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Abstract
Resource Planning Optimization (RPO) is a common task that many companies need to face to get several benefits, like budget
improvements and run-time analyses. However, even if it is often solved by using several software products and tools, the great
success and validity of the Artificial Intelligence-based approaches, in many research fields, represent a huge opportunity
to explore alternative solutions for solving optimization problems. To this purpose, the following paper aims to investigate
the use of multiple Artificial Neural Networks (ANNs) for solving a RPO problem related to the scheduling of different
Combined Heat & Power (CHP) generators. The experimental results, carried out by using data extracted by considering a
real Microgrid system, have confirmed the effectiveness of the proposed approach.

Keywords Artificial Neural network · Resources planning optimization · Energetic environment · Energetic generators ·
Microgrid system · Artificial intelligence

1 Introduction

Currently, Resource Planning Optimization (RPO) is a fre-
quent task that companies may face to get many benefits,
like budget improvements, run-time analyses, and human
resource organizations (Halima 2017). To this end, RPO is
often addressed by using several software products and tools,
such as Mavenlink (Mavenlink 2020), Enterprise Resource
Management (ERM) Software (2020), and Tempo Planner
(Tempo 2020), which are able to provide a practical solu-
tion as soon as possible. Also, RPO becomes crucial in
industrial contexts because it can guarantee the operative of
several particular systems, like Microgrids. At a high level, a
Microgrid system is defined as a group of distributed energy
resources that act as a single controllable entity able to pro-
vide energy for a local community 24 hours a day (Jiang
et al. 2013; Das et al. 2017; Joseph and Thomas 2013).
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More precisely, a Microgrid has got two modes respec-
tively called stand-alone mode and grid-connected mode,
which are able to manage the energy by taking several deci-
sions in order to satisfy the following three goals: reliability
(physical and technological), sustainability (environmental
considerations), and economics (cost optimizing and effi-
ciency) (Hirsch et al. 2018; Hossain et al. 2014). For this
reason, several RPO models, defined as Mixed Integer Lin-
ear Programming (MILP) formulations, have been proposed
for the Microgrids optimally managing (Yuan et al. 2017;
Sedzro et al. 2018; Mohamed et al. 2019).

However, due to their combinatorial nature and the pres-
ence of several decision variables, Mixed Integer Linear
Programming (MILP) problems often require an exponential
time effort to compute optimal solutions (Bragin et al. 2019).
Consequently, MILP state-of-the-art algorithms (e.g. the
CPLEX solver) cannot always provide computationally effi-
cient solutions because of several fundamental issues, such as
problem size, model and data characteristics, and parameters
settings (IBM 2018). For instance, Branch-and-Cut (B&C)
basedmethods solve optimization problems by exploiting the
convex hull, namely: the smaller convex set containing the
feasible solutions (Bragin et al. 2019).However, if the convex
hull is difficult to obtain, the employedmethods becomecom-
putationally inefficient andmight depend on some heuristics,
such as aggressive settings for the cuts generation, adding
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cuts based on the model knowledge, and variables selec-
tion strategies (IBM 2018a). Additionally, even Lagrangian
Relaxation (LR) based algorithms, often employed to exploit
the master problem separability into several sub-problems,
suffer from a slowly overall convergence that might neg-
atively affect the optimization process (Bragin et al. 2019).
Hence, although themathematical programming related liter-
ature reports the execution times for specific algorithms and
problem instances (Meindl and Templ 2013), it is difficult
to establish the required time given only a MILP problem’s
generic formulation (IBM 2018). For instance, S. Lehmann
et al. have investigated an RPO problem related to wind
farm planning with multiple cable types (Lehmann 2017),
while J. C. S. N. Pinheiro et al. have investigated an RPO
problem related to parallel machine scheduling (Pinheiro
et al. 2020), in which each machine has a certain amount
of resources to process a job. The related MILP formulations
have been solved through different proposed approaches,
like Simulated-Annealing (SA) and Iterated Greedy (IG),
and then compared to the classical MILP solvers with a
threshold time of 1 hour. In both cases, due to the complex
nature of the considered problems (NP-Hard), the compar-
isons have shown the difficulty of classical MILP solvers
in solving small data instances in a short time by becoming
computationally inefficient and providing worse solutions in
comparison with those derived by the proposed approaches.

On the other hand, Artificial Intelligence (AI) based
approaches have been increasingly used in many scientific
fields in the last decades, demonstrating to be valid alter-
natives in solving complex issues, like cancer’s diagnosis
(Elia et al. 2020), aerospace’s structures testing (D’Angelo
and Rampone 2015), andmalware detection (D’Angelo et al.
2020). More precisely, thanks to the famous ability of AI to
learn complex patterns, features, and relationships from huge
amounts of data, it is possible to talk about a set of classifica-
tion and knowledge elicitation mechanisms falling under the
umbrella of Machine Learning (ML) techniques. In particu-
lar, Artificial Neural Networks (ANNs) represent one of the
most famous AI approaches that have been employed in sev-
eral research areas, like robotics (Li et al. 2019) and computer
vision (Kanuri et al. 2018), to investigate their effectiveness
in solving multi-labels multi-classes problems as classifica-
tion tasks.

