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Abstract
Emergency responses bear the characteristics of uncertainty and possess multi-attributes in decision making. This paper

applies the interval evidential reasoning approach and the interval-valued hesitant fuzzy TODIM (IVHF-TODIM) method

to tackle the dynamic emergency decision-making problem. We introduce a function to obtain the gain and loss degrees

through the geometric area method. The gain and loss matrices of the interval belief degrees are found probabilistically. A

new approach to obtaining the dominance degree matrix is proposed. From the IVHF-TODIM method, the overall

dominance degree is established to provide the ranking of the decision alternatives. A recent case of selecting an emer-

gency decision alternative for a large bushfire is used to validate the proposed method, followed by a comparative analysis.

Keywords Emergency decision making � Interval-valued hesitant fuzzy sets � TODIM � Interval evidential reasoning

1 Introduction

Destructive emergency events (EEs) are ubiquitous and

often lead to unexpected catastrophic consequences (Wang

et al. 2019; Zhang and Li 2019). Some recent examples

include (1) the Liangshan forest fire in Sichuan in 2019

resulting in the deaths of 30 firefighters, (2) the great

Australian bushfire in 2020 in three Australian states

depleting 46 million acres of land, destroying nearly 6,000

homesteads, decimating half a billion native animals and

unnecessary loss of lives, and (3) the Taal volcanic erup-

tion in the Philippines which displaced residents, sus-

pended flights through Manila, and causing air pollution.

Therefore, emergency response, delivered in a timely

manner, is vital in mitigating the loss of property and lives

affected by the emergencies. Governments are increasingly

concerned over such catastrophic events. Academia like-

wise have developed a rich and meaningful fodder of

research (Wang et al. 2017; Ding et al. 2019). To mitigate

the negative impact on human lives and the socioeconomic

development caused by the emergency events, it is expe-

dient for emergency response planners to select a desirable

decision alternative to respond to emergency events (Peng

and Garg 2018; Li and Wei 2019; Ren et al. 2017). Fur-

thermore, as different experts hold different opinions on the

decision alternatives and the inherent uncertainty of the

decision information, the emergency decision-making

problem (EDMP) is subset to the multi-attribute group

decision-making (MAGDM) problem. However, different

from the other MAGDM problems, such as supply chain

management decisions (Baptista et al. 2019; Hatzisymeon

et al. 2019), investment risk decision making (Hong et al.

2019; Cheng et al. 2018), EEs often require the decision

makers (DMs) to make critical decisions within very tight

time windows (Peng and Garg 2018) and sometimes under

risks and much uncertainty (Ding et al. 2019). The out-

comes of the decision making may adversely affect other

courses of action (Li and Cao 2019). Therefore, knowing

how to objectively choose an appropriate decision
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alternative is strategic to emergency management. Putting

forward novel EDM methods can help to improve the

allocative and operational efficiency of emergency man-

agement, alleviate the negative externality of EEs on

society, and subsequently reduce the loss of human lives

and property.

Most times, there is uncertainty arising from the

vagueness of the expressions used by the DMs. Torra

(2010) first presented the hesitant fuzzy sets (HFS) that

permit the DMs to employ real numbers in the interval [0,

1] to form judgment. Using the hesitant fuzzy approach to

model the uncertainty and vagueness of the information

using real numbers has yielded successful outcomes in

pragmatic decision making (Mardani et al. 2020; Farha-

dinia and Herrera-Viedma 2019) and has served as a basis

for various hesitant fuzzy computational models (Garg and

Kaur 2020; Alcantud and Giarlotta 2019). Most of these

models use hesitant fuzzy sets to reflect expert opinions.

However, it is sometimes difficult to specify the precise

membership degree of an element to a set as there exist

much complexity and uncertainty, and sometimes due to

the lack of information and time limitation, the DMs need

to express their knowledge among the interval values and

relying on only real values cannot inadequately reflect their

opinions. As such, some studies (Li et al. 2018; Yang et al.

