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Abstract
In the lung computer-aided detection (Lung CAD) system, the region of interest (ROI) of lung nodules has more false
positives, making the imbalance between positive and negative (true positive and false positive) samples more likely to lead
to misclassification of true positive nodules, a cost-sensitive multikernel learning support vector machine (CS-MKL-SVM)
algorithm is proposed. Different penalty coefficients are assigned to positive and negative samples, so that the model can
better learn the features of true positive nodules and improve the classification effect. To further improve the detection rate of
pulmonary nodules and overall recognition accuracy, a score function named F-new based on the harmonic mean of accuracy
(ACC) and sensitivity (SEN ) is proposed as a fitness function for subsequent particle swarm optimization (PSO) parameter
optimization, and a feasibility analysis of this function is performed. Compared with the fitness function that considers only
accuracy or sensitivity, both the detection rate and the recognition accuracy of pulmonary nodules can be improved by this
new algorithm. Compared with the grid search algorithm, using PSO for parameter search can reduce the model training
time by nearly 20 times and achieve rapid parameter optimization. The maximum F-new obtained on the test set is 0.9357
for the proposed algorithm. When the maximum value of F-new is achieved, the corresponding recognition ACC is 91%,
and SEN is 96.3%. Compared with the radial basis function in the single kernel, the F-new of the algorithm in this paper is
2.16% higher, ACC is 1.00% higher and SEN is equal. Compared with the polynomial kernel function in the single kernel,
the F-new of the algorithm is 3.64% higher, ACC is 1.00% higher and SEN is 7.41% higher. The experimental results
show that the F-new, ACC and SEN of the proposed algorithm is the best among them, and the results obtained by using
multikernel function combined with F-new index are better than the single kernel function. Compared with the MKL-SVM
algorithm of grid search, the ACC of the algorithm in this paper is reduced by 1%, and the results are equal to those of the
MKL-SVM algorithm based on PSO only. Compared with the above two algorithms, SEN is increased by 3.71% and 7.41%,
respectively. Therefore, it can be seen that the cost sensitive method can effectively reduce the missed detection of nodules,
and the availability of the new algorithm can be further verified.

Keywords Multiple kernel learning support vector machine (MKL-SVM) · Particle swarm optimization (PSO) · F-score ·
Cost-sensitive (CS) · Pulmonary nodules recognition

1 Introduction

Lung cancer has the highest mortality rate in the world. The
latest statistics show that in cancers, both the incidence of
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lung cancer and the death rate of lung cancer rank first for
Chinese males. Regarding the statistics in Chinese females,
the incidence of lung cancer ranks second, and the death rate
of lung cancer ranks first ( Cao et al. 2021). According to the
number of cases, lung cancer, which increases by approxi-
mately 781000 cases every year, ranks first in China. Lung
cancer is also the most common type of cancer that kills both
men and women in China. According to other statistics, lung
cancer is also the main cause of cancer mortality in the USA,
accounting for 22% of all male cancer deaths and 22% of
all female cancer deaths (Siegel et al. 2021). Early surgery is
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themost effective treatment for lung cancer, butmost patients
are diagnosed in the advanced stages of the disease. In 2015,
the European Imaging Society and the European Respira-
tory Society published the latest white paper on lung cancer
screening in the European Respiratory Journal (ERJ) , aim-
ing to guide clinical lung cancer screening to facilitate the
early detection and treatment of lung cancer (Kauczor et al.
2015). Pulmonary nodule detection and benign or malignant
recognition, which can improve the survival chances of indi-
viduals, play a vital role in the early diagnosis of lung cancer.
However, the five-year survival rate of lung cancer patients is
only 10%–15% (Stewart et al. 2019). If health management
can be strengthened to achieve the early screening, detection
and treatment of lung cancer, the cure rate of patients can
increase to 65%, which can effectively improve the survival
rate of lung cancer patients and prevent them from missing
the best treatment opportunity (Stewart et al. 2019; Liu et al.
2017).

Early detection of lung cancer can be achieved effec-
tively by computed tomography (CT) or positron emission
tomography (PET). Pulmonary nodules, which are the early
manifestations of lung cancer, are round or quasi-round
dense shadows with a diameter of less than 30 mm on CT
images. The Lung CAD system is a comprehensive applica-
tion combining medical image processing, computer vision
andmachine learning technology that quickly and accurately
detects and identifies lung nodules from CT or PET images
to provide an efficient screening scheme. At the same time,
the Lung CAD can also reduce the visual fatigue of radiolo-
gists caused by excessive reading, provide auxiliary second
opinions for radiologists, and help radiologists improve the
detection efficiency and accuracy of benign ormalignant pul-
monary nodule recognition. Standard Lung CAD systems
usually include image preprocessing, pulmonary parenchy-
mal segmentation, segmentation of a candidate nodule ROI
or volume of interest (VOI), the calculation and selection of
ROI or VOI features, and benign or malignant pulmonary
nodule recognition.

In recent years, machine learning (ML) has been widely
applied to Lung CAD systems, especially the support vector
machine (SVM) algorithm, which has achieved certain suc-
cess (Orozco et al. 2015; Manikandan and Bharathi 2016;
Zhou et al. 2016; Jose et al. 2017; Li et al. 2018; Jia et al.
2020; Tong et al. 2021). Designing suitable kernel functions
for a given problem is a common challenge for both SVMand
kernel learning (KL) methods. Compared with the accuracy
and stability of classification in single kernel learning (SKL),
those inmultikernel learning (MKL) can be improved. Bucak
et al. (2014) comprehensively described the MKL method,
and the latest progress in this field is also noted. Wang et al.
(2021) investigated a careful exploration of the connection
betweenMKLmethods and deep learning methods, and pro-
vided valuable references for future research directions. The

MKL-SVM algorithm, which is constructed by combining
SVM with MKL, can effectively achieve both learning and
generalization ability. The MKL-SVM algorithm was used
to identify pulmonary nodules through the study conducted
by Li et al. (2013, 2018). More specifically, Li et al. (2013)
proposed a hybrid kernel SVM algorithm in which the ROI
characteristics are first calculated and designed for the recog-
nition of pulmonary nodules so that multiple recognition
indicators, such as the accuracy (ACC), sensitivity (SEN ),
receiver operating characteristic (ROC) curve and area under
the ROC curve (AUC), are simultaneously improved. Fur-
thermore, as the swarm intelligence idea was introduced, the
MKL-SVM-PSO algorithm was proposed, the fitness value
and optimization process under different inertiaweightswere
discussed, and relatively ideal nonlinear dynamic inertia
weights were obtained ( Li et al. 2018). The experimental
results show that the proposed algorithm can converge to
the optimal fitness value quickly, effectively and smoothly,
which verifies the effectiveness of the algorithm.

