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Abstract
A short-term wind power prediction model based on BiLSTM–CNN–WGAN-GP (LCWGAN-GP) is proposed in this

paper, aiming at the problems of instability and low prediction accuracy of short-term wind power prediction. Firstly, the

original wind energy data are decomposed into subsequences of natural mode functions with different frequencies by using

the variational mode decomposition (VMD) algorithm. The VMD algorithm relies on a decision support system for the

decomposition of the data into natural mode functions. Once the decomposition is performed, the nonlinear and dynamic

behavior are extracted from each natural mode function. Next, the BiLSTM network is chosen as the generation model of

the generative adversarial network (WGAN-GP) to obtain the data distribution characteristics of wind power’s output. The

convolutional neural network (CNN) is chosen as the discrimination model, and the semi-supervised regression layer is

utilized to design the discrimination model to predict wind power. The minimum–maximum game is formed by the

BiLSTM and CNN network models to improve the quality of sample generation and further improve the prediction

accuracy. Finally, the actual data of a wind farm in Jiuquan City, Gansu Province, China is taken as an example to prove

that the proposed method has superior performance compared with other prediction algorithms.

Keywords Wind power forecasting � Generative adversarial network � Variational modal decomposition �
Bidirectional long-term and short-term memory network � Convolutional neural network

1 Introduction

As an environment-friendly renewable energy, wind

energy has the characteristics of no pollution and a wide

range occurrence. It has been widely developed and uti-

lized all over the world. The penetration of wind energy

poses a great challenge to the economic operation, relia-

bility, and real-time control of power energy systems.

According to the Global Wind Energy Council, it is esti-

mated that the cumulative installed capacity of global wind

power will reach 756 GW and that of China will reach

2145 GW in 2021. However, because of intermittency and

randomness, a large number of wind power generation

systems are limited in their ability to integrate into the

power system (Wang and Yang 2021). Short-term wind

power prediction is one of the key technologies to alleviate

this problem, and provides a more accurate prediction

value for power system dispatching. Accurate wind power

forecasting can alleviate the pressure of power system

dispatching, reduce power generation costs, and enhance

the competitiveness of wind power in the power market

(Duan et al. 2021). Therefore, effective short-term wind

power prediction technology is very important for wind

farm management and the economic and safe operation of

wind power systems.

Wind power forecasting methods can be roughly divided

into three categories: physical methods, statistical methods

and machine learning methods (Chuang et al. 2019). The

physical method relies on numerical weather forecast
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(NWP) to establish the model, which limits the effective-

ness of the forecast accuracy of NWP, resulting in poor

stability of the model (Jung and Broadwater 2014). Com-

pared with physical methods, statistical methods are widely

used, including auto-regressive moving average (ARMA)

model, support vector regression (SVR), least squares

support vector machine (LSSVM) (Hao and Tian 2019).

Kavasseri et al. proposed fractional ARIMA model to

predict the wind speed of the previous day and the first 2

days. The results show that compared with other bench-

mark methods, the improved ARIMA model can obtain

more accurate and stable prediction values (Kavasseri and

Seetharaman 2009). Ren et al. used the improved auto-

regressive integrated moving average model to predict the

short-term load (Ren et al. 2016). The prediction results

show that the improved model is better than the back-

propagation network algorithm and the traditional ARIMA

model. Based on VMD, ARIMA and depth neural network,

an adaptive hybrid model for wind speed prediction was

designed (Zhang et al. 2020). However, most statistical

methods are often modeled as simplified linear functions,

so the prediction performance of statistical models may be

limited to a great extent.

With the rapid development of artificial intelligence,

many prediction technologies based on machine learning

have been developed to realize high-precision predictions

for wind power series with nonlinear and non-stationary

characteristics (Zeng and Qiao 2012). Based on machine

learning, it is divided into shallow network model and deep

network model (Hu and Chen 2018). Shallow networks

such as extreme learning machine (ELM) and SVM have

the ability to adaptively learn nonlinear features, which are

often reported in the literature. However, due to structural

limitations, shallow networks have the drawbacks of being

easily trapped in local optimality, overfitting, and poor

convergence (Khodayar et al. 2018). Deep model has

attracted much attention because of its potential to improve

the prediction accuracy of wind power generation.

