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Abstract
Conditional nonlinear optimal perturbation (CNOP) defines an optimization problem to study predictability and sensitivity

of the oceanic and climatic events in the nonlinear system. One effective method to solve the corresponding problem is

feature extraction-based intelligent algorithm (FEIA) framework. In the previous study, the mapper and the re-constructor

of the framework are generally obtained by principal component analysis (PCA), but the solving performance still needs to

further improve. Recently, neural network has attracted the attention of lots of researcher, and many structures of neural

network can be used to construct the mapping-reconstruction structure of FEIA framework. However, the related studies

applying neural network in FEIA framework are lacking. Compared with PCA, neural network might obtain a proper

structure for FEIA framework with the well-directed training. Therefore, this paper suggests two ways applying neural

network in FEIA framework, and the corresponding frameworks are tested to solve CNOP of double-gyre variation in

Regional Ocean Modeling System (ROMS). The results show that FEIA framework with neural network can obtain the

solutions with better objective function values, and the corresponding solutions have a larger probability leading to the

related physical phenomenon.

Keywords Neural network � Intelligent algorithm � Large-scale optimization � Dimension reduction � Conditional nonlinear
optimal perturbation

1 Introduction

Conditional nonlinear optimal perturbation (CNOP)

method is proposed by Mu et al. (2003) to study pre-

dictability and sensitivity of the oceanic and climatic

events in the nonlinear system (Wang et al. 2009). CNOP

defines a perturbation which could lead to the largest

nonlinear development at the prediction time under the

given constraints. The study of the solved perturbation

could help the researchers understand the corresponding

physical mechanism and improve the prediction skill.

Therefore, CNOP has been widely applied in the studies of

the various events such as El Niño–Southern Oscillation

(ENSO) (Zhang et al. 2018), typhoon (Mu et al. 2019) and

Kuroshio (Zhang et al. 2019a, b, c), and these studies verify

the efficiency of CNOP.

One problem in studying CNOP is how to obtain the

perturbation leading to the largest development. Because

the essence of CNOP is an optimal problem, there are two

general ways to solve it. One way is applying the gradient-

based methods (Sun et al. 2010), but these methods are

easy to encounter the problems such as the missing of the

adjoint component and the influence of the discontinuous

on–off switch (Mu et al. 2005). Another way is applying

the gradient-free methods, for example, intelligent algo-

rithms, also called heuristic algorithm, could be applied to

solve CNOP (Zheng et al. 2014). However, intelligent

algorithm generally cannot obtain an effective solution

within a proper time when the scale of the problem is large.
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Therefore, some researchers propose a framework, which is

called feature extraction-based intelligent algorithm

(FEIA) framework in this paper, to reduce the search space

of intelligent algorithm by the dimension reduction method

such as principal component analysis (PCA) (Wold et al.

1987; Ringnér 2008; Abdi and Williams 2010). For

example, Mu et al. (2015) combine the PCA and particle

swarm optimization (PSO) to solve the CNOP of ENSO in

Zebiak–Cane (ZC) model and Yuan et al. (2019a) combine

the PCA and simulated annealing (SA) to solve the CNOP

of double-gyre variation in Regional Ocean Modeling

System (ROMS). Although utilizing PCA improves time

efficiency to some extent, there exists a problem that due to

the fixed latent space in PCA, the probability of obtaining

the effective solution is quite low.

Recently, neural network has attracted the attention of

lots of researchers because of its convenience and excellent

performance. Meanwhile, many structures of neural net-

work can be used to construct the low-dimensional latent

search space. Compared with PCA, neural network might

obtain a relative sparse uniform search space or a better

reconstruction mapping for the special problem, which

might be helpful for searching. However, few studies

concentrate on employing neural network as feature

extraction component in FEIA framework to elevate the

solving performance. Hence, in this paper, two possible

ways applying neural network in FEIA framework are

thought of. One way is trying applying the neural network

with the reduction function. For example, auto-encoder

(AE) (Rumelhart et al. 1986; Hinton et al. 2006; Wang

et al. 2016; Ramamurthy et al. 2020) and its variants such

as sparse AE (SAE) (Ng 2011; Liu et al. 2019; Zhang et al.

2021), convolutional AE (CAE) (Masci et al. 2011; Chen

et al. 2018) and variational AE (VAE) (Kingma et al. 2014;

Xie et al. 2019; Liu et al. 2020a, b; Lin et al. 2020; Jiao

et al. 2020) might replace the role of PCA in FEIA

framework. Another way is applying PCA to obtain the

latent space and applying neural network, such as decoder

and generative adversarial nets (GAN) (Goodfellow et al.

2014; Creswell et al. 2018; Zhang et al. 2019a, b; Schon-

feld et al. 2020), to reconstruct the origin space. Then, we

conduct experiments to verify the feasibility of adopting

the above two ways to solve the CNOP of double-gyre

variation in ROMS. Results demonstrate that in contrast to

PCA-based FEIA, FEIA with neural network can obtain

more effective solutions in the aspects of better objective

values and larger probabilities triggering the expected

physical phenomenon.

The rest of this paper is organized as follows. This paper

selects solving CNOP of double-gyre variation in ROMS as

the case study, and the related contents of CNOP, neural

network-based dimension reduction methods and the case

are described in Sect. 2. In Sect. 3, FEIA framework whose

intelligent algorithm component is selected as PSO, the

related neural network and the coupling way of the network

for FEIA framework are introduced. The tuning process of

the network and the solving result are shown and analyzed

in Sect. 4. Finally, the conclusion and the prospect of

future work are given in Sect. 5.

2 Related works

2.1 CNOP

CNOP method, proposed by Mu et al. (2003), has been

widely applied in the field of atmospheric and oceanic

sciences to study the predictability and sensitivity (Wang

et al. 2020; Jiang and Duan 2020; Liu et al. 2020a, b).

Mathematical description of CNOP is mentioned in the

following.