2020) have sought to overcome this limitation through

interval-valued models to improve the flexibility of the

information elicitation.

However, when a DM is hesitant among several interval

numbers, the interval expressions generated by most of

these approaches can sit far from the common evaluation of

the DMs, and it is not easy for the DM to provide a single

interval number as the DM’s evaluation. To address this

shortcoming, the interval-valued HFS (IVHFS) has been

successfully applied (Tang and Meng 2018). For instance,

Chen et al. (2013) introduced the IVHFS to extend the

domain of HFS to intervals in [0,1]. Since then, other

studies have followed suit (Asan et al. 2018; Zeng et al.

2019; Liu et al. 2019). At the same time, Asan et al. (2018)

proposed a new approach to DEMATEL based on IVHFS

to deal with uncertainty in decision making, while Zeng

et al. (2019) introduced the hesitance degree of the

weighted IVHF element and proposed four operators to

aggregate the weighted interval-valued hesitant fuzzy

information to handle MADM problems. To evaluate the

co-creative value propositions or smart product service

systems, Liu et al. (2019) employed the IVHFS-DEMA-

TEL method to obtain the total relation of the co-creative

value propositions. Clearly, introducing the IVHFS not

only enriches the theoretical concept of the HFS, but it is

also applicable to many decision-making problems. As

such, the IVHFS is suitable and useful when the DMs

hesitate during the elicitation process of their interval

preferences, as the IVHFS is a reasonable format for

expressing imprecise and uncertain information.

Since a DM’s hesitation may reflect the DM’s psycho-

logical state, it is only logical that the psychological

behavior of a DM should feature in the decision-making

process. Following from Simon’s bounded rationality (Si-

mon 1955), Tversky and Kahneman (1979, 1992) applied

prospect theory (PT) to depict the way in which DMs

choose between probabilistic alternatives that involve risk

when the probabilities of the outcomes are known. How-

ever, research has shown that prospect theory cannot suf-

ficiently express a DM’s psychological behavioral

operation as prospect theory requires the aspiration levels

of the attributes to be known a priori (Nagarajan and

Shechter 2014). As an attempt to address this issue, we

consider the TODIM method widely studied in decision

making (Gomes and Lima 1992). As the classical TODIM

method can only be used to cope with the MADM problem

in which the attribute values are stated as crisp numbers,

we supplement this with IVHF sets. Besides, due to the

complexity and uncertainty of the decision-making prob-

lems, the DMs often find it difficult to ascribe preference

information in the form of crisp numbers (Pramanik and

Mallick 2019; Niu et al. 2020). The approach proposed in

(Pramanik and Mallick 2019) modeled the uncertainty and

vagueness of the information through trapezoidal neutro-

sophic variables, and it has served as a basis to define

different decision-making computational models. Niu et al.

(2020) considered the psychological behavior of the DMs

and proposed methods in interval-valued intuitionistic

fuzzy environments to handle MCDM problems. Though

Pramanik and Mallick 2019; Niu et al. 2020 considered the

DM’s psychological behavior using score functions, the

score functions cannot distinguish whether two objects

have equal accuracy functions. Hence, we develop a new

technique, which combines the interval evidential reason-

ing (IER) approach (Wang et al. 2006) by aggregating

multiple attributes based on a belief decision matrix, and

the evidence combination rule of the Dempster–Shafer

theory (Dempster 1967; Shafer 1976) to yield the interval-

valued hesitant fuzzy TODIM (IVHF-TODIM) method to

handle the EDM problem in which the preference infor-

mation is given as an IVHFS (Asan et al. 2018; Zeng et al.

2019). Currently, there is no IVHF MADM method that

comprehensively considers the DM’s psychological

behavior and employs IER to tackle EDM problems. We

hope to address this shortcoming using our proposed

method.