Including artificial neural network (ANN), CNN, Short and

long term memory network (LSTM), threshold recursive

network (GRU), which have been successfully applied to

wind power generation prediction (Kong et al. 2017). For

example, Hong et al. utilized CNN to construct a novel

spatiotemporal model to perform day-ahead wind speed

prediction (Hong and Satriani 2020). He et al. developed a

novel wind power hybrid forecasting model by applying

light gradient enhancer (LGBM) and random forest (RF) to

replace the BP network of the traditional DBN regression

layer and combining with wavelet decomposition (Jiajun

et al. 2020). A combination of deep learning and ensemble

learning is developed to predict (Jiajun et al. 2020). To

adjust the super parameters of LSTM, the LSTM, ensemble

empirical mode decomposition (EEMD) and genetic

algorithm (GA) were used in Chen et al. (2021). The pre-

diction effect is better than that of a single network, but the

prediction time is longer when the amount of data is large.

To solve the problem. Shi et al. A recursive and direct

variational model is proposed to decompose the LSTM

network for hourly and daily advance wind power predic-

tion (Shi et al. 2018). Cali and Sharma (2019) also use the

historical power and NWP data to predict the wind power

using LSTM model along with sensitive analysis to iden-

tify the most informative input parameters from NWP data.

Later, Yu et al. propose an LSTM enhanced forget-gate

network model in which two peep holes are added to

standard LSTM forget and output gates to improve the

performance of the model (Yu et al. 2019). Generally

speaking, these machine learning based models usually

have better prediction effect than physical and statistical

methods because of their strong feature learning ability. In

addition, various signal decomposition technologies, such

as wavelet transform (WT), empirical mode decomposition

(EMD) (Jiang et al. 2020), integrated empirical mode

decomposition (EEMD) (Sun and Wang 2018), have been

used for wind power prediction together with RNN, CNN,

LSTM and other machine learning algorithms. However,

due to the volatility and discontinuity of wind power data,

the prediction accuracy of wind power still needs to be

improved.

Recently, a new network generative adversarial network

(GAN) has been developed. Inspired by the two-player

zero-sum game, GAN simultaneously trains two adversar-

ial models: the generator network produces artificial data

from noise through capturing the original data distribution,

while the discriminator network is trained to distinguish

generated data from original data (Creswell et al. 2018).

Since its proposal, GAN has been applied to various

research fields (Wang et al. 2017), including image pro-

cessing, visual computing, speech, video and language

processing. Due to its strong modeling and generation

capabilities, GAN can create new data with similar distri-

bution to the original data while maintaining the diversity

of generated data (Goodfellow et al. 2020). However, few

studies have applied GAN to the prediction of wind power.

GAN is naturally suitable for the prediction of long-time

wind power time series.

This paper focuses on the short-term wind power pre-

diction. The data set studied is the measured data of the

wind farm. However, due to the irregularity of the data,

then considering the superiority of the improved Wasser-

stein-GAN (WGAN) over the original GAN, Wasserstein

generative adversarial network with gradient penalty

(WGAN-GP) is introduced to characterize the data set. The

goal of WGAN-GP is to generate new and unique data,

which capture the internal characteristics and distribution

of historical wind power data, rather than simply remember
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the input data. Therefore, this paper proposes a hybrid wind

power prediction model based on BiLSTM–CNN–WGAN-

GP (LCWGAN-GP) network and semi-supervised regres-

sion, integrates the semi-supervised regression with label

learning into the LCWGAN-GP framework, extracts the

internal nonlinear and dynamic behavior from the wind

power time series, and improves the prediction perfor-

mance of wind power. The main contributions of this paper

are as follows:

• To solve the problem of gradient disappearance in the

training process of traditional GAN network. Wasser-

stein generative adversarial network with gradient

penalty is introduced to extract the data distribution

characteristics of wind power time series from real

samples and virtual samples.

• Aiming at the problem of wind power prediction, a

prediction method based on LCWGAN-GP network

and semi-supervised regression is proposed. The

improved LCWGAN-GP network uses the generated

model to learn training samples, and designs a

discrimination model with semi-supervised regression

layer to minimize the dual objective LCWGAN-GP

network function, thereby improving the prediction

accuracy of wind power.

• The prediction of wind power is performed by

optimizing the LCWGAN-GP network, and then com-

pared with GAN, BiLSTM, CNN, GRU, SVM and

ARIMA neural networks to verify its prediction

performance.

The rest of this paper is organized as follows: Sect. 2

introduces the algorithm framework and models of classi-

cal GANs networks. Section 3 proposes the prediction

framework based on LCWGAN-GP and the general

implementation steps. Then, the overall indices for evalu-

ating the forecasting performance are introduced in Sect. 4.

Section 5 provides the experimental results and compara-

tive analysis. Finally, Sect. 6 summarizes some

conclusions.