For a given problem, assume that X0 is the initial state,

Mt is the nonlinear propagator of the model from time 0 to t

and x0 is the initial perturbation. In order to explore the

initial perturbation x�0, which can make the model’s

development deviate maximally from the reference state at

the prediction time under the given constraints d, the

problem of CNOP can be written as follows (Eq. 1):

x�0 ¼ arg max
x0k kC � d

Jðx0Þ

¼ arg max
x0k kC � d

MtðX0 þ x0Þ �MtðX0Þk kE ð1Þ

where ||�||E is the energy norm and ||�||C is the constraint

norm for the problem.

The essence of CNOP is an optimal problem with cer-

tain constraints. Generally, depending on whether the

gradient is involved, there are two types of approaches to

solving CNOP. One is applying gradient-based methods

(Sun et al. 2010). The adjoint method, a traditional gradi-

ent-based method, is highly dependent on adjoint compo-

nent in numerical model and requires a lot of computation

(Towara and Naumann 2013). Besides, due to frequent

occurrence of discontinuous on–off switch (Mu et al. 2005)

in nonlinear system, gradient-based methods fail to com-

pute the correct gradient, which results in failure of solving

CNOP. The other is applying gradient-free methods.

Intelligent algorithms are the general name of a series of

gradient-free algorithms designed by people utilizing nat-

ural laws. Such algorithms could be applied to solve CNOP

(Zheng et al. 2014). When the scale of problem is small,

intelligent algorithms could obtain global optimum. How-

ever, the scale of oceanic and climatic events is large. In

this case, intelligent algorithms cannot obtain an effective

solution within a proper time. With the aim of reducing the

search space of intelligent algorithms, FEIA framework is
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proposed. PCA (Wold et al. 1987; Ringnér 2008; Abdi and

Williams 2010) is often used as the dimension reduction

method in FEIA framework. For example, Mu et al. (2015)

combine the PCA and particle swarm optimization (PSO)

to solve the CNOP of ENSO in Zebiak–Cane (ZC) model

and Yuan et al. (2019a) combine the PCA and simulated

annealing (SA) to solve the CNOP of double-gyre variation

in Regional Ocean Modeling System (ROMS). Although

utilizing PCA improves time efficiency in some way, there

exists a problem that the probability of obtaining the

effective solution is quite low, since PCA with fixed latent

space cannot balance the trade-off between dimension

reduction and information loss in some cases.

2.2 Neural network-based dimension reduction

With the development of artificial intelligence, many struc-

tures of neural network can be used to construct a relative

sparse uniform latent search space or a better reconstruction

mapping. AE is a neural network structure dedicated to

transforming inputs into outputs with minimal information

loss. Rumerlhart et al. (1986) first introduced AE in 1980s.

AE can map input data to low-dimensional latent space and

then use that latent space to generate output data similar to

the input data. Because of its ability of learning useful fea-

tures from data, AE has been universally applied in dimen-

sion reduction.Wang et al. (2016) compareAEwith state-of-

the-art dimension reduction methods. Experimental results

show that AE can learn some features that are different from

other dimension reduction methods. Researchers also apply

AE in hyperspectral images classification as the dimension

reduction component and prove that this proposed technique

achieves image denoising and high performance (Rama-

murthy et al. 2020). Besides, there are some variants of AE

such as SAE, CAE and VAE. Ng (2011) introduces the

concept of sparsity into training of traditional autoencoders

and proposes SAE to enable the hidden variables to show

more obvious characteristics. SAE has been widely used in

feature extraction of images (Liu et al. 2019; Zhang et al.

2021). By introducing convolutional layers and deconvolu-

tional layers, CAE is proposed to enable the network to better

capture spatial features and relevance between data. It is

applied in anomaly detection to learn nonlinear relationships

between features (Chen et al. 2018). VAE assumes the latent

feature follows a distribution, which is generally Gaussian

distribution. VAE-based dimension reduction is applied in

text learning (Xie et al. 2019; Liu et al. 2020a, b), biology-

related analysis (Lin et al. 2020; Jiao et al. 2020), etc. In

addition, GAN, proposed byGoodfellow et al. (2014), shows

high potentials in data generation (Creswell et al. 2018).

GAN and its variants (Zhang et al. 2019a, b; Schonfeld et al.

2020) generally consist of generator to generate simulated

data and discriminator to discriminate whether the date is

real or not. The structure of GAN meets requirements of

reconstruction.

2.3 The case of double-gyre variation in ROMS

Double gyre, which consists of a sub-polar gyre and a sub-

tropical gyre, is a typical large-scale ocean circulation in

the northern mid-latitude ocean basins (Shen et al. 1999).

Double-gyre variation is one of the low-frequency vari-

ability phenomena (Nauw and Dijkstra 2001). The study of

the variation is helpful to understand the dynamic mecha-

nism of double gyre and how the oceanic variability con-

tributes to the mid-latitude climate variability (Qiu 2000).

ROMS is a split-explicit, free-surface, topography-fol-

lowing-coordinate ocean model (Shchepetkin & McWil-

liams 2005). It has been widely used in a variety of

applications of the scientific community. Double gyre is

one of the events simulated in ROMS, and the simulation

follows Moore et al. (2004). The model simulates double

gyre in a region whose longitude length and latitude length

are separately 1000 km and 2000 km, respectively, and the

region is divided into four vertical layers of 125 m in the

vertical direction. The state data of double gyre consist of

three parts, which are separately eastward velocity u,

northward velocity v and sea surface height f. Under the

resolution of 18.5 km, the size of u, v and f is separately

55 9 110 9 4, 56 9 109 9 4 and 56 9 110, and the total

size of the state data is 54776.