In addition, another high-profile technology in machine
learning is deep learning;with the rise of deep learning,many
researchers in the field of medical image processing have
also introduced deep learning to their research (Tajbakhsh
and Suzuki 2016; Hongtao et al. 2018; Monkam et al. 2019;
Puttagunta and Ravi 2021). Zhao et al. (2018) developed a
hybrid convolutional neural networks (CNN) of LeNet and
AlexNet, at the same time, the CNN parameter optimiza-
tion method was explored, and 1018 cases in lung image
database consortium and image database resource initiative
(LIDC-IDRI) were selected as experimental data. The final
accuracy reached 82.2%, which is helpful for the diagnosis
of nodules. To improve the accuracy of nodule recognition,
Lin et al. (2020) proposed a model using Taguchi method for
parameter optimization based on a two-dimensional CNN,
and verified the effectiveness of themodel in LIDC-IDRI and
SPIE-AAPM data sets, respectively. The results showed that
the proposed method can improve the accuracy of recogni-
tion. In recent years, there has also been interest in combining
deep learning methods with traditional machine learning
methods. Based on the CNN architecture, Zhang et al. (2019)
usedmultiple deep CNNs to classify lung nodules to build an
ensemble learning model and selected 743 medical images
in the LIDC-IDRI for experiments: first, deep CNNs with
different architectures are used to predict the nodules; then,
voting, SVM, decision trees and other methods are selected
to achieve the fusion of different prediction results, and
finally, the classification of nodules is achieved. Bansal et al.
(2020) proposed to extract deep features and handcrafted fea-
tures using ResNet network and morphological techniques
for the lung nodules classification problem, and XGBoost
was selected for classification after feature combination,
with an experimental accuracy of 88.30%, which is better
than the other techniques mentioned. Polat and Danaei Mehr
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(2019) proposed to use AlexNet and GoogleNet network as
a new 3D-CNNmodel, combined with SVM as a classifier to
achieve lung nodule classification. Experiments showed that
combining deep learning methods with SVM can improve
model performance, and finally the accuracy can achieve
91.8%.

Deep learning has played an important role in medical
image processing in recent years. Because of its excellent
learning ability, high fitting ability, and high accuracy, it is
an important tool in the field of medical research. However,
the training stage of a deep learningmodel depends on a large
amount ofmedical image data, and it is still not easy to obtain
a high-quality data set with accurate annotations (Francisco
and Azuaje 2019). At the same time, an increase in training
data will also lead to longer training times and more com-
plex processing. The establishment of deep learning models
has a high demand for equipment. At present, in most cases,
experiments can only be conducted through transfer learning,
there is a lack of a deep theoretical foundation in mathe-
matics, and the interpretability is low. Nevertheless, deep
learning can still achieve excellent experimental results and
is widely used. The traditional SVM algorithm is a typical
small sample learning method with a solid statistical the-
oretical foundation and strong interpretability (Abe 2010).
The complexity of the calculation depends on the number of
support vectors rather than the dimensionality of the sample
space, which avoids the curse of dimensionality and, at the
same time, has a better generalization ability. In addition,
SVM has low requirements for the experimental environ-
ment and is easy to implement. However, SVM is not ideal
for multiclassification problems, as it is not easy to achieve
large-scale training samples, and SVM is also sensitive to
the selection of the parameters in the kernel functions. How-
ever, at present, in the case of an insufficient data set and the
lack of sophisticated experimental equipment, SVM is still a
feasible method.

Therefore, for the problemof lung nodule recognition, this
paper selects SVM for nodule classification and improves
the kernel function of the SVM and parameter optimization
method to achieve better experimental results.

The MKL-SVM algorithm has achieved certain results in
Lung CAD recognition, but there are still two problems that
need to be solved:

1. In the process of medical image recognition, the posi-
tive and negative class samples are often unbalanced. If
the same penalty coefficient is used for samples of dif-
ferent classes, the classification hyperplane of SVM will
be skewed toward the minority class, which will cause
overfitting for samples of the majority class, making the
samples of the minority class more likely to be misclas-
sified than the samples of the majority class (Tao et al.
2019). In the Lung CAD system, in order to prevent

the missed detection of nodules, a large number of false
positives are usually retained in pulmonary nodule ROI
segmentation step before recognition, so that the num-
ber of false positives in the extracted candidate nodule
ROI is much higher than true positives. However, due to
the dominant influence of more false positive nodules,
the recognition model tends to pay less attention to the
true positive nodules during the learning process or even
ignore it, which easily leads to the missed detection of
true positive nodes. Therefore, it is significant to solve
the class imbalance problem to improve the performance
of the system.

2. The evaluation indicators are diverse due to different
evaluation perspectives in pulmonary nodule recognition,
and there is no unified standard. Therefore, it is diffi-
cult to take into account multiple indicators to evaluate
pulmonary nodule recognition. The accuracy was taken
as the evaluation standard, that is, the overall recogni-
tion effect was taken as the evaluation standard of the
Lung CAD system (Sui et al. 2015). However, the nodule
detection rate was ignored. The sensitivity was taken as
the evaluation standard of the Lung CAD system, and the
nodule detection degree was represented by the sensitiv-
ity (Wang et al. 2015; Javaid et al. 2016). However, too
many false nodules are easily identified as nodules, and
too many misjudgments occur when the pulmonary nod-
uleROIs are not balanced, causing psychological pressure
and additional examination burdens for patients. TheROC
curve and AUC were taken as the evaluation indexes
by some researchers (Aoyama et al. 2003; Gao et al.
2015; Gonçalves et al. 2017; da Nóbrega et al. 2018).
Other researchers have also explored this issue(Orozco
et al. 2015; Demir and Yılmaz Çamurcu 2015; de Car-
valho Filho et al. 2017; Li et al. 2019; Ye et al. 2020), and
ACC , SEN and SPE are used to evaluate the experimen-
tal results on the test set. However, therewas no evaluation
of the objective function of the training model, and only
the test results were discussed. (Sui et al. 2015) discussed
this problem, giving attention to multiple indicators; for
the evaluation of SVM, an Fmeasure function was adopted
to evaluate the accuracy and sensitivity of the positive
sample classification results, where the closer the function
is to 1, the better the classification result. Although there
are many classification algorithms that consider multi-
ple evaluation indicators, there is still much potential for
research to optimize and improve the MKL-SVM algo-
rithm.

