algorithm 1: Experimental results on the datasets Pima, WDBC, and WPBC

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

Pima 24 100 77.99 72.69 1.46 5 0.24 7 6 0.604 0.874 0.739 0.66 0.739 0.478 10.19

77.99 70.9 0.22 4 0.53 1 1 0.56 0.898 0.729 0.64 0.729 0.458

74.35 76.28 0.68 5 0.53 5 2 0.843 0.69 0.767 0.7 0.766 0.533

77.6 71.12 0.22 10 0.53 1 1 0.571 0.886 0.728 0.64 0.728 0.457

200 77.99 72.69 1.46 5 0.24 7 6 0.604 0.874 0.739 0.66 0.739 0.478 20.31

77.99 70.9 0.22 4 0.53 1 1 0.56 0.898 0.729 0.64 0.729 0.458

74.35 76.28 0.68 5 0.53 5 2 0.843 0.69 0.767 0.7 0.766 0.533

77.6 71.12 0.22 10 0.53 1 1 0.571 0.886 0.728 0.64 0.728 0.457

1000 77.99 72.69 1.46 5 0.24 7 6 0.604 0.874 0.739 0.66 0.739 0.478 100.99

77.99 70.9 0.22 4 0.53 1 1 0.56 0.898 0.729 0.64 0.729 0.458

74.87 76.54 0.99 4 0.53 7 3 0.832 0.704 0.768 0.7 0.768 0.536

77.86 71.28 0.22 15 0.53 1 1 0.571 0.89 0.73 0.64 0.730 0.461

48 100 78.13 70.82 0.22 4 0.47 1 1 0.556 0.902 0.729 0.64 0.729 0.458 21.26

74.87 76.54 0.99 4 0.47 7 3 0.832 0.704 0.768 0.7 0.768 0.536

77.86 71.28 0.22 19 0.47 1 1 0.571 0.89 0.73 0.64 0.730 0.461

200 78.13 70.82 0.22 4 0.47 1 1 0.556 0.902 0.729 0.64 0.729 0.458 41.87

74.87 76.54 0.99 4 0.47 7 3 0.832 0.704 0.768 0.7 0.768 0.536

77.86 71.28 0.22 19 0.47 1 1 0.571 0.89 0.73 0.64 0.730 0.461

1000 78.13 70.82 0.22 4 0.47 1 1 0.556 0.902 0.729 0.64 0.729 0.458 210.71

78.13 72.34 2.11 4 0.47 10 9 0.593 0.882 0.738 0.65 0.737 0.475

74.87 76.54 0.99 4 0.47 7 3 0.832 0.704 0.768 0.7 0.768 0.536

77.99 71.51 0.22 18 0.47 1 1 0.575 0.89 0.732 0.65 0.732 0.465

WDBC 24 100 97.42 97.73 0.06 10 0.42 2 5 0.988 0.967 0.977 0.96 0.9775 0.955 2.26

97.14 97.7 0.03 6 0.42 1 5 0.996 0.959 0.977 0.96 0.9775 0.955

200 97.42 97.73 0.06 10 0.42 2 5 0.988 0.967 0.977 0.96 0.9775 0.955 7.49

97.14 97.7 0.03 6 0.42 1 5 0.996 0.959 0.977 0.96 0.9775 0.955