For this reason, the goal of the following proposal is
to investigate the use of multiple ANNs as an alternative
approach for solving a RPO problem. More precisely, an
optimization problem related to the scheduling of differ-
ent Combined Heat & Power (CHP) generators in a real
Microgrid system is presented. Then, experimental results,
achieved by considering only the input demands and the
corresponding output schedules through several multi-label
multi-class classification tasks, are discussed and compared
with the most famous ML-based approaches.

The rest of the paper is organized as follows. Section 2
will report an overview of related works. Section 3 will show
background concepts related to the developed application.
Section 4will present the optimization problem’s description
to be solved, which is formalized through a MILP model.
Finally, Section 5 will report the experimental results, while
Section 6 will show the conclusions and future works.

2 Related works

Since RPO problems are often faced in industrial con-
texts, Microgrid systems are a particular instance where the
resources may be scheduled 24 hours a day to ensure the cor-
rect operationof differentmechanical artefacts typologies. To
this purpose, several RPO model formulations, by consider-
ing their goals and characteristics, have been proposed (Yuan
et al. 2017; Sedzro et al. 2018;Mohamed et al. 2019). In 2015
A. Khodaei et al. presented a microgrid planning problem
decomposed into an investmentmaster problemandanopera-
tional sub-problem, respectively. More precisely, the optimal
planning decisions, determined in the master problem, are
employed in the sub-problem by examining the optimal-
ity of the master solution in the worst-case (Khodaei et al.
2015). In 2016W.Yuan et al. proposed a planning problem to
coordinate the resource allocation andminimize the system’s
damages in case of natural disasters, respectively. More pre-
cisely, a robust optimization-based framework is presented to
coordinate the planning of distribution systems by consider-
ing uncertain natural disaster occurrences (Yuan et al. 2016).
In 2017A.Khodaei proposed a newclass ofmicrogrids called
provisional microgrids. More precisely, the microgrid plan-
ning model is defined and solved by respectively considering
interactions among the provisional microgrid, the coupled
microgrid, and the utility grid (Khodaei 2017). Also, R. D.
Azevedo et al. proposed a Multiagent-Based control strategy
in order to coordinate a Microgrid system as a set of sev-
eral distinct entities. More precisely, the experimental results
have proven the effectiveness of the proposed approach by
achieving a total cost increment only of 0.11% compared to
a centralized classical Microgrid system (de Azevedo et al.
2017). In 2018 D. Neves et al. investigated an economic dis-
patch model concerning several optimization goals. More
precisely, they have considered four scenarios applied to a
real Microgrid system located on Terceira Island (Portugal)
by achieving a 1.9% savings on dispatch costs and emis-
sions, respectively (Neves et al. 2018). Finally, in 2019, K.
Antoniadou-Plytaria et al. proposed an optimization model
related to the optimal energy management of grid-connected
microgrids with the battery energy storage systems. More
precisely, they have considered a Microgrid system located
at the Chalmers University of Technology (Sweden), and the
achieved results, derived by a CPLEX solver, have shown
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a costs reduction of 4% compared to those that effectively
considered (Antoniadou-Plytaria et al. 2019).

Additionally, several approaches, like the Swarm Intelli-
gence (SI) based solutions, have been explored to solve RPO
problems. SI approaches, in fact, consist of a population of
simple agents that interact locally with each other and their
environment. The inspiration often comes from nature, and
examples of swarm intelligence in natural systems include
ant colonies, bird flocking, hawks hunting, animal herding,
and bacterial growth. In 2015 L. Zuo et al. proposed a multi-
objective optimization scheduling method based on the Ant
Colony algorithm in a Cloud Computing environment. More
precisely, the investigated optimization method is solved in
accordancewith the user’s budget costs by using an improved
version of the Ant Colony algorithm (Zuo et al. 2015). In
2019 L. LI et al. proposed a new particle swarm optimiza-
tion algorithm to obtain an adaptive resource scheduling for
multi-objective problem. In particular, it is translated into
a set of sub-problems by using a proposed hybrid decom-
position approach (Li et al. 2019). In 2020, L. Zhang et al.
proposed an adaptive strategy for the Microgrids to optimize
the droop control through particle swarm optimization.More
precisely, a new fuzzy inference system is presented to adjust
the learning factor and inertia weight of the employed algo-
rithm, respectively (Zhang et al. 2020). However, since SI
formulations are based on complex mathematics structures,
they are rarely implemented.

