
Soft Computing (2021) 25:13105–13126
https://doi.org/10.1007/s00500-021-06083-8

FOUNDATIONS

Electricity spot price modeling by multi-factor uncertain process: a
case study from the Nordic region

Idin Noorani1 · Farshid Mehrdoust1 ·Waichon Lio2

Accepted: 23 July 2021 / Published online: 6 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In recent years, the liberalization of energy markets (especially electricity) by many countries has led to much attention
being paid to their modeling. The energy market modeling under the framework of probability theory is valuable when
the distribution function is close enough to the actual frequency. However, due to the complexity and variability of the
world, economic reasons and changing government policies, this assumption is not applicable in some cases. Under such
circumstances, we propose an uncertain two-factor model based on uncertain differential equations to evaluate the electricity
spot price dynamics. Then, several essential indicators of electricity are investigated and generalized moment estimation
for unknown parameters is also provided. Two case studies by using electricity data from the Oslo and Stockholm regions
illustrate our approach. We also compare the proposed model with one-factor uncertain model driven by Liu process and the
electricity stochastic model. A detailed numerical study illustrates the efficiency of the proposed model to evaluate electricity
spot prices.

Keywords Electricity market · Moment estimations · Multi-factor model · Uncertain theory

1 Introduction

Uncertain theory and probability theory are two axiomatic
mathematical systems to rationally handle the indetermi-
nacy. It was demonstrated by Liu (2012a) that probability
theory is suitable to deal with frequency, whereas uncer-
tainty theory is suitable to deal with belief degree. For a
given quantity, a distribution function should be given in
order to select whether probability theory or uncertainty the-
ory is better to be used. Liu (2019) provided a convincing
example based on uncertain urn problem to illustrate that
probability theory should be applied if the given distribu-
tion function is close enough to the frequency; otherwise,
uncertainty theory has to be applied. Unfortunately, the given
distribution function is not close enough to the real frequency
in many practical situations. Therefore, uncertainty theory is
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an important mathematical tool to deal with the real prob-
lems. Major topics of uncertainty theory include uncertain
programming (Liu 2009a), uncertain statistics (Liu 2010a),
uncertain risk analysis and reliability analysis (Liu 2010b),
uncertain propositional logic (Li and Liu 2009), uncertain set
(Liu 2010c), uncertain logic (Liu 2011), uncertain inference
(Liu 2010c), uncertain process (Liu 2008), uncertain calculus
(Liu 2009b), and uncertain differential equation (Liu 2008).

As an important application of uncertainty theory, uncer-
tain differential equation has been developed by many
scholars. An existence and uniqueness theorem of solutions
of uncertain differential equations was verified by Chen
and Liu (2010) under the assumption of linear growth and
Lipschitz condition, while the theorem is verified by Gao
(2012) under the assumption of local linear growth and Lip-
schitz condition. Moreover, Chen and Liu (2010) presented
a method to get the analytic solutions of linear uncertain
differential equations, and Liu (2012b) and Yao (2013b)
obtained the analytic solutions of some specific types of non-
linear uncertain differential equations. Following that, a vital
numerical method for calculating the solution of an uncertain
differential equation by a family of solutions of ordinary dif-
ferential equations was introduced by Yao and Chen (2013).
Based on this numerical method, Yao (2013a) further com-
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puted the extreme value, first hitting time and time integral
of the solutions of uncertain differential equations. Another
concern about uncertain differential equation is its parameter
estimation based on the some given observed values. For this
purpose, the method of moments (Yao and Liu 2020), least
squares estimation (Sheng et al. 2020), generalized moment
estimation (Liu 2021), uncertain maximum likelihood (Liu
and Liu 2020) and minimum cover estimation (Yang et al.
2020) were applied. Furthermore, the initial value estimation
of uncertain differential equationwas investigated by Lio and
Liu (2020).

Nowadays, uncertain differential equation has been suc-
cessfully used in COVID-19 spread (Chen et al. 2020; Jia and
Chen2020;Lio andLiu2020), finance (Mehrdoust andNajafi
2020;Hassanzadeh andMehrdoust 2018;Liu 2013), pharma-
cokinetics (Liu and Yang 2021), population growth (Zhang
andYang 2020), heat conduction (Yang andYao 2017), string
vibration (Gao and Ralescu 2019) and spring vibration (Jia
and Yang 2018). This paper aims to develop the application
of uncertain differential equation to the field about electricity
market.

To maintain a balance between production and demand,
all manufacturers must follow the National Network Com-
pany (NGC) regulatory guidelines. The prices paid for this
purpose are determined by Pool rules. Every day, pursuant
to the existing capacities, the producers offer the prices of
each production set for the next day. Then, to estimate the
demand forecast level based on the bid pricewith lowest cost,
NGC uses a computer algorithm to determine the operational
plan (see Green 1996). In most deregulated electricity mar-
kets, there is a day-ahead market. In the Nordic region, the
day-ahead market is a non-mandatory market called Elspot,
which organized by Nord Pool. The significant examples
of non-mandatory day-ahead markets are APX Power UK,
Powernext and European Energy Exchange. In these mar-
kets, daily hourly electricity contracts are traded for physical
delivery over the next 24 hours (midnight to midnight). On
the Nord Pool’s spot market, Nordic countries players (Dan-
ish, Finnish, Norwegian and Swedish) trade hourly contracts
for each of the next 24 hours (see Benth and Koekebakker
2008). Every morning, players make offers to buy or sell a
certain amount of electricity for different hours of the next
day. When the spot market closes, at noon each day, the day-
ahead price is obtained for each hour of the next day (formore
information,we refer readers toBenth et al. 2008). Asian and
European options are two type options which are traded in
thismarket.Asian options in theNordPoolmarket are always
written on the spot price (seeWeron 2008).However, as noted
byMehrdoust and Noorani (2021), these options were traded
on theNordPool energy exchange in the 1990s and they aban-
doned in 2000.Nevertheless, European-style options are very
common in theNordPoolmarket and are still traded on future
contracts (seeBenth andKruhner 2015). Spark-spread option

is another important class of derivatives in the electricity and
gas market. These derivatives are written in various electric-
ity and gas future contracts, and factory owners can use this
type of derivatives for hedging the undesirable movements
that occur in the gas and electricity markets. Valuation of
spark-spread option was recently studied by Carmona et al.
(2013).

With the liberalization of electricity markets, most of the
literature in the electricity spot price is to develop mod-
els that are more consistent with reality market. In recent
years, researchers have modeled the dynamics of daily elec-
tricity prices in the Nordic power exchange using various
characteristics such as seasonality, mean reversion, jumps
and regime-switching processes. For instance, in order to
motivate the Heath–Jarrow–Morton approach to evaluate
swap prices, Weron (2008) provided a thorough discus-
sion of how the Nordic energy market is organized. Lucia
and Schwartz (2002) proposed two models to describe the
stochastic process governing the spot price in the Nordic
power exchange. The first model is a one-factor model with
two components: a known deterministic function of time and
a stochastic process that is either a mean-reverting process
or a Ornstein–Uhlenbeck process. The second model is a
two-factor model with three components: a known determin-
istic function of time, a mean-reverting process and a drifted
Brownian motion. Geman and Roncoroni (2006) introduced
a similar model through jump process for electrical spikes.
Empirical results showed that their proposedmodel has good
flexibility and it is consistent with the observed electric-
ity spot prices in several markets. Mehrdoust and Noorani
(2021) modeled the electricity spot price in the Nordic power
exchange by using a deterministic component, which is a
function of time, and a stochastic component. The stochastic
componentwasmodeled by amean-reverting process, drifted
Brownian motion and jump component, such that the model
parameterswere dependent on hiddenMarkov chain. In addi-
tion to fitting Nord Pool market prices, their model also has
the ability to generate forward contract prices. Other works
on spot price models include, to mention a few, Barndorff-
Nielsen et al. (2018), Bennedsen (2017), Mayer et al (2015),
Liebl (2013), Rypdal and Løvsletten (2013), Benth et al.
(2012) and Janczura and Weron (2010).