Generally, double gyre can be divided into three states,

which are separately symmetry state (Fig. 1a), jet-up state

(Fig. 1b) and jet-down state (Fig. 1c). Figure 1 shows the

representation of the three states in ROMS. In general,

double gyre keeps steady in one state or shifts between

symmetry state and another state. When the variation

happens, the shift between jet-up state and jet-down state

would appear. CNOP can be used to obtain the initial

perturbation causing the variation, and the obtained per-

turbation can be used to study the dynamic mechanism of

double gyre (Yuan et al. 2019a).

According to Zhang et al. (2015), the energy norm

(Eq. 2) and the constraint norm (Eq. 3) of double gyre can

be defined as follows:

Mt X0 þ x0ð Þ �Mt X0ð Þk kE

¼ 1

2

Z
K
h Du2t þ Dv2t
� �

dxdydzþ
Z
K
Df2t dxdy

� � ð2Þ

x0k kC¼
1

2

Z
h Du2t þ Dv2t
� �

dxdydzþ
Z

gDf2t dxdy

� �
ð3Þ

where X0 = {u0, v0, f0} and x0 = {Du, Dv, Df} are sepa-

rately the initial state vector and the initial perturbation

state vector for double-gyre data simulated in ROMS. Mt is

the nonlinear propagator of ROMS from time 0 to t, which
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can be regarded as a black-box function. {Dut, Dvt, Dft} is

the development state vector, which is calculated from the

result of Mt, and can be calculated as follows:

fDut;Dvt;Dftg ¼ fut new; vt new; ft newg � fut; vt; ftg
¼ MtðX0 þ x0Þ �MtðX0Þ:

ð4Þ

g is the gravitational acceleration, whose value is set to

9.8 m/s2, and h is the vertical layer thickness, whose value

is 125 m. The energy norm integrates in the region K
(0 km B x B 600 km, 750 km B y B 1250 km), and the

constraint norm integrates in the whole simulation region

(0 km B x B 1000 km, 0 km B y B 2000 km). The other

settings refer to the previous experiment (Yuan et al.

2019a), where the initial state X0 is a jet-up state and the

constraint value of perturbation d is set to 4.0 9 1011 m5/

s2, which is about 10% of the constraint norm value of the

initial state. The intent of the problem is to obtain the

perturbation x�0,which can lead to double-gyre variation.

3 Methods

3.1 FEIA framework

Intelligent algorithm is a type of method combining rules

and randomness to imitate the natural phenomena and seek

the optimal value (Lee et al. 2005). The basic flows of

intelligent algorithm can be summarized as follows:

Step 1: Determine the initial solution x.

Step 2: Calculate the objective function value f with x.

Step 3: Judge the iteration condition. If the termination

condition is satisfied, output the best solution x*;

otherwise, go to Step 4.

Step 4: Update solution x with the related rules and the

objective value f calculated in Step 2. Go to Step 2.

One problem of intelligent algorithm is curse of

dimensionality. Assume the scale of the problem, i.e., the

dimension of x, is n. Because the essence of intelligent

algorithm is doing the random search with some rules in

the n-dimension space, if n is too large, the efficiency of the

algorithm would be very low. However, in the process of

solving the actual problem, the solution generally has some

features. Assume the whole n-dimension space is O, the

points with the related features in O make up a subspace S.

For example, in the CNOP problem of this paper, the

optimal initial perturbation is in the subspace, which shows

the perturbation feature of double gyre. If there are two

mappings p and r, p can map x in S into an m-dimension

(m\ \ n) latent space F and r can reconstruct the low-

dimensional solution w in F into x. One optimal problem

can be reconstructed as follows (Eq. 5):

x� ¼ rðw�Þ ¼ arg optf ðrðwÞÞ
s:t:giðxÞ ¼ giðrðwÞÞ� 0; i ¼ 1; . . .;m

ð5Þ

where f is the objective function and gi is the constraint.

Based on the above thought, this paper calls the process

that intelligent algorithm solves the optimal problem in the

low-dimensional space as FEIA framework. The basic flow

of FEIA framework can be summarized as follows:

Step 1: Collect the samples in F. Determine the mapper

p and the re-constructor r.

Fig. 1 The a symmetry state, b jet-up state, c jet-down state of double gyre
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Step 2: Determine the initial solution x. Map x into w by

p.

Step 3: Reconstruct w into x by r. Calculate the objective

function value f with x.

Step 4: Judge the iteration condition. If the termination

condition is satisfied, output the best solution x* = r(w*);

otherwise, go to Step 4.

Step 5: Update solution w with the related rules and the

objective value f calculated in Step 3. Go to Step 3.

One point is the initial solution in Step 2 of FEIA

framework should also in F, so the construction of the

initial solution would combine experience and randomness

rather than completely relies on randomness. In past, the

mapper and re-constructor usually are the feature matrix

and its transpose matrix of PCA. And in this paper, PSO

algorithm is selected the intelligent algorithm component

of FEIA framework. Therefore, PCA and PSO algorithms

are introduced briefly as follows.

3.1.1 PCA

PCA is a classical machine learning method, which is

widely applied in the dimension reduction problem. The

intent of PCA is to obtain a set of vector bases making the

data have the maximum projection in the direction of the

vector basis, so the approximate error between the

reduction data and the original data could be as small as

possible. Assume X ( F is the sample set of the possible

solutions. The vector bases can be obtained by doing eigen-

decomposition for X (Eq. 6).

U;R ¼ eigen decomðXXTÞ ð6Þ

where R = {k1, k2,…, kn} is the eigenvalues of the

descending order and U = (u1, u2,_, un) is the corre-

sponding eigenvectors. Assuming n is the dimension of the

original data and m is the dimension of the reduction data,

the vector bases consist of the first m eigenvectors Um-

= (u1, u2,_, um). If PCA is the feature extraction com-

ponent of FEIA framework, p and r can be constructed as

Um (Eq. 7):

pðxÞ ¼ xUm; rðwÞ ¼ wUT
m: ð7Þ

3.1.2 PSO

PSO algorithm is an intelligent algorithm imitating the

process that birds search for food. The algorithm assumes

there are l particles searching the optimal solution and

updates the particles by recording the local best solution

and global best solution. The local best solution is the best

solution for each particle in the past iterations, and the

global best solution is the best solution for all the particles

in the past iterations. For FEIA framework, the pseudocode
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of PSO algorithm component is as follows.