On the other hand, since Artificial Intelligence-based
approaches have been increasingly used in many scientific
fields, they have also proven to be a valid alternative to classi-
cal mathematical-based solutions (Elia et al. 2020; D’Angelo
and Rampone 2015; D’Angelo et al. 2020). More precisely,
in 2017, two contributions, respectively related to an ener-
getic environment and an optimization problem, have been
presented. Firstly, A. Tesfaye et al. proposed a new wind
power forecasting method based on the combination of mea-
sured data from SCADA and an Artificial Neural Network
(ANN) model. The achieved results by the employed fully-
connected neural network have shown an average accuracy of
86% (Eseye et al. 2016). Secondly, G. Villarrubia et al. pro-
posed the use of ANNs to approximate the objective function
in the optimization problems by using non-linear regression.
More precisely, the authors have proposed several experi-
ments to minimize or maximize different objective functions
by achieving an average accuracy of 97%.

Therefore, due to the issues related to MILP formula-
tions and thanks to the great success of AI-based methods,
we investigate the use of multiple ANNs as an alternative
approach for solving a RPO problem related to a real Micro-
grid system.

3 Background

One of the main abilities of Artificial Intelligence (AI) based
approaches, likeMachineLearning,DeepLearning, andData
Mining-based consists of learning complex patterns, fea-
tures, and relationships from numerous amounts of data.
More precisely, they represent the basis for the application
of AI in knowledge discovery processes. Generally, an AI-
based approach tries to learn information by imitating the
actions of an expert, like a child who imitates the actions
of an adult (D’Angelo et al. 2020). Consequently, the com-
parison between the goal to be achieved and the outcome
derived by the machine state represents the core of the learn-
ing process of intelligent machines, which have proven to
be effective in many research areas (D’Angelo and Palmieri
2020; D’Angelo et al. 2019, a).

However, the trainingprocess of anMLorDLbasedmodel
can be adversely affected by several issues, like the presence
of overfitting/underfitting and unbalanced datasets. There-
fore, since we investigate the effectiveness of multiple ANNs
to achieve resource scheduling for a Microgrid system, we
report some background concepts that have been used to face
the following problems and improve the achieved results.

3.1 Dropout

Since deepANNs are highly flexible models, overfitting is an
issue that can often arise when training them. For this reason,
it is often reduced through the usage of severalRegularization
techniques, which try to reduce the model’s variance, and
consequently, obtain a model able to extract as many relevant
features as possible (Bhagwat et al. 2019).

One of the most famous Regularization techniques is the
Dropout, which works by randomly removing nodes dur-
ing the training phase. More precisely, Dropout sets up a
probability value for each node to determine its chance to
be included in the training at each iteration of the learning
algorithm. It means that some nodes are not considered in
the parameter-updating process, and consequently, the Back-
propagation (BT) algorithm can compute the derivatives on
a smaller network (Bhagwat et al. 2019).

In this study, due to the unbalanced nature of the employed
data, we use several Dropout layers and different probability
values to reduce overfitting for each employed ANNs and
obtain the possible best results.

3.2 Weighted classification

The Real-world scenarios are often described by unbal-
anced data that do not present equally distributed classes.
In most cases, they can adversely affect the training process
through the presence of overfitting. For this reason, when an
employed dataset is unbalanced,more guidelines suggest try-
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ing different solutions, like the Weighted classification (Xu
et al. 2020).

More precisely, unlike the other Resampling techniques
(Brownlee 2017; Vidhya 2017; Ghorbani and Ghousi 2020),
it tries to adapt ML and DL models by considering the fre-
quency of each output class. Therefore, it is possible to set
a frequency-weight value for each class without modifying
the dataset structure and limiting the model generalization
(Hashemi and Karimi 2018; Xu et al. 2020).

Therefore, due to the unbalanced nature of the employed
data, we combine theweighted classification and theDropout
in order to adapt each proposed ANN, reduce the overfitting,
and improve the achieved results, respectively.

3.3 K-Fold cross-validation

One of the best practices to evaluate ML and DL models is
to consider several partitions of the employed dataset instead
of dividing it into two mutually exclusive subsets. To this
purpose, an employed evaluation technique is the K-Fold
cross-validation algorithm that splits the considered dataset
randomly into k approximately equal-size subsets or folds.
More precisely, in the beginning, the first fold is used as a
test set, and the model is trained on the remaining k - 1 folds.
Then, a different fold is used as the test set, while the remain-
ing k - 1 folds are employed as the training set. In practice,
the K-Fold cross-validation algorithm is usually performed k
= 5 or k = 10 times because they are the recommended values
to achieve a good model validation (Bhagwat et al. 2019).

Therefore, in order to evaluate and validate each ANN on
as many training and testing set instances as possible, we use
the 70/30 criteria andK-Fold cross-validation algorithmwith
k=5.