The main contributions of this article are as follows:

1. In the pulmonary nodule recognition problem, a cost-
sensitive multikernel learning support vector machine
(CS-MKL-SVM) algorithm was proposed for the imbal-
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ance of positive and negative samples, which is likely
to cause too many missed detections. Different penalty
coefficients are used for true positive nodules and false
positive nodules to increase the penalty for misclassified
samples, so that the model can better learn the features of
true positive to improve the recognition results.

2. Since theCS-MKL-SVMalgorithmhasmanyparameters,
the CS-MKL-SVM algorithm based on PSO is proposed
in this paper. The grid search algorithm can be used to
find the optimal parameter set in the cross-validation.
However, due to the numerous parameters and oversized
nested loops and levels, the number of calculations and
training time are indeed too long in the CS-MKL-SVM
algorithm. In addition, if the grid search step size is not
dense enough, the global optimal solution is difficult to
find. However, a swarm intelligence algorithm can find
the optimal parameter set quickly without traversing all
the parameter points. Hence, in this paper, the CS-MKL-
SVM algorithm is proposed based on PSO.

3. To better balance the overall accuracy and the detection
rate of nodules, to prevent the missed detection of nod-
ules, this paper proposes a F-new function as the PSO
evaluation standard for parameter optimization in the
CS-MKL-SVM algorithm. Moreover, in this algorithm,
F-new under the cross-validation is used as the fitness
function value to replace the traditional ACC or SEN
single-indicator evaluation system. The theoretical anal-
ysis of the F-new function proves that the function can
take into account both ACC and SEN , and the experi-
mental results further show the feasibility of this index.
The algorithm in this paper can ensure the accuracy of the
overall nodule recognition and at the same time improve
the detection rate of nodules.

The rest of the article is organized as follows. Section
2 introduces some related work on the CS-SVM algorithm.
In Section 3, the proposed framework is specified. Section
4 shows the experimental results of the experiments in this
paper. Finally, a conclusion of the work is shown in Section
5.

2 CS-MKL-SVMAlgorithm for Unbalanced
Data Sets

2.1 Cost-Sensitive MKL-SVM Algorithm

The same penalty parameters, which are the regularization
coefficients named C , are used in the standard SVM for
positive and negative samples. The values of the penalty
parameters determine how the maximum class interval and
the minimum training error compromise in SVM. However,
the classification will be skewed toward the side contain-

ing fewer samples when the positive and negative sample
data sets are seriously unbalanced in SVM, thus affecting
the classification accuracy. For example, if the same penalty
coefficient C is used when the positive sample is small,
the sum of errors corresponding to the positive samples
(cost function or loss function) will be less than the sum of
errors corresponding to the negative samples (cost function
or loss function). In other words, a large penalty coefficient is
applied to the negative samples so that the segmentation sam-
ple plane moves to the side of the positive samples. Based on
the MKL-SVM algorithm, a cost-sensitive MKL-SVM (CS-
MKL-SVM) algorithm is proposed to solve the positive and
negative sample imbalance.Different penalty coefficientsC+
and C− are introduced to the positive and negative samples
to flexibly adjust the misclassification costs of the false pos-
itives and false negatives.

The training pattern is expressed as:

T = {(xi , yi )} ∈ (X × Y )l (1)

where the parameter l is the number of training patterns. The
parameter xi is the input vector of SVM, and the parameter
yi ∈ {−1,+1} is the category label. In this paper, xi ∈ Rn

corresponds to the eigenvector that is extracted from the i th

sample from the n-dimensional ROI. The value of parameter
yi = 1 corresponds to the positive samples, which are the
true positive nodules and are malignant tumor lesions. The
value of parameter yi = −1 denotes negative samples, which
are false nodules or false tumors.

The mathematical model of the original CS-MKL-SVM
algorithm is described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min 1
2‖w‖2 + C+

∑

yi=+1
ξi + C−

∑

yi=−1
ξi

s.t .
l∑

i=1
yi (w · Φ (xi ) + b) ≥ 1 − ξi

ξi ≥ 0
i = 1, 2, . . . , l

(2)

The parameter ξi is the slack variable, b is the con-
stant bias, and Φ(xi ) is the input sample mapping in the
high-dimensional feature space.TheoriginalCS-MKL-SVM
problem is transformed into a Lagrangian dual problem by a
Lagrange multiplier:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
l∑

i=1
αi − 1

2

l∑

i=1

l∑

j=1
αiα j yi y j K

(
xi , x j

)

s.t .
l∑

i=1
αi yi = 0

0 ≤ αi ≤ C+, yi = +1
0 ≤ αi ≤ C−, yi = −1

(3)
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where

K (xi , x j ) = Φ(xi ) · Φ(x j ) (4)

The discriminant function is as follows:

f (x) = sgn

(
l∑

i=1

αi yi K (xi , x) + b

)

(5)

where the function K (xi , x j ) is the kernel function involv-
ing only the inner product of the input sample vectors, and
the value is constant. The kernel function is a symmetric
function, and two n-dimensional real eigenvectors are con-
verted into a real number using the kernel function, i.e.,
K : (Rn × Rn → R). As long as the Mercer condition
is satisfied, the kernel function K (xi , x j ) will take the dot
product of a feature space. One of the keys to improving the
performance of SVMis to design suitable kernel functions for
a given problem. The common kernel functions include the
polynomial kernel function and radial basis function (RBF)
which are expressed as Kpoly and Krbf :

Kpoly(x, y) = (xt y + 1)d (6)

Krbf (x, y) = exp(−‖x − y‖2/2g2) (7)

where the parameter d represents the polynomial kernel
degree and g represents the RBF kernel width. The param-
eters d and g are superparameters that need to be given in
advance. TheRBFkernel has a strong learning ability, and the
polynomial kernel has a strong generalization ability; thus,
the combination of the two can take into account the abilities
of both learning and generalization. It has been proven that
equation (8) is still a kernel function and that the combina-
tion of the RBF kernel and polynomial kernel is a convex
combination (Li et al. 2018).