Specifically, our work contributes to the extant knowl-

edge by:

1. Introducing a function to find the gain and loss degrees

based on the geometric area method.
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2. Applying the probability density function and geomet-

ric area method to specify the gain and loss matrices of

the interval belief degrees.

3. Establishing a way to develop the dominance degree

matrix to obtain the ranking of the decision

alternatives.

The rest of this paper is set as follows: Section 2

introduces the IER and TODIM methods. Section 3 pre-

sents an IVHF-TODIM method for solving the EDM

problem. A case study of a decision alternative selection

issue is used in Sect. 4 to illustrate the novelty and validity

of the proposed method. This followed by a comparison

with the other extant methods. Section 5 concludes the

paper.

2 Preliminaries: concepts and definitions

We introduce the following to this paper as shown below.

Notation

bn;i alð Þ Belief degree of alternative al evaluated as

class Hn under attribute ei

bH;i alð Þ Belief degree assigned to the whole set

mn;i Interval basic probability assignment of

attribute i

mH;i Uncertainty caused by the relative

importance of attribute i

~mH;i Uncertainty caused by the incompleteness

of belief degree in attribute i

D ¼ dij
� �

n�m
Decision-making matrix

R ¼ rij
� �

n�m
Normalized decision-making matrix

xjr Relative weight of attribute Cj to reference

attribute Cr

u j
iq Dominance degree of alternative a ~Ai over

~Aq for attribute Cj

/iq Overall dominance degree of alternative ~Ai

over alternative ~Aq

n ~Ai

� �
Overall dominance value of alternative ~Ai

E ¼ e1; . . .; eef g Set of decision makers, where el denotes
DM l, l = 1, …,

A ¼ A1; . . .;Anf g Set of decision alternatives, i = 1,…, n

C ¼ C1; . . .;Cmf g Set of attributes, where Cj is attribute j,
j ¼ 1; . . .;m

WE ¼ xe1; . . .;xeef g Weight vector for the experts

WC ¼ x1; :::;xmf g Weight vector for the attributes

Z ¼ Z1; . . .; Ztf g Set of emergency states

~hA xið Þ ¼ ~cj~c 2 ~hA xið Þ
� �

~hA xið Þ (Liu et al. 2019) is an IVHF

element, and ~c ¼ ~cL; ~cU½ � is an interval

number

2.1 Interval evidential reasoning (IER)

In this paper, the ER approach using interval belief degrees

(Wang et al. 2006) is labelled as the IER approach, which

will allow both quantitative and qualitative attributes to be

modeled using interval data. This is a generalization of the

Dempster–Shafer theory (Dempster 1967; Shafer 1976).

Definition 1 (Wang et al. 2006). Suppose S ei alð Þð Þ ¼
Hn; b�n;i alð Þ; bþn;i alð Þ
h i� 	

; n ¼ 1; . . .;N
n o

is an incom-

plete interval-valued distribution evaluation vector. Then,

the interval belief degree, bH;i alð Þ, assigned to the set H

can be expressed as

b�H;i alð Þ ¼ max 0; 1�
PN

n¼1

bþn;i alð Þ

 �

bþH;i alð Þ ¼ 1�
PN

n¼1

b�n;i alð Þ

8
>><

>>:
ð1Þ

Definition 2 (Wang et al. 2006). Let yi 2 y�i ; y
þ
i

� �
be an

interval number, which contains one or more assessment

levels. Without any loss of generality, consider a situation

with two evaluation levels Yn;i and Ynþ1;i in the interval

y�i ; y
þ
i

� �
(see ?tic=?>Fig. 1).

Let bn�1;i 2 b�n�1;i; b
þ
n�1;i

h i
, bn;i 2 b�n;i; b

þ
n;i

h i
,

bnþ1;i 2 b�nþ1;i; b
þ
nþ1;i

h i
, and bnþ2;i 2 b�nþ2;i; b

þ
nþ2;i

h i
be the

interval belief degrees in which yi 2 y�i ; y
þ
i

� �
may be

assessed. Yn�1;i, Yn;i, Ynþ1;i and Ynþ2;i are interval numbers.