In the pseudocode, the initial solution x0 is an empirical

solution which follows the feature of the space F. The

inertia coefficient ic is the adaptive parameter to keep the

past velocity. In this paper, most constants of the algorithm

are set to the empirical values, where l is set to 20, ic0 is set

to 0.9, Dic is set to 0.01 and c1 and c2 are set to 2. Because

the calculation of the model costs lots of time in the CNOP

problem, max_iter is set to 30 for verifying whether the

algorithm can obtain the effective solution in the proper

time. One important thing to note is that a constraint pro-

ject function should be defined if the problem has some

constraint. For the CNOP problem in this paper, the project

function is defined as Eq. 8.

cons proðwjÞ ¼
wj; ifjjr wj

� �
jjC � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
jjrðwjÞjjC

s
wj; whilejjr wj

� �
jjC

8><
>: :

ð8Þ

3.2 AE and its variants

AE is a common neural network for dimension reduction.

Compared with other neural network, AE has the following

characteristics: (1) the number of units in the input layer

and that in the output layer are same; (2) the number of the

units in the middle latent layer is less than that in input

layer or output layer; (3) the network from the input layer

to the middle latent layer is called encoder and the network

from the middle latent layer to the output layer is called

decoder; and (4) the training for the network should make

the input and output as same as possible. Figure 2 shows a

simple AE with three layers.

In Fig. 2, l1 is the input layer, l2 is the middle latent

layer and l3 is the output layer. l1 and l2 make up the

encoder, and l2 and l3 make up the decoder. The relation

between two adjacent data layers can be written as follows

(Eq. 9):

Xiþ1 ¼ hi XijWi; bið Þ ð9Þ

where Xi is the data in ith layer, hi is a hidden function and

Wi and bi are the parameters of the function. It is easy to

find that encoder and decoder of AE can serve as the

mapper p and the re-constructor r in FEIA framework. In

this paper, four kinds of AEs are tested in the experiment,

and the follows introduce them briefly. And the detailed

setting such as activation function is discussed in Sect. 3.4.

3.2.1 AE

For the original AE, the data vectors are passed in the

network by the fully connected layer. Besides the three

necessary data layers, there can be other latent data layers

in the encoder and decoder. The hidden function can be

written as follows (Eq. 10):

hi XijWi; bið Þ ¼ actiðXiWi þ biÞ ð10Þ

where acti(�) is the activation function, which is discussed

in Sect. 3.4. Wi is the weight matrix in the fully connected

layer, and bi is the biases vector in the fully connected

layer. The intent of AE is to minimize the reconstruction

error, so the cost function of the network is defined as

Eq. 11.

cðW; bÞ ¼ 1

2
mseðX;YÞ þ regðWÞ ð11Þ

where W and b are the all weights and biases adjusted in

the network, X is the input data, Y is the output data, mse(�)

Fig. 2 A simple three-layer AE
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(Eq. 12) represents the reconstruction error, and reg(�)
(Eq. 13) is the regularization function to avoid overfitting.

mseðX;YÞ ¼ 1

n

Xn
i¼1

ðxi � yiÞ2 ð12Þ

regðWÞ ¼ kreg
X

i;j;l
w2
i;j;l ð13Þ

where kreg is a constant which represents the weight of the

regularization cost and i, j and l are the indices of row,

column and layer for the weight matrix, respectively.

3.2.2 SAE

The structure of SAE is similar to AE, and there are two

main differences: (1) The data layers only contain the main

three layers and (2) a sparse cost (Eq. 14) is added to the

cost function (Eq. 15).

spaðq̂Þ ¼ kspa
Xm
j¼1

KLðq k q̂jÞ

¼ kspa
Xm
j¼1

q log
q
q̂j

þ ð1� qÞ log 1� q
q̂j

ð14Þ

cðW; bÞ ¼ 1

2
mseðX;YÞ þ regðWÞ þ spaðq̂Þ ð15Þ

where the sparse cost is represented by the Kullback–Lei-

bler divergence between the activation degree of the mid-

dle layer data q
^
and a sparseness constant q which is set to

an experience value 0.1 in this paper. kspa is a constant

which represents the weight of the sparse cost. By con-

trolling the activation degree of the middle layer, SAE

could relatively keep the sparseness of the feature.

3.2.3 CAE

The difference between CAE and AE is that CAE intro-

duces the convolutional layer and the deconvolutional layer

to replace the fully connected layer. Different from the

fully connected layer, the passed data in the convolutional

layer are matrix, and the hidden function can be written as

Eq. 16:

hi XijWi; bið Þ ¼ actiðpc dðXi;WiÞ þ biÞ ð16Þ

where Pc_d represents the process of the convolution

(Fig. 3a) or deconvolution (Fig. 3b), Wi is the set of (de)-

convolutional kernel and bi is the biases matrix. As shown

in Fig. 3a, the convolution is mapping the dot product of

the shadow matrix in original data and kernel into the dot

in the projection data. And as shown in Fig. 3b, the

deconvolution is making the dot in original data multiply

the kernel and then adding the result to the shadow matrix

in the projection data. The cost function of CAE is same as

that of AE (Eq. 11). Compared with AE, CAE can catch

the spatial information of the data and the convolutional

kernel can reduce the memory usage.

