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Abstract
We introduce so-called consistent posets which are bounded posets with an antitone involution ′ where the lower cones of
x, x ′ and of y, y′ coincide provided that x, y are different from 0, 1 and, moreover, if x, y are different from 0, then their
lower cone is different from 0, too. We show that these posets can be represented by means of commutative meet-directoids
with an antitone involution satisfying certain identities and implications. In the case of a finite distributive or strongly modular
consistent poset, this poset can be converted into a residuated structure and hence it can serve as an algebraic semantics
of a certain non-classical logic with unsharp conjunction and implication. Finally we show that the Dedekind–MacNeille
completion of a consistent poset is a consistent lattice, i.e., a bounded lattice with an antitone involution satisfying the
above-mentioned properties.

Keywords Consistent poset ·Antitone involution ·Distributive poset · Strongly modular poset ·Commutative meet-directoid ·
Residuation · Adjointness · Dedekind–MacNeille completion

1 Introduction

In some non-classical logics the contraposition law is
assumed. An algebraic semantics of such logics is provided
bymeans ofDeMorgan posets, i.e., bounded posets equipped
with a unary operation ′ which is an antitone involution. This
operation ′ is then considered as a negation. Clearly, 0′ = 1
and 1′ = 0, but we do not ask ′ to be a complementation. In
particular, this is the case of the logic of quantum mechanics
represented by means of an orthomodular lattice or an ortho-
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modular poset in a broad sense. In orthomodular lattices the
following implication holds

x ≤ y and y ∧ x ′ = 0 imply x = y.

In fact, for an ortholattice this condition is necessary
and sufficient for being orthomodular. When working with
orthomodular posets, the aforementioned condition can be
expressed in the form

x ≤ y and L(y, x ′) = {0} imply x = y

where L(y, x ′) denotes the lower cone of y and x ′.
However, there are logics where such a condition can be

recognized as too restrictive.Hence,we can relax the equality
x = y by asking that x, y have the same lower cones gener-
ated by the pairs including the involutive members, i.e., we
consider the condition

x ≤ y and L(y, x ′) = {0} imply L(x, x ′) = L(y, y′).

Of course, if P = (P,≤, ′, 0, 1) is a bounded poset where
the operation ′ is a complementation then

L(x, x ′) = {0} = L(y, y′)
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for all x, y ∈ P . However, this is rather restrictive. Hence,
we do not ask in general that ′ is a complementation, but P
should satisfy L(x, x ′) = L(y, y′) for x, y �= 0, 1.

Starting with this condition, we can release the assump-
tion that x, y are comparable, but, on the other hand, we will
ask that L(x, y) = {0} if and only if at least one of the entries
x, y is equal to 0. Such a poset will be called consistent in
the sequel. It represents certain logics satisfyingDeMorgan’s
laws. Usually, a logic is considered to be well-founded if it
contains a logical connective implication which is related to
conjunction via the so-called adjointness. Inwhat follows,we
show that consistent posets can be represented by means of
algebras (with everywhere defined operations)which enables
to use algebraic tools for investigating these posets. More-
over, we show when these posets can be organized into a
kind of residuated structure, i.e., we introduce conjunction
and implication related via adjointness. Of course, working
with posets, one cannot expect that these logical connectives
will be operations giving a unique result for given entries.We
will define operators assigning to the couple x, y of entries a
certain subset of P . It is in accordance with the description
of uncertainty of such a logic based on the fact that a poset
instead of a lattice is used.

2 Preliminaries

In our previous papers Chajda and Länger (2014) and Cha-
jda and Länger (2018) we studied complemented posets. We
showed when such a poset can be represented by a com-
mutative directoid (Chajda et al. 2021b; Chajda and Länger
2011; Ježek andQuackenbush 1990) andwhen it can be orga-
nized into a residuated or left-residuated structure (Chajda
et al. 2021a; Chajda and Länger 2014, 2017, 2018, 2021a).
Now we introduce a bit more general posets with an antitone
involution which need not be a complementation, but it still
shares similar properties. We again try to characterize these
posets by identities or implications of corresponding commu-
tativemeet-directoids similarly as it was done in Chajda et al.
(2021b). This approach has the advantage that commutative
directoids are algebras similar to semilattices and hence we
can use standard algebraic tools for their constructions, see
e.g., Ježek and Quackenbush (1990). We also solve the prob-
lem when these so-called consistent posets can be converted
into residuated or left-residuated structures.