An acceptable comparison between the actual market data
and the obtained data by the implemented model in the
framework of probability theory requires that the distribu-
tion function of the considered stochastic model is close
enough to the actual frequency (see Liu 2015). However,
given that unforeseen events (system failure, climate change,
war, etc.) and economic problems (inflation and recession)
affect the behavior of financial and energy time series, this
assumption is not applicable in some cases. In such a situa-
tion, to better deal with dynamic noises in the electricity spot
price, this paper uses uncertain differential equations under
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the framework of uncertainty theory. As far aswe know, there
are no papers in the literature electricity modeling when the
electricity spot price is modeled by the uncertain process.
This paper intends to fill this gap by concentrating upon the
two-factor canonical Liu processes. In this work, first the
model parameters are estimated by applying the generalized
moment estimationmethod.We then show that the electricity
spot prices obtained by two-factor model are closer tomarket
realities compared to the one-factor model.

The rest of this paper is organized as follows. In Sect. 2,
some concepts and theorems about uncertain variables and
uncertain differential equations are introduced. In Sect. 3, we
formulate and explain the electricity model in the uncertain
framework. In Sect. 4, we estimate the model parameters by
employing generalized moment estimation method based on
the α-path of the uncertain differential equations. Section 5
reports our numerical results, and Sect. 6 contains our con-
clusions.

2 Preliminary

In this section, the basic definitions and fundamental con-
cepts in uncertain theory including uncertain axioms, uncer-
tain process and uncertain differential equation are intro-
duced.

Definition 1 (Liu 2007) LetL be a σ -algebra on a non-empty
setΓ . A set functionM : L −→ [0, 1] is called an uncertain
measure if it satisfies the following axioms

• (Normality Axiom) M{Γ } = 1 for the universal set Γ .
• (Duality Axiom)M{Λ}+M{ΛC } = 1 for any eventΛ.
• (Subadditivity Axiom) For every countable sequence of
events Λ1,Λ2, . . ., we have

M
{ ∞⋃

i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

The triple (Γ ,L,M) is called an uncertainty space.
• (Product Axiom) Let (Γi ,Li ,Mi ) be an uncertainty

space for i = 1, 2, . . . , n. Then, the product uncertain
measureM is an uncertainmeasure on productσ -algebra
L1 × L2 × . . . × Ln satisfying

M
{ n∏

i=1

Λi

}
= min

1≤i≤n
M{Λi },

where Λi are arbitrarily chosen events from Li for i =
1, 2, . . . , n, respectively.

Definition 2 (Liu 2007) If ξ is measurable from (Γ ,L,M)

to a real number set, i.e., the following set

{ξ ∈ B} = {γ ∈ Γ |ξ(γ ) ∈ B}

is an event for each real Borel set B, then ξ is called an
uncertain variable.

Definition 3 (Liu 2007) An uncertainty distribution of the
uncertain variable ξ is defined as

Φ(x) = M{
ξ ≤ x

}
,

for arbitrary real number x ; then, x is called an uncertain
variable.

Definition 4 (Liu 2009b) An uncertain variable sequence of
ξ1, ξ2, . . . , ξn is regarded to be independent mutually if

M
{ n⋂

i=1

(ξi ∈ Bi )
}

=
n∧

i=1

M{
ξi ∈ Bi

}

is tenable for any real Borel sets B1,B2, . . . ,Bn .

Definition 5 (Liu 2015)An uncertain variable ξ is called nor-
mal if it has a normal uncertainty distribution

Φ(x) =
(
1 + exp

(
π(μ − x)√

3σ

))−1

, x ∈ R,

denoted by N (μ, σ ) where μ and σ are real numbers with
σ > 0. Besides, an uncertain variable is called lognormal if
ln ξ is a normal uncertain variable N (μ, σ ).

Theorem 1 (Liu 2015) Let ξ be an uncertain variable with
continuous uncertainty distribution Φ. Then, for any interval
[a, b], we have

Φ(b) − Φ(a) ≤ M{
a ≤ ξ ≤ b

}
.

Theorem 2 (Liu 2015) Let ξ1 and ξ2 be independent normal
uncertain variables N (μ1, σ1) and N (μ2, σ2), respectively.
Then, the sum ξ1 + ξ2 is also a normal uncertain variable
N (μ1 + μ2, σ1 + σ2), i.e.,

N (μ1, σ1) + N (μ2, σ2) = N (μ1 + μ2, σ1 + σ2).

Definition 6 (Liu 2007) Let ξ be an uncertain variable with
uncertainty distribution Φ. Then, the expected value of ξ is
defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx,
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provided that at least one of the two integrals is finite.
Besides, the variance of ξ is defined by V [ξ ] = E[(ξ −
E[ξ ])2].
Theorem 3 (Liu 2015) If ξ has an inverse uncertainty dis-
tribution Φ−1(α), and k be a positive integer, then the kth
moment of ξ is as follows:

E[ξ k] =
∫ 1

0

(
Φ−1(α)

)k
dα.

In the other word, for a standard normal uncertain variable
ξ ∼ N (0, 1), we have

E
[
ξ k

]
=

(√
3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα.

Definition 7 (Liu 2008) Let (Γ ,L,M) be an uncertainty
space and let T be a totally ordered set (e.g., time). An uncer-
tain process is a function Ct (γ ) from T × (Γ ,L,M) to the
set of real numbers such thatCt ∈ B is an event for any Borel
set B of real numbers at each t ∈ T .

Definition 8 (Liu 2009b) An uncertain process Ct is called
a Liu process if

• C0 = 0 and almost all sample paths are Lipschitz con-
tinuous,

• Ct has stationary and independent increments,
• the increment Cs+t − Cs has a normal uncertainty distri-

bution

Φt (x) =
(
1 + exp

(
− πx√

3t

))−1

, x ∈ R.

Let Ct be an uncertain process. For any partition of closed
interval [a, b] with a = t1 < t2 < . . . < tk+1 = b, the mesh
is written as

Δ = max
1≤i≤k

|ti+1 − ti |.

Then, the time integral of Ct with respect to t is

∫ b

a
Ctdt = lim

Δ→0

k∑
i=1

Cti · (ti+1 − ti ) ,

provided that the limit exists almost surely and is finite. Ct

is said to be time integrable.

Definition 9 (Li and Liu 2009) Suppose that Ct is a Liu pro-
cess, and f and g are two measurable real functions. Then,

dXt = f (t, Xt )dt + g(t, Xt )dCt , (1)

is called an uncertain differential equation.

Definition 10 (Yao and Chen 2013) Let 0 < α < 1 be a
real number. An uncertain differential equation (1) has an α-
path Xα

t , if it solves the corresponding ordinary differential
equation as follows:

dXα
t = f (t, Xα

t )dt + |g(t, Xα
t )|Φ−1(α)dt, (2)

where Φ−1(α) is the inverse standard normal uncertainty
distribution, i.e.,

Φ−1(α) =
√
3

π
ln

α

1 − α
.

In this case, Xt is called a contour process.

Theorem 4 (Yao and Chen 2013) Let Xt and Xα
t be the solu-

tion and α-path of the uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt ,

respectively. Then, for any monotone function J , we have

E[J (Xt )] =
∫ 1

0
J (Xα

t )dα.

Theorem 5 (Yao and Chen 2013) Let Xt and Xα
t be the solu-

tion and α-path of the uncertain differential equation (1),
respectively. Then,

M {
Xt ≤ Xα

t ,∀t
} = α,

M {
Xt > Xα

t ,∀t
} = 1 − α.

This theorem is called Yao–Chen formula.