As yi can only lie in one of the three intervals, namely

y�i ; Yn;i
� �

, Yn;i; Ynþ1;i

� �
and Yn;i; Ynþ1;i

� �
, we need to intro-

duce the following 0–1 binary variables:

Ik�1:k ¼ 1 yi 2 Yk�1;i; Yk;i
� �

0 otherwise

�
k ¼ n; nþ 1; nþ 2 ð2Þ

The interval belief degrees are presented as follows:

b�n�1;i ¼ 0 and bþn�1;i ¼
y�i � Yn�1;i

Yn;i � Yn�1;i
� In�1;n ð3Þ

b�n;i ¼ 0 and bþn;i ¼ In�1;n þ In;nþ1 ð4Þ

Fig. 1 Relationship among interval values and evaluation grades (yi
includes Yn;i and Ynþ1;i)
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b�nþ1;i ¼ 0 and bþnþ1;i ¼ In;nþ1 þ Inþ1;nþ2 ð5Þ

b�nþ2;i ¼ 0 and bþnþ2;i ¼
yþi � Ynþ1;i

Ynþ2;i � Ynþ1;i
� Inþ1;nþ2 ð6Þ

We have In�1;n þ In;nþ1 þ Inþ1;nþ2 ¼ 1, and only one of

0–1 binary variables are nonzero.

For the sake of aggregating the multiple interval belief

structures correctly, the ER nonlinear optimization models

are formed.

First, through the weights xi and interval belief degrees,

the interval belief degrees are transformed into interval

probability mass functions (m) using the following

relations:

mn;i ¼ mi Hnð Þ 2 m�
n;i;m

þ
n;i

h i
¼ xib

�
n;i alð Þ;xib

þ
n;i alð Þ

h i
;

n ¼ 1; . . .;N; i ¼ 1; . . .; L;

ð7Þ
mH;i ¼ miðHÞ ¼ 1� xi; i ¼ 1; . . .; L; ð8Þ

~mH;i ¼ ~miðHÞ 2 ~m�
H;i; ~m

þ
H;i

h i
¼ xib

�
H;i alð Þ;xib

þ
H;i alð Þ

h i
;

i ¼ 1; . . .; L;

ð9Þ

where
PN

n¼1 mn;i þ mH;i þ ~mH;i ¼ 1 for i ¼ 1 to L and
PL

i¼1 xi ¼ 1.

Next, from the nonlinear optimization models, the

interval probability masses on L basic attributes are

aggregated and transformed into overall interval belief

degrees for each n, n ¼ 1; . . .;N:

max/min bn alð Þ ¼ mn

1� mH
ð10Þ

s:t:

mn ¼ k
YL

i¼1

mn;i þ mH;i þ ~mH;i

� �
�
YL

i¼1

mH;i þ ~mH;i

� �
" #

;