4 Microgrid optimization problem

Since Microgrid systems provide energy for a local commu-
nity by satisfying several goals like cost optimization and
efficiency (Hirsch et al. 2018; Hossain et al. 2014), we chose
to address a RPO problem related to the optimal schedul-
ing of different CHP generators in a Microgrid system.
More precisely, it can be stated as a Mixed-Integer Linear
Programming (MILP) model characterized by a minimum
cost function J and subject to several constraints typolo-
gies to fulfil, such as interactive, operative, and physical.
Consequently, the main goal of the following RPO problem
consists of providing a resource plan for employed genera-
tors by considering several input parameters and constraints.
Input parameters are defined by predictions of the upcom-
ing demand, the energy available, the energy prices, and the
production from renewable energy units. Instead, constraints
determine the imported/exported energy quantity from/to the

grid, when to buy/sell the energy, and how/when to use gen-
erators.

Therefore, in order to provide a high-level definition of the
following problem, we report the cost function J definition,
interaction constraints, and operating conditions related to a
possible MILP formulation proposed in Parisio and Glielmo
(2011). For the sake of completeness, A. Parisio et al. pre-
sented an update of the following model by considering a
multi-objective cost function (Parisio and Glielmo 2012).
Additionally, it is also possible to find a high amount of
otherMicrogridsmodel extensions in literature. For instance,
in 2016, L. Bolivar et al. considered a weighted objective
function to minimize the operative costs and environmental
impacts (Bolívar Jaramillo and Weidlich 2016). In 2020, Y.
Wu et al. proposed power balance constraints to mitigate the
risk of system instability within the scheduling horizon under
uncertainty (Wu et al. 2020). Finally, in 2021,M. Javadi et al.
considered new frequency constraints to ensure Microgrids
stability grid-connected following islanding events (Javadi
et al. 2021).

4.1 Cost function

Since resource optimization, related to a Microgrid system,
is achieved by minimizing a cost function, the definitions of
main decision variables are reported in order to introduce the
function J .

Let k a time instance, T the length of the prediction hori-
zon, and Ng the number of generators. The state δ of the i th

Distributed Generator (DG) and its power level P are defined
as follows:

δi (k) =
{
1 if the i - th DG is on

0 otherwise
(1)

Pi (k) ≥ 0 (2)

with i = 1, ..., Ng and k = 0, ..., T − 1.
Let cP and cS the purchasing and selling energy prices

of the i th generator, respectively. The start-up SUi and shut-
down SDi costs are defined as follows:

SUi (k) ≥ cSUi (k)[δi (k) − δi (k − 1)], (3)

SDi (k) ≥ cSDi (k)[δi (k − 1) − δi (k)], (4)

SUi (k) ≥ 0, (5)

SDi (k) ≥ 0, (6)

with i = 1, ..., Ng and k = 0, ..., T − 1.
Hence, the minimum cost function J including costs

associated with energy production, start-up and shut-down
decisions, and possible earnings and curtailment penalties,
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is defined as follows:

J :=
T−1∑
k=0

Ng∑
i=1

[CDG
i (Pi (k)) + OMiδi (k)

+SUi (k) + SDi (k)]

+ Cgrid(k) + ρc

Nc∑
h=1

βh(k)D
c
h(k) (7)

with i = 1, ..., Ng , h = 1, ..., Nc, and k = 0, ..., T − 1
Therefore, according to the quadratic cost function J and

parameters shown in Table 1, the following decisions could
be taken by a Microgrid system:

– when each generation unit should be started and stopped,
and how much each unit should generate to meet this
load at minimum cost. The cost of these choices is
considered, at each instant i , by the following sum:∑Ng

i=1[CDG
i (Pi (k)) + OMiδi (k) + SUi (k) + SDi (k)].

– when and how much energy should be purchased or sold
to the main grid. This cost is represented by Cgrid(k).

– whenandwhich controllable loadsmust be shed/curtailed.
The cost of these choices is considered, at each instant h,
by the following sum: ρc

∑Nc
h=1 βh(k)Dc

h(k).

4.2 Interaction constraints

Generally, each Microgrid system has got a special mode
called grid-connected mode, which is able to purchase and
sell energy continuously and take many high-level decisions
(Jiang et al. 2013; Das et al. 2017; Joseph and Thomas 2013).
When the grid-connected mode is on, a Microgrid system
can purchase energy from the main grid by respecting the
interaction constraints. These constraints play a fundamental
role in these systems because they define the rules applied
to purchase/sell the energy from/to the main grid. To this
purpose, the interaction constraints are defined, at each time
instant k, by considering the importing/exporting power level
Pg(k) from the main grid (Parisio and Glielmo 2011). More
precisely, if Pg(k) is greater than zero the energy is purchased
and imported δg(k) = 1, otherwise the energy is sold and
exported.

Pg(k) =
{

> 0 if the power is imported

< 0 otherwise
(8)

δg(k) =
{
1 if the importing mode is on

0 otherwise
(9)

Pg(k) > 0 ⇐⇒ δg(k) = 1 (10)

with k = 0, ..., T − 1.

Consequently, let cP and cS the purchasing and selling
energyprices, respectively.The cost of the imported/exported
energy Cg is defined as follows:

Cg(k) =
{
cP (k)Pg(k) if δg(k) = 1

cS(k)Pg(k) otherwise
(11)

with k = 0, ..., T − 1.