3 Multi-factor model of electricity

It is significant to allow seasonal changes, because the
demand for energies, especially electricity, varies with tem-
peratures, which are highly dependent on season. The idea of
modeling is to first identify a seasonal floor as f , such that
prices are returning to it (see Benth et al. 2008). Accord-
ing to this approach, the floor can be obtained by fitting
the deterministic function to data, and then, move the whole
function down until the difference between the observations
of energy spot price and floor is positive. The difference is
referred to as the “deseasonalized” spot prices. From Benth
et al. (2008), since the electricity spot prices show a definite
pattern between specific months, seasonal behavior can be
modeled with a simple sinusoidal function as follows:

ft = a + bt + c sin
(2π(t − d)

365

)
, (3)
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for constants a, b, c and d. Suppose that the spot price
dynamics S(t), 0 ≤ t ≤ T , with maturity date T > 0 is
defined by

St = g(t, X (1)
t , . . . , X (n)

t ), (4)

for n independent adapted stochastic processes X (1)
t , . . . ,

X (n)
t , which represent the factors. To ensure that St is adapted

as well, we assume that he function g : Rn → R be continu-
ous. The spot price model in (4) is very general and includes
many interesting cases known in the energy and commod-
ity markets. Here, we list a few examples and connect them
to our model. Schwartz (1997) introduced a simple model
for oil price dynamics called the Schwartz model, which is
defined as follows:

St = eUt ,

with

dUt = κ
(
θ − Xt )dt + σdWt ,

where θ > 0 is the mean-reverting level, κ > 0 is the rate
at which Ut is pulled back to the level θ , σ > 0 is the
volatility rate of Ut , and Wt is a Brownian motion. After
that, two-factor extension of the commodity Schwartz model
is proposed by Schwartz and Smith (2000). It takes the form

St = S0 exp
{

Xt + Yt
}
, (5)

with

dXt = −θ Xtdt + σdW (1)
t , (6)

dYt = μdt + ξdW (2)
t , (7)

where the short-run deviations (i.e., Xt ) are assumed to revert
toward zero following an Ornstein–Uhlenbeck process and
the equilibrium level (i.e., Yt ) is a drifted Brownian motion.
W (1)

t and W (2)
t are two Brownian motions with correlation

ρ ∈ (−1, 1). Moreover, θ, μ, σ, ξ are mean-reversion coeffi-
cient of short-term deviation, drift parameter of equilibrium
level, volatility rate of short-term deviation and volatility
rate of equilibrium level, respectively. We note that θ > 0
describes the rate at which the short-term deviations are
expected to disappear.

Lucia and Schwartz (2002) by adding the seasonal fac-
tor to the commodity model (5) presented the dynamics of
electricity spot price as follows:

St = ft exp
{

Xt + Yt
}
, (8)

where ft , Xt and Yt are given by Eqs. (3), (6) and (7), respec-
tively.

Following Benth et al. (2010), we consider the electricity
spot price dynamic as follows:

S(t) = f (t) exp
{

Xt + Yt
}
, (9)

where

dXt = (κ − θ Xt )dt + σdW (1)
t , (10)

dYt = μdt + ξdW (2)
t , (11)

and the short-run deviations Xt mean-revert toward a level
given by the κ .We note that if κ = 0, thenmodel (9) becomes
model (8).

A dynamics for the spot price evolution is desirable for
several reasons. The models that describe the uncertainty of
spot price are of interest to traders operating in the energy
markets (see Benth et al. 2008). However, as stated in Benth
et al. (2008), the uncertainmodels are also used as a reference
point for the settlement of future and forward contracts and
are therefore an essential input in understanding thedynamics
of energy derivatives. In addition, since energy commodities
are driven by the balance between demand and production,
prices return to theirmean levels. A natural class of stochastic
models to describe such dynamics is theOrnstein–Uhlenbeck
processes (see Benth et al. 2008). When we use the mod-
els based on the stochastic processes, which are defined on
probability space, a large sample size is needed to estimate
probability distribution based on long-run frequency (see Liu
2012a). However, Liu (2012a) stated that the sample size is
often small (even no sample) in practice and the belief degree
usually hasmuch larger variance than the long-run frequency.
Thus, we should deal with it by using uncertainty theory.
Actually, we intend to express the electricity models in an
uncertain space and create a connection between electric-
ity markets and this space. If we assume that the electricity
spot price follows some uncertain differential equation, then
we may produce a new topic of uncertain electricity. Let
the logarithmic electricity spot prices represent by Zt with
0 ≤ t ≤ T , as the sum of three components with canonical
processes. Which the first one is considered the logarithmic
seasonality function and is represented by a known deter-
ministic function of time, Ft . The second and third parts are
the uncertain Ornstein–Uhlenbeck process Xt and an ordi-
nary uncertain differential equation Yt . In this case, ifWiener
processesW (1)

t andW (2)
t in Eqs. (10) and (11) are replaced by

Liu processesC (1)
t andC (2)

t , we have an electricity two-factor
model in which the electricity spot price St is determined by

⎧⎪⎨
⎪⎩

St = ft exp
{

Xt + Yt
}
,

dXt = (κ − θ Xt )dt + σdC (1)
t , X0 = 0,

dYt = μdt + ξdC (2)
t , Y0 = 0,

(12)
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where Xt and Yt are, respectively, short-term deviation
and equilibrium level processes, which are driven by Liu
processes. Moreover, θ, μ, σ, ξ and κ are mean-reversion
coefficient of short-termdeviation, drift parameter of equilib-
rium level, volatility rate of short-term deviation, volatility
rate of equilibrium level and mean reversion of short-run
deviations (i.e., the short-run deviations Xt mean-revert
toward a level given by the κ), respectively.

Since in real market, electricity spot prices return rates are
more concerned, the logarithms of the electricity spot prices
Zt , 0 ≤ t ≤ T are conducted as follows:

⎧⎪⎨
⎪⎩

Zt = Ft + Xt + Yt ,

dXt = (κ − θ Xt )dt + σdC (1)
t , X0 = 0,

dYt = μdt + ξdC (2)
t , Y0 = 0,

(13)

where Ft = ln ft .

Theorem 6 The solution of the logarithmic uncertain elec-
tricity model Zt in system (13) is as follows:

Zt = Ft + Xt + Yt ,

where

Xt = κ

θ
(1 − e−θ t ) + σe−θ t

∫ t

0
eθsdC (1)

s ,

Yt = μt + ξC (2)
t .

Proof The proof follows easily from Chen and Liu (2010)
and is omitted here. 
�

At any given time t , the solutions Xt and Yt in Theorem 6
are normal uncertain variables with expected values

κ

θ
(1 − e−θ t ), μt

and standard deviations

σe−θ t

θ
(eθ t − 1), ξ t,

respectively. From Definition 5, Xt and Yt can be expressed
as follows:

Xt ∼ N
(κ

θ
(1 − e−θ t ),

σe−θ t

θ
(eθ t − 1)

)
, Yt ∼ N

(
μt, ξ t

)
.

Thus, by applyingTheorem2, the logarithmic electricity spot
price Zt is a normal uncertain variable with expected value

Ft + κ

θ
(1 − e−θ t ) + μt (14)

and standard deviation

σe−θ t

θ
(eθ t − 1) + ξ t, (15)

which is denoted as

Zt ∼ N
(

Ft + κ

θ
(1 − e−θ t ) + μt,

σe−θ t

θ
(eθ t − 1) + ξ t

)
.

(16)

The uncertainty distribution Φt of Zt at any time t is

Φt (z) =
(
1 + exp

{π
(

κ
θ
(1 − e−θ t ) + μt + Ft − z

)
√
3
(
ξ t + σ

θ
(1 − e−θ t )

)
})−1

.

(17)

Before discussing the confidence interval and some other
important properties of logarithmic electricity spot price Zt ,
we prove that Zt satisfying in the Yao–Chen formula. The
next theorem plays an important role in simulation of the
electricity spot price.

Theorem 7 (Hassanzadeh andMehrdoust 2020)Assume that
for i = 1, 2, fi and gi are continuous functions and C (1)

t

and C (2)
t are independent canonical Liu processes. Suppose

that Yit and Y α
i t be the solution and α-path of an uncertain

differential equation

dYit = fi (t, Yit )dt + gi (t, Yit )dC (i)
t , i = 1, 2,

respectively. Let |hi (t, y)| be a continuous increasing func-
tion. Then, the solution Ut of an uncertain differential
equation

dUt = f (t, Ut ) dt +
2∑

i=1

hi (t, Yit ) gi (t, Ut ) dC (i)
t

is a contour process with an α-path Uα
t that solves the cor-

responding ordinary differential equation

dUα
t = f

(
t, Uα

t

)
dt +

2∑
i=1

∣∣hi
(
t, Y α

i t

)
gi

(
t, Uα

t

)∣∣Φ−1(α)dt,

where

Φ−1(α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1).

In other words,

M{
Ut ≤ Uα

t

} = α, M{
Ut > Uα

t

} = 1 − α.
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Corollary 1 The process followed by Zt can be expressed as
the solution to the following stochastic differential equation
(provided again that the function Ft = ln ft satisfies appro-
priate regularity conditions)

dZt = dFt + (κ − θ Xt )dt + μdt + σdC (1)
t + ξdC (2)

t

= (F ′
t + μ + κ + θ Ft + θYt − θ Zt )dt

+ σdC (1)
t + ξdC (2)

t

= (F ′
t + μ + κ + θ Ft + θμt + θξC (2)

t − θ Zt )dt

+ σdC (1)
t + ξdC (2)

t . (18)

Now, we define

f (t, Zt ) = F ′
t + μ + κ + θ Ft + θμt + θξC (2)

t − θ Zt ,

h1(t, Xt ) = h2(t, Yt ) = 1, g1(t, Zt ) = ξ, g2(t, Zt ) = σ.