{
Kmix

(
xi , x j

) = mKpoly
(
xi , x j

) + (1 − m) Krbf
(
xi , x j

)

0 < m < 1

(8)

where m is the weight coefficient of the polynomial kernel
function, and the proportion of each basic kernel function in
the multikernel function can be adjusted freely by m. The
parameter Kmix in equation (8) is taken as the multikernel
function K in the CS-MKL-SVM algorithm.

The CS-MKL-SVM parameters are numerous, including
the regularization coefficients C+ andC− of the positive and
negative samples, the polynomial kernel degree d, the RBF
kernelwidth g, and themultikernelweightm. The grid search
algorithm can be used to find the optimal parameter set in the
sense of cross-validation (CV).However, due to the excessive
numbers of parameters in the nested cycles and layers, grid

searching leads to a large number of calculations and a long
running time. Moreover, the global optimal solution cannot
be found if the grid search step size is not dense enough.
However, the optimal parameter set can be found quickly by
a heuristic algorithm without traversing all parameter points.

2.2 CS-MKL-SVMOptimization Algorithm based on
PSO

Particle swarm optimization (PSO), which searches by track-
ing the optimal particle in the solution space, is a heuristic
algorithm based on swarm intelligence.

Suppose that in a D-dimensional search space, the species
group X = (X1, X2, . . . , Xn) is composed of n particles,
and Xi = (xi1, xi2, . . . , xiD)T represents the position of
the i th particle in the D-dimensional parameter searching
space. The fitness value corresponding to each particle Xi

can be calculated according to the objective function. The
velocity of the i th particle is Vi = (Vi1, Vi2, . . . , ViD)T , its
individual extremum is Pi = (Pi1, Pi2, . . . , PiD)T , and the
group extremum is Pg = (Pg1, Pg2, . . . , PgD)T . In each iter-
ation, the particle updates its speed and position through the
individual extremum and group extremum, and the updated
expression is as follows:

V k+1
id = ωV k

id + c1r1(P
k
id − Xk

id) + c2r2(P
k
gd − Xk

id) (9)

Xk+1
id = Xk

id + V k+1
id (10)

where k is the current number of iterations, ω is the inertia
weight, d = 1, 2, . . . , D, Vid is the velocity of the i th par-
ticle in the D-dimensional space,c1 and c2 are nonnegative
constant acceleration factors, and the parameters r1 and r2
are random numbers distributed in the interval [0, 1]. To pre-
vent the blind search of particles, the velocity and position
are usually limited to [−Vmax , Vmax ] and [−Xmax , Xmax ]
respectively.

2.3 The NewTarget Function based on the F-score

In the classic PSO algorithm, a single evaluation metric in
the sense of CV is usually taken as the final goal and is
determined as thefitness function value, but it cannot evaluate
the recognition results well for special problems. Therefore,
the concept of harmonic mean in statistics is introduced. In
statistics, the harmonic mean is the inverse of the arithmetic
mean of the inverse of each statistical variable ( Parkash and
Thukral 2010), as shown in equation (11):

H = n
1
x1

+ 1
x2

+ · · · + 1
xn

(11)

where H is the harmonic mean, n is the total number of
variables, and xi represents the i th variable, i = 1, 2, . . . , n.
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In some systems of machine learning, Precision and
Recall are usually the more concerned metrics. Among
them, Precision is how many of all samples that the model
determines as positive are really positive samples; Recall is
how many of all positive samples are determined as positive
by the model, that is, the detection rate of positive samples.
The two metrics are shown in equation (12) and equation
(13), respectively.

Precision = T P

T P + FP
(12)

Recall = T P

T P + FN
(13)

where true positive (T P) represents the number of positive
classes predicted as positive; true negative (T N ) represents
the number of negative classes predicted as negative; false
positive (FP) represents the number of negative classes pre-
dicted as positive; and false negative (FN ) represents the
number of positive classes predicted as negative.

In some specific problems, Precision and Recall are
both important and need to be considered comprehensively.
As an important metric to weigh Precision and Recall, the
Fmeasure function represents the weighted harmonic mean of
Precision and Recall (Sui et al. 2015), as shown in equation
(14):

Fmeasure = 1

α 1
Precision + (1 − α) 1

Recall

= (β2 + 1)Precision ∗ Recall

β2Precision + Recall

(14)

where β2= 1−α
α

, α ∈ [0, 1], β2 ∈ [0,∞]. When β > 1,
Precision has a greater impact; when β < 1, Recall has
a greater impact; when β = 1, it is the F1 − score func-
tion, which means that Precision and Recall have the same
importance, as shown in equation (15):

F1−score =2 ∗ Precision ∗ Recall

Precision+Recall
(15)

The standard F1 − score function was earlier proposed
mainly for the information retrieval problems (Rijsbergen
1974; Guns et al. 2012). In information retrieval, it is more
concerned about “ what percentage of the retrieved infor-
mation is of interest to the users (Precision) ” and “ what
percentage of the content of interest to the users is retrieved
(Recall)”; therefore, Precision and Recall are more suit-
able as performance metrics for such requirements.

However, in the Lung CAD system, the ACC represents
the overall correct recognition probability. The Recall indi-
cator is also called the sensitivity (SEN ) indicator in the
Lung CAD system, which represents the detection probabil-
ity of true positive nodules. The higher SEN value, the fewer

false negative nodules, and the less possibility of missed
detection. Precision represents the ability to recognize non-
nodules. The higher the Precision value, the fewer false
positive nodules, and the less probability of incorrectly diag-
nosed as nodules. For LungCAD, on the one hand, the overall
recognition effect is very important. On the other hand, in
order to prevent the occurrence of the missed detection, the
recognition rate of malignant lesions cannot be ignored, that
is, the SEN indicator, which is the detection rate of malig-
nant tumors. The definition equations of ACC and SEN are
shown in equation (16) and equation (17), respectively.