For the reader’s convenience, we recall several concepts
concerning posets.

Let P = (P,≤) be a poset, a, b ∈ P and A, B ⊆ P . We
write a ‖ b if a and b are incomparable, and we extend ≤ to
subsets by defining

A ≤ B if and only if x ≤ y for all x ∈ A and y ∈ B.

Instead of {a} ≤ B and A ≤ {b} we also write a ≤ B and
A ≤ b, respectively. Analogous notations are used for the
reverse order ≥. Moreover, we define

L(A) := {x ∈ P | x ≤ A},
U (A) := {x ∈ P | A ≤ x}.

Instead of L(A∪B), L({a}∪B), L(A∪{b}) and L({a, b})we
also write L(A, B), L(a, B), L(A, b) and L(a, b), respec-
tively. Analogous notations are used for U . Instead of
L(U (A)) we also write LU (A). Analogously, we proceed
in similar cases. Sometimes we identify singletons with
their unique element, so we often write L(a, b) = 0 and
U (a, b) = 1 instead of L(a, b) = {0} and U (a, b) = {1},
respectively. The poset P is called downward directed if
L(x, y) �= ∅ for all x, y ∈ P . Of course, every poset with 0
is downward directed. The poset P is called bounded if it has
a least element 0 and a greatest element 1. This fact will be
expressed by notation (P,≤, 0, 1).

The following concept was introduced in Larmerová and
Rachůnek (1988): The poset P is called modular if

x ≤ z implies L(U (x, y), z) = LU (x, L(y, z)). (1)

This is equivalent to

x ≤ z implies UL(U (x, y), z) = U (x, L(y, z)).

Recall from Chajda and Länger (2019) that P is called
strongly modular if it satisfies the LU-identities

L(U (x, y),U (x, z)) ≈ LU (x, L(y,U (x, z))), (2)

L(U (L(x, z), y), z) ≈ LU (L(x, z), L(y, z)). (3)

These are equivalent to

UL(U (x, y),U (x, z)) ≈ U (x, L(y,U (x, z))),

UL(U (L(x, z), y), z) ≈ U (L(x, z), L(y, z)),

respectively. Observe that in case x ≤ z both (2) and (3)
yield (1). Hence, every strongly modular poset is modular.
Moreover, every modular lattice is a strongly modular poset.
A strongly modular poset which is not a lattice is presented
in Example 3.4.

TheposetP is calleddistributive if it satisfies the following
identity:

L(U (x, y), z) ≈ LU (L(x, z), L(y, z)). (4)

This identity is equivalent to every single one of the following
identities (see Larmerová and Rachůnek 1988):

UL(U (x, y), z) ≈ U (L(x, z), L(y, z)),
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U (L(x, y), z) ≈ UL(U (x, z),U (y, z)),

LU (L(x, y), z) ≈ L(U (x, z),U (y, z)).

In fact, the inclusions

LU (L(x, z), L(y, z)) ⊆ L(U (x, y), z),

UL(U (x, z),U (y, z)) ⊆ U (L(x, y), z)

hold in every poset. Hence, to check distributivity, we need
only to confirm one of the converse inclusions. Observe that
in case x ≤ z (4) implies (1). Hence every distributive poset
is modular. Distributivity does not imply strong modularity.
A unary operation ′ on P is called

• antitone if, for all x, y ∈ P , x ≤ y implies y′ ≤ x ′,
• an involution if it satisfies the identity x ′′ ≈ x ,
• a complementation if L(x, x ′) ≈ 0 and U (x, x ′) ≈ 1.

A poset is called Boolean if it is distributive and has a unary
operation which is a complementation. For A ⊆ P we define

max A := set of all maximal elements of A,

min A := set of all minimal elements of A,

A′ := {x ′ | x ∈ A}.

If the poset is bounded and distributive, we can prove the
following property of an antitone involution.