Then, we have

dZt = f (t, Zt )dt + h1(t, Xt )g1(t, Zt )dC (1)
t

+ h2(t, Yt )g2(t, Zt )dC (2)
t . (19)

From Theorem 7, the uncertain differential equation (19) is
a contour process with an α-path Zα

t that solves the corre-
sponding ordinary differential equation

dZα
t = f

(
t, Zα

t

)
dt +

(
h1(t, Xα

t )g1(t, Zα
t )

+ h2(t, Y α
t )g2(t, Zα

t )
)
Φ−1(α)dt .

In other words,

M{
Zt ≤ Zα

t

} = α, M{
Zt > Zα

t

} = 1 − α.

We note that

dZα
t =

(
F ′

t + μ + κ − θ Xα
t +

√
3

π
(σ + ξ) ln

α

1 − α

)
dt,

(20)

where

Xα
t =

(
πκ + √

3σ ln α
1−α

)(
1 − e−θ t

)

θπ
.

Given a confidence level α (0 < α < 1), the α confidence
interval for Zt is suggested as

[
E[Zt ] − �, E[Zt ] + �

]
, (21)

where � is the solution of

Φt (E[Zt ] + �) − Φt (E[Zt ] − �) = α. (22)

Denote the uncertain measure as M, which indicates the
belief degree that an uncertain event may happen. It follows
from the subadditivity axiom of uncertain measure in Defi-
nition 1 that

M
{
E[Zt ] − � < Zt < E[Zt ] + �

}

≥ Φt (E[Zt ] + �) − Φt (E[Zt ] − �) = α.

Thus, we have the chance of α to cover the logarithmic elec-
tricity spot price Zt with this confidence interval.

Proposition 1 For the uncertain model (13), the α (0 < α <

1) confidence interval of the log-electricity spot price Zt at
any time t can be expressed as follows:

[κ

θ
(1 − e−θ t ) + μt + Ft −

√
3

π
(ξ t + σ

θ
− σ

θ
e−θ t ) ln

1 + α

1 − α
,

κ

θ
(1 − e−θ t ) + μt + Ft +

√
3

π
(ξ t + σ

θ
− σ

θ
e−θ t ) ln

1 + α

1 − α

]
.

(23)

Proof We put

E[Zt ] = C̄t , Φt (z) =
(
1 + exp

{π(C̄t − z)

D̄t

})−1
,

and

C̄t = κ

θ
(1 − e−θ t ) + μt + Ft ,

D̄t = √
3
(
ξ t + σ

θ
− σ

θ
e−θ t

)
.

We now obtain the value of �. From Eq. (22), we have

(
1 + exp

{π(C̄t − C̄t − �)

D̄t

})−1

−
(
1 + exp

{π(C̄t − C̄t + �)

D̄t

})−1 = α.

Thus,

(
1 + exp

{−π�

D̄t

})−1 −
(
1 + exp

{π�

D̄t

})−1 = α,

which implies

exp
{

π�

D̄t

} − exp
{−π�

D̄t

}

2 + exp
{

π�

D̄t

} + exp
{−π�

D̄t

} = α.

Hence, by change of variable U = exp
{

π�

D̄t

}
, we have

U − U−1

2 + U + U−1 = U 2 − 1

(U + 1)2
= α.

123



13112 I. Noorani et al.

Thus, U = 1 + α

1 − α
, and we obtain

� = 1

π
D̄t lnU = 1

π
D̄t ln

1 + α

1 − α
.

Substituting the solution of � into Eq. (21) proves the result.

�

As pointed out by Byström (2003), to update the hedge
based on the dynamics model, future contracts on the Nordic
energy exchange must be bought or sold every day. When
traders’ assets are about to be lost, they usually prefer tomake
a profit rather than make a loss. On the other hand, since the
evolution of future contracts depend on the starting level of
the spot price (see Cartea et al. 2005), many traders set a cer-
tain level to sell their future contracts if the electricity spot
price reaches this level, with this approach they can main-
tain their profits. They can also set a limit for electricity spot
price to buy future contracts. Due to the fact that logarithm
is a strictly monotone increasing function, if the logarithmic
electricity spot price reaches a level at time t , one can adopt
the appropriate strategy for the future contract at time t . The-
orems 8 and 9 state, respectively, the uncertain measure of
logarithmic electricity spot price (i.e.,M(Zt ≥ z0), z0 ∈ R)
and the uncertainty distribution of the first time that the log-
arithmic electricity spot price reaches a certain level η. From
Liu (2007), we note that the uncertain measureM(Zt ≥ z0)
indicates the belief degree of an uncertain event Zt ≥ z0.

Theorem 8 Consider the logarithmic uncertain electricity
model Zt in system (13). Denoting the MEV, z0, the uncertain
measure for at time t is as follows:

M(Zt ≥ z0)

=
(
1 + exp

{−π
(

κ
θ
(1 − e−θ t ) + μt + Ft − z0

)
√
3
(
ξ t + σ

θ
(1 − e−θ t )

)
})−1

.

(24)

Proof It follows fromEq. (17) and the duality of the uncertain
measure in Definition 1.

M(Zt ≥ z0)

= 1 − Φt (z0)

= 1 −
(
1 + exp

{π
(

κ
θ
(1 − e−θ t ) + μt + Ft − z0

)
√
3
(
ξ t + σ

θ
(1 − e−θ t )

)
})−1

=
(
1 + exp

{−π
(

κ
θ
(1 − e−θ t ) + μt + Ft − z0

)
√
3
(
ξ t + σ

θ
(1 − e−θ t )

)
})−1

.


�
For a given constant η ∈ R, define the uncertain variable

tη = inf
{
t ≥ 0|Zt ≥ η}. (25)

Theorem 9 For a given constant η ∈ R and the logarithmic
uncertain electricity model Zt in system (13), the level-time
defined in (25) has an uncertainty distribution

Ψη(t
∗) =

(
1 + exp

{−π
(

κ
θ
(1 − e−θ t∗) + μt∗ + Ft∗ − η

)
√
3
(
ξ t∗ + σ

θ
(1 − e−θ t∗)

)
})−1

.

(26)

Proof Denote

α0 = inf
{
α
∣∣ sup
0≤t≤t∗

Φ−1
t (α) ≥ η

}
, (27)

where

Φ−1
t (α) =κ

θ
(1 − e−θ t ) + μt + Ft

+
√
3(ξθ t + σ − σe−θ t )

πθ
ln

α

1 − α

is the inverse uncertainty distribution of the Zt . It follows
from definition of the level-time defined in (25) and Zt that

{
Zt ≥ Φ−1

t (α0), ∀t
}

⊂
{

sup
0≤t≤t∗

Zt ≥ η
}

= {
tη ≤ t∗

}

and
{

Zt < Φ−1
t (α0), ∀t

}
⊂

{
sup

0≤t≤t∗
Zt < η

}
= {

tη > t∗
}
.

Using Yao–Chen formula, we have

M{
tη ≤ t∗

} ≥ M
{

Zt ≥ Φ−1
t (α0)

}
= 1 − α0 (28)

and

M{
tη > t∗

} ≤ M
{

Zt < Φ−1
t (α0)

}
= α0.

From the duality axiom inDefinition 1 for the uncertain mea-
sure, we have

M{
tη ≤ t∗

} = 1 − M{
tη > t∗

} ≤ 1 − α0. (29)

Following inequalities (28) and (29), we obtain

Ψη(z) = M{
tη ≤ t∗

} = 1 − α0.

Notice that Φ−1
t (α) is a monotone function with respect to

t . Thus,

{
sup

0≤t≤t∗
Φ−1

t (α) ≥ η
} = {

Φ−1
t∗ (α) ≥ η

}
.

123



Electricity spot price modeling by multi-factor uncertain process… 13113

From expression (27), we have

α0 = inf
{
α
∣∣ sup
0≤t≤t∗

Φ−1
t (α) ≥ η

}

= inf
{
α
∣∣Φ−1

t∗ (α) ≥ η
} = inf

{
α
∣∣α ≥ Φt∗(η)

} = Φt∗(η).