2 Generative adversarial network
framework

GAN algorithm realizes its function by implicitly modeling

the high-dimensional distribution of data (Wang and Li

2018). In the field of image processing, GAN can synthe-

size real images with better quality compared with other

generation methods (Creswell et al. 2018). In terms of

generating time series, GAN can better learn the distribu-

tion of time series, and the generative model and dis-

criminative model play games with each other to produce

the optimal prediction results.

2.1 Algorithm framework of GAN

As shown in Fig. 1, G and D correspond to the generative

model and discriminative model of in the GAN, respec-

tively. The real sample X and virtual sample G(z) produced

by the generative model can be used as the input to the

discriminative model. The two models learn alternately and

continuously optimize through the min–max game to

improve the performance of the network (Husein et al.

2019). Finally, the trained generator can generate high-

quality new sample data, but the discriminator cannot

distinguish it from the real data.

The objective function of the discriminative model is

defined as: when the input is X and G(z), the output cor-

responds to 1 and 0, respectively. Its objective function is:

LD ¼ �Ex� pdata
½logDðxÞ� � Ez� pz ½logð1� DðGðzÞÞÞ� ð1Þ

where x and z represent real samples and random noise,

respectively; E stands for an expectation.

The goal of the generative model is to mimic the com-

plex distribution in real data by minimizing the objective

function in Eq. (2), make the value of DðGðzÞÞ is close to

1:

LG ¼ Ez� pz log½1� DðGðzÞÞ� ð2Þ

LD and LG constitutes min–max game, as follows:

min
G

max
D

VðD;GÞ ¼ Ex� pdata
½logDðxÞ� þ Ez� pz ½logð1

� DðGðzÞÞÞ� ð3Þ

In the process of GAN training, firstly, the discrimina-

tive model D is trained to maximize the probability that the

data comes from the real data, and the training generative

model G is minimized. Through alternating operation, the

generative model G is fixed to maximize the discriminative

probability of D; Fix the discriminative model D and

optimize the generative model G to minimize the dis-

criminative probability of D. Reach the stable state of Nash

equilibrium (Mirza and Osindero 2014).

However, for the original GAN network, it is easy to

produce two problems: one is the disappearance of the

gradient in the training process, and the other is the con-

fusion of the optimization objectives in the training pro-

cess. The gradient becomes unstable and the diversity and

accuracy of the generated data samples decrease, which in

turn causes the model to collapse.

2.2 WGAN-GP model

In view of the problems in GAN model training, proposed a

generative adversarial network (WGAN) based on

Wasserstein distance (Arjovsky and Bottou 2017). The

definition of Wasserstein distance is shown as follows:
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WðPdata;PgÞ ¼ inf
c�Pðpdata;pgÞ

Eðx;yÞ� c½kx� yk� ð4Þ

where
Q
ðPdata;PgÞ denotes the set of all joint distributions

ðx; yÞ� c whose marginal distributions are respectively

Pdata and Pg. Intuitively, ðx; yÞ� c calculates how much

‘‘mass’’ need to be transported from x to y in order to

transform the distribution Pg into the distribution Pdata.

WðPdata;PgÞ all x and y satisfying the distribution, value of

kx� yk reaches the minimum, i.e., Wasserstein distance.

Wasserstein distance reflects the distance between the two

distributions, so it can effectively alleviate the gradient

disappearance problem of the generator.

WGAN adopts the method of weight constraint on the

Lipschitz constant problem, which improves the training

process of GAN to a certain extent. Due to the interaction

between WGAN weight constraint and loss function, the

network training has the problems of difficult convergence

and gradient explosion, and there is still a gap between the

generated data and the real data.

Therefore, the improved model WGAN-GP is adopted

in this paper, and the gradient penalty is used instead of

weight pruning. The generator loss function is:

LG ¼ �Ex� pg ½fwðxÞ� ð5Þ

where fwðxÞ is neural network.

In order to solve the mode collapse of the network and

improve the convergence speed of the network, the gradi-

ent penalty is added to the discriminator loss function, and

the generated samples are limited by Lipschitz. The dis-

criminator loss function is:

LD ¼ Ex� pg ½fwðxÞ� � Ex� pdata
½fwðxÞ�

þ kEx̂� px̂ rx̂fwðx̂Þk k2�1
� �2
h i

ð6Þ

where k represents the gradient penalty coefficient; k � k2

second norm of matrix; r function of gradient; pbx generate

a straight-line uniform sampling between the sample dis-

tribution pgðxÞ and the real data sample pdataðxÞ.
WGAN-GP model applies gradient penalty to the

training network, improves the network convergence per-

formance and the quality of generated data samples, makes

the network training more stable and more universal under

different network architectures. Therefore, this model uses

WGAN-GP to solve the problems of difficult convergence,

gradient explosion and poor quality of generated data

samples in the process of short-term wind power

prediction.