Lemma 2.1 Let (P,≤, ′, 0, 1) be a bounded distributive
poset with an antitone involution and a, b ∈ P with a ≤ b
and L(b, a′) = {0}. Then the following hold:

L(a, a′) = L(b, b′) = {0},
U (a, a′) = U (b, b′) = {1}.

Proof We have

L(a, a′) = LUL(a, a′) = LU (L(a, a′), 0)
= LU (L(a, a′), L(b, a′)) = L(U (a, b), a′)
= L(U (b), a′) = L(b, a′) = {0},

L(b, b′) = LUL(b′, b) = LU (0, L(b′, b))
= LU (L(a′, b), L(b′, b)) = L(U (a′, b′), b)
= L(U (a′), b) = L(a′, b) = {0},

U (a, a′) = (L(a′, a))′ = {0}′ = {1},
U (b, b′) = (L(b′, b))′ = {0}′ = {1}.

�
Now we recall the concept of a commutative meet-

directoid from Ježek and Quackenbush (1990), see also
Chajda and Länger (2011) for details. We will use it for

the characterization of consistent posets which will be intro-
duced below. The advantage of this approach is that we
characterize properties of posets by means of identities and
quasiidentities of algebras.Hence, one canuse algebraic tools
for their investigation.

A commutative meet-directoid (see Chajda and Länger
2011; Ježek and Quackenbush 1990) is a groupoid D =
(D,) satisfying the following identities:

x  x ≈ x (idempotency),

x  y ≈ y  x (commutativity),

(x  (y  z))  z ≈ x  (y  z) (weak associativity).

Let P = (P,≤) be a downward directed poset. Define x 
y := x ∧ y for comparable x, y ∈ P and let x  y = y  x be
an arbitrary element of L(x, y) if x, y ∈ P are incomparable.
ThenD(P) := (P,) is a commutativemeet-directoidwhich
is called a meet-directoid assigned to P. Conversely, if D =
(D,) is a commutative meet-directoid and we define for all
x, y ∈ D

x ≤ y if and only if x  y = x (5)

then P(D) := (D,≤) is a downward directed poset, the so-
called poset induced by D. Though the assignment P �→
D(P) is not unique, we have P(D(P)) = P for every down-
ward directed poset P. Sometimes we consider posets and
commutative meet-directoids together with a unary opera-
tion. Let (D,, ′) be a commutative meet-directoid (D,)
with an antitone involution, i.e., ′ is antitone with respect to
the partial-order relation induced by (5). We define

x � y := (x ′  y′)′ for all x, y ∈ D.

Then � is also idempotent, commutative and weakly asso-
ciative, and we have for all x, y ∈ D

x � y = x ∨ y if x, y are comparable,

x � y = y � x ∈ U (x, y) if x ‖ y,

x  y = x if and only if x � y = y,

L(x) = {z  x | z ∈ P},
U (x) = {z � x | z ∈ P},

L(x, y) = {(z  x)  (z  y) | z ∈ P},
U (x, y) = {(z � x) � (z � y) | z ∈ P}.

Posets with an antitone involution can be characterized
in the language of commutative meet-directoids by identi-
ties as follows. The following lemma was proved in Chajda
et al. (2021b). For the convenience of the reader we provide
a proof.
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Lemma 2.2 Let P = (P,≤, ′) be a downward directed poset
with a unary operation andD(P) an assignedmeet-directoid.
Then P is a poset with an antitone involution if and only if
D(P) satisfies the identities

x ′′ ≈ x, (6)

(x  y)′  y′ ≈ y′. (7)

Proof Condition (6) is evident by definition. Let a, b ∈ P .
If (7) holds and a ≤ b then b′ = (a  b)′  b′ = a′  b′ ≤ a′
which shows that ′ is antitone. If, conversely, ′ is antitone, then
from ab ≤ bwe obtain b′ ≤ (ab)′, i.e., (ab)′ b′ = b′
which is (7). �

3 Characterizations by commutative
meet-directoids

Now we define our key concept.