As a result, we obtain

α0 =
(
1 + exp

{π
(

κ
θ
(1 − e−θ t∗) + μt∗ + Ft∗ − η

)
√
3
(
ξ t∗ + σ

θ
(1 − e−θ t∗)

)
})−1

.

Therefore,

Ψη(z) = 1 − α0

=
(
1 + exp

{−π
(

κ
θ
(1 − e−θ t∗) + μt∗ + Ft∗ − η

)
√
3
(
ξ t∗ + σ

θ
(1 − e−θ t∗)

)
})−1

,

and the proof is completed. 
�
In the electricity exchange market, trading the future and

forward contracts is based on the spot prices. The main
difference between such contracts and other products in com-
modity markets is that in electricity markets, contracts are
delivered over a period, not at a specific time. In the electric-
ity market, these products are cash settled based on the spot
price in the settlement period (see Benth et al. 2008). From
Benth et al. (2007), the electricity is delivered as a flow of
rate Z(t)/T , 0 ≤ t ≤ T during the settlement period [0, T ],
giving a total cost (in logarithmic units) of

GT := 1

T

∫ T

0
Zsds. (30)

The following two theorems express the expected value
and confidence interval for Gt = 1

T

∫ t
0 Zsds.

Theorem 10 For the uncertain model in (13), the Gt has the
inverse uncertainty distribution

Υ −1
t (α) = 1

T

(κ

θ
(t + e−θ t − 1

θ
) + μt2

2
+ Ft

+
√
3

πθ
ln

α

1 − α

( ξθ t2

2
+ σ t + σ

θ
(e−θ t − 1)

))
, (31)

where

Ft =
∫ t

0
ln

(
a + bs + c sin

(2π(s − d)

365

))
ds.

Moreover, the expected value is

E[Gt ] = 1

T

(κ

θ
(t + e−θ t − 1

θ
) + μt2

2
+ Ft

)
. (32)

Proof For a fixed maturity time T > 0, the product of a nor-
mal uncertain variable Zt in Eq. (16) and the scalar number
1/T is also a normal uncertain variable with expectation

1

T

(
Ft + κ

θ
(1 − e−θ t ) + μt

)

and standard deviation

1

T

(
σe−θ t

θ
(eθ t − 1) + ξ t

)
.

Thus, the uncertainty distribution �t of 1
T Zt at any time t is

as follows:

�t (z) =
(
1 + exp

{
π

(
κ
θ
(1 − e−θ t ) + μt + Ft − zT

)
√
3
(
ξ t + σ

θ
(1 − e−θ t )

)
})−1

.

Moreover, 1
T Zt has the inverse uncertainty distribution as

follows:

�−1
t (α) = 1

T

(κ

θ
(1 − e−θ t ) + μt + Ft

+
√
3(ξθ t + σ − σe−θ t )

πθ
ln

α

1 − α

)
.

Obviously, for any time 0 ≤ t ≤ T , we have

{ 1

T
Zs ≤ �−1

s (α), ∀s
} ⊂ { ∫ t

0

1

T
Zsds ≤

∫ t

0
�−1

s (α)ds
}

and

{ 1

T
Zs > �−1

s (α), ∀s
} ⊂ { ∫ t

0

1

T
Zsds >

∫ t

0
�−1

s (α)ds
}
.

Using Yao–Chen formula, we have

M{ ∫ t

0

1

T
Zsds ≤

∫ t

0
�−1

s (α)ds
}

≥ M{ 1

T
Zs ≤ �−1

s (α), ∀s
} = α (33)

and

M{ ∫ t

0

1

T
Zsds >

∫ t

0
�−1

s (α)ds
}

≥ M{ 1

T
Zs > �−1

s (α), ∀s
} = 1 − α. (34)

From the duality axiom for the uncertainty measure in Defi-
nition 1, we have

M{ ∫ t

0

1

T
Zsds ≤

∫ t

0
�−1

s (α)ds
}
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= 1 − M{ ∫ t

0

1

T
Zsds ≥

∫ t

0
�−1

s (α)ds
} ≤ 1 − (1 − α)

= α. (35)

From inequalities (33) and (35), we obtain

M{ 1

T

∫ t

0
Zsds ≤

∫ t

0
�−1

s (α)ds
} = α.

Thus, Gt = 1
T

∫ t
0 Zsds has the inverse uncertainty distribu-

tion as follows:

Υ −1
t (α) = 1

T

∫ t

0
�−1

s (α)ds

= 1

T

∫ t

0

[κ

θ
(1 − e−θs) + μs + Fs

+
√
3(ξθs + σ − σe−θs)

πθ
ln

α

1 − α

]
ds

= 1

T

(κ

θ
(t + e−θ t − 1

θ
) + μt2

2
+ Ft

+
√
3

πθ
ln

α

1 − α

(ξθ t2

2
+ σ t + σ

θ
(e−θ t − 1)

))
.

Due to Theorem 3, the expected value ofGt can be calculated
as follows:

E[Gt ] =
∫ 1

0
Υ −1

t (α)dα

= 1

T

(κ

θ
(t + e−θ t − 1

θ
) + μt2

2
+ Ft

)
,

and the proof is completed. 
�

Theorem 11 For the uncertain model in (13), the Gt has an
α (0 < α < 1) confidence interval

[
E[Gt ] − λ∗, E[Gt ] + λ∗], (36)

where

λ∗ = inf
{
λ > 0

∣∣H(λ) ≥ α
}
,

H(λ) = Υt
(
E[Gt ] + λ

) − Υt
(
E[Gt ] − λ

)

and Υt is the uncertainty distribution for Gt .

Proof It follows from Theorem 1

M{
E[Gt ] − λ ≤ Gt ≤ E[Gt ] + λ

}

≥ M{
Gt ≤ E[Gt ] + λ

} − M{
Gt ≤ E[Gt ] − λ

}

= Υt
(
E[Gt ] + λ

) − Υt
(
E[Gt ] − λ

)
.

Due to the fact that 0 < Υt
(
E[Gt ]−λ

)
< 1, and by applying

Yao–Chen formula, we conclude that

M{
E[Gt ] − λ ≤ Gt ≤ E[Gt ] + λ

} ≥ Υt
(
E[Gt ] + λ

) ≥ α.

Thus, we have the chance of α to cover Gt with this confi-
dence interval and the theorem follows immediately. 
�

4 Framework of calibration

To compare simulated data with real market data, estima-
tion of the parameters κ, θ, μ, σ and ξ in the logarithmic
electricity model based on the observations is a crucial prob-
lem. Since the moment estimations for these parameters are
not exist, in this section we derive generalized moment esti-
mations for unknown parameters κ, θ, μ, σ and ξ in the
logarithmic electricity spot model in Theorem 6.

Theorem 12 Consider the logarithmic electricity model in
Theorem 6 with unknown parameters κ, θ, μ, σ and ξ .
Assume that there are n observations zt1, zt2 , . . . , ztn of the
log-spot price of electricity Zt at time t1, t2, . . . , tn with
0 < t1 < t2 < · · · < tn, respectively. The correspond-
ing generalized moment estimation (κ∗, θ∗, μ∗, σ ∗, ξ∗) is
the optimal solution of

min
κ∗,θ∗,μ∗,σ ∗,ξ∗

5∑
k=1

( 1

n − 1

n−1∑
i=1

(
Ξi

(
κ∗, θ∗, μ∗, σ∗, ξ∗))k − βk

)2
,

(37)

where

Ξi (κ, θ, μ, σ, ξ)

=
zti+1 − zti −

(
F ′

ti
+ μ + κ + θ Fti + θμti − θ zti

)(
ti+1 − ti

)

(ti+1 − ti )(σ + ξ + θξ ti )
,

and

βk = (1 + (−1)k

2

)(21
5

) k−2
2 , k = 1, . . . , 5.

Proof Equation (18) has a difference form

Zti+1 = Zti +
(

F ′
ti + μ + κ + θ Fti + θμti − θ Zti

)(
ti+1 − ti

)

+ σ
(

C(1)
ti+1

− C(1)
ti

)
+ ξ

(
C(2)

ti+1
− C(2)

ti

)
+ θξ

(
ti+1 − ti

)
C(2)

ti
.