3.2.4 VAE

VAE assumes the latent feature follows a distribution,

which is generally Gaussian distribution. Based on the

assumption, the encoder of the network outputs a mean and

a standard deviation of the distribution to construct the

latent feature rather than outputs the latent feature directly,

and Fig. 4 shows this flow. Meanwhile, the distribution

cost (Eq. 17) is added to the cost function (Eq. 18).

disðl; rÞ ¼ kvae
2

Xm
i¼1

1þ logðr2j Þ � l2i � r2i ð17Þ

cðW; bÞ ¼ 1

2
mseðX;YÞ þ regðWÞ þ disðl; rÞ ð18Þ

where l and r are separately the mean vector and the

standard deviation vector outputted by the encoder. kvae is a
constant which represents the weight of the distribution

cost.

Fig. 3 The process of

a convolution and

b deconvolution
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3.3 The mapping model-based PCA and neural
network

Another possible way applying neural network in FEIA

framework is only training neural network as the re-con-

structor. This way assumes the latent features obtained by

PCA are good enough and tries training some different re-

constructor by the neural network. Compared with the

neural network in Sect. 3.2, the input data Xw are the cal-

culated by the original data X cross-multiples the reduction

matrix Um obtained by PCA and the output data Y are

expected to be the same as the original data X. In this

paper, the decoder and GAN are tested as the re-constructor

of this way in the experiment, and the follows introduce

them briefly.

3.3.1 Decoder

As the name indicates, the decoder is the second part of

AE. The structure of the decoder can follow the description

in Sect. 3.2.

3.3.2 GAN

GAN consist of a generator network G and a discriminator

network D. The generator maps the latent data Xw into the

real data space, and the discriminator evaluates and dis-

tinguishes the real data X and the generated data Y. Fig-

ure 5 shows the basic structure of GAN.

It is clear that the generator of GAN can serve as the re-

constructor in FEIA framework. The inner structure of the

generator could be same as the decoder, and the difference

is that the cost function (Eq. 19) of the generator consists

of the cost function of the decoder and a generator dis-

crimination cost (Eq. 20).

cgðW; bÞ ¼ 1

2
mseðX;YÞ þ regðWÞ þ gangðYÞ ð19Þ

gangðYÞ ¼ �kgan logðDðYÞÞ ð20Þ

where D(�) represents the output of the discriminator and

kgan is a weight constant for the cost of GAN. The inner

structure can be a classifier network, whose dimension of

output is 1 and activation function of output layer can be a

sigmoid function (Eq. 21). The larger output of the dis-

criminator represents that the input has a larger possibility

to be real data. And the cost function (Eq. 22) of dis-

criminator consists of a discriminator discrimination cost

(Eq. 23) and a regularization cost.

sigmoidðxÞ ¼ 1

1þ e�x
ð21Þ

cdðW; bÞ ¼ regðWÞ þ gandðX;YÞ ð22Þ
gandðX;YÞ ¼ �kganðlogðDðXÞÞ þ logð1� DðYÞÞÞ: ð23Þ

3.4 The coupling of neural network for FEIA
framework

In this section, the settings of neural network for FEIA

framework in the experiment are discussed. In detail, five

points for the network are introduced in the following.

3.4.1 Activation function

The data for the double gyre in ROMS could be negative,

and the reduction solution in FEIA framework also could

be negative. Therefore, the activation function of the output

layer for the mapper and the re-constructor is set to linear

activation function. And the activation function of other

latent layers is setting to leaky RELU function (Eq. 24).

leaky reluðxÞ ¼ x; if x� 0

ax; if x\0

�
ð24Þ

where a is the negative gradient factor which is set to the

empirical value 0.2 in the experiment.

Fig. 4 The simple flow of VAE

Fig. 5 The basic structure of

GAN
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3.4.2 Re-constructor bias

CNOP is an optimization problem with the constraint. It

can be found that the bias could make the solution not

satisfy the constraint. According to Eq. 8, although the

project function changes the value of the latent solution wj,

the result of the norm is always influenced by b. For

example, Eq. 25 shows the influence of b for computation

of 2-norm in a two-layer linear network.

wsðsxÞþbk k2 ¼ ðwsðsxÞÞ2 þ 2wsðsxÞ þ b2 ð25Þ

where ws is the sum weight for the element x in data vector,

b is the bias for x and s is the project coefficient for x. It

could be seen that s does not influence b2 in the result and

the constraint could be never satisfied. Therefore, in the

experiment, the bias for re-constructor is always set to 0, so

the constraint could be satisfied with the constraint project

function.

3.4.3 Weight parameter selection

As described in Sects. 3.2 and 3.3, many weight constants

k are introduced to construct the cost function of the net-

work. Considering that the mean square error is the main

cost, this paper solves the various costs in Sects. 3.2 and

3.3 without training, and the various ks are used to make

the value of other cost be about one percent of the initial

value of the mean square error. Therefore, the network

cannot ignore the main intent and assisted by the other cost

in the later training stage. The values of the ks are as

follows: kreg is set to 10–6, kspa is set to 10–3, kvae is set to
10–4 and kgan is set to 10–4.

3.4.4 Training data and validation data

The application of determining training data and validation

data can help the training of the network. In FEIA

framework, the samples in the possible solution space can

be chosen as the training data, and the initial solution for

the intelligent algorithm can be chosen as the validation

data. Therefore, the fit degree of the network for the

solving can be evaluated simply, and the network can be

adjusted further.

For example, for the double gyre simulated in ROMS, a

set of non-period oscillation data and a set of steady data

are obtained by adjusting the model parameters according

to Yuan (2019b). The difference between the non-period

oscillation data and the steady data makes up the training

data, whose size is 2000 9 54,776. And the training data

are also the original matrix to carry out the process of PCA.

On the other hand, the initial solution is constructed by the

difference between jet-down data and symmetry data. And

this initial solution for the intelligent algorithm component

is the validation data.

3.4.5 Training process

The Adam optimizer (Kingma et al. 2014) is used to

training the network in the experiment. And the flow of the

training is as follows:

The shuffle operation is important, which can eliminate

influence of the ordered data and improve the ability of

generalization. In the experiment, epoch is firstly set to

1000, and the performance of the network would be

observed. According to the performance on the validation

data, epoch is set to the value which can make the vali-

dation data close to the best evaluation. And the values of

other parameters such as Sizebatch and lr are discussed in the

experiment.