3 Wind power prediction method based
on BiLSTM–CNN–WGAN-GP (LCWGAN-GP)

In this section, the framework based on LCWGAN-GP

network is illustrated in detail. When a single GAN net-

work predicts the time series of wind power, it is prone to

slow prediction speed and gradient disappearance. To

overcome this phenomenon, the BiLSTM network with

good learning performance is used as the generator, the

CNN network with good nonlinear function is extracted as

the discriminator, and the semi-supervised regression

method is used to adjust the parameters of LCWGAN-GP

network to better predict short-term wind power.

3.1 Prediction structure of LCWGAN-GP

The proposed prediction structure mixes different tech-

nologies of signal decomposition, sample generation, fea-

ture extraction and alternative training, as shown in Fig. 2.

Firstly, variational mode decomposition (VMD) decom-

poses the original time series of wind energy data into

subsequences of multiple intrinsic mode functions (IMFs)

with different frequencies. Secondly, the generation model

of LCWGAN-GP structure, BiLSTM network, is used to

generate virtual wind power time series to obtain the data

distribution characteristics of wind power. Then, the dis-

crimination model of LCWGAN-GP structure is used to

extract the CNN network with good nonlinear character-

istics hidden in the wind power time series, and the semi-

supervised regression is used to predict the wind power of

subsequent layers. Finally, the model and discriminant

model are generated by alternating iterative training, and

the parameters of LCWGAN-GP are updated to the optimal

state to minimize the prediction error.

Fig. 1 Basic framework of

GAN
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3.2 Variational modal decomposition

VMD is a new non-stationary signal adaptive decomposi-

tion method, which overcomes the problem of modal

component aliasing in EMD method (Han et al. 2019). The

original wind power data is nonlinear and unstable, which

reduces the prediction results of wind power. Therefore, in

this paper, VMD algorithm is used to decompose the col-

lected nonlinear and non-stationary wind power data, and

the original data are decomposed into different numbers of

sub signals with limited bandwidth, eigenmode function.

VMD decomposes a signal with strong fluctuation into K

signals with obvious regularity, assuming that each modal

component ukðtÞ has center frequency and limited band-

width. The original wind signal f(t) can be expressed as the

sum of K IMF components, and the sum of the bandwidth

of all modal components is the smallest. The IMF

expression is:

ukðtÞ ¼ AkðtÞ cosð/kðtÞÞ ð7Þ

where AkðtÞ is instantaneous amplitude; /kðtÞ is Phase; k is

modal component.

In VMD, different signal K values are different. In this

paper, according to the K value setting rule in document

(Ding et al. 2020), the K value is set to 3. Therefore, the

original wind power generation sequence can be adaptively

processed and decomposed into multiple subsequences

based on VMD.

3.3 Construction of generation model

3.3.1 LSTM

In the traditional neural network, the historical data used in

prediction is the information of N times before the pre-

diction time. The historical information used in each pre-

diction is rolling forward, which will cause the neglect of

earlier information during prediction. The design of RNN

can avoid this problem. LSTM is a special RNN, due to its

unique design structure, LSTM network is very suitable for

processing and prediction based on time series data. It also

has strong fitting ability and feature extraction ability, and

has good prediction effect. The storage unit of LSTM is

equipped with forgetting gate, input gate and output gate to

manage the removal or addition of storage unit. The three

thresholds are composed of sigmoid activation function

and point-by-point multiplication (Zhao et al. 2017), From

Fig. 3.

The gate of LSTM network is represented by the follow:

it ¼ rðwrist�1 þ wrixt þ wcict�1 þ biÞ ð8Þ
ft ¼ rðwrf st�1 þ wxf xt þ wcf ct�1 þ bf Þ ð9Þ

ct ¼ ft � ct�1 þ it � rðwrcst�1 þ wxcxt þ bcÞ ð10Þ
ot ¼ rðwrost�1 þ wxoxt þ wcoct�1 þ boÞ ð11Þ
st ¼ ot � tanhðctÞ ð12Þ

At the current t time, xt means input, st�1 indicates the

output of the previous moment, ct�1 indicates the hidden

state of the previous moment, the value of the LSTM

Fig. 2 Prediction structure of LCWGAN-GP
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memory unit at the current time is ct and the output value is

st. Where, it, ot, ft, are the values of input gate, output gate

and forgetting gate at time t respectively. w is the weight, b

is the offset term, and r is the activation function.