(38)

On the other hand,

(
C (1)

ti+1
− C (1)

ti

)
∼ N (0, ti+1 − ti ),

(
C (2)

ti+1
− C (2)

ti

)
∼ N (0, ti+1 − ti ),
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C (2)
ti ∼ N (0, ti ).

Due to the fact that (C (1)
ti+1

− C (1)
ti ), C (2)

ti+1
− C (2)

ti and C (2)
ti are

independent, we have

(
σ(C (1)

ti+1
− C (1)

ti ) + ξ(C (2)
ti+1

− C (2)
ti ) + θξ(ti+1 − ti )C

(2)
ti

)

∼ N (
0, (ti+1 − ti )(σ + ξ + θξ ti )

)
.

Based on Definition 8 of Liu process, the following expres-
sion

(
σ(C (1)

ti+1
− C (1)

ti ) + ξ(C (2)
ti+1

− C (2)
ti ) + θξ(ti+1 − ti )C

(2)
ti

)

(ti+1 − ti )(σ + ξ + θξ ti )

∼ N (
0, 1

)

is a standard normal uncertain variable with expected value
0 and variance 1, which has an uncertainty distribution

Φ(x) =
(
1 + exp

(
−πx√

3

))−1

.

From Eq. (38), we have

Zti+1 − Zti −
(

F ′
ti + μ + κ + θ Fti + θμt − θ Zti

)(
ti+1 − ti

)

=
(
σ(C(1)

ti+1
− C(1)

ti ) + ξ(C(2)
ti+1

− C(2)
ti ) + θξ(ti+1 − ti )C

(2)
ti

)
.

Therefore, the estimation of the parameters κ, θ, μ, σ and ξ

is assumed to follow the standard normal uncertainty distri-
bution, i.e.,

Zti+1 − Zti −
(

F ′
ti + μ + κ + θ Fti + θμti − θ Zti

)(
ti+1 − ti

)

(ti+1 − ti )(σ + ξ + θξ ti )

∼ N (0, 1). (39)

Assume that there are n observations z1, z2, . . . , zn of the log
energy spot price at the times t1, t2, . . . , tn with t1 < t2 <

. . . < tn , respectively. Substituting Zti+1 and Zti with the
observations zti+1 and zti in Eq. (39), we write

Ξi (κ, θ, μ, σ, ξ)

=
zti+1 − zti −

(
F ′

ti + μ + κ + θ Fti + θμti − θ zti

)(
ti+1 − ti

)

(ti+1 − ti )(σ + ξ + θξ ti )

∼ N (0, 1), i = 1, 2, . . . , n − 1.

Note that Ξi , i = 1, 2, . . . , n − 1, are real functions of the
parameters κ, θ, μ, σ and ξ . For the estimates of κ, θ, μ, σ

and ξ denoted by κ∗, θ∗, μ∗, σ ∗ and ξ∗, it follows from Eq.
(39) that the values of these functions

Ξ1(κ
∗, θ∗, μ∗, σ ∗, ξ∗),Ξ2(κ

∗, θ∗, μ∗, σ ∗, ξ∗), . . . ,

Ξn−1(κ
∗, θ∗, μ∗, σ ∗, ξ∗)

can be regarded as n −1 samples of a standard normal uncer-
tainty distribution N (0, 1). The sample moments would
provide good estimates of the corresponding population
moments. Further, the kth sample moments are

1

n − 1

n−1∑
i=1

(
Ξi

(
κ∗, θ∗, μ∗, σ ∗, ξ∗))k

, k = 1, 2, . . . , 5,

and the kth population moments are

βk =
(√

3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα, k = 1, 2, . . . , 5.

We have βk = 0 for any positive odd number k, and

β2 = 1, β4 = 21

5
.

Specially, for k = 1, 2, . . . , 5, we have

βk = (1 + (−1)k

2

)(21
5

) k−2
2 .

Thus, the generalizedmoment estimation (κ∗, θ∗, μ∗, σ ∗, ξ∗)
is the optimal solution of

min
κ∗,θ∗,μ∗,σ ∗,ξ∗

5∑
k=1

( 1

n − 1

n−1∑
i=1

(
Ξi

(
κ∗, θ∗, μ∗, σ∗, ξ∗))k − βk

)2
.

Therefore, the result follows. 
�
We use the ga command of MATLAB software to solve

the optimization problem (37). Genetic algorithm (GA) is
a model of biological evolution based on Charles Darwin’s
theory of natural selection. Population size, selection rate,
crossover and mutation probability, number of generations,
convergence conditions, fit function (loss) and search space
operators organize the essential part of the genetic algorithm
as a problem-solving strategy. GA was first introduced by
Holland (1975).

5 Numerical results

In this section, we present the theories expressed for the elec-
tricity spot price as numerically by using the electricity data
set from the Nordic region of Oslo and Stockholm. We also
compare the electricity spot price obtained by the uncertain
two-factor model and the one-factor uncertainty model with
the actual market data and show that the introduced two-
factor model performs better.
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The electricity spot price So
t under one-factor uncertainty

model is expressed as follows:

So
t = ft e

Xt , (40)

where

ft = a + bt + c sin

(
2π(t − d)

365

)
,

dXt = (κ − θ Xt )dt + σdCt ,

and dCt is the increment of theLiu process anda, b, c, d, κ, θ

∈ R, σ > 0 are constants.
Suppose that Zo

t and Zαo

t be the solution and α-path for
logarithmic spot price of electricity under one-factor uncer-
tainty model, respectively. Then, the solution Zt is a contour
process with an α-path Zαo

t that solves the corresponding
ordinary differential equation

dZαo

t =
(
κ + θ ln

(
a + bt + c sin(

2π(t − d)

365
)
)

+ b + 2πc
365 cos( 2π(t−d)

365 )

a + bt + c sin( 2π(t−d)
365 )

+
√
3σ

π
ln

α

1 − α
− θ Zαo

t

)
dt .

In other words,

M
{

Zo
t ≤ Zαo

t ,∀t
}

= α,

M
{

Zo
t > Zαo

t ,∀t
}

= 1 − α.

Consider the logarithmic electricity model in system (40)
with unknown parameters κ, θ and σ . Assume that there are
n observations zt1, zt2 , . . . , ztn of the log-spot price of elec-
tricity Zo

t at time t1, t2, . . . , tn with 0 < t1 < t2 < · · · <

tn , respectively. Similar to Theorem 12, the corresponding
generalized moment estimation (κ∗, θ∗, σ ∗) is the optimal
solution of

min
κ∗,θ∗,σ ∗

3∑
k=1

( 1

n − 1

n−1∑
i=1

(
Ξi

(
κ∗, θ∗σ ∗))k − βk

)2
, (41)

where

Ξi (κ, θ, μ, σ, ξ)

=
zti+1 − zti −

(
F ′

ti + κ + θ Fti − θ zti

)(
ti+1 − ti

)

σ(ti+1 − ti )
,

and

Ft = ln ft , βk = (1 + (−1)k

2

)(21
5

) k−2
2 , k = 1, 2, 3,

The parameters of the seasonality functionwere estimated
using the least squares approach. For this purpose, we have
applied the nlinfit procedure in MATLAB software. We con-
sider the estimated parameters as a∗, b∗, c∗ and d∗. All four
parameters are significant at the 5% level, indicating that
there are both significant seasonal variations and increase in
electricity spot prices over the considered period. The elec-
tricity spot prices of the Nordic related to the Stockholm and
Oslo regions with their seasonality function are graphed in
Fig. 1. The estimated parameters of seasonality function ft

are reported in Table 1.
Tables 2 and 3 report the estimated parameters of the

uncertain two-factor model and the uncertain one-factor
model related to the electricity spot prices of Stockholm
and Oslo, respectively. The performance of the these models
for the electricity spot price related to Stockholm and Oslo
regions is represented in Table 4 for different horizons based
on the the mean-absolute-error (MAE) criteria, respectively.
As it can be readily seen from the table, our proposed uncer-
tain two-factor model has a better performance in all time
horizons. A close look at this table shows that the uncertain
two-factor model has smaller MAE values than the other
model considered for all horizons. Notice that the MAE is
calculated as follows:

MAE = 1

n

n∑
i=1

∣∣S∗
ti − Sti

∣∣,

where n is the total number of the electricity spot price
data set, Sti is the simulated electricity spot price and S∗

ti
is the actual electricity spot price. It should be noted that
to provide the numerical results, all the parameters of the
proposed model are taken from Tables 1 and 2.