Definition 3.1 A consistent poset is a bounded poset (P,≤
, ′, 0, 1) with an antitone involution satisfying the following
two conditions:

L(x, x ′) = L(y, y′) for all x, y ∈ P \ {0, 1}, (8)

L(x, y) �= 0 for all x, y ∈ P \ {0}. (9)

It is easy to see that an at least three-element boundedposet
P = (P,≤, ′, 0, 1) with an antitone involution is consistent
if and only ifP has exactly one atom a such that P = [a, a′]∪
{0, 1} and ′ is a complementation on the interval ([a, a′],≤).

Lemma 3.2 Conditions (8) and (9) are independent.

Proof The four-element Boolean algebra satisfies (8) but not
(9), and the five-element chain (together with its unique pos-
sible antitone involution) satisfies (9) but not (8). �

In the following we list examples of consistent posets.

Example 3.3 The poset depicted in Fig. 1
is consistent, but neither modular since

L(U (b, d), e′) = L(a′, e′) = L(e′) �= L(b) = LU (b)

= LU (a, b) = LU (b, L(d, e′)),

nor a lattice since d ′ and e′ are different minimal upper
bounds of b and c.

Example 3.4 The poset visualized in Fig. 2
is consistent and strongly modular, but not a lattice since

b′ and e′ are different minimal upper bounds of c and d.

0

a

b c d e

e d c b

a

1 = 0

Fig. 1 Non-modular consistent poset

0

a

b c d e

e d c b

a

1 = 0

Fig. 2 Strongly modular consistent poset

Example 3.5 The poset depicted in Fig. 3
is consistent and distributive, but neither Boolean since

L(a, a′) = L(a) �= 0, nor a lattice since c′ andd ′ are different
minimal upper bounds of b and e.

Using the language of commutative meet-directoids, we
can easily characterize lower cones L(a, b) as follows.

Lemma 3.6 Let (P,≤) be a downward directed poset,
a, b, c ∈ P and (P,) an assigned meet-directoid. Then
c ∈ L(a, b) if and only if c = (c  a)  (c  b).
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0

a

b c d e

ff

de c b

a

1 = 0

Fig. 3 Distributive consistent poset

Proof If c ∈ L(a, b) then c = c  c = (c  a)  (c  b). If,
conversely, c = (c  a)  (c  b) then

c ≤ c  a ≤ a,

c ≤ c  b ≤ b

and hence c ∈ L(a, b). �
Now we characterize consistent posets by means of com-

mutative meet-directoids.

Theorem 3.7 Let P = (P,≤, ′, 0, 1) be a bounded poset
with a unary operation andD(P) an assignedmeet-directoid.
Then P is consistent if and only ifD(P) satisfies identities (6)
and (7) and implications (10) and (11):

x, y �= 0, 1 and z = (z  x)  (z  x ′) imply z = (z  y)  (z  y′),
(10)

if z = (z  x)  (z  y) implies z = 0 then x = 0 or y = 0.

(11)

Proof (10) According to Lemma 3.6 the following are equiv-
alent:

(10),

if x, y �= 0, 1 and z ∈ L(x, x ′) then z ∈ L(y, y′),
if x, y �= 0, 1 then L(x, x ′) ⊆ L(y, y′),
if x, y �= 0, 1 then L(x, x ′) = L(y, y′).

(11) According to Lemma 3.6 the following are equivalent:

(11),

if x, y �= 0 then there exists some z �= 0 with z ∈ L(x, y),

if x, y �= 0 then L(x, y) �= 0.

Lemma 2.2 completes the proof. �
We can also characterize downward directed distribu-

tive posets in a similar manner. The following theorem was
proved in Chajda and Länger (2021b). For the convenience
of the reader we provide a proof.

Theorem 3.8 Let P = (P,≤) be a downward directed poset
and D(P) an assigned meet-directoid. Then P is distributive
if and only if D(P) satisfies implication (12):

w  ((t � x) � (t � y)) = w  z = w and s � ((t  x)  (t  z))

= s � ((t  y)  (t  z)) = s for all t ∈ P implyw ≤ s. (12)

Proof Since

U (x, y) = {(t � x) � (t � y) | t ∈ P},
w  u = w is equivalent to w ∈ L(u),

w  ((t � x) � (t � y)) = w  z = w is equivalent to w ∈
L(U (x, y), z). Further, since