4.3 Operating conditions

On the other hand, since a Microgrid system consists of sev-
eral generators, several rules are established in order to define
how and when each generator should be used. To this pur-
pose, we define the minimum amount of time for which a
generator must be kept on/off (minimum up/down times):

eltai (k) ≥ δi (k − tup − 1) − δi (k − tup − 2), (12)

1 − δi (k) ≥ δi (k − tdown − 2) − δi (k − tdown − 1), (13)

with i = 1, ..., Ng , k = 0, ..., T−1, tup = 0, ...,min(T up
i , k−

T up
i + 2), and tdown = 0, ...,min(T up

i , k − T up
i + 2).

Finally, since the following discussion has been done to
provide a high-level definition of the proposed problem, we
remand to Parisio and Glielmo (2011) for more details about
the already discussed operating conditions, the definitions of
physical constraints, and other theoretical assumptions about
the considered problem.

4.4 Problem instance

In the considered scenario, the resources to be scheduled
are five special generators named Jenbacher, Caterpillar, and
three Chiller, respectively (Innio 2020; Caterpillar 2020).
As reported in Table 2, each generator has got five working
modes employed to fill the energy demand. In this instance,
Jenbacher andCaterpillar generators are able to produce both
electricity and thermal energy, while the remaining three
Chiller generators can only provide thermal energy. There-
fore, the request to satisfy, at each hour, is formulated on the
basis of the following three parameters: the required elec-
tricity quantitative, the required thermal quantitative, and
the available quantitative of electricity. More precisely, the
required electricity and thermal quantitative represent the
upcoming demand that is satisfied according to the presented
interaction constraints and operating conditions. Instead, the
available electricity quantitative is obtained from renewable
energy sources and used to minimize the required costs. For
this reason, according to the proposed scenario, the goal
of this RPO problem is to compute an optimal generators’
scheduling by satisfying the hourly energetic request and
minimizing the cost function J simultaneously.
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Table 1 Parameters Parameter Description

k Current time instant

T Length of the prediction horizon

DG Distributed Generator

Ng Number of DG units

Nc Number of controllable loads

P Power level of a DG unit [kW]

CDG(P) Fuel consumption cost curve of a DG unit

OM Operating cost of a DG unit [/kWh]

δi State of i th DG unit [off(0)/on(1)]

SUi (k) Start-up cost for the i th DG unit []

SDi (k) Shut-down cost for the i th DG unit []

Cgrid (k) Earning/Penalty for the microgrid system []

ρc Penalty weight on curtailments

β Curtailed power percentage

Dc Preferred power level of a controllable load [kW]

Pg Importing/exporting power level [kW]

δg Importing/exporting mode from/to the main grid

cP Purchasing energy prices [/kWh]

cS Selling energy prices [/kWh]

T up Minimum up time of a DG unit [h]

T up Minimum down time of a DG unit [h]

cSU Start-up cost of a DG unit []

cDU Shut-down cost of a DG unit []

Table 2 Parameters of each
employed generators

Generator name Num. modes Working Mode Mode Values (kWh)

Jenbacher 5 Electric 1000 642 427 424 0

Thermal 672 605 538 470 0

Caterpillar 5 Electric 600 540 480 420 0

Thermal 374 362 343 311 0

Chiller 1 5 Thermal 805 604 402 201 0

Chiller 2 5 Thermal 805 604 402 201 0

Chiller 3 5 Thermal 678 509 339 169 0

5 Experimental results

The goal of the reported experiment is devoted to demon-
strating the effectiveness of multiple ANNs in obtaining a
resource plan by considering only the input demands and the
corresponding output schedules. To this purpose, the reported
experimental results have been carried out by using data
extracted by a real scenario related to the presentedMicrogrid
system.

5.1 Dataset and experimental setting

The dataset used during the experimental evaluation consists
of historical data that have been scheduled, for two years and

for the described 5 generators, from aMatlab solver based on
the presented MILP formulation (Parisio and Glielmo 2011)
and develop by Italdata (S.p.A. Italdata 2020). In particu-
lar, more than 17000 rows have been stored as a sequence
of 12 different values. The first 5 values represent the input
demand, and each value means the available quantitative of
electricity, the required electricity quantitative, the required
thermal quantitative, the hour of the day, and the day, respec-
tively. Instead, the last 7 respectively represent the scheduled
power mode for each generator, which are reported by Table
2.

Therefore, since the employed dataset consists of many
data and several input/output values typologies, anExploratory
Data Analysis (EDA) technique has been used in order to
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Fig. 1 Boxplot representation of input data distribution

Fig. 2 Distribution of electricity output categories of Jenbacher and Caterpillar generators

obtain a complete overview of them (Weng 2020; Prabhu
2020). This approach is able to analyze a dataset, and conse-
quently, summarize its main characteristics by using several
charts, as they are shown in Figures 1, 2, 3, and 4.