1000 97.42 97.73 0.06 8 0.42 2 5 0.988 0.967 0.977 0.96 0.9775 0.955 30.76

97.28 97.53 0.03 5 0.42 1 2 0.983 0.967 0.975 0.96 0.975 0.95

48 100 97.42 97.73 0.03 8 0.09 1 3 0.988 0.967 0.977 0.96 0.9775 0.955 9.44

200 97.42 97.73 0.03 8 0.09 1 3 0.988 0.967 0.977 0.96 0.9775 0.955 11.8

1000 97.42 97.73 0.03 8 0.09 1 3 0.988 0.967 0.977 0.96 0.9775 0.955 50.86

WPBC 24 100 77.78 29.08 0.24 38 0.24 1 4 0.085 0.993 0.539 0.15 0.539 0.078 1.65

69.7 61.05 0.55 1 0.24 3 1 0.489 0.762 0.625 0.43 0.6255 0.251

76.77 14.59 0.23 38 0.24 1 5 0.021 1 0.511 0.04 0.5105 0.021

200 77.78 29.08 0.24 44 0.24 1 4 0.085 0.993 0.539 0.15 0.539 0.078 3.25

77.78 25.26 0.22 32 0.42 1 8 0.064 1 0.532 0.12 0.532 0.064

69.7 61.05 0.55 1 0.24 3 1 0.489 0.762 0.625 0.43 0.6255 0.251

1000 77.78 29.08 0.24 18 0.42 1 4 0.085 0.993 150 0.15 0.539 0.078 16.17

77.78 25.26 0.22 32 0.42 1 8 0.064 1 151 0.12 0.532 0.064

69.7 61.05 0.55 1 0.24 3 1 0.489 0.762 115 0.43 0.6255 0.251

123

A hyper-parameter tuning approach... 12877

Table 6 continued

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

48 100 77.78 25.26 0.22 47 0.33 1 9 0.064 1 0.532 0.12 0.532 0.064 3.15

77.78 29.08 0.24 32 0.32 1 5 0.085 0.993 0.539 0.15 0.539 0.078

68.69 61.54 1.75 46 0.01 10 3 0.511 0.742 0.626 0.44 0.6265 0.253

200 77.78 29.08 0.24 33 0.32 1 5 0.085 0.993 0.539 0.15 0.539 0.078 6.34

77.78 25.26 0.22 33 0.32 1 6 0.064 1 0.532 0.12 0.532 0.064

68.69 61.54 1.75 44 0.01 10 3 0.511 0.742 0.626 0.44 0.6265 0.253

1000 77.78 29.08 0.23 21 0.32 1 3 0.085 0.993 0.539 0.15 0.539 0.078 31.85

77.78 25.26 0.22 33 0.32 1 6 0.064 1 0.532 0.12 0.532 0.064

68.69 61.54 1.75 48 0.01 10 3 0.511 0.742 0.626 0.44 0.6265 0.253

Table 7 Algorithm 2: Experimental results on the datasets Appendicitis, Haberman, and Hepatitis

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

Appendicitis 24 100 89.62 77.28 0.18 23 0.01 1 2 0.619 0.965 0.792 0.7 0.792 0.584 0.37