ACC = T P + T N

T P + T N + FP + FN
(16)

SEN (Recall) = T P

T P + FN
(17)

In the above formula, T P is the number of true positive
nodules detected, FP is the number of false positive nod-
ules detected, FN is the number of false negative nodules
detected, and T N is the number of true negative nodules
detected or the number of false nodules.

For the recognition of lung nodules, more attention is paid
to “ the accuracy of overall nodules recognition (ACC) ” and
“ the true detection rate of lung nodules (SEN ).” Themissed
detection of nodulesmay cause the patient tomiss the optimal
time for treatment. For a prediction model, the higher SEN
is, the smaller the FN and missing nodule detection rates
are; thus, the detection result will be more trusted. Therefore,
SEN is as important as ACC . In this paper, for the evaluation
criteria of the Lung CAD, the mentioned F-new function is
shown in equation (18), F-new is used as the fitness func-
tion of the CS-MKL-SVM-PSO algorithm in the sense of
cross-validation, and then the evaluation criteria for parame-
ter optimization are established as a substitute the traditional
single ACC evaluation system, taking into account the over-
all recognition accuracy and reducing the missed detection
of nodules.

F − new = 2
1

ACC + 1
SEN

= 2 ∗ ACC ∗ SEN

ACC + SEN
(18)

The F-new function is the harmonic mean of ACC and
SEN .

Conclusion 1 The value range of ACC and SEN are both
[0,1]. When ACC and SEN are equal to 1, the F-new func-
tion can obtain the maximum value, and the maximum value
is 1.

Proof The reference have proved that formula (19) is estab-
lished (Liao and Wu 2015).

x1 + x2
2

≥ √
x1x2 ≥ 2

1
x1

+ 1
x2

(19)
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Fig. 1 F-new function simulation diagram

In the above formula, the equal sign holds if and only if
x1 = x2. It is well known that

x1+x2
2 is an increasing function.

When x1 ∈ [0, 1], x2 ∈ [0, 1], x1+x2
2 takes the maximum

value is 1 at x1 = x2. Therefore, 2
1
x1

+ 1
x2

takes the maximum

value is 1 at x1 = x2.
Using ACC and SEN as input, the simulation experiment

is conducted on the harmonic average F-new, and the simu-
lation results of the three-dimensional view and contour lines
obtained are shown in Fig. 1. 
�

As shown in the three-dimensional view of Fig. 1(a),
ACC and SEN are used as inputs, and the F-new func-
tion increases monotonically with the increase in ACC and
SEN indicators. The relevant theory can also be proved as
follows:
As shown above

Fnew(ACC, SEN ) = 2
1

ACC + 1
SEN

= 2ACC · SEN

ACC + SEN
(20)

where ACC ∈ [0, 1], SEN ∈ [0, 1], calculate the partial
derivatives of ACC and SEN , respectively, as shown in
equation (21) and equation (22) :

∂Fnew(ACC, SEN )

∂ACC
= 2SEN 2

(ACC + SEN )2
≥ 0 (21)

∂Fnew(ACC, SEN )

∂SEN
= 2ACC2

(ACC + SEN )2
≥ 0 (22)

From the derivative, the first-order partial derivative of
Fnew(ACC, SEN ) with respect to ACC is greater than
or equal to 0, and Fnew(ACC, SEN ) increases with the
increase in ACC . Similarly, Fnew(ACC, SEN ) increases

with the increase in SEN . Therefore, when ACC ∈ [0, 1],
SEN ∈ [0, 1], Fnew(ACC, SEN ) is a monotonically
increasing function.

When both ACC and SEN are close to 1, the F-score
reaches its maximum, proving that both ACC and SEN are
well-considered. As seen from the contour lines of Fig. 1(b),
along the direction from (0,0) to (1,1), the closer to the upper
right corner, the higher the score of the F-new function.
The F-new function gives higher scores to the models in
which ACC and SEN are closer, and combined with the
previous conclusion, F-new increases monotonically with
SEN and ACC indicators, ACC and SEN are increasing
and bounded, so when the ACC and SEN are larger and
closer, the F-new score is higher. The extreme value is when
ACC = SEN = 1, F-new = 1 can be obtained , that is, the
upper right vertex. The larger the interval between the ACC
and SEN is, the lower the F-new score will be. Hence, the
model almost loses its practical value.

3 CS-MKL-SVM-PSO Algorithm for
Pulmonary Nodule Recognition in Lung
CAD

3.1 The Process of the CS-MKL-SVM-PSO Algorithm
for Pulmonary Nodule Recognition in Lung CAD

The overall process of the Lung CAD system is shown in
Fig. 2. The Lung CAD system is divided into three parts.
The first part is the preparation for benign and malignant
pulmonary nodule recognition, including the preprocessing
of CT images, segmentation of pulmonary parenchyma, seg-
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Fig. 2 Flowchart of CS-MKL-SVM-PSO algorithm for pulmonary nodules recognition in Lung CAD

mentation and extraction of ROIs, and feature calculation
from the ROIs. The second part is to obtain the recogni-
tion algorithm model by quickly optimizing the parameters
on the training set with the CS-MKL-SVM-PSO algorithm.
The last part is to obtain the final recognition result on the
test set. Each of the three parts is indicated by a dotted box.

3.2 Preparation for Pulmonary Nodule Recognition

The shape and structure of pulmonary nodules and their gray
features in CT images are different, which makes them easy
to misdiagnose and falsely detect. Pulmonary nodule recog-
nition as well as the coremodule of the Lung CAD is the final
step. The selected recognition algorithm will directly affect
the detection results.

During image preprocessing, binarization processing on
the originalCT image, and the largest eight connected regions
are reconstructed to remove the background and obtain the
pulmonary parenchyma region. Because nodules grow in the
pulmonary parenchyma area, segmentation of the pulmonary
parenchyma ismainly used to separate the left and right lungs

and then extract the lung edges. After the segmentation of
the lung parenchyma is completed, further segmentation is
needed to extract the relevant ROIs. In this paper, the ROI
was segmented by image enhancement technology. To high-
light the ROI of the candidate pulmonary nodules, the gray
level of the image obtained in the ROI was the same as that
of the original image after image reconstruction. Figure 3
illustrates the complete process of segmenting and extract-
ing pulmonary nodule ROIs from a complete original CT
image through pulmonary parenchyma segmentation. Due
to space limitations, only the pulmonary parenchyma on one
side containing pulmonary nodules is given. In the actual
experiment, all segments of the pulmonary parenchyma are
traversed.