3.3.2 BiLSTM

Deep learning usually has ANN network structure, many

model parameters, and requires a large number of training

samples to make the algorithm converge. However, col-

lecting a large number of samples is time-consuming and

expensive. On the other hand, the traditional sample gen-

eration technology usually uses uniform sampling, which is

basically the same as the original sample. Therefore, a new

sample generation technology is needed to expand the

training samples to enhance the generalization ability of

deep learning algorithm.

Unidirectional LSTM has the important short time

characteristics of very long interval and delay in processing

and prediction time series, but it can only consider the

information of past data for prediction. If the data of past

several times are used for wind power prediction, it will

only use several historical data closest to the prediction

time and ignore the information contained in earlier his-

torical data. BiLSTM has the ability to learn by using the

information of past and future data, that is, to predict wind

power by using past and future prediction data. It not only

improves the prediction accuracy, but also shortens the

prediction time. In order to effectively obtain the time

variation characteristics of the input time series, the pur-

pose of generator g is to learn the characteristic distribution

of wind power. Therefore, this paper selects the bidirec-

tional long-term and short-term memory network

(BiLSTM) as the generator model to realize the long-term

learning of data, including two LSTM layers (Kim and

Moon 2019). The basic idea of BiLSTM is that the forward

and backward of each training sequence are LSTM

respectively, and these two layers are connected with the

input layer and the output layer, and the output layer

integrates the past (forward) and future (reverse) informa-

tion. The generator structure is shown in Fig. 4. Due to the

complexity of LSTM training, the noise data of a series of

fixed length sequences subject to Gaussian distribution are

input into the generator. Each noise point is represented as

a d-dimensional vector, the length of the sequence is T, the

size of the input matrix is T � d, and each layer has 100

units. Add a dropout layer after each layer to combine with

the full connection layer.

The current hidden state depends on two hidden states,

forward LSTM and backward LSTM. The output of the

first BiLSTM layer at time t, as follows:

h~
1

t ¼ tanhðw1

ih~
xt þ w1

h~h~
h1~

tþ1 þ b1

h~
Þ ð13Þ

h
 1

t ¼ tanhðw1

ih~
xt þ w1

h
 

h~
h1~

tþ1 þ b1

h~
Þ ð14Þ

y1
t ¼ tanhðw1

h~o
h~

1

t þ w1

h~o
h~

1

t þ b1
oÞ ð15Þ

The output depends on h~t and h
 

t, and ho is initialized to

a zero vector.

The second BiLSTM layer is used to obtain the output of

time t, as follows:

yt ¼ tanhðw2

h~o
h~

2

t þ w2

h~o
h~

2

t þ b2
oÞ ð16Þ

The primary objective of generative model is to mimic

the complex distribution of real samples in an unsupervised

manner. Therefore, the GAN generative model can gener-

ate a deceptive virtual sample according to the random

noise. The objective function of the unsupervised learning

is expressed as:

LG ¼ E � f ðPgÞ � E � f ðPlabeledÞ
�
�

�
�2 ð17Þ

where f ðPgÞ and f ðPlabeledÞ denote the output of an inter-

mediate layer of discriminative.

In the generation process of wind power time series, the

input variables are the wind power series before the pre-

diction point, wind speed, air density and roughness data.

The wind power of the prediction point in the next 48 h is

generated. By iteratively minimizing Eq. (17), the statisti-

cal features of the virtual samples and original samples

tend to be more and more similar, and the generated virtual

samples are regarded as real samples.

3.4 Construction of discriminant model

CNN is a commonly used neural network model in the field

of deep learning, due to it has strong feature learning

ability and can greatly reduce the number of parameters in

the model, it is widely used in image recognition and other

fields. CNN is a feedforward neural network, which is

composed of input layer, convolution layer, pooling layer,

Fig. 3 Structure of LSTM
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full connection layer and output layer. Because CNN

adopts convolution operation in calculation, the operation

speed is greatly improved compared with general matrix

operation. The alternating use of convolution layer and

pooling layer of CNN can effectively extract local features

of data and reduce the dimension of local features; Due to

weight sharing, the number of weights can be reduced and

the complexity of the model can be reduced (Solas et al.