86.79 80.44 0.3 10 0.01 1 4 0.714 0.906 0.81 0.68 0.81 0.62

84.91 60.62 0.15 24 0.01 1 1 0.381 0.965 0.673 0.5 0.673 0.346

200 89.62 77.28 0.36 35 0.01 2 4 0.619 0.965 0.792 0.7 0.792 0.584 0.55

86.79 82.54 0.32 28 0.13 1 5 0.762 0.894 0.828 0.7 0.828 0.656

1000 89.62 77.28 0.18 38 0.01 1 2 0.619 0.965 0.792 0.7 0.792 0.584 1.94

87.74 80.96 0.29 8 0.01 1 4 0.714 0.918 0.816 0.7 0.816 0.632

48 100 89.62 77.28 0.36 29 0.01 2 4 0.619 0.965 0.792 0.7 0.792 0.584 0.61

87.74 80.96 0.29 29 0.01 1 4 0.714 0.918 0.816 0.7 0.816 0.632

86.79 67.78 0.13 36 0.01 1 1 0.476 0.965 0.72 0.59 0.720 0.441

200 89.62 77.28 0.18 11 0.01 1 2 0.619 0.965 0.792 0.7 0.792 0.584 0.91

86.79 82.54 1.19 9 0.47 4 18 0.762 0.894 0.828 0.7 0.828 0.656

1000 89.62 77.28 0.18 18 0.01 1 2 0.619 0.965 0.792 0.7 0.792 0.584 3.07

87.74 80.96 0.29 8 0.01 1 4 0.714 0.918 0.816 0.7 0.816 0.632

84.91 57.05 0.15 22 0.01 1 1 0.333 0.976 0.655 0.47 0.654 0.309

Haberman 24 100 76.14 62.38 0.39 42 1 1 2 0.444 0.876 0.66 0.5 0.66 0.32 1.82

68.3 66.49 1.12 11 1 2 7 0.63 0.702 0.666 0.51 0.666 0.332

73.53 0 0.26 23 0.94 2 1 0 1 0.5 0 0.5 0

200 76.14 57.81 1.38 29 0.12 3 7 0.37 0.902 0.636 0.45 0.636 0.272 3.8

67.32 66.29 1.13 3 0.94 2 7 0.642 0.684 0.663 0.51 0.663 0.326

75.82 62.22 0.39 42 0.94 1 2 0.444 0.871 0.658 0.49 0.657 0.315

1000 76.14 62.38 0.39 35 0.94 1 2 0.444 0.876 0.66 0.5 0.66 0.32 19.47

70.92 67.21 1.6 11 0.94 3 10 0.605 0.747 0.676 0.52 0.676 0.352

73.86 37.54 0.26 49 0.94 1 1 0.148 0.951 0.55 0.23 0.549 0.099

48 100 76.14 62.38 0.39 49 0.94 1 2 0.444 0.876 0.66 0.5 0.66 0.32 4.29

68.95 67.35 1.09 15 0.63 2 7 0.642 0.707 0.674 0.52 0.674 0.349

73.86 37.54 0.26 49 0.94 1 1 0.148 0.951 0.55 0.23 0.549 0.099

200 76.14 62.38 0.39 49 0.94 1 2 0.444 0.876 0.66 0.5 0.66 0.32 6.74

69.28 67.57 1.09 24 0.63 2 7 0.642 0.711 0.677 0.53 0.676 0.353

73.86 34.43 0.26 49 0.56 1 1 0.123 0.96 0.542 0.2 0.541 0.083

123

12878 R. Guido et al.

Table 7 continued

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

1000 76.14 62.38 0.39 34 0.94 1 2 0.444 0.876 0.66 0.5 0.66 0.32 27.73

69.61 67.33 2.7 9 1 5 17 0.63 0.72 0.675 0.52 0.675 0.35

73.53 0 0.26 10 0.94 7 1 0 1 0.5 0 0.5 0

Hepatitis 24 100 87.1 79.47 0.45 28 0.01 4 3 0.688 0.919 0.803 0.69 0.803 0.607 0.4