In each case, several pulmonary nodule ROIs can be
divided, but there is only one corresponding true positive,
namely pulmonary nodules (malignant lesions), and the rest
are false positive. This is because CT images are tomogra-
phy images, which often contain points where blood vessels
intersect and end, and their shapes are similar to those of nod-
ules, which are also round. It can be seen from the extracted
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(a) Lung parenchyma segmentation (b) Separating left and right lungs

(c) The 4 pulmonary nodules ROI extracted from the cases

Fig. 3 A complete lung nodule ROI extraction process from original CT image

ROI that the number of false positives is larger than the actual
number of lesions, resulting in a serious imbalance in the data
set, which will affect the subsequent recognition results. To
address this issue, in this paper, a cost-sensitive multikernel
support vector machine (CS-MKL-SVM) algorithm is pro-
posed.

The feature selection algorithm has been mentioned in a
previous article (Li et al. 2013). Seven morphological fea-

tures, two grayscale features and four texture features of the
ROI are selected, and a total of 13 feature parameters need
to be calculated. The seven morphological features selected
are area, diameter, circumference, rectangularity, flattening,
roundness, and slenderness. Gray features are measured by
the gray mean and gray variance. The four texture features
are energy, contrast, entropy and inverse difference moment.
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Table 1 Twenty times experimental statistics in the training stage

Poly order Fitness (objective function) value Training time (s)

Experiment d Fitness function Max Min Mean Median Max Min Mean Median

CS-MKL-SVM-PSO 2 F-new 0.9048 0.8874 0.8960 0.8927 651 461 504 491

3 F-new 0.9076 0.8744 0.8993 0.9048 557 490 514 512

algorithm A 2 ACC 0.9412 0.9353 0.9379 0.9353 401 364 371 366

algorithm B 2 ACC 0.9412 0.9412 0.9412 0.9412 21493 8028 11270 8210

Table 2 Experimental results of
algorithm test stage in this paper

d Fmax Fmin Fmean Fmedian MFACC MFSEN

CS-MKL-SVM-PSO 2 0.9304 0.8753 0.8915 0.8753 90.00% 96.30%

3 0.9357 0.8753 0.9112 0.9196 91.00% 96.30%

3.3 Model Parameter Optimization

After the above preparation for pulmonary nodule recog-
nition is completed, the training phase of the model is
begun.Due to the overfull parameter quantities and excessive
optimization time of the CS-MKL-SVMalgorithm, we intro-
duce PSO to realize rapid parameter optimization, namely
CS-MKL-SVM-PSO. The F-new function under fivefold
cross-verification is determined as the fitness function of the
CS-MKL-SVM-PSO algorithm. First, the particle species
group and velocity are initialized provide the maximum
number of iterations maxgen is 200, the species group num-
ber is 20, and the number of cross-verification folds is 5.
The expression Xi = (xi1, xi2, xi3, xi4)T of each particle
respects the solution of the i th (i = 1, 2, . . . , 20) particle,
meaning D=4. The parameters xi1, xi2, xi3 and xi4 need to
be searched, corresponding to the RBF kernel width g, mul-
tikernel weight m and regularization coefficients C+ and
C− of positive and negative class samples, respectively.
In equations (9)and(10), ω is the inertia weight, k is the
current number of iterations, Vid is the velocity of the par-
ticles, and the acceleration factors are provided as c1=1.5
and c2=1.7. To prevent blindly searching for a particle, its
position and velocity are usually restricted to [−Xmax, Xmax]
and [−Vmax, Vmax], respectively. The position and velocity
of each particle are set as follows: the value range of parame-
ter g is [2−7, 27], and the velocity is [−29 ∗0.6, 29 ∗0.6]; the
value range ofm is [0, 1], and the velocity is [−0.6, 0.6]; the
value range of parameter C+ is [2−9, 29], and the velocity
is [−29 ∗ 0.6, 29 ∗ 0.6]; the value range of parameter C− is[
2−9, 211

]
, and the speed is

[−211 ∗ 0.6, 211 ∗ 0.6
]
.Then, the

F-new value is calculated, and the individual extreme value
and group extreme value according to the F-new index of the
new population particles are updated. When the maximum
number of iterations is reached, the update is stopped, and the

optimal parameter set is output. Finally, the trained model is
tested on the test set to obtain the final recognition result.

4 Pulmonary Nodules Recognition
Experiment in Lung CAD

4.1 Experimental Data and Platform

Experimental data were obtained from large specialized hos-
pitals in Jilin Province, China. The experiment selected 20
cases from the case database, with a total of approximately
700 CT tomography images (sections) and an average of
approximately 35 images for each case. Each case was
equipped with the diagnostic criteria and pathological analy-
sis report from a doctor. Each CT slice image was 512×512
pixels in size and 5.0 mm in thickness. After the previous
preparation steps for pulmonary nodule recognition from
approximately 700 CT images from 20 patients, a total of
270 pulmonary nodule ROIs were extracted, including 80
nodules (malignant lesions) and 190 false positives. A true
positive nodule here refers to a malignant tumor according
to the pathological analysis report and diagnosis. After the
feature selection, the data samples were randomly divided
into two groups: 170 training samples (with 53 nodules and
117 false nodules) and 100 test samples (with 27 nodules and
73 false nodules).