From Eq. (14) and Proposition 1 in Sect. 3, the expected
value and the 95% confidence interval for the logarithmic
electricity spot price Zt are

E[Zt ] = Ft + κ

θ
(1 − e−θ t ) + μt,

and

[κ

θ
(1 − e−θ t ) + μt + Ft

−
√
3

π
(ξ t + σ

θ
− σ

θ
e−θ t ) ln 39,

κ

θ
(1 − e−θ t ) + μt + Ft

+
√
3

π
(ξ t + σ

θ
− σ

θ
e−θ t ) ln 39

]
,

respectively. Aswe can see in Figs. 2 and 3, themean value of
the actually electricity spot prices related to the Stockholm
and Oslo regions is close to E[Zt ], and both of them are
included in the 95% confidence interval for Zt .
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Fig. 1 Electricity spot price (solid line) and its seasonality function (dashed line) related to Stockholm (upper) and Oslo (lower) regions over the
period of 2019

Table 1 Fitted parameters of
the seasonality function from
the Stockholm and Oslo regions
over the period of 2019

Parameter Stockholm region Oslo region

Estimate SE t-statistic p-value Estimate SE t-statistic p-value

a∗ 25.5433 0.9676 50.1671 0 47.1225 0.7082 66.5333 0

b∗ − 0.0556 0.0049 11.1863 0 − 0.0428 0.0036 11.7585 0

c∗ − 8.5918 0.5770 14.8880 0 6.7683 0.3435 19.6999 0

d∗ 54.8379 4.4425 12.3437 0 − 645.3289 4.6354 139.2155 0

Table 2 Estimated parameters
of the uncertain two-factor
model and the uncertain
one-factor model from the
Stockholm region over the
monthly period of 2019

Month Uncertain two-factor model Uncertain one-factor model

μ κ θ σ ξ κ θ σ

January 0.0232 4.2957 8.6334 2.2738 0.5857 2.5651 6.2886 0.3998

February 0.0691 0.0986 0.0747 1.5242 0.2646 0.6160 0.5619 2.6877

March 0.0540 0.0232 2.7723 1.7819 0.2961 0.1319 0.8095 4.0072

April 0.1198 0.7147 1.6195 3.7848 0.0719 0.3083 2.3356 3.9005

May 0.0813 0.0024 3.0901 0.3776 1.6202 0.0022 0.5883 6.2274

June 0.0999 0.0169 2.5980 4.6115 3.3563 0.2860 0.8321 8.3334

July 0.6003 0.5835 0.5652 0.9586 2.3114 0.5704 1.1275 2.7894

August 0.2780 0.2544 0.2678 2.4881 0.1105 0.9300 0.2272 3.3347

September 0.0134 0.0876 2.0697 0.8114 1.3856 0.5949 0.8508 4.8136

October 0.2037 0.0528 0.0948 0.9364 2.4242 0.8169 0.9339 4.5753

November 0.0947 0.1531 0.0969 0.4941 0.4465 0.5113 0.1903 2.4435

December 0.0365 0.1303 1.8437 1.0056 1.1468 0.4234 0.8620 2.1753
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Table 3 Estimated parameters
of the uncertain two-factor
model and one-factor model
from the Oslo region over the
monthly period of 2019

Month Uncertain two-factor model Uncertain one-factor model

μ κ θ σ ξ κ θ σ

January 0.0130 0.1409 0.0187 2.0125 0.7197 0.8396 0.2140 3.6958

February 0.7826 1.6557 9.2897 3.5720 0.6492 0.3892 0.5527 1.7774

March 0.0790 0.0741 0.0643 0.3834 0.8796 0.5114 0.9644 2.2224

April 0.2333 0.0770 9.3810 1.8252 0.4798 0.4725 0.3525 2.7069

May 0.1759 0.9935 0.7923 0.9444 0.5687 0.9124 0.9852 3.2030

June 0.2692 0.5769 7.8163 3.8016 1.6962 0.3720 0.0830 6.1101

July 0.0281 0.0149 5.2002 0.5821 1.5967 0.8621 0.0305 2.5593

August 0.0556 0.2591 0.9776 0.7621 1.0634 0.4348 0.2510 2.1884

September 0.2230 0.7979 7.4335 2.3232 1.2891 0.6900 0.8505 3.4987

October 1.1362 0.0148 4.3000 4.1878 0.3513 0.9359 0.09133 1.8922

November 0.1257 0.4768 2.4859 0.6733 0.7177 0.7047 0.5997 2.2878

December 0.4482 0.5209 8.8204 4.8552 0.2075 0.1550 0.2216 2.0691

Table 4 MAE comparison of the uncertain two-factor model and the uncertain one-factor model from the Stockholm and Oslo regions over the
monthly period of 2019

Month Stockholm region Oslo region

Uncertain two-factor model Uncertain one-factor model Uncertain two-factor model Uncertain one-factor model

January 0.4114 0.5643 0.09677 0.3520

February 0.2068 0.4567 0.2750 0.2838

March 0.1712 0.2082 0.0819 0.2716

April 0.0979 0.0987 0.0590 0.1939

May 0.5707 0.6199 0.1829 0.2893

June 0.2081 0.2198 0.2837 0.3815

July 0.0603 0.1202 0.2335 0.2736

August 0.1464 0.5817 0.1755 0.3665

September 0.1411 0.3623 0.0590 0.2826

October 0.0928 0.2685 0.0375 0.4486

November 0.0904 0.2058 0.0765 0.2310

December 0.1813 0.3212 0.1680 0.1850

We now consider the estimated parameters in August
2019. Remember that by Eq. (17) in Sect. 3, the logarithmic
electricity spot price Zt of the Stockholm and Oslo regions
has the uncertainty distribution

Φt (z) =
(
1 + exp

{π
(
0.9499(1 − e−0.2678t ) + 0.2780t + Ft − z

)
√
3
(
0.1105t + 9.2908(1 − e−0.2678t )

)
})−1

,

and

Φt (z) =
(
1 + exp

{π
(
0.2650(1 − e−0.9776t ) + 0.0556t + Ft − z

)
√
3
(
1.0634t + 0.7795(1 − e−0.9776t )

)
})−1

,

respectively, which is shown in Fig. 4.
The uncertainty distribution of logarithmic electricity spot

price of Oslo and Stockholm regions on the second day of
February, June, August and October is illustrated in Fig. 5.
From the results of this figure, we find that the logarith-

mic electricity spot price related to the Stockholm region
on the second day of February, June, August and Octo-
ber is Φ2(4.5) = 0.9434, Φ2(4.5) = 0.7304, Φ2(4.5) =
0.8653 andΦ2(4.5) = 0.8054, respectively. The logarith-
mic electricity spot price related to the Oslo region for these
months isΦ2(4.5) = 0.9635, Φ2(4.5) = 0.8874, Φ2(4.5) =
0.9547 andΦ2(4.5) = 0.9115, respectively. These values
indicate the belief degree that the uncertain event Z2 ≤
4.5 may happen. From the market data, the logarithmic
electricity spot price in the Stockholm {Oslo} regions on
the second day of February, June, August and October
is 3.9328{3.9347}, 3.05352{3.4375}, 3.7316{3.6891} and
3.4744{3.3881}, respectively. Therefore, on the second day
of these months, the electricity spot prices from Stockholm
and Oslo regions are always less than 4.5, and this justifies
the high values of the belief degree at these moments.
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Fig. 2 The expected value E[Zt ] (plus), the lower bound (dashed line), the upper bound (solid line) of the 95% confidence interval for Zt and
logarithmic electricity spot price (circle) related to Stockholm region over the monthly period of 2019

From Eq. (30), the electricity is delivered as a flow of rate
Z(t)/T , 0 ≤ t ≤ T in the settlement period [0, T ], giv-
ing the total cost of GT = 1

T

∫ T
0 Zsds. Figure 6 illustrates

the actual of total cost and the expected value of GT with
lower and upper bounds with 80% confidence interval for
various maturity times T . As shown in this figure, the total
cost rises with increasing maturity time T . Based on Theo-
rems 10 and 11, the expected value of GT for the electricity
spot price related to the Stockholm and Oslo regions with
estimated parameters from the August 2019 is