In Figure 1 is show the boxplot representation of input
data distribution. In particular, five boxplots are reported for
each input data, respectively. The first one shows the data
distribution of available energy. The second and third one
report the distribution of the required electricity and ther-

mal quantitative, respectively. Finally, the last two show the
hours and dayswhen each demandhas been satisfied. Instead,
Figures 2, 3, and 4 show the frequencies distributions of out-
put modes that have been scheduled for each generator. More
precisely, in the first one is shown the distribution of electric-
ity output categories of Jenbacher and Caterpillar generators,
in the second one is shown the distribution of thermal out-
put categories of Jenbacher and Caterpillar generators, while
in the third one is shown the distribution of thermal output
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Fig. 3 Distribution of thermal output categories of Jenbacher and Caterpillar generators

Fig. 4 Distribution of thermal output categories of Chiller generators

categories of Chiller generators. Additionally, due follow-
ing charts, it is possible to highlight the nature extremely
unbalanced of the employed dataset and, for each involved
generator, a finite number of output power categories.

Subsequently, we have split the following dataset in order
to run the experiments. Therefore, the whole dataset has been
subdivided into two mutually exclusive subsets called train-
ing and testing dataset, respectively. We used 70% of the
entire dataset for training and the remaining 30% for test-
ing. Then, the K-Fold cross-validation algorithm, with k=5,
has been used to tune the hyper-parameters and provide an
unbiased evaluation of each employed ANN.More precisely,
we used k=5 because it is a recommended value (Bhagwat
et al. 2019), and consequently, the entire dataset has been,
in turn, equally partitioned in five training and testing sets.

Finally, each ANN has been trained on each training set and
evaluated on the corresponding testing set.

5.2 Proposed networks and evaluationmetrics

Since Jenbacher and Caterpillar generators are able to pro-
duce both electricity and thermal energy, they have got two
working modes to satisfy the required electricity and thermal
quantitative, respectively. To this purpose, seven ANNs, one
for each work mode presented earlier in Subsect. 4.4, have
been developed as a fully-connected neural network com-
posed of twoDense layers with 800 neurons, activation=relu,
and Dropout=0.5. Additionally, each network had a Dense
output layer with activation=softmax and a number of nodes
equal to the number of output categories expected. We have
used a softmax activation function to achieve a probability
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Fig. 5 High-level architecture
of each network

Table 3 Description of each network

Network Generator Typology Alias Categories

Net 1 Jenbacher Electric JE 5

Net 2 Caterpillar Electric CE 5

Net 3 Jenbacher Thermal JT 5

Net 4 Caterpillar Thermal CT 5

Net 5 Chiller 3 Thermal C3 4

Net 6 Chiller 1 Thermal C1 5

Net 7 Chiller 2 Thermal C2 5

distribution concerning each output schedule category, given
a specified input request (Keras 2021).

The proposed architecture has been derived from training
and testing processes in order to obtain the best results as pos-
sible. More precisely, we tested different hyper-parameters
like:

– numLayers: the number of layers for each neural network
(2, 3, 4, 5);

– numNeurons: the number of neurons for each layer (100,
200, 400, 800);

– dropout: different values of dropout (0.2, 0.3, 0.4, 0.5);
– activFunction: the typologies of activation functions
(relu, tanh, sigmoid, and softmax);

– batchSize: different values of batch_size (32, 64, 128,
256);

– optimizer: the optimized algorithm used (Stochastic Gra-
dient Descent - SGD, Adam, and Adamax);

– lossFunction: the typologies of loss functions (Mean
Absolute Error - MAE, Mean Squared Error - MSE, and
categorical_crossentropy);

Figure 5 shows the high-level architecture of the proposed
networks, while Table 3 summarizes their main information.

To evaluate the classification quality of each employed
network, we have derived the following metrics from the
multi-class confusion matrix: Accuracy (Acc.), Sensitivity
(Sens.), Specificity (Spec.), Precision (Prec.), Area Under
the ROCCurve (AUC), and F-Measure (F-Meas or F-Score).
More precisely, for each output mode, TPs (True Positives)
are input demands correctly scheduled, while TNs (True
Negatives) are instances correctly assigned to another out-
put mode. On the other hand, FPs (False Positives) are
input demands incorrectly scheduled with the considered
output mode, while FNs (False Negatives) are the instances
in another category incorrectly assigned to the considered
output mode. Finally, we have derived the average values
(Avg.) and standard deviation values (Dev.) in order to obtain
a global validation.