L(x, z) = {(t  x)  (t  z) | t ∈ P},
L(y, z) = {(t  y)  (t  z) | t ∈ P},
s � u = s is equivalent to s ∈ U (u),

s � ((t  x)  (t  z)) = s � ((t  y)  (t  z)) = s is
equivalent to s ∈ U (L(x, z), L(y, z)). Hence the following
are equivalent:

(12),

w ∈ L(U (x, y), z) and s ∈ U (L(x, z), L(y, z)) imply w ≤ s,

L(U (x, y), z) ⊆ LU (L(x, z), L(y, z)),

P is distributive. �

4 Residuation in consistent posets

Definition 4.1 A consistent residuated poset is an ordered
six-tuple (P,≤,�,→, 0, 1)where (P,≤, 0, 1) is a bounded
poset and � and → are mappings (so-called operators) from
P2 to 2P satisfying the following conditions for all x, y, z ∈
P:

• x � y ≈ y � x ,
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• x � 1 ≈ 1 � x ≈ x ,
• x � y ≤ z if and only if x ≤ y → z (adjointness).

Let (P,≤, ′, 0, 1) be a poset with an antitone involution.
Define mappings � and → from P2 to 2P as follows:

x � y :=
{
0 if x ≤ y′,
max L(x, y) otherwise

x → y :=
{
1 if x ≤ y,
minU (x ′, y) otherwise (13)

Theorem 4.2 Let (P,≤, ′, 0, 1) be a finite distributive con-
sistent poset and � and → be defined by (13). Then (P,≤
,�,→, 0, 1) is a consistent residuated poset.

Proof Due to the finiteness of P , the sets x�y and x → y are
not empty for all x, y ∈ P . Let a, b, c ∈ P . Because a ≤ b′
is equivalent to b ≤ a′ and, moreover, L(a, b) = L(b, a), �
is commutative. Further,

if a = 0 then a � 1 = 0 = a,

if a �= 0 then a � 1 = max L(a, 1) = max L(a) = a.

By commutativity of � we obtain a � 1 = 1 � a = a. We
consider the following cases:

• a ≤ b′ and b ≤ c.
Then a � b = 0 ≤ c and a ≤ 1 = b → c.

• a ≤ b′ and b � c.
Then a � b = 0 ≤ c and a ≤ b′ ≤ minU (b′, c) = b →
c.

• a � b′ and b ≤ c.
Then a�b = max L(a, b) ≤ b ≤ c and a ≤ 1 = b → c.

• a � b′, b � c.
In case a = 1, a�b ≤ c and a ≤ b → c are not possible
because a�b = 1�b = b � c. Moreover, b, c′ �= 0 and
therefore b → c = minU (b′, c) = (max L(b, c′))′ �=
0′ = 1 whence a = 1 � b → c.
Similarly, in case c = 0, a � b ≤ c and a ≤ b → c
are not possible because a, b �= 0 and therefore a �
b = max L(a, b) �= 0 whence a � b � c. Moreover,
a � b′ = minU (b′) = minU (b′, c) = b → c.
In case b = 1 the following are equivalent:

a � b ≤ c,

a � 1 ≤ c,

a ≤ c,

a ≤ minU (c),

a ≤ minU (1′, c),
a ≤ 1 → c,

a ≤ b → c.

There remains the case a, b �= 1 and c �= 0. Then
a, b, c �= 0, 1. If a � b ≤ c then max L(a, b) ≤ c and
hence L(a, b) ≤ c whence

b → c = minU (b′, c) ⊆ U (b′, c) ⊆ U (b′, a � b)

= U (b′, L(a, b))
= UL(U (b′, a),U (b′, b))
= UL(U (b′, a),U (a′, a))

⊆ ULU (a) = U (a)

which implies a ≤ b → c. If, conversely, a ≤ b → c
then a ≤ minU (b′, c) and hence a ≤ U (b′, c) whence

a � b = max L(a, b) ⊆ L(a, b) ⊆ L(b → c, b)

= L(U (b′, c), b)
= LU (L(b′, b), L(c, b)) = LU (L(c′, c), L(c, b))

⊆ LUL(c) = L(c)

and hence a � b ≤ c.