Using MATLAB as the experimental platform, the above
calculated 13-dimensional characteristic data were normal-
ized by themapminmax function. The simulation experiment
was conducted using the LIBSVM toolbox which can be
obtained freely (Chang and Lin 2011). In the model train-
ing stage, a fivefold cross-validation was used to evaluate the
F-new function which was selected as the parameter opti-
mization standard of the CS-MKL-SVM-PSO algorithm as
shown in equation (18).
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4.2 Experimental Results Analysis

4.2.1 Experimental results analysis during training stage

In Table 1, the results obtained during the training stage by
themultikernel functionswith degrees d=2 andd=3 are listed.
Moreover, the results of the proposed algorithm are also com-
paredwith the results of two algorithms: algorithm A (Li et al.
2018) is the MKL-SVM-PSO algorithm with inertial weight
= 1 , and algorithm B (Li et al. 2013) is the MKL-SVM
algorithm based on grid search. To ensure the experimen-
tal reliability, each experiment was repeated 20 times. The
fitness values of the proposed algorithm, algorithm A and
algorithm B and their statistical values are listed on the left
side in Table 1, and the statistical results of the training time
are listed on the right side.

Note that in the algorithm A and algorithm B, the fit-
ness function or objective function searches for themaximum
ACC in the training set, which is the overall recognition of
ACC , while the proposed F-new function, which comprises
the harmonic mean of ACC and SEN , is adopted as the
corresponding fitness function. Hence, the fitness function
value of the proposed algorithm is less than that of algorithm
A and algorithm B. In this paper, the CS-MKL-SVM-PSO
algorithm is adopted, and thefitness function is F-new.Under
the same value of ACC , according to equation (18) , when
SEN is less than or equal to 1, F-new is less than or equal to
ACC ; if and only if SEN=1, when equivalence is achieved
it means there is no missing detection.

The above training results show that the algorithm finds
the optimal parameter group when the polynomial kernel has
an order d=3. The maximum value of F-new in the training
stage is 0.9076, theminimumvalue is 0.8744, themean value
is 0.8993, and the median value is 0.9048, all of which are
higher than those in the case of d=2. The training time of
the proposed algorithm is on the same order of magnitude as
that of algorithm A, whereas algorithm B obtains the optimal
parameter group of the grid search algorithm through the use
of finer grid division, and hence, the training time is almost
20 times that of the algorithm in this paper.

4.2.2 Experimental results analysis of the multiple kernel
function and single kernel functions

Table 2 shows the experimental results obtained by the algo-
rithm in this paper on the test set along with the statistical
results obtained from the F-new function in the test stage.
Fmax and Fmin represent the maximum and minimum values
of the F-new function in 20 experiments, Fmean and Fmedian

represent the statistical mean and median of the F-new func-
tion, and MFACC and MFSEN represent the ACC and
SEN values corresponding to themaximum F-new function,
respectively. The experimental results showed that the test Ta
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Fig. 4 ROC curves of different kernel functions

results are optimal when d=3; at this point, Fmax is 0.9357,
Fmean is 0.9112, Fmedian is 0.9196, MFACC=91%, and
MFSEN=96.3%. Regardless of the observation from the
training stage and testing stage, the learning ability and gen-
eralization ability are better at the multikernel function d=3,
which is the optimal algorithm in this paper.

Further, the PSO algorithm is used as the optimization
algorithm and the proposed F-new function is used as the
fitness function. The polynomial function and RBF kernel in
the single kernel function and the multiple kernel function
algorithm in this paper are used for experiments. Table 3
lists the statistical mean values of the test results of different
kernel functions during the testing stage, and the ROC curves
are shown in Fig. 4. Table 4 showed the AUC for each of the
different kernel functions, and the larger the AUC value, the
better the classifier effect.

In Table 3, MA represents the maximum ACC obtained
by 20 experiments on the test set, and MASEN represents
the SEN test index corresponding to MA. In the 20 exper-
iments, the mean and median values of ACC are expressed
by MAmean and MAmedian , respectively. Similarly, MS rep-
resents the maximum SEN obtained on the test set, and
MSACC represents the ACC indicator corresponding to
MS. In 20 times experiments, the mean andmedian values of
SEN are expressed by MSmean and MSmedian , respectively.

As shown in Table 3, compared with the single kernel
functions, the Fmean of the proposedmultiple kernel function
algorithm reaches 0.9112, which is higher than the polyno-
mial kernel function and RBF kernel function. When the
polynomial single kernel function is used, the result is better
at d=3 with MAmean of 91%, but the SEN value is lower,
MSmean of 88.89%. When the RBF kernel function is used,
the SEN is higher, MSmean of 93.33%, but the ACC value
is lower, MAmean of 87.80%. When using the algorithm in

this paper, compared with the polynomial kernel function,
althoughMAmean is reduced by 2.05%,MSmean is increased
by 4.63%, which can reduce the missed detection of nodules.
Compared with the RBF kernel function, ACC and SEN are
both improved. As shown in Fig. 4, the ROC curve represents
the ratio of the true positive rate to the false positive rate. The
closer the upper left vertex is to the (0,1) point, the higher the
AUC value, the better the classifier performance. The upper
left vertex of the ROC curve of the algorithm in this paper is
closer to the (0,1) point, the AUC is 0.9777, which has better
classification performance. Therefore, the MKL method can
improve the classification performance of the model com-
pared with the single kernel function.

4.2.3 Experimental results analysis of introducing
cost-sensitive and F-new function

Further comparisons are made between the experimental
results of algorithm A and algorithm B and the experimental
results of the algorithm in this paper on the test set. Table 5
lists the statistical values of the 20 test results obtained by
the algorithm in this paper and the related algorithms on the
test set.

Algorithm A is the MKL-SVM-PSO algorithm, which
uses the swarm intelligence algorithm for parameter opti-
mization and can greatly reduce the training time of the
model, but the PSO algorithm tends to lose the particle
diversity in the late iteration, so that the global optimal solu-
tion cannot be obtained. Algorithm B is the MKL-SVM
algorithm, which uses a grid search algorithm for parame-
ter search. Although the final solution is globally optimal,
the training stage takes too long. As given in Table 5, the
MA of grid search algorithm in algorithm B can reach
92%, MASEN can reach 92.59%, and both MAmean and
MAmedian are 92%, which also fully shows the global opti-
mal performance and robustness of the grid search algorithm.
Both the algorithm in this paper and algorithm A introduce
the PSOalgorithm,which is a local optimal algorithm.There-
fore, the optimal parameter groups obtained after 20 searches
are different, resulting in different test results.

