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Abstract
We present a numerical attribute dependency method for massive datasets based on the concepts of direct and inverse fuzzy

transform. In a previous work, we used these concepts for numerical attribute dependency in data analysis: Therein, the

multi-dimensional inverse fuzzy transform was useful for approximating a regression function. Here we give an extension

of this method in massive datasets because the previous method could not be applied due to the high memory size. Our

method is proved on a large dataset formed from 402,678 census sections of the Italian regions provided by the Italian

National Statistical Institute (ISTAT) in 2011. The results of comparative tests with the well-known methods of regression,

called support vector regression and multilayer perceptron, show that the proposed algorithm has comparable performance

with those obtained using these two methods. Moreover, the number of parameters requested in our method is minor with

respect to those of the cited in the above two algorithms.

Keywords Attribute dependency � Data mining � Fuzzy transform

1 Introduction

Data analysis and data mining knowledge discovery pro-

cesses represent powerful functionalities that can be com-

bined in knowledge-based expert and intelligent systems in

order to extract and build knowledge starting by data. In

particular, attribute dependency data analysis is an activity

necessary to reduce the dimensionality of the data and to

detect hidden relations between features. Nowadays, in

many application fields, data sources are massive (for

example, web social data, sensor data, etc.), and it is nec-

essary to implement knowledge extraction methods that

can operate on massive data. Massive (Very Large (VL)

and Large (L)) datasets (Chen and Zhang 2014) are

produced and updated and they cannot be managed by

traditional databases. Today, access via the Web to these

datasets has led to develop technologies for managing them

(cfr., e.g., (Dean 2014; Leskovec et al. 2014; Singh et al.

2015)).

We recall the regression analysis (cfr., e.g., (Draper and

Smith 1988; Han et al. 2012; Johnson and Wichern 1992;

Jun et al. 2015; Piatecky–Shapiro and Frawley 1991)) for

estimating relationships among variables in the datasets

(cfr., e.g., (Lee and Yen 2004; Mitra et al. 2002; Tanaka

1987; Wood et al. 2015)) and fuzzy tools for attribute

dependency (Vucetic et al. 2013; Yen and Lee 2011).

Machine learning soft computing models were proposed

in the literature to perform nonlinear regressions on high

dimensional data; two well-known machine learning non-

linear regression algorithms are support vector regression

(SVR) (Drucker et al. 1996) and multilayer perceptron

(MLP) (cfr., e.g., (Collobert and Bengio 2004; Cybenko

1989; Hastie et al. 2009; Haykin 1999,2009; Murtagh

1991; Schmidhube 2014)) algorithms. The main problems

of these algorithms are the complexity of the model due to

the presence of many parameters to be set by the user, and

the presence of overfitting, phenomenon in which the

regression function fits optimally the training set data, but
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fails in predictions on new data. K-fold cross-validation

techniques are proposed in the literature to avoid overfit-

ting (Anguita et al. 2005). In Thomas and Suhner (2015), a

pruning method based on variance sensitivity analysis is

proposed to find the optimal structure of a multilayer per-

ceptron in order to mitigate overfitting problems. In Han

and Jian (2019), a novel sparse-coding kernel algorithm is

proposed to overcome overfitting in disease diagnosis.

Some authors proposed variations of nonlinear machine

learning regression models to manage massive data. In

Cheng et al. (2010), Segata and Blanzieri (2009) a fast-

local support vector machine (SVM) method to manage

large datasets are presented in which a set of multiple local

SVMs for low-dimensional data are constructed. In Zheng

et al. (2013), the authors proposed an incremental version

of the vector machine regression model to manage large-

scale data. In Peng et al. (2013) the authors proposed a

parallel architecture of a logistic regression model for

massive data management. Recently, variations of the

extreme learning machine (ELM) regression methods for

massive data based on the MapReduce model are presented

(Chen et al. 2017; Yao and Ge 2019).