This shows that in any case a � b ≤ c is equivalent to a ≤
b → c. �

We now study residuation in not necessarily distributive
consistent posets. For this purpose, we slightly modify our
definition of residuation by deleting the assumption of com-
mutativity of �.

Definition 4.3 A weak consistent residuated poset is an
ordered six-tuple (P,≤,�,→, 0, 1) where (P,≤, 0, 1) is
a bounded poset and� and→ are mappings (so-called oper-
ators) from P2 to 2P satisfying the following conditions for
all x, y, z ∈ P:

• x � 1 ≈ 1 � x ≈ x ,
• x � y ≤ z if and only if x ≤ y → z (adjointness).

Let (P,≤, ′, 0, 1) be a poset with an antitone involution.
We modify the definition of the mappings (so-called opera-
tors) � and → from P2 to 2P in the following way:

x � y :=
{
0 if x ≤ y′,
max L(U (x, y′), y) otherwise

x → y :=
{
1 if x ≤ y,
minU (x ′, L(x, y)) otherwise (14)

Now,we are able to prove our second result on residuation.

Theorem 4.4 Let (P,≤, ′, 0, 1) be a finite strongly modular
consistent poset and� and→ be defined by (14). Then (P,≤
,�,→, 0, 1) is a weak consistent residuated poset.
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Proof Due to the finiteness of P , the sets x � y and x → y
are not empty for all x, y ∈ P . Let a, b, c ∈ P . If a = 0 then
a � 1 = 0 = a and 1 � a = 0 = a. If a �= 0 then

a � 1 = max L(U (a, 1′), 1) = max LU (a) = max L(a) = a,

1 � a = max L(U (1, a′), a) = max L(a) = a.

We consider the following cases:

• a ≤ b′ and b ≤ c.
Then a � b = 0 ≤ c and a ≤ 1 = b → c.

• a ≤ b′ and b � c.
Then a�b = 0 ≤ c and a ≤ b′ ≤ minU (b′, L(b, c)) =
b → c.

• a � b′ and b ≤ c.
Then a� b = max L(U (a, b′), b) ≤ b ≤ c and a ≤ 1 =
b → c.

• a � b′, b � c.
In case a = 1, a � b ≤ c and a ≤ b → c are
not possible because a � b = 1 � b = b � c.
Moreover, b, c′ �= 0 and hence L(b, c′) �= 0 which
implies L(b,U (b′, c′)) �= 0 and therefore b → c =
minU (b′, L(b, c)) = (max L(b,U (b′, c′)))′ �= 0′ = 1
whence a = 1 � b → c.
Similarly, in case c = 0, a � b ≤ c and a ≤ b → c are
not possible because a, b �= 0 and hence L(a, b) �= 0
whence L(U (a, b′), b) �= 0 and therefore a � b =
max L(U (a, b′), b) �= 0 whence a � b � c. Moreover,
a � b′ = minU (b′) = minU (b′, L(b, c)) = b → c.
In case b = 1 the following are equivalent:

a � b ≤ c,

a � 1 ≤ c,

a ≤ c,

a ≤ minU (c),

a ≤ minUL(c),

a ≤ minU (1′, L(1, c)),
a ≤ 1 → c,

a ≤ b → c.

There remains the case a, b �= 1 and c �= 0. Then
a, b, c �= 0, 1. If a � b ≤ c then

b → c = minU (b′, L(b, c)) ⊆ U (b′, L(b, c))
⊆ U (b′, L(b, a � b))

= U (b′, L(b,max L(U (a, b′), b)))
= U (b′, L(b) ∩ L(max L(U (a, b′), b)))
= U (b′, L(b) ∩ L(U (a, b′), b))
= U (b′, L(b,U (a, b′))) = UL(U (b′, b),U (a, b′))
= UL(U (a′, a),U (a, b′)) ⊆ ULU (a) = U (a)

which implies a ≤ b → c. If, conversely, a ≤ b → c
then

a � b = max L(U (a, b′), b) ⊆ L(U (a, b′), b)
⊆ L(U (b → c, b′), b)

= L(U (minU (b′, L(b, c)), b′), b)
= L(U (minU (b′, L(b, c))) ∩U (b′), b)
= L(U (b′, L(b, c)) ∩U (b′), b)
= L(U (b′, L(b, c)), b) = L(U (L(b, c), b′), b)
= LU (L(b, c), L(b′, b))
= LU (L(b, c), L(c′, c)) ⊆ LUL(c) = L(c)

and hence a � b ≤ c.