5.3 Achieved results and discussion

The proposed ANNs have been trained and tested with a
PC-Laptop equipped with an Intel 4-Core I5-8265U CPU
@ 1.60GHz, and 8 GB RAM. Each employed neural
network has been compiled with Adam optimizer and cat-
egorical_crossentropy loss function, which computes the
cross-entropy loss between the labels and the derived pre-
dictions (Keras 2021a). Then, they have been trained with
batch_si ze = 256, weighted classification technique, and
1000 epochs by using the 70/30 criteria and the K-Fold
cross-validation algorithm with k=5. The following hyper-
parameters have been chosen according to the achieved
results from the testing process. Table 4 reports the evalua-
tion metrics for each ANN. Table 5 shows the average values
(Avg.) and standard deviation values (Dev.) of each evalua-
tionmetric. Also, Tables 6, 7, 8, 9, 10, 11, and 12 respectively
report the multi-label confusion matrix of each ANN, while
Table 13 summarizes the validation results obtained by per-
forming the K-Fold cross-validation algorithm with k=5.
Finally, Figures 6 and 7 show the loss function behaviour
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Table 4 Evaluation metrics for each network

Acc. Spec. Prec. Sens. F-Score AUC

Net 1 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992

Net 2 0.9995 0.9998 0.9891 0.9958 0.9924 0.9988

Net 3 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993

Net 4 0.9993 0.9996 0.9950 0.9941 0.9945 0.9989

Net 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994

Net 6 0.9999 1.0000 0.9981 0.9999 0.9990 0.9993

Net 7 0.9999 1.0000 0.9978 0.9999 0.9988 0.9993

Table 5 Average and deviation values for each metric

Acc. Spec. Prec. Sens. F-Score AUC

Avg. 0.9998 0.9999 0.9971 0.9985 0.9978 0.9992

Dev. 0.0003 0.0002 0.0040 0.0025 0.0031 0.0002

Table 6 Multi-label confusion matrix related to Net 1

Mode 0 Mode 424 Mode 427 Mode 647 Mode 1000

Mode 0 1699 0 0 0 0

Mode 424 0 159 0 0 0

Mode 427 0 0 738 0 0

Mode 647 0 0 0 864 0

Mode 1000 0 0 0 0 1759

Table 7 Multi-label confusion matrix related to Net 2

Mode 0 Mode 420 Mode 480 Mode 540 Mode 600

Mode 0 2056 0 0 0 0

Mode 420 0 716 0 1 0

Mode 480 0 0 410 2 0

Mode 540 0 0 0 75 2

Mode 600 0 0 0 1 1949

Table 8 Multi-label confusion matrix related to Net 3

Mode 0 Mode 470 Mode 538 Mode 605 Mode 672

Mode 0 1664 0 0 0 0

Mode 470 0 748 0 0 0

Mode 538 0 0 168 0 0

Mode 605 0 0 0 864 0

Mode 672 0 0 0 0 1775

of each employed ANN, which has been acquired on train-
ing and testing data.

In order to show the effectiveness of the employed
ANNs, a comparison between the most notable ML-based
approaches has been made by using WEKA (Tempo 2020).
More precisely, we usedMulti-Layer Perceptron (MLP) clas-

Table 9 Multi-label confusion matrix related to Net 4

Mode 0 Mode 311 Mode 343 Mode 362 Mode 374

Mode 0 2017 0 0 0 0

Mode 311 0 675 1 0 0

Mode 343 0 6 421 0 0

Mode 362 0 1 0 2024 2

Mode 374 0 1 3 0 68

Table 10 Multi-label confusion matrix related to Net 5

Mode 0 Mode 169 Mode 339 Mode 509

Mode 0 3168 0 0 0

Mode 169 0 1732 0 0

Mode 339 0 0 245 0

Mode 509 0 0 0 74

Table 11 Multi-label confusion matrix related to Net 6

Mode 0 Mode 201 Mode 402 Mode 604 Mode 805

Mode 0 1289 0 0 0 0

Mode 201 0 2192 0 0 0

Mode 402 0 0 1608 0 0

Mode 604 0 0 0 127 0

Mode 805 0 0 0 1 2

Table 12 Multi-label confusion matrix related to Net 7

Mode 0 Mode 201 Mode 402 Mode 604 Mode 805

Mode 0 1322 0 0 0 0

Mode 201 0 2215 1 0 0

Mode 402 0 0 1568 1 0

Mode 604 0 0 3 105 0

Mode 805 0 0 0 1 3

Table 13 K-Fold cross-validation global avarage results

Acc. Spec. Prec. Sens. F-Score AUC

Avg. 0.9690 0.9784 0.9030 0.8809 0.8598 0.9905

Dev. 0.0291 0.0191 0.0652 0.0805 0.0900 0.0084

sifier, J48 trees (J48), and Naive Bayes (NB) to derive the
classification metrics for each work mode identified by an
Alias in Table 3. The achieved results are shown in Tables
14, 15, and 16, while Table 17 summarizes the compari-
son among the proposed ANNs and the ML-based methods
related to the 70/30 criteria.