As shown in Table 5, although the accuracy and sensitivity
of the proposed algorithm are not all the best among them,
the main purpose of this paper is to make both ACC and
SEN achieve better results. According to the test result of
the F-new function, as shown in Table 2, the maximum F-
new function value Fmax = 0.9357, and when the maximum
value of F-new is achieved, ACC and SEN are 91% and
96.3%, respectively. The grid search algorithm obtains the
global optimal solution, when ACC has a maximum value
of 92%, corresponding to SEN = 92.59%, according to the
F-new calculation method shown in equation (18), the F-
new value is 0.9229, which is lower than the F-new value
of 0.9357 obtained by the algorithm in this paper. Through
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Table 4 AUC values of the four
kernel functions

Kernel Function RBF Polynomial (d=2) Polynomial (d=3) Proposed

AUC 0.9498 0.9584 0.9584 0.9777

Table 5 Experimental statistics of introducing cost-sensitive and F-new function in the testing stage

Parameter Testing result

Experiment d MAmean M Amedian M A MASEN MSmean MSmedian MS MSACC

CS-MKL-SVM-PSO 3 88.95% 89.00% 92.00% 88.89% 93.52% 96.30% 96.30% 91.00%

algorithm A 3 90.40% 90.00% 91.00% 88.89% 86.67% 85.19% 88.89% 91.00%

algorithm B 2 92.00% 92.00% 92.00% 92.59% 92.59% 92.59% 92.59% 92.00%

the dual reference of cost-sensitive and F-new function, the
model can achieve more than 90% of both ACC and SEN
indexes under unbalanced data sets. From the perspective of
the F-new function of the harmonic mean index of ACC
and SEN , the CS-MKL-SVM-PSO algorithm proposed in
this paper achieved the best performance.

In the experiment of the algorithmduring the testing stage,
from the perspective of ACC , MAmean is reduced compared
with algorithm A and algorithm B, but the obtainedMA is the
same as algorithm B at 92%, indicating that the algorithm
in this paper still has the ability to seek better ACC . The
overall recognition accuracy for ACC index is on the same
level as the original algorithm. However, the SEN index of
the nodule detection ratewas considered in this paper. During
the 20 experiments on the test set, the algorithm of this paper
obtains the maximum sensitivity value MS of 96.3%, when
the sensitivity is at the maximum, the accuracy MSACC is
91%. Compared with that of algorithm A, the MS index of
the algorithm in this paper is 7.41% higher and the MSACC
index is flat. It is observed that theMS index of the algorithm
in this paper is 3.71% higher than that in algorithm B, while
the MSACC index is 1% lower than that in algorithm B.
Therefore, the algorithm in this paper can improve the SEN
index and reduce the missed detection of nodules to a certain
extent.

In summary, the cost-sensitive algorithm proposed in
this paper improves the detection of nodules by introduc-
ing different penalty coefficients to the positive and negative
samples, and using the F-new function instead of the fitness
function when the data set is seriously unbalanced. In terms
of the time cost of the training algorithm model, the train-
ing time of the algorithm in this paper is slightly longer than
that of the MKL-SVM-PSO algorithm (Li et al. 2018) but
only 1/20 of the training time of the grid search algorithm
(Li et al. 2013), which is easier to implement the online algo-
rithm. Compared with using a single ACC or SEN as the
objective function, using the F-new function can improve
the detection rate of nodules. Therefore, the CS-MKL-SVM-
PSO algorithm proposed in this paper has better recognition
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Fig. 5 Fitness curve of the CS-MKL-SVM-PSO algorithm

performance, which can take into account the overall recog-
nition accuracy of nodules and reduce the missed detection
of nodules.

When the inertia weight is constant ω=1, the fitness curve
of the algorithm in this paper is shown in Fig. 5.

As shown from Fig. 5, the fitness curve of the algo-
rithm has obvious oscillation, and the convergence speed is
slow. The algorithm performance can be further improved
through a dynamic adjustment of parameters such as the iner-
tia weight.

5 Conclusion

In this paper, first, a CS-MKL-SVM-PSO algorithm is pro-
posed. Second, a new score function is proposed, and the
MKL-SVM optimal parameter set can be found quickly and
accurately. Finally, the proposed CS-MKL-SVM-PSO algo-
rithm based on the score function as its objective function is
applied to pulmonary nodule recognition. The main innova-
tions of this work are as follows:
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1. The cost-sensitive algorithm and MKL-SVM-PSO algo-
rithm are combined to form the newCS-MKL-SVM-PSO
algorithm. The cost-sensitive algorithm is used to solve
the problem that positive and negative samples are imbal-
anced. However, the PSO algorithm is used to solve the
problem of parameter optimization velocity, and the train-
ing model establishment can be accelerated.

2. A new F-new function is proposed to replace the fitness
function by constructing the harmonic mean of ACC and
SEN to consider both ACC and SEN and ultimately
prevent the missed detection of nodules.

3. On the basis of constant weight, the experimental results
of the CS-MKL-SVM-PSO algorithm, MKL-SVM-PSO
algorithm and grid optimization MKL-SVM algorithm
are analyzed.

The experimental results show that the proposed CS-
MKL-SVM-PSO algorithm can effectively prevent the
missed detection of nodules when the data set is unbalanced.
Both ACC and SEN can be considered simultaneously with
the proposed F-new function.

Although the above improvements have better experi-
mental performance, there are still several problems and
challenges to be solved in the future. In the future, the
research work will focus on the following contents:

1. The PSO algorithm is a kind of local search algorithms,
which can get the optimal solution faster, but its disadvan-
tage is that with the increase in iterations, the diversity of
the population decreases, which easily causes the phe-
nomenon of premature particles, thus it is easy to fall into
the local optimum. Therefore, some indexes are not reach-
ing the optimum. The grid search algorithm can find the
global optimal solution, but as the parameters increase, the
training iteration period becomes longer. In order to find
the optimal parameter set and reduce the training time,
other global optimization algorithms andhybrid optimiza-
tion algorithms will be explored to improve the model
performance.

2. The kernel function directly determines the structure of
the feature space, and the design of a new kernel function
suitable for specific problems remains to be discussed.

3. At the same time, under the background of the rapid devel-
opment of deep learning, how can the combination of
traditional machine learning methods and deep learning
bemore helpful to promote the development ofLungCAD
and better serve the medical field.
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