The presence of a high number of parameters makes

SVR and MLP methods too complex to be integrated as

components into an intelligent or expert system. In this

research, we propose a model of attribute dependency in

massive datasets based on the use of the multi-dimensional

fuzzy transform. We extend the attribute dependency

method presented in Martino et al. (2010a) to massive

datasets in which the inverse multi-dimensional fuzzy

transform is used as a regression function. Our goal is to

guarantee a high performance of the proposed method in

the analysis of massive data, maintaining, at the same time,

the usability of the previous multi-dimensional fuzzy

transform attribute dependency. As in Jun et al. (2015), we

use a random sampling algorithm for subdividing the

dataset in subsets of equal cardinality.

The fuzzy transform (F-transform) method (Perfilieva

2006) is a technique which approximates a given function

by means of another function unless an arbitrary constant.

This approach is particularly flexible in the applications

such as image processing (cfr., e.g., (Martino et al.

2008,2010b,2011b; Martino and Sessa 2007,2012)), data

analysis (cfr., e.g., (Martino et al. 2010a,2011a; Perfilieva

et al. 2008)). In this last work, an algorithm, called FAD

(F-transform Attribute Dependence), evaluates an attribute

Xz depending from k attributes X1…Xk. (predictors) with

z 62 {1,2,…k}, i.e. Xz = H(X1…Xk), and the (unknown)

function H is approximated with the inverse multi-dimen-

sional F-transform via a procedure presented in Perfilieva

et al. (2008). The error of this approximation in Martino

et al. (2010a) is measured from a statistical index of

determinacy (Draper and Smith 1988; Johnson and

Wichern 1992). If it overcomes a prefixed threshold, then

the functional dependency is found. Each attribute has an

interval Xi = [ai,bi], i = 1,…, k, as domain of knowledge.

Then an uniform fuzzy partition (whose definition is given

in Sect. 2) of fuzzy sets Ai1;Ai2; :::;Ainif g defined on [ai,bi]

is created assuming ni C 3.

The main problem in the use of the inverse F-transform

for approximating the function H consists in the fact that

the data are not sufficiently dense with respect to the fuzzy

partitions. The FAD algorithm solves this problem with an

iterative process which is shown in Sect. 3. If the data are

not sufficiently dense with respect to the fuzzy partitions,

the process stops otherwise an index of determinacy is

calculated. If this index is greater than a threshold a, the
functional dependency is found and the inverse F-transform

is considered as approximation of the function H, otherwise

a finer fuzzy partition is set with n: = n ? 1. The FAD

algorithm is schematized in Fig. 1.

In this paper, we propose an extension of the FAD

algorithm, called MFAD (massive F-transform attribute

dependency) for finding dependencies between numerical

attributes in massive datasets. In other words, by using a

uniform sampling method, we can apply the algorithm of

Martino et al. (2010a) to several sample subsets of the data

and hence we extend the results obtained to the overall

dataset with suitable mathematical artifices.

Indeed, the dataset is partitioned randomly in s subsets

having equal cardinality to which we apply the F-transform

method.

Let Dl ¼ ½a1l; b1l� � � � � � ½akl; bkl�; l ¼ 1; :::; s, be the

Cartesian product of the domains of the attributes X1,

X2,…, Xk, where ail and bil are the minimum and maximum

values of Xi in the lth subset. Hence, the multi-dimensional

inverse F-transform HF
n1ln2l:::nkl

is calculated for approxi-

mating the function H in the domain Dl and an index of

determinacy r2cl is calculated for evaluating the error in the

approximation of H with HF
n1ln2l:::nkl

in Dl. For simplicity, we

put n1l = n2l = � � � = nkl = nl and thus HF
n1ln2l���nkl = HF

nl
. In

order to obtain the final approximation of H, we introduce

weights for considering the contribute of the inverse F-

transform HF
nl
in the approximation of H. We calculate the

weighted mean of HF
n1
,…, HF

ns
replacing the weights with

the indices of determinacy r2c1,…, r2cs.