All the network in the experiment is training by Ten-

sorFlow, and the parameters, which are not mentioned, are

set to the default value in TensorFlow.
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4 Experiment and results

This section shows the experiment that FEIA framework

with neural network solves CNOP of double gyre in

ROMS. The problem and method can be reviewed in

Sects. 2 and 3. The five feature dimensions, separately 20,

40, 60, 80 and 100, are tested in the experiment. As the

reference data, the results that solved without reduction and

solved with PCA are shown in Tables 1 and 2.

From the above table, it can be seen that the result

without reduction is quite small and the corresponding

solution has no probability to lead to double-gyre variation,

which can be verified in the next experiment. With the

reduction of PCA, the results show a significant improve-

ment, and the effective solution can be obtained when the

feature dimension is set to 40. However, it can also be seen

that the probability obtaining the effective solution is low.

This paper suggests two ways of applying neural network

in FEIA framework, and the corresponding experiments

and results are shown below.

4.1 The experiment for the first way

As shown in Sect. 3.2, the first way is training a network,

which can serve as both the mapper and the re-constructor.

AE and its three variants are tested, and the corresponding

structures are shown in Table 3. One point needs to note is

that the numbers of units in many layers are set to 256,

which is limited by the machine’s memory.

In the training stage, the batch size and the learning rate

of the optimizer are adjusted to investigate their influence.

Figures 6 and 7 show the related error (Eq. 26) varying

curves of the validation data for the four networks within

1000 epochs.

related error ¼ X� rðpðXÞÞk kF
Xk kFþe

ð26Þ

where X is the original data, p(�) is the mapper of the FEIA

framework, r(�) is the re-constructor of the FEIA frame-

work, ||�||F is the Frobenius norm and e is a small constant.

The related error represents the difference rate between the

original data and the reconstruct data, and it can be used to

evaluate the quality of the network. It is worth noting that

the related error is actually caused by the mapper rather

than the re-constructor. Therefore, for FEIA framework,

the only one related error appears in the stage constructing

the initial feature solution.

From Fig. 7, it can be found that VAE cannot converge

and has a large related error during 1000 epochs. This is

because the feature generating process of VAE relies on the

random, which leads to the instability. And it leads to that

selecting the epoch with the proper related error becomes

difficult, so VAE is not tested and discussed in the next

experiments. From Figs. 6, 8 and 9, it can be found that (1)

the batch size seems not to have a significant and same

influence for the different networks, for example, with the

increase in the batch size, the overfit degree decreases in

the AE and SAE but increases in CAE; (2) the decrease in

the learning rate can decrease the degree of oscillation and

overfit. Meanwhile, from Figs. 6, 8 and 9, the epoch which

can make the validation data close to the best related error

is selected, and the corresponding networks used in FEIA

framework are trained with the early stop. Tables 4 and 5

show the related errors and the single experiment results

for the trained network.

From Tables 4 and 5, it can be found SAE has the best

performance in the above trained networks. One possible

reason might be that the size of the training data is only

2000, and the simple structure of the network could

decrease the degree of the overfit. SAE has a relatively

simple structure compared with AE and CAE, so it shows

the best performance. And from Tables 4 and 5, it can be

found that the batch size and learning rate seem not to have

a significant influence on the results. Therefore, in the next

experiments, the batch size is set to 40 and learning rate is

set to 10–4, which can avoid the influence of the extreme

value on the judgment. On the other hand, the results in

Table 6 verify that the first way of applying neural network

(SAE) in FEIA framework is effective and even can solve

the better solution. In order to further verify it, the statistic

results of SAE for running ten times are shown in Table 7.

Compared with the results of PCA in Table 2, the results

of SAE in Table 7 further verify the effectiveness of the

first way. Compared with PCA, SAE can not only solve the

results in the interval (1.55–1.65) where the solutions have

the probability to lead to the variation, but also solve the

results in the interval ([ 1.65) where the solutions almost

certainly lead to the variation. And the mean value and the

max value of the results in Table 7 both are bigger than

those in Table 2. On the other hand, in Table 2, PCA can

Table 1 The single experiment

result of FEIA framework

(PCA) and no reduction

PCA No Reduction

20 40 60 80 100

Result (9 1013 m5s2) 1.520 1.630 1.384 1.420 1.402 1.214

The bold value represents the solution that can lead to double-gyre variation, which is same in Tables 4, 5

and 9, 10
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only help to obtain the effective solution when the feature

dimension is 40, but SAE can help to obtain the effective

solution except the feature dimension is 20. One possible

reason is that the training of PCA is not for a special

Table 2 The statistic results of

FEIA framework (PCA) for ten

times

Dimension Statistic (9 1013 m5s2) Frequency (effective)

Max Ave Std \ 1.55 1.55 * 1.65 [ 1.65

20 1.594 1.503 0.061 7(0) 3(0) 0(0)

40 1.630 1.535 0.092 5(0) 5(2) 0(0)

60 1.574 1.468 0.070 8(0) 2(0) 0(0)

80 1.507 1.418 0.047 10(0) 0(0) 0(0)

100 1.532 1.451 0.040 10(0) 0(0) 0(0)

‘‘effective’’ represents the amount that the solutions can lead to double variation

Table 3 The tested network

structures of the first way
Structure

AE fc(54,776) – fc(256) – fc(256) – fc(Df) – fc(256) – fc(256) – fc(54,776)

SAE fc(54,776) – fc(Df) – fc(54,776)

CAE (55, 110, 4) – conv(28, 28, 32) – conv(7, 7, 64) – fc(256) – fc(0.4 * Df) –

(56, 109, 4) – conv(28, 28, 32) – conv(7, 7, 64) – fc(256) – fc(0.4 * Df) – (Df)