n ¼ 1; . . .;N

ð11Þ

~mH ¼ k
YL

i¼1

mH;i þ ~mH;i

� �
�
YL

i¼1

mH;i

" #

ð12Þ

mH ¼ k
YL

i¼1

mH;i

" #

ð13Þ

k ¼
XN

n¼1

YL

i¼1

mn;i þ mH;i þ ~mH;i

� �
� N � 1ð Þ

YL

i¼1

mH;i þ ~mH;i

� �
" #�1

ð14Þ

m�
n;i �mn;i �mþ

n;i; n ¼ 1; . . .;N; i ¼ 1; . . .;L ð15Þ

mH;i ¼ 1� xi and ~m�
H;i � ~mH;i � ~mþ

H;i; i ¼ 1; . . .; L

ð16Þ
XN

n¼1

mn;i þ mH;iþ ~mH;i ¼ 1; i ¼ 1; . . .; L ð17Þ

where b�n alð Þ and bþn alð Þ are the optimal objective function

values of the above nonlinear optimization model, which

constitutes an overall interval belief degree

b�n alð Þ; bþn alð Þ
� �

. The aggregated assessment is denoted by

S y alð Þð Þ ¼ Hn; b�n alð Þ; bþn alð Þ
� �� �� �

, n ¼ 1; . . .;N. When

bH alð Þ ¼ ~mH

1�mH
is the objective function instead of

bn alð Þ ¼ mn

1�mH
, we obtain the interval belief degree for

bH alð Þ, which can be written as b�H alð Þ; bþH alð Þ
� �

.

2.2 Classical TODIM method

The classical TODIM is an MADM method proposed by

Gomes and Lima (1992), based on prospect theory. The

gist of the classical TODIM is to establish a dominance

degree of each alternative over the other alternatives based

on the value function of prospect theory.

The steps of the TODIM method are as follows.

Step 2.2.1 Normalize the decision matrix D ¼ dij
� �

n�m

into matrix R ¼ rij
� �

n�m
.

Step 2.2.2 Compute the relative weight xjr of attribute

Cj to the reference attribute Cr, xjr ¼ xj=xr, where

xr ¼ max xjjj; r ¼ 1; . . .;m
� �

.

Step 2.2.3 The dominance degree u j
iq of alternative ~Ai

over alternative ~Aq for attribute Cj is given by

u j
iq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rij � rqj
� �

xjrPm
j¼1 xjr

;

s

rij � rqj [ 0

0; rij � rqj ¼ 0

� 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rqj � rij
� �Pm

j¼1 xjr

xjr

s

; rij � rqj\0

8
>>>>>><

>>>>>>:

ð18Þ

where h is the attenuation coefficient of the losses.

If rij � rqj [ \ð Þ0, then rij � rqj represents the gain

(loss) of alternative ~Ai over alternative ~Aq for attribute Cj,

respectively.

Step 2.2.4 The comprehensive dominance degree /iq of

alternative ~Ai over alternative ~Aq is found from

/iq ¼
Pm

j¼1 /
j
iqði; q ¼ 1; . . .; nÞ.

Step 2.2.5 The overall dominance value n ~Ai

� �
of alter-

native ~Ai is obtained using
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n ~Ai

� �
¼

Pm
q¼1 /iq �mini

Pm
q¼1 /iq

n o

maxi
Pm

q¼1 /iq

n o
�mini

Pm
q¼1 /iq

n o ð19Þ

Step 2.2.6 The rank order of the alternatives is formed

using Eq. (19). The larger the n ~Ai

� �
is, the better alternative

~Ai will be.

3 IVHF-TODIM method based on IER

We now present an IVHF-TODIM method, which is dif-

ferent from the existing methods (Asan et al. 2018; Xue

et al. 2019; Zhou et al. 2018; Zhang 2000), to address the

EDM problem by including a DM’s psychological

behavior.

3.1 Gain and loss functions based on geometric
area method

Using the geometric area method, the gain matrix and loss

matrix of the interval belief degrees are set. Let brk Aið Þ ¼
b�rk Aið Þ; bþrk Aið Þ
� �

be the aggregated result of decision

alternative Ai, given that emergency state Zk has occurred

concerning the evaluation level msðs ¼ 1; . . .; rÞ as

obtained from Eqs. (10)–(17).

By aggregating the results of the alternatives, the gain

(loss) matrix for each interval belief degree can be con-

structed by measuring the gain (loss) degree of one interval

belief degree relative to another, respectively. To solve for

the interval belief degrees, we need to clarify the positional

relationship of these interval belief degrees (see Table 1).