Calculate the approximated value of HF in ðx1; :::; xkÞ 2Ss
l¼1 Dl given by

HFðx1; x2; :::; xkÞ ¼
Ps

l¼1 wlðx1; x2; :::; xkÞ � HF
nl
ðx1; x2; :::; xkÞ

Ps
l¼1 wlðx1; x2; :::; xkÞ

ð1Þ

where
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wlðx1; x2; :::; xkÞ ¼ r2cl if ðx1; x2; :::; xkÞ 2 Dl

0 otherwise

�

ð2Þ

For example, we consider two attributes, X1 and X2, as

inputs and suppose, for simplicity, that the dataset is par-

titioned in two subsets. Figure 2 shows two rectangles D1

(red) and D2 (green). The zone labeled as A of the input

space is covered by the domain D2: in this zone the weight

w1 is null and HF ¼ HF
2 . Conversely, in the zone C the

contribute of HF
2 is null and HF ¼ HF

1 . In the zone labeled

as B, the inverse F-transforms, calculated for both subsets,

contribute to the final evaluation of H, with a weight cor-

responding to the index of determinacy.

Figure 3 shows the schema of MFAD. We apply our

method on a L dataset loadable in memory, so we can apply

also the method of Martino et al. (2010a) and hence we

compare the results obtained by using both methods. As

test dataset, we consider the last Italian census data

acquired during 2011 by ISTAT (Italian National Statisti-

cal Institute). Section 2 contains the F-transform in one and

more variables (Perfilieva et al. 2008). In Sect. 3, the

F-transform attribute dependency method is presented,

Sect. 4 contains the results of our tests. Conclusions are

described in Sect. 5.

2 F-transforms in one and k variables

Following the definitions of Perfilieva (2006). We recall

the main notations for making this paper self-contained.

Let n C 2, x1, x2,…, xn be points (nodes) of [a,b], x1-
= a\ x2\ � � � \ xn = b. The fuzzy sets A1,…, An:

[a,b] ? [0,1] (basic functions) constitute a fuzzy partition

of [a,b] if Ai(xi) = 1 for i = 1,2,…, n; Ai(x) = 0 if x 62(xi-
1,xi?1) for i = 2,…, n; Ai(x) is a continuous on [a,b]; Ai(x)

strictly increases on [xi-1, xi] for i = 2,…, n and strictly

decreases on [xi,xi?1] for i = 1,…, n-1;
Pn

i¼1 AiðxÞ ¼ 1 for

every x 2[a,b]. The partition{A1(x),…, An(x)} is said uni-

form if n C 3, xi = a ? h•(i-1), where h = (b-a)/(n-1) and

i = 1, 2,…, n (equidistance); Ai(xi-x) = Ai(xi ? x) for x

Fig. 1 Flux diagram of the FAD

algorithm
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2[0,h] and i = 2,…, n-1; Ai?1(x) = Ai(x-h) for x 2[xi, xi?1]

and i = 1,2,…, n-1.

We know that the function f assumes given values in the

points p1,…, pm of [a,b],. If the set P = {p1,…, pm} is

sufficiently dense with respect to {A1, A2,…, An}, that is for

every i 2{1,…, n} there exists an index j 2{1,…, m} such

that Ai(pj)[ 0, then the n-tuple ½F1;F2; :::;Fn� is the dis-

crete direct F-transform of f with respect to {A1, A2,…, An},

where each Fi is given by

Fi ¼
Pm

j¼1 f ðpjÞAiðpjÞ
Pm

j¼1 AiðpjÞ
ð3Þ

for i = 1,…, n. Then we define the discrete inverse F-

transform of f with respect to the basic functions {A1,

A2,…, An} by setting

fF;nðpjÞ ¼
Xn

i¼1

FiAiðpjÞ ð4Þ

for every j 2{1,…, m}. Now we recall concepts from

Perfilieva et al. (2008). The F-transforms can be extended

to k (C 2) variables considering the Cartesian product of

intervals [a1,b1] � [a2,b2] � � � � � [ak,bk]. Let

x11; x12; ::::; x1n12[a1,b1],…, xk1; xk2; ::::; xknk2[ak,bk] be

n1 ? � � � ? nk assigned points (nodes) such that xi1 = ai-
\ xi2\ � � � \ xini = bi and {Ai1;Ai2; ::::;Aini} be a fuzzy