Es
T = 1

T

[
0.9499(T + e−0.2678T − 1

0.2678
) + 0.1390T 2

+
∫ T

0
ln

(
25.5433 + 0.0556s

− 8.5918 sin
(2π(s − 54.8379)

365

))
ds

]
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Fig. 3 The expected value E[Zt ] (plus), the lower bound (dashed line), the upper bound (solid line) of the 95% confidence interval for Zt and
logarithmic electricity spot price (circle) related to Oslo region over the monthly period of 2019

and

Eo
T = 1

T

[
0.2650(T + e−0.9776T − 1

0.9776
) + 0.0278T 2

+
∫ T

0
ln

(
47.1225 − 0.0428s

+ 6.7683 sin
(2π(s + 645.3289)

365

))
ds

]
,

respectively. Moreover, the 80% confidence interval of the
GT for the electricity spot price related to the Stockholm and
Oslo regions with estimated parameters fromAugust 2019 is

[
Es

T − inf
{
λ > 0

∣∣Hs(T , λ) ≥ 0.8
}
,

Es
T + inf

{
λ > 0

∣∣Hs(T , λ) ≥ 0.8
}]

,
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Fig. 5 The uncertainty distribution for the logarithmic electricity spot price at the different times related to the Stockholm region (up) and Oslo
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and

[
Eo

T − inf
{
λ > 0

∣∣Ho(T , λ) ≥ 0.8
}
,

Eo
T + inf

{
λ > 0

∣∣Ho(T , λ) ≥ 0.8
}]

,

respectively, where

Hs(T , λ) = ΥT
(
Es

T + λ
) − ΥT

(
Es

T − λ
)
,

Ho(T , λ) = ΥT
(
Eo

T + λ
) − ΥT

(
Eo

T − λ
)
,
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Fig. 6 The expected value GT (star line) under two-factor uncertain models, the lower bound (dashed line) and the upper bound (solid line) of the
80% confidence interval for GT and the real total cost (circle) related to Stockholm region (up) and Oslo region (down) in August 2019
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Fig. 8 Comparison of 0.95 confidence interval (dotted line), 0.95 path (solid line) and 0.05 path (dashed line) with logarithmic electricity spot
prices (plus) related to Stockholm region. Left figures are graphed under the stochastic two-factor model, and right figures are graphed under the
uncertain two-factor model
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Fig. 9 Comparison of 0.95 confidence interval (dotted line), 0.95 path (solid line) and 0.05 path (dashed line) with logarithmic electricity spot
prices (plus) related to Oslo region. Left figures are graphed under the stochastic two-factor model, and right figures are graphed under the uncertain
two-factor model
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Table 5 Estimated parameters
of the stochastic two-factor
model from the Stockholm and
Oslo regions in 2019 with
various months

Region Month μ κ θ σ ξ ρ

Stockholm January 0.0505 0.0579 0.0714 4.1388 2.5053 −0.1440

August 0.0177 0.0472 0.0201 3.4556 4.7710 −0.3213

December 0.0081 0.0409 0.0769 2.6023 3.6683 −0.6780

Oslo January 0.0946 0.0491 0.0187 4.7319 4.0293 −0.1388

August 0.0944 0.0745 0.0932 2.6561 2.2424 −0.8442

December 0.0688 0.0349 0.0675 4.8039 3.3818 −0.3744

Table 6 Up and down errors of
0.95 confidence interval under
stochastic model and 0.95 path
and 0.05 path under uncertain
model in 2019 with various
months

Region Month Down error Up error

Stochastic Uncertain Stochastic Uncertain

Stockholm January 1.0254 0.2932 0.9257 0.6213

August 0.3503 0.2537 3.6973 0.8897

December 0.3975 0.1756 2.1341 0.5118

Oslo January 1.9711 0.7316 1.2172 0.4947

August 0.2339 0.1023 1.6002 0.4591

December 0.1996 0.1899 2.8328 0.7640

and Υt is the uncertainty distribution for GT . By Eq. (31), Υt

is expressed as follows:

Υt (z) =
(
1 + exp

{ κ

θ2
(tθ + e−θ t − 1) + μt2

2 + Ft − T z
√
3

πθ

( ξθ t2
2 + σ t + σ

θ (e−θ t − 1)
)

})−1
, z ∈ R.

As mentioned in the previous section, due to the first
time that the electricity spot price reaches the specified level,
traders can consider a beneficial strategy for trading electric-
ity contracts. Using the real market data, the first time that
the logarithmic electricity spot price in the Stockholm region
reaches the level 3.6 in June, August andOctober is 12, 2 and
1, respectively. Moreover, the first time that the logarithmic
electricity spot price in the Oslo region reaches the level 3.4
in June, August and October is 8, 2 and 1, respectively. Fig-
ure 7 shows the belief degree of the uncertain event t3.6 ≤ t∗
and t3.4 ≤ t∗ for Stockholm and Oslo regions with various
t∗, respectively. This belief degree value for Stockholm and
Oslo areas is calculated from Theorem 9 as follows:

Ψ3.6(t
∗)

=
(
1 + exp

{−π
(

κ
θ
(1 − e−θ t∗) + μt∗ + Ft∗ − 3.6

)
√
3
(
ξ t∗ + σ

θ
(1 − e−θ t∗)

)
})−1

,

Ψ3.4(t
∗)

=
(
1 + exp

{−π
(

κ
θ
(1 − e−θ t∗) + μt∗ + Ft∗ − 3.4

)
√
3
(
ξ t∗ + σ

θ
(1 − e−θ t∗)

)
})−1

.

Based on the obtained results in Fig. 7, one can be said on
the first 12 days of June, August and October the logarith-
mic electricity spot price of Stockholm region reaches the

level 3.6 with the belief degree 0.6450, 0.5814 and 0.5077,
respectively. As the same way, on the first 12 days of June,
August and October the logarithmic electricity spot price
of Oslo region reaches the level 3.4 with the belief degree
0.9979, 0.7580 and 0.9034, respectively. The results show
that with a relatively high belief degree (greater than 0.5)
in the first 12 days of June, August and October the loga-
rithmic electricity spot prices in Stockholm and Oslo regions
reach the levels 3.6 and 3.4, respectively. Referring tomarket
data, we note that the logarithmic electricity spot prices in
the Stockholm and Oslo areas reach the levels 3.6 and 3.4 on
the first 12 days of June, August and October, respectively.

We now compare the α-path of logarithmic electricity
spot price under the uncertain two-factor model (13) and the
stochastic two-factormodel (9). Assuming that α = 0.95, we
define up (down) error as the mean square error between the
actual logarithmic electricity spot price and 0.95(0.05)-path.
A similar idea can be found in Yang et al. (2020).

Figures 8 and 9 show 0.95 confidence interval for the log-
arithmic electricity spot price in Stockholm and Oslo regions
under stochastic model (9) for January, August and Decem-
ber 2019, respectively, in which the parameters are selected
according to maximum likelihood estimation (MLE) method
from Table 5. These figures also compare the 0.95 path and
the 0.05 path using Eq. (20) for the mentioned months. As
given in Table 6, the up and down errors obtained under the
proposed uncertainmodel (13) are smaller than the stochastic
model (9).
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6 Conclusion

In this paper, we have studied the modeling and calibra-
tion of the electricity market under the uncertain two-factor
model. The considered uncertain model is a combination
of deterministic seasonal function, short-run deviation and
equilibrium level processes derived by Liu process. For the
proposed uncertain model, we have evaluated the expected
value of the logarithmic electricity spot price, total cost of
the logarithmic electricity delivered in the settlement period
and their confidence interval. In addition, the first time that
the logarithmic electricity spot price reaches a certain level
was evaluated along with its confidence interval. Empirical
studies for the electricity spot prices in Stockholm and Oslo
regions showed that simulation of the electricity spot price is
closer to market reality by adding the equilibrium level pro-
cess. Moreover, the obtained belief degree of the electricity
spot price, the total cost and the first time that the electricity
spot price is reached the specified level provided desirable
results. Finally, we have compared the 0.95 confidence inter-
val of the stochastic model with the 0.95 path and 0.05 path
obtained by the uncertain two-factor model. The results illus-
trated that the accuracy of the proposed uncertainty model is
higher than the stochastic two-factor model. Based on the
presented results in this paper, it is ensured that the uncertain
two-factor model can be used in the empirical applications
of electricity market and can at least be served as a good
competitor of the stochastic model in practice.
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