(56, 110, 1) – conv(28, 28, 32) – conv(7, 7, 64) – fc(256) – fc(0.2 * Df) –

– fc(0.4 * Df) – fc(256) – fc(3136) – deconv(28, 28, 32) – deconv(55, 110, 4)

– fc(0.4 * Df) – fc(256) – fc(3136) – deconv(28, 28, 32) – deconv(56, 109, 4)

– fc(0.2 * Df) – fc(256) – fc(3136) – deconv(28, 28, 32) – deconv(56, 110, 1)

VAE fc(54,776) – fc(256) – fc(256) – 2 9 fc(Df) – (Df) – fc(256) – fc(256) – fc(54,776)

fc() represents the fully connected layer, conv() represents the convolutional layer, deconv() represents the

deconvolutional layer, number in the parentheses represents the dimension of output and Df represents the

feature dimension, which are same in Table 8

Fig. 6 The related error varying

curves of validation data for AE

(BS is the batch size and LR is

the learning rate, which are

same in Figs. 7, 8 and 9 and in

Tables 4 and 5)
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feature dimension but the training of neural networks is for

the special feature dimension. Therefore, compared with

PCA, neural network might save the cost to determine the

feature dimension.

4.2 The experiment for the second way

As shown in Sect. 3.3, the second way is combining PCA

and the network, where PCA serves as the mapper and the

network serves as the re-constructor. In this section,

Fig. 7 The related error varying

curves of validation data for

SAE

Fig. 8 The related error varying

curves of validation data for

CAE
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Table 4 The related errors and

the single experiment results for

AE

Parameter Related error Result (9 1013 m5s2)

BS LR 20 40 60 80 100 20 40 60 80 100

20 10–3 0.224 0.222 0.222 0.227 0.239 1.109 1.180 1.152 1.319 1.094

10–4 0.211 0.202 0.197 0.195 0.204 1.131 1.206 1.355 1.375 1.284

10–5 0.214 0.193 0.188 0.188 0.190 1.149 1.364 1.280 1.217 1.275

40 10–3 0.207 0.220 0.215 0.228 0.226 1.195 1.272 1.164 1.098 1.129

10–4 0.214 0.188 0.202 0.190 0.193 1.143 1.200 1.285 1.251 1.289

10–5 0.209 0.196 0.197 0.192 0.193 1.125 1.231 1.297 1.305 1.267

80 10–3 0.205 0.211 0.207 0.216 0.210 1.125 1.175 1.142 1.193 1.281

10–4 0.202 0.188 0.193 0.194 0.194 1.136 1.288 1.317 1.290 1.206

10–5 0.207 0.195 0.189 0.197 0.187 1.208 1.366 1.390 1.265 1.250

Table 5 The related errors and

the single experiment results for

SAE

Parameter Related error Result (9 1013 m5s2)

BS LR 20 40 60 80 100 20 40 60 80 100

20 10–3 0.168 0.169 0.155 0.196 0.177 1.451 1.490 1.538 1.428 1.440

10–4 0.157 0.127 0.127 0.125 0.130 1.298 1.441 1.579 1.415 1.421

10–5 0.152 0.124 0.123 0.122 0.126 1.411 1.509 1.496 1.499 1.624

40 10–3 0.159 0.150 0.142 0.138 0.152 1.475 1.435 1.324 1.720 1.541

10–4 0.157 0.123 0.124 0.124 0.124 1.473 1.566 1.461 1.358 1.746

10–5 0.148 0.123 0.123 0.123 0.124 1.437 1.538 1.553 1.442 1.404

80 10–3 0.158 0.137 0.138 0.137 0.147 1.518 1.546 1.426 1.620 1.526

10–4 0.153 0.124 0.124 0.122 0.122 1.445 1.516 1.480 1.451 1.581

10–5 0.151 0.129 0.124 0.125 0.125 1.394 1.647 1.536 1.493 1.564

Fig. 9 The related error varying

curves of validation data for

VAE
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decoder and GAN are tested to serve as the re-constructor,

and the corresponding structures are shown in Table 8.

Because the simple structure obtains the better results in

Sect. 4.1, the number of the extra latent layer is adjusted to

investigate its influence. Figures 10 and 11 show the rela-

ted error varying curves of the validation data for the two

networks within 1000 epochs. And with the best epochs

selected by Figs. 10 and 11, the related errors and the

single experiment results for the trained network are shown

in Tables 9 and 10.

From Figs. 10 and 11, it can be found that decreasing the

number of the extra latent layers can decrease the degree of

oscillation and overfit. And from Tables 9 and 10, it can be

found that decreasing the number of extra latent layers can

obtain better related errors and objective function values.

These results further verify the conclusion in Sect. 4.1, if

the size of the training sample set is small, the simpler

structure would be proper for FEIA framework. On the

other hand, the results of solving CNOP are similar for the

two structures. And the two structures can both obtain the

effective solutions leading to double-gyre variation, which

verifies the effectiveness of the second way. Similar to

Sect. 4.1, GAN (EL = 0) are selected to test ten times to

further verify the performance of the second way, and the

results are shown in Table 11.

The results in Table 11 are similar to those in Table 7.

Compared with PCA, the results with the second way show

the following chrematistics: (1) The solution in better

interval can be obtained; (2) better average value and max

value of the objective function can be obtained; and (3) the

effective solution can be obtained in more feature dimen-

sion. These results further show the effectiveness of the

second way.

4.3 The discussion for the result

The above experiments verify the effectiveness of neural

network in FEIA framework. Both the first way and the

second way can solve the effective solution which can lead

to double-gyre variation. And with the good training, FEIA

framework with neural network can even show a better

performance than FEIA framework with PCA. According

to the above experiments, the optimization details of the

network and the performance of FEIA framework neural

network are summarized and discussed.