They show that the NB andMLP classifiers have achieved
discrete results, while J48 has obtained excellent evalu-
ation metrics comparable with those carried out by the
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Fig. 6 Loss function behaviour related to Net 1, Net 2, Net 3, and Net 4

proposed approach. More precisely, the employed ANNs
have achieved the best results in solving of considered RPO
problem by achieving up to a 6% improvement in average
accuracy over the Naive Bayes classifier, up to a 12% over
the Multi-Layer Perceptron classifier, and up to a 13% over
state-of-the-art ANN for power forecasting. Finally, their
evaluation metrics (like Precision, Sensibility, and F-Score)
are slightly higher than those obtained from the J48 decision
trees, as already observed in several studies where neural net-
works have been compared with decision trees (Tharaha and
Rashika 2017; Karakurt et al. 2013; Ahmad et al. 2017).

On the other hand, the achieved results have also been
confirmed by those derived by the K-Fold cross-validation
algorithm applied, to each WEKA method and each neural
network, during the hyper-parameters tuning process.

As shown in Table 18, the employed ANNs have achieved
up to a 6% and 12% improvement in average accuracy over
Naive Bayes and Multi-Layer Perceptron classifiers, respec-
tively. However, since they have obtained a 3% less average
accuracy than the J48 trees and their metrics are comparable
to those derived by the same decision trees by using the 70/30

criteria, ANNs do not represent the only valid approach to
solve the discussed problem satisfactorily. For this reason,
ANNs and decision trees might also be employed to face
many other RPO problems, respectively.

6 Conclusions and future works

In this paper, multiple Artificial Neural Networks (ANNs)
have been employed for solving a Resource Planning Opti-
mization (RPO)problem related to the schedulingof different
Combined Heat & Power (CHP) generators for a Microgrid
system. To this purpose, we have defined it as a Mixed-
Integer Linear Programming (MILP)model characterized by
a minimum cost function. Subsequently, we have involved
seven ANNs by considering only the input demands and the
corresponding output schedules. More precisely, each neu-
ral network has been validated through statistic metrics and
compared to the most famous Machine Learning approaches
provided by WEKA. The obtained results show that the pro-
posed ANNs have achieved up to a 6% improvement in
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Fig. 7 Loss function behaviour related to Net 5, Net 6, and Net 7

Table 14 Metrics for MLP classifier

Alias Acc. Spec. Prec. Sens. F-Score AUC

JE 0.8770 0.8770 0.5480 0.8770 0.5744 0.8770

CE 0.8010 0.8010 0.3356 0.8010 0.4729 0.8010

JT 0.8790 0.8790 0.5552 0.8790 0.6803 0.8790

CT 0.8960 0.8960 0.5012 0.8960 0.6427 0.8960

C1 0.9360 0.9360 0.4633 0.9360 0.6198 0.9360

C2 0.9150 0.9150 0.6918 0.9150 0.7879 0.9150

C3 0.9190 0.9190 0.6960 0.9190 0.7948 0.9150

average accuracy over Naive Bayes classifier, up to a 12%
over Multi-Layer Perceptron classifier, and up to a 13% over
state-of-the-art ANNs, and consequently, could be an alter-
native approach to solve the considered problem.

For this reason, we would like to propose two possible
future works. First of all, in order to explore the effectiveness
of the employed approach, we will explore new RPO prob-
lems by considering several and critical scenarios. Second,
since a specific ANN has been employed for each scheduled
mode,wewill investigate a dedicated neural network for each
generator. For instance, Recurrent Neural Networks (RNNs)

Table 15 Metrics for J48 classifier

Alias Acc. Spec. Prec. Sens. F-Score AUC

JE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

JT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C1 0.9891 0.9891 0.9891 0.9891 0.9891 0.9891

C2 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933

C3 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927

Table 16 Metrics for Naive Bayes classifier

Alias Acc. Spec. Prec. Sens. F-Score AUC

JE 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950

CE 0.9660 0.9670 0.9660 0.9660 0.9660 0.9665

JT 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950

CT 0.9660 0.9670 0.9660 0.9660 0.9660 0.9665

C1 0.8880 0.8880 0.8920 0.8880 0.8920 0.8880

C2 0.8980 0.8980 0.9090 0.8980 0.9000 0.8980

C3 0.8250 0.8250 0.8740 0.8250 0.8440 0.8250
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Table 17 Comparison with most notable ML methods related to 70/30
criteria

Acc. Spec. Prec. Sens. F-Score AUC

ANNs 0.9998 0.9999 0.9971 0.9985 0.9978 0.9992

J48 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963

NB 0.9333 0.9336 0.9510 0.9333 0.9454 0.9333

MLP 0.8890 0.8890 0.5416 0.8890 0.8531 0.8890

Table 18 Comparisonwithmost notableMLmethods related toK-Fold

Acc. Spec. Prec. Sens. F-Score AUC

J48 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956

ANNs 0.9690 0.9784 0.9030 0.8809 0.8598 0.9905

NB 0.9087 0.9089 0.9216 0.9089 0.9126 0.9089

MLP 0.8499 0.8499 0.5683 0.8499 0.5296 0.8499

might be involved to consider temporal features, like the hour
of the day. Moreover, Autoencoders (AEs) might be investi-
gated to extract relevant features that are able to reduce the
number of employed networks.
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