83.23 82.49 0.61 6 0.01 9 2 0.813 0.837 0.825 0.67 0.825 0.65

83.23 67.78 0.17 28 0.01 1 1 0.5 0.919 0.709 0.55 0.709 0.419

200 87.1 80.9 0.32 32 0.01 3 2 0.719 0.911 0.815 0.7 0.815 0.63 0.58

83.23 82.49 0.61 6 0.01 9 2 0.813 0.837 0.825 0.67 0.825 0.65

84.52 71.89 0.15 32 0.01 1 1 0.563 0.919 0.741 0.6 0.741 0.482

1000 87.1 80.9 0.32 35 0.01 3 2 0.719 0.911 0.815 0.7 0.815 0.63 1.9

83.87 84.06 0.29 8 0.01 5 1 0.844 0.837 0.841 0.68 0.840 0.681

79.35 0 0.21 8 0.01 1 3 0 1 0.5 0 0.5 0

48 100 86.45 80.54 0.33 13 0.02 3 2 0.719 0.902 0.811 0.69 0.810 0.621 0.74

83.23 83.65 0.59 7 0.01 10 2 0.844 0.829 0.837 0.68 0.836 0.673

85.81 74.18 0.14 26 0.02 1 1 0.594 0.927 0.76 0.63 0.760 0.521

200 87.1 80.9 0.32 35 0.01 3 2 0.719 0.911 0.815 0.7 0.815 0.63 1.1

81.94 81.68 0.71 15 0.01 11 2 0.813 0.821 0.817 0.65 0.817 0.634

84.52 71.89 0.15 34 0.01 1 1 0.563 0.919 0.741 0.6 0.741 0.482

1000 87.1 80.9 0.32 32 0.01 3 2 0.719 0.911 0.815 0.7 0.815 0.63 4.03

83.87 84.06 0.29 8 0.01 5 1 0.844 0.837 0.841 0.68 0.840 0.681

84.52 71.89 0.15 34 0.01 1 1 0.563 0.919 0.741 0.6 0.741 0.482

Table 8 Algorithm 2: Experimental results on the datasets Pima, WDBC, and WPBC

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

Pima 24 100 77.73 73.2 1.02 5 0.24 5 4 0.623 0.86 0.742 0.66 0.741 0.483 7.8

74.35 76.28 0.68 5 0.53 5 2 0.843 0.69 0.767 0.7 0.766 0.533

77.08 70.34 0.23 23 0.32 1 1 0.56 0.884 0.722 0.63 0.722 0.444

77.47 70.26 0.23 23 0.24 1 1 0.552 0.894 0.723 0.63 0.723 0.446

200 77.99 70.9 0.44 4 0.53 2 2 0.56 0.898 0.729 0.64 0.729 0.458 12.41

74.35 76.28 0.68 5 0.53 5 2 0.843 0.69 0.767 0.7 0.766 0.533

74.74 58.03 0.28 5 0.53 1 2 0.351 0.96 0.655 0.49 0.655 0.311

1000 77.47 70.89 0.45 48 0.24 2 2 0.567 0.886 0.727 0.64 0.726 0.453 52.83

77.47 70.1 0.23 12 0.24 1 1 0.549 0.896 0.722 0.63 0.722 0.445

74.48 76.33 0.68 48 0.13 5 2 0.84 0.694 0.767 0.7 0.767 0.534

48 100 78.13 71.13 0.22 3 0.63 1 1 0.563 0.898 0.731 0.64 0.730 0.461 9.86

74.35 76.28 0.68 3 0.58 5 2 0.843 0.69 0.767 0.7 0.766 0.533

200 78.13 71.13 0.22 3 0.63 1 1 0.563 0.898 0.731 0.64 0.730 0.461 15.34

75.13 75.44 0.33 10 0.42 2 1 0.765 0.744 0.754 0.68 0.754 0.509

74.35 76.22 0.68 2 0.63 5 2 0.84 0.692 0.766 0.7 0.766 0.532

1000 78.13 71.13 0.22 3 0.63 1 1 0.563 0.898 0.731 0.64 0.730 0.461 62.73

78.13 72.34 2.11 1 0.63 10 9 0.593 0.882 0.738 0.65 0.737 0.475

74.22 75.93 0.7 3 0.42 5 2 0.828 0.696 0.762 0.69 0.762 0.524

123

A hyper-parameter tuning approach... 12879

Table 8 continued

Dataset Gen. param. Fitness functions Optimized Hyper-par Performance metrics Time