2019). In order to ensure the prediction accuracy of

LCWGAN-GP method, convolutional neural network

(CNN) with good fitting performance to nonlinear function

is selected as the discrimination model to form the non-

linear mathematical relationship function between histori-

cal time series data and future wind power prediction value

(Wu et al. 2021), as shown in Fig. 5. Due to the output of

the generated model BiLSTM is one-dimensional data,

CNN can not be directly used for signal processing of the

time series of wind power data, so the data dimension

conversion technique is adopted in this paper to solve this

problem. The basic structure of LCWGAN-GP discrimi-

nation model can be expressed as:

(1) The generated wind data and real wind samples are

used as the input of the discrimination model;

(2) Converting one-dimensional data samples (generated

wind power data and real wind power data) into two-

dimensional image samples as the input of convolu-

tion layer;

(3) Multiple transpose convolution layers are used to

map multiple low-dimensional images to high-

dimensional data space, and the high-dimensional

feature representation of input samples is obtained

through a series of convolution operations;

(4) The two-dimensional image features are converted

into one-dimensional data, and the regression layer is

connected to the full connection layer at the end of

the discrimination model to realize the nonlinear

regression of wind power data and obtain the results

of wind power prediction.

The discriminant model includes feature extraction layer

and regression layer. The feature extraction layer uses

unsupervised learning mechanism, and the regression layer

uses supervised learning mechanism. In order to enhance

the regression ability of the designed discriminant model,

the double objective optimization model is realized through

alternating training, as follows:

LD ¼ Lunsup þ Lsup ð18Þ

Lunsup ¼ � E � f ðPgÞ � E � f ðPlabeledÞ
�
�

�
�2 ð19Þ

Lsup ¼ E � ðPF
tþ1 � PR

tþ1Þ
2 ð20Þ

Here, PF
tþ1 and PR

tþ1 represent the wind power prediction

result and the actual value at the next time. Pg and Plabeled

represent the marked wind power sequence and the virtual

wind power sequence.

Fig. 4 Generation model

framework of LCWGAN-GP

Short-term prediction of wind power based on BiLSTM–CNN–WGAN-GP 10613

123



It can be found that Eq. (19) is an unsupervised loss

function to make the statistical distribution of virtual

samples and real samples as dissimilar as possible. Equa-

tion (20) is the supervised loss function, which is devoted

to quantitatively assess the statistical deviations of the real

wind power data as well as its predicted values.

LCWGAN-GP generative and discriminative models are

competing to form a min–max game. By introducing vir-

tual samples into the LCWGAN-GP generation model, the

discrimination model can more easily identify the potential

characteristics in the original wind power samples, and

make the prediction results of LCWGAN-GP closer to the

real value.

3.5 Implementation of prediction method

This paper presents a hybrid prediction model based on

VMD, BiLSTM, CNN and WGAN-GP for Short-term

prediction of wind power. The overall prediction frame-

work of the proposed prediction method is shown in Fig. 6.

Firstly, VMD algorithm is used to decompose the

original wind power time series into multiple IMF signals

and a residual signal. Then, the original signal is trans-

formed into virtual samples through the generation model

of LCWGAN-GP. Then, the virtual samples and IMF

subsequences are input into the discriminant model, and the

WPF results and prediction errors of each subsequence are

obtained. Further, the prediction error is fed back to the

LCWGAN-GP generation model and the generation

parameters are updated, and each IMF subsequence with

residual signal corresponds to an independent discrimina-

tion model. Alternate training to complete the LCWGAN-

GP algorithm.

Compared with the previous WPF model, the proposed

semi supervised regression LCWGAN-GP method has the

following advantages:

(1) WGAN-GP is essentially a general framework,

which can be combined with other time series

prediction models and has strong compatibility;

(2) The BiLSTM model is used to generate samples to

enhance the data and improve the prediction

accuracy;

(3) The CNN used in the discriminant model has better

time series feature extraction ability and reduces the

prediction error Therefore, these advantages can

effectively improve the prediction accuracy of the

proposed short-term wind power prediction method

based on LCWGAN-GP and reduce the prediction

error.

4 Prediction model error evaluation index

In order to comprehensively determine the superiority of

the prediction model in this paper. The model evaluates the

results of the prediction model by calculating the results of

the error evaluation index (Li et al. 2021). In this paper,

three indexes, mean absolute error (MAE), mean absolute

percentage error (MAPE) and root-mean-square error

(RMSE), are used to evaluate the performance of wind

power prediction. Their definitions are given as:

MAE ¼ 1

N

XN

i¼1

PF
i � PR

i

�
�

�
� ð21Þ

MAPE ¼ 1

N

XN

i¼1

PF
i � PR

i

�
�

�
�

PR
i

� 100% ð22Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðPF
i � PR

i Þ
2

v
u
u
t ð23Þ

Fig. 5 Discriminant model framework of LCWGAN-GP
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MAE and RMSE are used to evaluate the prediction

ability and accuracy of the proposed prediction method.

But MAPE is used to evaluate the deviation between the

prediction results of relative points and the actual wind

output. The smaller the error is, the more accurate the

prediction is and the better the prediction effect is.