Definition 3. Suppose br1k Aið Þ¼ b�r1k Aið Þ; bþr1k Aið Þ
h i

and

br2kðAqÞ¼ b�r2kðAqÞ; bþr2kðAqÞ
h i

are arbitrary interval

belief degrees, Sbr1k Aið Þ and Sbr2k Aqð Þ denote the area of

br1k Aið Þ and br2kðAqÞ, respectively, and S1br1k Aið Þ and S2br2kðAqÞ

denote the non-overlapping part that belongs to br1k Aið Þ
and br2kðAqÞ, respectively. Then, S is the area of the

intersection of two interval belief degrees. Let gkiqs (l
k
iqs) and

be the gain (loss) degree of decision alternative Ai relative

to Aq, given that emergency state Zk has occurred under

evaluation level ms, respectively. The gain (and loss)

degree gkiqs (and lkiqs) of Ai relative to Aq, respectively, can

be expressed as

gkiqs br1k Aið Þ� br2k Aq

� �� �
¼ 1

2

S1br1k Aið Þ þ S=2

Sbr1k Aið Þ
þ
S2br2kðAqÞ þ S=2

Sbr2k Aqð Þ

 !

ð20Þ

lkiqs br1k Aið Þ\br2kðAqÞ
� �

¼ 1� gkiqs br1k Aið Þ� br2k Aq

� �� �

ð21Þ

The areas of Sbr1k Aið Þ, Sbr2k Aqð Þ, S
1
br1k Aið Þ, S

2
br2kðAqÞ, and S are

denoted by the probability density function f xð Þ. Next, we
use the following definition.

Definition 3 Fan and Liu 2010). Let x be a variable in the

interval belief degree brk Aið Þ ¼ b�rk Aið Þ; bþrk Aið Þ
� �

,

b�rk Aið Þ� x� bþrk Aið Þ. The probability density function of x

is stated as:

f xð Þ ¼
1

b� a
; a� x� b;

0; otherwise

(

ð22Þ

where
R b
a f xð Þ ¼ 1 and f xð Þ� 0 for all x 2 a; b½ �.

Table 2 contains the expressions used to obtain the gains

and losses for the interval belief degrees for the cases stated

in Table 1. The steps are detailed in ‘‘Appendix’’.

Based on the gain (and loss) degree of alternative Ai to

Aq, the gain matrix gks ¼ gkiqs

h i

n�n
and loss matrix

lks ¼ lkiqs

h i

n�n
, given that emergency state Zk has occurred

under evaluation level ms is thus

Table 1 Positional relationship between br1k Aið Þ and br2k Aj

� �

Case Positional relationship between br1k Aið Þ and br2k Aq

� �

1 br1k Aið Þ\br2k Aq

� �

2 br1k Aið Þ ¼ br2k Aq

� �

3 br1k Aið Þ \ br2k Aq

� �

4 br1k Aið Þ � br2k Aq

� �
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gks ¼

A1 A2 . . . An

A1

A2

..

.

An

gk11s gk12s � � � gk1ns
gk21s gk22s � � � gk2ns

..

. ..
. ..

. ..
.

gkn1s gkn2s � � � gknns

2

666664

3

777775
;

k ¼ 1; . . .t; s ¼ 1; . . .; r

ð23Þ

lks ¼

A1 A2 ::: An

A1

A2

..

.

An

lk11s lk12s � � � lk1ns
lk21s lk22s � � � lk2ns

..

. ..
. ..

. ..
.

lkn1s lkn2s � � � lknns

2

666664

3

777775

; k ¼ 1; . . .; t; s ¼ 1; . . .; r

ð24Þ

where gkiis ¼ lkiis ¼ 0 for all i 2 N.
To facilitate analysis and computation, it is necessary to