This shows that in any case a � b ≤ c is equivalent to a ≤
b → c. �

5 Dedekind–MacNeille completion

In what follows we investigate the question for which posets
P with an antitone involution their Dedekind–MacNeille
completion DM(P) is a consistent lattice. A bounded lat-
tice (L,∨,∧, ′, 0, 1) with an antitone involution is called
consistent if it is consistent when considered as a poset, i.e.,
if

x ∧ x ′ = y ∧ y′ for all x, y ∈ L \ {0, 1},
x ∧ y �= 0 for all x, y ∈ L \ {0}.

Let P = (P,≤, ′) be a poset with an antitone involution.
Define

DM(P) := {L(S) | S ⊆ P},
A∗ := L(A′) for all A ∈ DM(P),

DM(P) := (DM(P),⊆,∗ )

ThenDM(P) is a complete latticewith an antitone involution,
called theDedekind–MacNeille completion of P. That ∗ is an
antitone involution on (DM(P),⊆) can be seen as follows.
Let A, B ∈ DM(P). If A ⊆ B then A′ ⊆ B ′ and hence B∗ =
L(B ′) ⊆ L(A′) = A∗. Moreover, A∗∗ = L((L(A′))′) =
LU (A) = A. We have

(L(A))∗ = L((L(A))′) = LU (A′) for all A ⊆ P,

A ∨ B = LU (A, B) for all A, B ∈ DM(P),

A ∧ B = A ∩ B for all A, B ∈ DM(P).

Theorem 5.1 Let P = (P,≤, ′) be a poset with an antitone
involution. Then DM(P) is a consistent lattice if and only if
P is a consistent poset.
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Proof Assume P to be a consistent poset. Further assume
A ⊆ P and L(A) �= 0, P . Then 1 /∈ L(A) and there exists
some a ∈ L(A)\{0}. Hence 0 /∈ U (A′) and a′ ∈ U (A′)\{1}.
Now

L(A) ∧ (L(A))∗ = L(A) ∩ LU (A′)

=
⋃

x∈L(A)
L(x) ∩

⋂
y∈U (A′)

L(y)

=
⋃

x∈L(A)\{0}
L(x) ∩

⋂
y∈U (A′)\{1}

L(y).

Now

L(a, a′) =
⋂

y∈U (A′)\{1}
L(y′, y)

=
⋂

y∈U (A′)\{1}
(L(y′) ∩ L(y))

⊆
⋂

y∈U (A′)\{1}

⎛
⎝ ⋃

x∈L(A)\{0}
L(x) ∩ L(y)

⎞
⎠

=
⋃

x∈L(A)\{0}
L(x) ∩

⋂
y∈U (A′)\{1}

L(y)

=
⋃

x∈L(A)\{0}

⎛
⎝L(x) ∩

⋂
y∈U (A′)\{1}

L(y)

⎞
⎠

⊆
⋃

x∈L(A)\{0}
(L(x) ∩ L(x ′))

=
⋃

x∈L(A)\{0}
L(x, x ′) = L(a, a′)

and hence L(A) ∧ (L(A))∗ = L(a, a′). This shows
L(A) ∧ (L(A))∗ = L(B) ∧ (L(B))∗ for all A, B ⊆ P
with L(A), L(B) �= 0, P . Now assume A, B ⊆ P and
L(A), L(B) �= 0. Then there exists some a ∈ L(A) \ {0}
and some b ∈ L(B) \ {0}. Since P is consistent there exists
some c ∈ L(a, b) \ {0}. Now L(c) ⊆ L(a) ⊆ L(A),
L(c) ⊆ L(b) ⊆ L(B) and 0 �= c ∈ L(c) and hence
L(c) �= 0. This shows that DM(P) is a consistent lattice
provided P is a consistent poset. The converse is evident. �
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