partition of [ai,bi] for i = 1,…, k. Let the function f (x1,x2,…,

xk) be assuming values in m points pj = (pj1, pj2,…, pjk) 2
[a1,b1] � [a2,b2] � � � � � [ak,bk] for j = 1,…, m. The set

P = {(p11, p12,…, p1k), (p21, p22,…, p2k),…, (pm1, pm2,…,

pmk)} is said sufficiently dense with respect to

A11;A12; :::;A1n1f g,…, Ak1;Ak2; :::;Aknkf g if for {h1,…,

hk}2{1,…, n1} � … � {1,…, nk} there exists pj = (pj1,-
pj2,…, pjk)2 P with A1h1ðpj1Þ � A2h2ðpj2Þ � . . .� AkhK ðpjkÞ[ 0,

j 2 {1,…, m}. Then we define the (h1,h2,…, hk)th com-

ponent Fh1h2:::hK of the discrete direct F-transform of f with

respect to A11;A12; :::;A1n1f g, …, Ak1;Ak2; :::;Aknkf g as

Fh1h2:::hK ¼
Pm

j¼1 f ðpj1 ; pj2; ::: pjkÞ � A1h1ðpj1Þ � A2h2ðpj2Þ � ::: � AkhK ðpjkÞPm
j¼1 A1h1ðpj1Þ � A2h2ðpj2Þ � ::: � AkhK ðpjkÞ

ð5Þ

Fig. 2 Example of union of

domains of the subsets in which

the dataset is partitioned

8734 F. Di Martino, S. Sessa

123



Thus we define the discrete inverse F-transform of f with

respect to A11;A12; :::; A1n1f g,…, Ak1;Ak2; :::;AknKf g by

setting for pj = (pj1, pj2,…, pjk)2 [a1,b1] � … � [ak,bk]:

f Fn1n2:::nK ðpj1; pj2; . . .; pjkÞ ¼
Xn1

h1¼1

Xn2

h2¼1

:::
Xnk

hK¼1

Fh1h2:::hK � A1h1ðpj1Þ � . . . � AkhK ðpjkÞ

ð6Þ

for j = 1,…, m. The following Theorem holds (Perfilieva

2006):

Theorem 1 Let f(x1,x2,…, xk) be a function assigned on the

set of points P = {(p11,p12, …,p1k),(p21, p22,…, p2k),…,

(pm1, pm2, …,pmk)} � [a1,b1] � [a2,b2] �� � � � [ak,bk].

Then for every e[ 0, there exist k integers n1(e),…, nk(e)
and related fuzzy partitions.

A11;A12; :::;A1n1ðeÞ
� �

; . . .; Ak1;Ak2; :::;Aknk eð Þ
� �

ð7Þ

such that the set P is sufficiently dense with respect to fuzzy

partitions (5) and for every pj = (pj1, pj2,…, pjk) 2 P,

j = 1,…, m, the following inequality holds:

f ðpj1; pj2; :::; pjkÞ � f Fn1ðeÞn2ðeÞ:::nkðeÞðpj1; pj2; :::; pjkÞ
�
�
�

�
�
�\e ð8Þ

3 Multi-dimensional algorithm for massive
datasets

3.1 FAD algorithm

We schematize a dataset in tabular form as

Here X1,…, Xi,…, Xr are the involved attributes and

O1,…, Oj,…, Om (m[ r) are the instances and pji is the

value of the attribute Xi for the instance Oj. Each attribute

Xi can be considered as a numerical variable assuming

values in the domain [ai,bi], where ai = min{p1i,…, pmi}

and bi = max{p1i,…, pmi}. We analyze the functional

dependency between attributes in the form:

Xz ¼ H X1; . . .;Xkð Þ ð9Þ

where z 2{1,…, r}, k B r\m, Xz = X1, X2, …,Xk,, H:

[a1,b1] � [a2,b2] � … � [ak,bk] ! [az,bz] is continuous.

In [ai,bi], i = 1,2,…, k, an uniform partition of

Ai1; :::;Aij; :::;Ain

� �
is defined for i = 1,…, k and j = 2,…,

k-1:

Ai1ðxÞ ¼
0:5 � ð1þ cos

p
hi
ðx� xi1ÞÞ if x 2 ½xi1; xi2�

0 otherwise

8
<

:

AijðxÞ ¼
0:5 � ð1þ cos

p
hi
ðx� xijÞÞ if x 2 ½xiðj�1Þ; xiðjþ1Þ�

0 otherwise

8
<

:

AinðxÞ ¼
0:5 � ð1þ cos

p
hi
ðx� xinÞÞ if x 2 ½xiðn�1Þ; xin�

0 otherwise

8
<

:

ð10Þ

where hi = (bi-ai)/(n-1), xij = ai ? hi�(j-1).
By setting H (pj1,pj2,…, pjk) = pjz for j = 1,2,…, m, the

components of H are given by

Fh1h2...hk ¼
Pm

j¼1 pjz � A1h1ðpj1Þ � . . . � AkhK ðpjkÞPm
j¼1 A1h1ðpj1Þ � . . . � AkhK ðpjkÞ

ð11Þ

X 1 ... X i ... X r
O1 p11                 . p1i . p1r
. . . . . .

. . . . . .

. . . . . .
Oj pj1 . pji . pjr
. . . . . .
. . . . . .
. . . . . .
Om pm1 . pmi . pmr
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The inverse F-transform HF
n1n2:::nk

is defined as

HF
n ðpj1; pj2; :::pjkÞ ¼

Xn

h1¼1

Xn

h2¼1

:::
Xn

hk¼1

Fh1h2:::hK � A1h1ðpj1Þ � ::: � AkhK ðpjkÞ

ð12Þ

The error of the approximation is evaluated in (pj1,-

pj2,…, pjm) by using the following statistical index of

determinacy (Draper and Smith 1988; Johnson and Wich-

ern 1992):

r2c ¼
Pm

j¼1 HF
n1n2:::nk

ðpj1; pj2; :::pjkÞ � p̂z

� �2

Pm
j¼1 pjz � p̂z

� 	2 ð13Þ

where p̂z is the mean of the values of the attribute Xz. If

r2c = 0 (resp., r2c = 1) means that (11) does not fit (resp., fits

perfectly) to the data. However we use a variation of (11)

for taking into account both the number of independent

variables and the scale of the sample used (Martino et al.

2010a) given by

r0
2
c ¼ 1� 1� r2c

� 	
� m� 1

m� k � 1


 �

ð14Þ

The pseudocode of the algorithm FAD is schematized

below.

The function DirectFuzzyTransform() is used to calcu-

late each direct F-transform component. The function

BasicFunction() calculates the value AihiðxÞ for an assigned

x of the hith basic function of the ith fuzzy partition.