Pop size Gen f1 f2 f3 C γ C1 C2 Sens Spec ROC area F-M BA Y

WDBC 24 100 97.42 97.73 0.09 19 0.24 3 7 0.988 0.967 0.977 0.96 0.977 0.955 0.87

97.14 97.7 0.04 4 0.18 1 7 0.996 0.959 0.977 0.96 0.977 0.955

200 97.42 97.73 0.09 19 0.24 3 7 0.988 0.967 0.977 0.96 0.977 0.955 2.59

97.28 97.43 0.04 4 0.01 1 3 0.979 0.969 0.974 0.96 0.974 0.948

97.14 97.7 0.04 4 0.18 1 7 0.996 0.959 0.977 0.96 0.977 0.955

1000 97.42 97.73 0.09 14 0.24 3 7 0.988 0.967 0.977 0.96 0.977 0.955 13.77

97.14 97.7 0.03 14 0.24 1 4 0.996 0.959 0.977 0.96 0.977 0.955

48 100 97.42 97.73 0.09 19 0.24 3 7 0.988 0.967 0.977 0.96 0.977 0.955 2.52

97.28 97.43 0.04 4 0.01 1 3 0.979 0.969 0.974 0.96 0.974 0.948

97.14 97.7 0.04 4 0.18 1 7 0.996 0.959 0.977 0.96 0.977 0.955

200 97.42 97.73 0.09 19 0.24 3 7 0.988 0.967 0.977 0.96 0.977 0.955 5.37

97.28 97.43 0.04 4 0.01 1 3 0.979 0.969 0.974 0.96 0.974 0.948

97.14 97.7 0.04 4 0.18 1 7 0.996 0.959 0.977 0.96 0.977 0.955

1000 97.42 97.73 0.16 16 0.27 5 12 0.988 0.967 0.977 0.96 0.977 0.955 25.72

97.14 97.13 0.03 4 0.27 1 1 0.971 0.972 0.971 0.96 0.971 0.943

WPBC 24 100 76.26 0 0.24 49 0.01 1 1 0 1 0.5 0 0.5 0 0.96

69.19 60.78 0.55 1 0.18 3 1 0.489 0.755 0.622 0.43 0.622 0.244

200 77.27 48.83 3.36 9 0.01 17 7 0.255 0.934 0.595 0.35 0.594 0.189 1.61

65.15 62.29 2.95 5 0.01 17 5 0.574 0.675 0.625 0.44 0.624 0.249

76.26 0 0.24 42 0.01 1 7 0 1 0.5 0 0.5 0

1000 77.27 48.83 3.36 9 0.01 17 7 0.255 0.934 0.595 0.35 0.594 0.189 4.47

65.15 62.29 2.95 5 0.01 17 5 0.574 0.675 0.625 0.44 0.624 0.249

76.26 0 0.24 5 0.01 1 9 0 1 0.5 0 0.5 0

48 100 76.26 0 0.24 41 0.09 1 2 0 1 0.5 0 0.5 0 1.77

76.26 55.17 0.39 14 0.09 2 1 0.34 0.894 0.617 0.41 0.617 0.234

200 77.78 29.08 0.25 49 0.27 1 6 0.085 0.993 0.539 0.15 0.539 0.078 2.64

77.78 25.26 0.22 48 0.27 1 7 0.064 1 0.532 0.12 0.532 0.064

67.17 60.71 3.04 47 0.01 17 5 0.511 0.722 0.616 0.42 0.616 0.233

1000 76.26 0 0.24 28 0.01 1 7 0 1 0.5 0 0.5 0 8.55

65.15 59.59 3.25 37 0.01 18 5 0.511 0.695 0.603 0.41 0.603 0.206

7 Conclusion

Support vector machines are one of the best ML models for
solving several real-life classification problems. However, as
in otherML techniques, their performance depends on hyper-
parameters.

In this paper, we have investigated and proposed an
approach that combines genetic algorithms and decision trees
to optimize hyper-parameters of C-SVMs. The optimum val-
ues of the regularization parameter, costs of classes and the
parameters of theRBFkernel function are searched for SVM.

We tested the algorithm on six benchmark datasets, which
are imbalanced. We evaluated the performance of the mod-
els by several performance metrics. The framework is better

or equivalent to other algorithms proposed in the literature
for CS-SVM hyper-parameters optimization. Overall, taking
into account three predictive metrics, i.e., accuracy, G-Mean,
and average cost, the best hyper-parameter configuration is
found in short computational time, mainly if compared with
grid search approach.Hence, this approach can be considered
as a good solution for addressing imbalanced dataset classi-
fication and hyper-parameter tuning, as they are challenging
problems in classification research.

We suggest evaluating the performance of classifiers on
medical data by suitable measures other than accuracy. Our
future work is to extend and assess the proposed approach
to investigate hyper-parameter tuning of different machine
learning methods.