4.3.1 Structure and parameter selection

In the experiments, the influences of the batch size, the

learning rate and the complex degree of the network are

tested. With the condition that the size of the training data

is relatively small, which is 2000 9 54,776, the influence

of them can be summarized as follows: (1) The complexity

degree of the network has the largest influence, while the

batch size is the least sensitive, and the influence of the

learning rate is between them. (2) One of the main reasons

Table 6 The related errors and

the single experiment results for

CAE

Parameter Related error Result (9 1013 m5s2)

BS LR 20 40 60 80 100 20 40 60 80 100

20 10–3 0.255 0.269 0.250 0.239 0.251 1.190 1.192 1.199 1.261 1.166

10–4 0.350 0.298 0.315 0.325 0.293 1.095 1.199 1.275 1.419 1.195

10–5 0.429 0.386 0.375 0.401 0.398 1.107 1.152 1.253 1.162 1.223

40 10–3 0.267 0.220 0.223 0.232 0.211 1.139 1.325 1.254 1.253 1.167

10–4 0.346 0.331 0.328 0.326 0.319 1.156 1.144 1.415 1.116 1.242

10–5 0.389 0.394 0.380 0.421 0.391 9.771 1.128 1.358 1.262 1.119

80 10–3 0.255 0.215 0.218 0.227 0.220 1.134 1.374 1.232 1.311 1.242

10–4 0.352 0.334 0.346 0.319 0.307 1.125 1.243 1.140 1.223 1.286

10–5 0.432 0.385 0.376 0.380 0.397 1.121 1.180 1.352 1.241 1.263

Table 7 The statistic results of

FEIA framework (SAE) for ten

times

Dimension Statistic (9 1013 m5s2) Frequency (effective)

Max Ave Std \ 1.55 1.55 * 1.65 [ 1.65

20 1.502 1.455 0.040 10(0) 0(0) 0(0)

40 1.681 1.576 0.082 2(0) 6(2) 2(2)

60 1.710 1.527 0.109 6(0) 2(1) 2(2)

80 1.662 1.514 0.093 7(0) 2(0) 1(1)

100 1.746 1.519 0.123 6(0) 3(0) 1(1)
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to cause the performance loss is the overfit, and the

decrease in the complexity degree and learning rate can

decrease the degree of oscillation and overfit. (3) Although

the learning rate can also decrease the degree of overfit, it

does not obtain a smaller error in the best epoch. Therefore,

with the early stop, only the change in the complexity

degree can cause the relatively significant optimization.

Above all, in order to obtain the proper mapper and re-

constructor for FEIA framework, the structure of the net-

work needs to be considered firstly according to the char-

acteristic and size of the data. And then, the adjusting of

training process, such as decreasing the learning rate, might

give a further optimization.

4.3.2 Performance analysis

In fact, the process of PCA is generally faster than that of

training a network. However, in some problem, such as

solving CNOP of double gyre in the experiment, the main

time cost is on the calculation of intelligent algorithm. In

this paper, because the calculation of the objective function

involves in the integration of the model, even the time cost

of CAE, which is the highest for the network trained in the

experiments, is lower than that of intelligent algorithm.

Therefore, training the proper mapper and re-constructor is

relatively more important than costing a less time to obtain

the mapper and constructor. And in the experiments, neural

network shows three advantages compared with PCA: (1)

Neural network can help to solve the solutions in better

interval where the solutions almost certainly lead to the

variation. (2) The solutions solved with FEIA framework

with neural network have a larger mean value and max

value. (3) The effective solutions, which can lead to the

variation, can be solved in more feature dimension. The

first two points suggest that neural network with proper

design can construct a better mapping-reconstruction

structure to help FEIA framework solve the problem. And

the last point shows that neural network might save the cost

to determine the feature dimension, which means the cal-

culation frequency of intelligent algorithm part might be

decreased. These might be because neural network can do a

more special fitting compared with PCA. For example,

PCA is not training for a special feature dimension, but

neural network is training for the special feature dimension.

Above all, according to the results of the experiments,

neural network is proven to be an effective component

which can be applied in FEIA framework. And with the

proper design, the performance of FEIA framework with

neural network might be better than that of FEIA frame-

work with the classical method.

Fig. 11 The related error

varying curves of validation

data for GAN

Fig. 10 The related error

varying curves of validation

data for decoder

Table 8 The tested network structures of second way

Structure

Decoder fc(Df) – EL 9 (fc(256) –) fc(54,776)

GAN Generator:

fc(Df) – EL 9 (fc(256) –) fc(54,776)

Discriminator:

fc(54,776) – fc(256) – fc(256) – fc(1)

EL is the number of the extra latent layer, which is same in Figs. 10–

11
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5 Conclusion

In this paper, the two ways of applying neural work in

FEIA framework are suggested. The first way is training a

network to serve as both mapper and re-constructor, and

the second way is using the classical method to serve as the

mapper and training a network to serve as the corre-

sponding re-constructor of the mapper. With the experi-

ments solving CNOP of double-gyre variation in ROMS,

how to train the proper neural network in FEIA is dis-

cussed, and the good performance of FEIA framework with

neural network is verified. Compared with PCA, neural

network can construct a better mapping-reconstruction

structure with the proper design. Therefore, the solutions

solved by FEIA framework with neural network obtain

better objective values and have a larger probability lead-

ing to the expected physical phenomenon.

In fact, besides CNOP problem, FEIA framework can be

applying in many other problems. And in this paper, the

size of training data for the network is relatively small. It is

worth to look into the performance of FEIA framework in

more problems and the way applying the network with

more data.
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Table 9 The related errors and

the single experiment results for
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Parameter Related error Result (9 1013 m5s2)

EL 20 40 60 80 100 20 40 60 80 100
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Table 10 The related errors and

the single experiment results for
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Parameter Related error Result (9 1013 m5s2)

EL 20 40 60 80 100 20 40 60 80 100
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Table 11 The statistic results of
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Dimension Statistic (9 1013 m5s2) Frequency (effective)
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