IndexofDeterminacy calculates the index of determinacy.
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3.2 MFAD algorithm

We consider a massive dataset DT composed by r attri-

butes where X1,…, Xi,…, Xr and m instances O1,…, Oj,…,

Om (m[ r). We make a partition of DT in s subsets

DTl,…, DTs with the same cardinality, by using an uniform

random sample in such a way each subset is loadable in

memory. We apply the FAD algorithm to each subset,

calculating the direct F-transform components, the inverse

F-transforms HF
n1
…HF

ns
, the indices of determinacy r

02
c1,…,

r02cs. r
02
cs and the domains Dl,…, Ds, where Dl ¼ ½a1l; b1l� �

� � � � ½akl; bkl�; l = 1,…, s. All these quantities are saved in

memory. If a dependency f is not found for the lth subset,

the corresponding value of r02cl is set to 0. The pseudocode

of MFAD is given below.

Attribute dependency data analysis for massive datasets by fuzzy transforms 8739

123



Now we consider a point (x1,x2,…, xk) 2
Ss

l¼1

Dl. In order

to approximate the function H(x1,x2,…, xk), we calculate

the weights as:

w0
lðx1; x2; :::; xkÞ ¼

r02cl if ðx1; x2; . . .; xkÞ 2 Dl

0 otherwise
l ¼ 1; :::; s

�

ð15Þ

If for any subset the functional dependency is not found,

then w
0

l = 0 for each l = 1,…, s. Otherwise, the approxi-

mated value of H(x1,x2,…, xk) is given by

HFðx1; x2; :::; xkÞ ¼
Ps

i¼1 w
0

iðx1; x2; :::; xkÞ � HF
nl
ðx1; x2; :::; xkÞ

Ps
l¼1 w

0
iðx1; x2; :::; xkÞ

ð16Þ

which is also the value of Xz. To analyze the performance

of the MFAD algorithm, we execute a set of experiments

on a large dataset formed from 402,678 census tracts of the

Italian regions provided by the Italian National Statistical

Institute (ISTAT) in 2011. Therein, 140 numerical attri-

butes belong to each of the following categories:

• Inhabitants,

• Foreigner and stateless inhabitants,

• Families,

• Buildings,

• Dwellings.

The FAD method is applied on the overall dataset, the

MFAD method is applied by partitioning the dataset in s

subsets, and we perform the tests varying the value of the

parameter s and by setting the threshold a = 0.7.

In addition, we compare the MFAD algorithm with the

support vector regression (SVR) and multilayer perceptron

(MLP) algorithms.

4 Experiments

Table 1 shows the 402,678 census tracts of Italy divided for

each region.

Table 2 shows the approximate number of census tracts

in each subset for each partition of the dataset in s subsets.

In any experiment, we apply the MFAD algorithm to

analyze the attribute dependency explored of an output

attribute Xz from a set of input attributes X1, X2,…, Xr. In

all the experiments, we set a = 0.7 and partition randomly

the dataset in s subsets. We now show the results obtained

in three experiments.

4.1 Experiment A

In this experiment, we explore the relation between the

density of resident population with laurea degree and the

density of resident population employed. Generally

speaking, a higher density of population with laurea degree

should correspond to a greater density of population

employed. The attribute dependency explored is Hz-

= H(X1), where

• Input attribute: X1 = Resident population with laurea

degree

• Output attribute: Xz = Resident population over 15

employed
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We apply the FAD algorithm on different random sub-

sets of the dataset, and then we calculate the index of

determinacy (12). In Table 3, we show the value of the

index of determinacy r02cl obtained for different values of s.

For s = 1, we have the overall dataset.

The results in Table 3 show that the dependency has

been found. We obtain r02cl = 0.760 by using FAD algo-

rithm on the entire dataset, while the best value of

r02cl (reached by using MFAD) is 0.758 for s = 16. Hence

the related smallest difference between the two algorithms

is 0.02. Figure 4 shows in abscissas the input X1 and in

ordinates the output HF(x1Þ for s = 1, 10, 16, 40.

4.2 Experiment B

In this experiment, we explore the relation between the

density of residents with job or capital income and the

density of families in owned residences. We expect that the

greater the density of residents with job or capital income

is, the resident families density in owned homes the greater

is. The attribute dependency explored is Hz = H(X1),

where:

• Input attributes: X1 = Resident population with job or

capital income

• Output attribute Xz = Families in owned residences

• After some tests, we put a = 0.8.