Fig. 6 Implementation

framework of the proposed

method
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5 Experimental results and comparative
analysis

In this paper, the measured data set of a wind farm in

Jiuquan, China is selected as the research object. The

maximum power of a single unit in the wind farm is

2.5 MW and the time interval is 10 min. The seasonal wind

power in spring, summer, autumn and winter is predicted.

The data samples are four groups of data in March, June,

September and December 2020. The real-time wind speed

power curve after data exception processing is shown in

Fig. 7. Each data set contains 1000 samples, the first 800

are training samples and the last 200 are test samples. The

time series diagram of wind power historical data of wind

farm is shown in Fig. 8 (taking September 2020 as an

example). The prediction results of the proposed prediction

method are compared with those of GAN, BiLSTM, CNN,

GRU, SVM and ARIMA algorithms.

The input variables to generative adversarial network

are the wind power sequence, wind speed and air density

24 h before the prediction point. The simulation platform

used is as follows:

Processor and memory: Intel(R) Core(TM) i7-10750H

CPU@2.6 GHz, 8 GB;

Operating system: 64-bit Windows 10;

Analysis software: Tensorflow2.5.0.

In order to improve the prediction accuracy, the power

value is normalized in the range of [- 1, 1]. Finally, the

prediction results of GAN, BiLSTM, CNN, GRU, SVM

and ARIMA are compared. The prediction results are

shown in Figs. 9, 10, 11 and 12.

It can be seen from Figs. 9, 10, 11 and 12. That the

prediction results based on LCWGAN-GP are very similar

to the change trend of the actual wind power time series.

The proposed prediction method has the best prediction

effect in spring, summer, autumn and winter, and has good

adaptability and flexibility. According to the prediction

results of different algorithms in each season, it can be seen

concisely that the prediction effect based on improved

LCWGAN-GP is the best, followed by the original GAN

network, and the prediction effect of SVM and ARIMA is

the worst. The error values of the proposed method and

other algorithms in different seasons are compared. The

error values of each model under different evaluation

indexes are shown in Table 1.

As shown in Table 1, the error value of the proposed

method in autumn is slightly smaller in the error compar-

ison of four seasons, because the weather in autumn is

relatively stable and there is no wind power climbing

phenomenon. In general, the proposed method can be used

to predict wind power all year round.

Taking autumn as an example, the results of MAE,

RMSE and MAPE of the proposed method are

2.0236 MW, 3.1936 MW and 1.03%, respectively, with

the best prediction performance among all the comparative

algorithms. In addition, the MAE, RMSE and MAPE of the

statistical ARIMA method are 14.3621 MW, 16.3698 MW

and 8.19%, respectively. It can also be observed that

ARIMA is not good at handling wind power data with high

randomness. Compared with ARIMA, SVM improved

MAE and MAPE by 8.6667 MW and 2.4%, respectively.

Compared with CNN and GRU, BiLSTM performs rela-

tively well due to its strong time series processing ability.

The improvement of MAPE results by this method is

0.98% and 4.15%, respectively. Obviously, the prediction

performance of BiLSTM is not as good as that of the

proposed method. In MAE evaluation index, LCWGAN-

GP is 0.8066 MW lower than GAN. In the RMSE evalu-

ation index, LCWGAN-GP is 0.3705 MW lower than

Fig. 7 After exception data

processing
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Fig. 8 Wind power time series

Fig. 9 Forecast results of wind

power in spring

Fig. 10 Forecast results of wind

power in summer
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Fig. 11 Forecast results of wind

power in autumn

Fig. 12 Forecast results of wind

power in winter

Table 1 Comparison of model

prediction errors
Season Index LCWGAN-GP GAN BiLSTM CNN GRU SVM ARIMA

Spring MAE 3.8102 3.8974 7.5692 8.2639 10.3415 8.0421 14.2369

RMSE 4.1236 4.8631 12.2236 12.2327 14.3215 13.2469 17.1325

MAPE 1.36% 1.74% 4.08% 4.28% 5.84% 4.56% 8.12%

Summer MAE 3.3624 3.7614 7.8415 8.1214 9.7745 8.1126 15.7723

RMSE 4.3524 4.7621 11.4732 12.0123 13.3619 13.3624 16.5874

MAPE 1.54% 1.61% 3.98% 4.21% 5.77% 4.74% 8.25%

Autumn MAE 2.0236 2.8302 5.7524 5.2301 6.5639 5.6954 14.3621

RMSE 3.1936 3.5641 9.2365 9.4895 11.2369 9.7894 16.3698

MAPE 1.03% 1.56% 3.13% 4.11% 7.28% 5.79% 8.19%

Winter MAE 2.8225 3.2321 5.6321 5.4203 6.3654 5.8847 15.3654

RMSE 3.0321 3.6645 9.2769 9.4412 11.5697 9.2635 15.4598

MAPE 1.17% 1.59% 3.33% 4.18% 6.41% 6.26% 8.89%
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GAN. In MAPE evaluation index, LCWGAN-GP

decreased by 0.53% compared with GAN. Obviously, the

prediction effect of LCWGAN-GP is better than GAN.