123

12880 R. Guido et al.

Fig. 6 Values of the six performance measures of the Pareto points found for Appendicitis, Haberman, Hepatitis, and Pima datasets

Fig. 7 Values of the six performance measures of the Pareto points found for WDBC and WPBC datasets

Acknowledgements The research has been partially supported by the
research project SI.F.I.PA.CRO.DE. Sviluppo e industrializzazione far-
maci innovativi per terapia molecolare personalizzata PA.CRO.DE.
(PON ARS01_00568, CUP: B29C20000360005, CONCESSIONE
RNA-COR: 4646672), Italian Ministry of University and Research,
2021.

Declaration

Conflict of interest The authors of themanuscript declare that they have
no affiliations with or involvement in any organization or entity with
any financial interest (such as honoraria; educational grants; partici-
pation in speakers’ bureaus; membership, employment, consultancies,
stock ownership, or other equity interest; and expert testimony or patent-
licensing arrangements), or non-financial interest (such as personal or

professional relationships, affiliations, knowledge or beliefs) in the sub-
ject matter or materials discussed in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A hyper-parameter tuning approach... 12881

References

Agrawal N, Kumar A, Bajaj V (2017) A new design method for stable
IIR filters with nearly linear-phase response based on fractional
derivative and swarm intelligence. IEEETransactions onEmerging
Topics in Computational Intelligence 1(6):464–477

Agrawal N, Kumar A, Bajaj V (2018) Design of digital IIR filter with
low quantization error using hybrid optimization technique. Soft
Comput 22(9):2953–2971

Amin A, Anwar S, Aea Adnan (2016) Comparing oversampling tech-
niques to handle the class imbalance problem: a customer churn
prediction case study. IEEE Access 4:7940–7957

Bao-De L, Xin-Yang Z,Mei Z et al (2021) Improved genetic algorithm-
based research on optimization of least square support vec-
tor machines: an application of load forecasting. Soft Comput
10(1007):5674–9

Bergstra J, Bardenet R, Bengio Y, et al (2011) Algorithms for hyper-
parameter optimization. In: and CAI (ed) Proceedings of the 24th
international conference on neural information processing sys-
tems. USA, pp 2546–2554

Breiman L, Friedman JH, Olshen R, et al (1984) R. A. and Stone, C.J.
Classification and regression trees. CRC press

Chawla N, Bowyer K, Lea Hall (2002) Smote: Synthetic minority over-
sampling technique. J Artif Intell Res 16:321–357

Cortes C, Vapnik V (1995) Support-vector network. Mach Learn
20:273–297

Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press

Datta S,Das S (2015)Near-bayesian support vectormachines for imbal-
anced data classification with equal or unequal misclassification
costs. Neural Netw 70:39–52

Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic
algorithms for better convergence. In: Lothar T, Kalyanmoy D,
Coello C et al (eds) Zitzler Eckart. Evolutionary Multi-Criterion
Optimization, Springer, Berlin Heidelberg, pp 67–81

DebK, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

Dwivedi AK, Ghosh S, Londhe ND (2018) Review and analysis of
evolutionary optimization-based techniques for fir filter design.
Circuits Syst Signal Process 37(10):4409–4430

Galar M, Fernandez A, Barrenechea E et al (2012) A review on ensem-
bles for the class imbalance problem: Bagging, boosting, and
hybrid-based approaches, systems, man, and cybernetics, part c:
Applications and reviews. IEEE Trans 42(4):463–484

Goldberg DE, Holland J (1988) Genetic algorithms and machine learn-
ing. Mach Learn 3(2):95–99

Guido R, Conforti D (2017) Hybrid genetic approach for solving an
integratedmulti-objective operating roomplanning and scheduling
problem. Comput Oper Res 87:270–282

Guido R, Groccia MC, Conforti D (2021) Hyper-Parameter Optimiza-
tion in Support Vector Machine on unbalanced datasets using
Genetic Algorithms. In: Optimization in Artificial Intelligence and
Data Sciences, AIRO Springer Series (in press)