Table 4 shows r02cl obtained for different values of s:

r02cl = 0.881 in FAD algorithm on the entire dataset,

r02cl = 0.878 in MFAD obtained for s = 13, 16. The

smallest index of dependency difference is 0.003.

Figure 5 shows in abscissas the input X1 and in ordinates

the output HF(x1Þ for s = 1, 10, 16, 40.

4.3 Experiment C

In this experiment, the attribute dependency explored is

Hz = H(X1,X2), where

Input attributes:

• X1 = Density of residential buildings built with rein-

forced concrete

• X2 = Density of residential buildings built after 2005

Output attribute:

Fig. 3 Schema of the MFAD method
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• Xz = Density of residential buildings with state of good

conservation

After some tests, we decided a = 0.75 in this experi-

ment. In Table 5, we show r02cl obtained for different values

of s: r02cl = 0.785 in FAD algorithm on the entire dataset.

r02cl = 0.781 in MFAD algorithm obtained for s = 13, 16.

The smallest index of dependency difference is 0.004.

Now we present the results obtained by considering all

the experiments performed on the entire dataset in which

the dependency was found (r02cl [ 0.7). We consider the

index of determinacy in the FAD algorithm (s = 1) and the

minimum and maximum values of the index of determi-

nacy obtained by using the MFAD algorithm for s = 9, 10,

11, 13, 16, 20, 26, 40.

A functional dependency was found in 43 experiments.

Figure 6 (resp., 7) shows the trend of the difference

between the maximum (resp., minimum) value calculated

for r02cl in MFAD and in FAD for the same experiment. In

abscissae, we have r02cl in the FAD method, in ordinates the

difference between the two indices. For all the experiments

this difference is always below 0.005 (resp., 0.0015).

These results show that the MFAD algorithm is com-

parable with the FAD algorithm, independently of the

choice of the number of subsets partitioning the entire

dataset (Fig. 7).

Figure 8 shows the mean CPU time gain obtained by

MFAD algorithm with different partitions, with respect to

the CPU time obtained by using FAD algorithm (s = 1).

The CPU time gain is given by the difference between the

CPU time measured by using s = 1, and the CPU time

measured by using a partition in s subsets, divided by the

CPU time measured for s = 1. The CPU time gain is

Table 1 Number of census tracts for each Italian region

ID region Description Number of census tracts

001 Piemonte 35,672

002 Valle d’Aosta 1902

003 Lombardia 53,173

004 Trentino Alto Adige 11,712

005 Veneto 33,883

006 Friuli Venezia Giulia 8278

007 Liguria 11,054

008 Emilia Romagna 38,603

009 Toscana 28,917

010 Umbria 7480

011 Marche 11,862

012 Lazio 32,065

013 Abruzzo 9529

014 Molise 2821

015 Campania 24,323

016 Puglia 22,514

017 Basilicata 5107

018 Calabria 13,121

019 Sicilia 36,681

020 Sardegna 13,981

Table 2 Number of census

tracts for each subset by varying

s

s Number of census tracts

8 5.0�104

9 4.5�104

10 4.0�104

11 3.7�104

13 3.1�104

16 2.5�104

20 2.0�104

26 1.5�104

40 1.0�104

Table 3 Index of determinacy

for values of s in experiment A

via FAD

s Index of determinacy

1 0.760

8 0.745

9 0.748

10 0.750

11 0.752

13 0.754

16 0.758

20 0.752

26 0.748

40 0.744

Fig. 4 Tendency of Hz for dataset partitions in the experiment A
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always positive and the greatest value are obtained for

s = 16. These considerations allow to apply the MFAD

algorithm to a VL dataset not loadable entirely in memory

to which the FAD algorithm is not applicable.