Undoubtedly, the LCWGAN-GP based prediction method

greatly outperforms other existing methods in all three

evaluation metrics.

The real data of Jiuquan wind farm in September 2021

are used to verify the overall prediction performance of the

proposed method in one-step prediction and multi-step

prediction. Multi-step prediction is an iterative point pre-

diction process, which is carried out in rolling mode. In the

process of each iteration, the prediction result of one-step

in the forward time step is used as the input of multi-step

prediction at a certain time point. The prediction structure

and parameter settings are the same as those above. Fig-

ures 13 and 14 show one-step prediction and multi-step

prediction results, respectively. The error values of the

proposed method and other benchmark algorithms are

compared in Tables 2 and 3. In Table 2, MAE, RMSE and

MAPE of the proposed method are 0.2894 MW,

0.3356 MW and 1.26%, respectively. In Table 3, MAE,

RMSE and MAPE of the proposed method are

0.4754 MW, 0.8632 MW and 2.35%, respectively.

Table 4 shows the comparison of calculation time of all

algorithms. It can be seen from Table 4 that the proposed

method requires more prediction time than GAN, BiLSTM,

CNN, SVM and ARIMA. This is because the proposed

method uses VMD for signal decomposition and needs

training to generate model and discrimination model.

However, the time of LCWGAN-GP prediction algorithm

is shorter than that of DBN prediction algorithm. DBN has

a complex training process, including hierarchical training

and fine tuning. Therefore, from the perspective of

prediction performance and efficiency, the proposed pre-

diction algorithm based on LCWGAN-GP is reliable.

6 Conclusions

A prediction method based on BiLSTM–CNN–WGAN-GP

is proposed in this paper to improve the prediction accu-

racy of short-term wind power. The results show that

compared with a single GAN network for prediction of

wind power, this method improves the prediction accuracy

to a certain extent, which solves the problem of low pre-

diction accuracy. The original wind power time series is

decomposed into sub-sequences with smooth outer con-

tours by using the VMD decomposition method. Each sub-

sequence is used as the input of the discriminant model to

reduce the parameters of the neural network and improve

the speed of wind power prediction. The improved

BiLSTM can capture the characteristic information of time

series from two directions, making full use of time series

and improving the prediction accuracy. The combined

generative confrontation network is constructed by com-

bining BiLSTM, CNN, and WGAN-GP. The generation

model adopts the BiLSTM network, the discrimination

model adopts the CNN network, and the semi-supervised

regression method. The generation model and discrimina-

tion model are trained repeatedly, and finally, the combined

generation countermeasure network converges and the

prediction results are obtained. Compared with the GAN,

BiLSTM, CNN, GRU, SVM, and ARIMA networks, it has

higher prediction accuracy and less time. The research at

this stage is based on historical data on wind power. In the

next step, the physical climate information from the wind

Fig. 13 One-step WPF results

of the proposed approach
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farm will also be used as a characteristic input to establish

a more perfect wind power prediction system.
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Fig. 14 Multi-step WPF results

of the proposed approach

Table 2 One-step WPF indices

with different forecasting

methods

Index LCWGAN-GP GAN BiLSTM CNN DBN SVM ARIMA

MAE 0.2894 0.7845 1.0236 1.1424 1.6515 1.8958 2.3695

RMSE 0.3356 0.8423 1.3625 1.8966 2.2536 2.7632 3.5469

MAPE 1.26% 2.65% 3.14% 5.59% 6.25% 8.23% 9.36%

Table 3 Multi-step WPF indices

with different forecasting

methods

Index LCWGAN-GP GAN BiLSTM CNN DBN SVM ARIMA

MAE 0.4754 1.2568 2.3968 2.8714 3.1962 3.8854 5.5714

RMSE 0.8632 2.2354 2.9687 3.9864 4.2369 4.8751 6.6984

MAPE 2.35% 3.76% 4.54% 6.88% 8.24% 9.28% 10.37%

Table 4 Computational time of

seven prediction method
LCWGAN-GP GAN BiLSTM CNN DBN SVM ARIMA

Runtime/s 18.2574 14.2538 4.5213 10.5476 19.3254 4.5369 5.5548
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