Hofmann T, Scholkopf B, Smola AJ (2008) Kernel methods in machine
learning. Ann Statist pp 1171–1220

Holland JH (1975) Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and
artificial intelligence. Michigan Press

Iranmehr A, Masnadi-Shirazi H, Vasconcelos N (2019) Cost-sensitive
support vector machines. Neurocomputing 343:50–64

Japkowicz N, Stephen S (2002) The class imbalance problem: a sys-
tematic study. Intell Data Anal 6:429–449

JoT, JapkowiczN (2004)Class imbalances versus small disjuncts.ACM
SIGKDD Explorations Newslett 6:40–49

Lessmann S, StahlbockR, CroneR (2005)Optimizing hyperparameters
of support vector machines by genetic algorithms. In: IC-AI pp
74–82

Mehrbakhsh N, Hossein A, Leila S et al (2019) A predictive method for
hepatitis disease diagnosis using ensembles of neuro-fuzzy tech-
nique. J Infect Public Health 12(1):13–20

Noia A,Martino A,Montanari P et al (2020) Supervisedmachine learn-
ing techniques and genetic optimization for occupational diseases
risk prediction. Soft Comput 24:4393–4406

Phienthrakul T, Kijsirikul B (2010) Evolutionary strategies for hyper-
parameters of support vector machines based on multi-scale radial
basis function kernels. Soft Comput 14:681–699

Qi Z, TianaY, Shia Y et al (2013) Cost-sensitive support vectormachine
for semi-supervised learning. Procedia Comput Sci 18:1684–1689

Ramírez A, Romero JR, Ventura S (2015) An extensible JCLEC-based
solution for the implementation of multi-objective evolutionary
algorithms. In: proceedings of the companion publication of the
2015 annual conference on genetic and evolutionary computation,
pp 1085–1092

Ramírez A, Romero JR, García-Martínez C et al (2019) JCLEC-MO:
a java suite for solving many-objective optimization engineering
problems. Eng Appl Artif Intell 81:14–28

Scholkopf B, Smola AJ (2001) Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA

Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy,
F-score and ROC: A family of discriminant measures for per-
formance evaluation. In: Sattar A, Kang B (eds) Advances in
Artificial Intelligence. Lecture Notes in Computer Science, vol
4304. Springer, Berlin, Heidelberg

Srinivas N, Deb K (1994) Multiobjective optimization using nondomi-
nated sorting in genetic algorithms. Evol Comput 2(3):221–248

Tao X, Li Q, Guo W et al (2019) Self-adaptive cost weights-based
support vector machine cost-sensitive ensemble for imbalanced
data classification. Inf Sci 487:31–56

Turney PD (1995) Cost-sensitive classification: empirical evaluation of
a hybrid genetic decision tree induction algorithm. J Artif Int Res
2:369–409

Vapnik V (1998) Statistical Learning Theory. Wiley, John Sons Inc
Veropoulos K, Campbell C, Cristianini N (1999) Controlling the

sensitivity of support vectormachines. In: proceedings of the inter-
national joint conference on AL, pp 55–60

Witten I, FrankE (2005)DataMining PracticalMachine LearningTools
and Techniques. Morgan Kaufmann Publishers, CA

Yu X, Wang X (2017) A novel hybrid classification framework using
svm and differential evolution. Soft Comput 21:4029–4044

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers
	Abstract
	1 Introduction
	2 Related work on imbalanced data classification and cost-sensitive learning problems
	3 Learning model classifiers
	3.1 Support vector machine
	3.2 Decision tree
	3.3 Performance evaluation and some limitations

	4 Multi-objective optimization problems and Genetic algorithms
	4.1 NSGA-II

	5 Proposed approach
	5.1 Basic approach
	5.2 Improved hyper-parameters algorithm

	6 Experimental results and analysis
	6.1 Benchmark datasets
	6.2 Learning algorithms and hyperparameters optimization
	6.2.1 Parameter setting

	6.3 Computational results

	7 Conclusion
	Acknowledgements
	References