Now we compare the results obtained by using the

MFAD method with the ones obtained by applying the

SVR and MLP algorithms. For the comparison tests we

have used the machine learning tool Weka 3.8.

In order to perform the tests by using the SVR algo-

rithm, we repeat each experiment using the following dif-

ferent kernel functions: linear, polynomial, Pearson VII

universal kernel, and Radial Basis Function kernel, and

varying the complexity C parameter in a range between 0

and 10. To compare the performances of the SVR and

MFAD algorithms we measure the index of determinacy

and store it in every experiment.

In Fig. 9 we show the trend of the difference between

the max values of r02cl in SVR and MFAD.

Figure 9 shows that the difference between the optimal

value r02cl in SVR and MFAD is always under 0.02. In the

comparison tests performed by using the MLP algorithm,

we vary the learning rate and the momentum parameter in

[0.1,1]. We use a single hidden layer varying the number of

nodes between 2 and 8. Furthermore, we set the number of

epochs to 500 and the percentage size of validation set to 0.

In Fig. 10 we show the trend of the difference between

the max value of r02cl in MLP and MFAD.

Figure 10 shows that the difference between the max

value of the index of determinacy in MLP and MFAD is

under the value 0.016.

These results show that the MFAD algorithm of attribute

dependency in massive datasets has comparable perfor-

mances with the SVR and MLP nonlinear regression

algorithms. Moreover, it has the advantage of having a

smaller number of parameters compared to the other two

algorithms, therefore it has greater usability and can be

easily integrated into expert systems and intelligent sys-

tems for the analysis of dependencies between attributes in

massive datasets. Indeed, the only two parameters for the

execution of the MFAD algorithm are the number of sub-

sets and the threshold value of the index of determinacy.

Table 4 Index of determinacy

for values of s in experiment B

via FAD

s Index of determinacy

1 0.881

8 0.872

9 0.872

10 0.874

11 0.875

13 0.877

16 0.878

20 0.878

26 0.875

40 0.872

Fig. 5 Trend of Hz for dataset partitions in the experiment B

Table 5 Index of determinacy

for values of s in the experiment

C via FAD

s Index of determinacy

1 0.785

8 0.776

9 0.776

10 0.778

11 0.780

13 0.781

16 0.781

20 0.780

26 0.779

40 0.777

Fig. 6 Trend of the difference between the max value r02cl in MFAD

and FAD
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5 Conclusions

The FAD method presented in (Martino et al. 2010a) can

be used as a regression model for finding attribute depen-

dencies in datasets: the inverse multiple F-transform can

approximate the regression function. But this method can

be expensive for massive datasets and for VL datasets not

loaded in memory. Then we propose a variation of the FAD

method for massive datasets called MFAD: The dataset is

partitioned in s subsets equally sized, to each subset the

FAD method is applied by calculating the inverse

F-transform. Approximated by a weighted mean where the

weights are given from the index of determinacy assigned

to each subset. For testing the performance of the MFAD

method, we compare tests with respect to the FAD method

on an L dataset of the ISTAT 2011 census data. The results

show that the performances obtained in MFAD are well

comparable in FAD. The comparison tests show that the

MFAD algorithm has performances comparable with SVR

and MLP algorithms, moreover it has greater usability due

to the lower number of parameters to be selected.

These results allow us to conclude that MFAD provides

acceptable performance in the detection of attribute

dependencies in the presence of massive datasets. There-

fore, unlike FAD, MFAD can be applied to massive data

and can represent a trade-off between usability and high

performance in detecting attribute dependencies in massive

datasets.

The critical point of the algorithm is the choice of the

number of subsets and the threshold value of the index of

determinacy. Further studies on massive datasets are nec-

essary to analyze if the choice of the optimal values of

these two parameters depend on the type of dataset ana-

lyzed. Furthermore, we intend to experiment the MFAD

algorithm in future robust frameworks such as expert sys-

tems and decision support systems.
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