normalize the gain and loss matrices. Therefore, the terms

gkiqs and l
k

iqs can be obtained from

gkiqs ¼
gkiqs
gmax
ks

; i; q ¼ 1; . . .; n; k ¼ 1; . . .; t; s ¼ 1; . . .r

ð25Þ

l
k

iqs ¼
lkiqs
lmax
ks

; i; q ¼ 1; . . .; n; k ¼ 1; . . .t; s ¼ 1; . . .r

ð26Þ

3.2 Dominance degree matrix

Prior studies assume that the DMs are often bounded

rational under risk and uncertainty, and their behavior

influences the decision-making process. We extend pro-

spect theory to find the relative gains and losses of two

alternatives under the evaluation level, to better reflect

reality. The dominance degree is obtained as

uk
iqs ¼

ukðþÞ
iqs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkiqs

� 	a
r

; br1k Aið Þ� br2k Aq

� �

ukð�Þ
iqs ¼ � 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k �l
k

iqs

� 	b
r

; br1k Aið Þ\br2k Aq

� �

8
>><

>>:

ð27Þ

where a and b are the power parameters related to the gains

and losses, and a is a concave degree parameter related to

gains, and b is convex degree parameter related to losses,

respectively; k denotes the risk-aversion parameter,

0� a; b� 1; k[ 1, and h is an attenuation factor of the

loss. If h[ (\) 1, then the influence of loss will decrease

(increase). In this paper, h ¼ 1. Following from previous

studies such as Tversky and Kahneman (1992) who used

a ¼ 0:89; b ¼ 0:92 k ¼ 2:25; Abdellaoui et al. (2007)

applied a ¼ 0:725, b ¼ 0:717, k ¼ 2:04; Liu et al. (2014)

used a ¼ 0:85, b ¼ 0:85, k ¼ 4:1. In this paper, we choose

the parameter values of Simon (1955).

3.3 Comprehensive dominance value

Furthermore, the overall dominance degree of alternative

Ai over alternative Aq, given that emergency state Zk has

occurred, is expressed by

Uk
iq ¼

Xr

s¼1

ukðþÞ
iqs þ

Xr

s¼1

ukð�Þ
iqs ð28Þ

Thus, the comprehensive dominance degree matrix is as

follows

Uk¼ Uk
iq

h i

n�n
¼

A1 A2 . . . An

A1

A2

..

.

An

Uk
11 Uk

12 � � � Uk
1n

Uk
21 Uk

22 � � � Uk
2n

..

. ..
. ..

. ..
.

Uk
n1 Uk

n2 � � � Uk
nn

2

666664

3

777775

; k ¼ 1; . . .; t:

ð29Þ

According to Uk, the comprehensive dominance value of

alternative Ai over alternative Aq, given that emergency

state Zk has occurred, is expressed by

Table 2 Gains and losses for all

possible cases
Case Gain gkiqs Loss lkiqs

1 br1k Aið Þ\br2kðAqÞ 0 1

2 br1k Aið Þ ¼ br2kðAqÞ 1
2

1
2

3 br1k Aið Þ \ br2k Aq

� �
gkiqs ¼ 1

2

b�r2kðAqÞ�b�r1k Aið Þ
bþr1k

Aið Þ�b�r1k Aið Þ


 �
þ 1

2
lkiqs ¼ 1

2
� 1

2

b�r2k Aqð Þ�b�r1k Aið Þ
bþr1k

Aið Þ�b�r1k Aið Þ


 �

4 br1k Aið Þ � br2k Aq

� �
gkiqs ¼ 3

4
� 1

4

bþr1k
Aið Þ�b�r1k Aið Þ

bþr2k
Aqð Þ�b�r2k Aqð Þ


 �
lkiqs ¼ 1

4
þ 1

4

bþr1k
Aið Þ�b�r1k Aið Þ

bþr2k
Aqð Þ�b�r2k Aqð Þ


 �
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nk Aið Þ ¼
wk Aið Þ �min

i2N
wk Aið Þ
� �

max
i2N

wk Aið Þ
� �

�min
i2N

wk Aið Þ
� � ; i 2 N: ð30Þ

where wk Aið Þ ¼
Pn

q¼1 U
k
iq.

To facilitate the solution, the following algorithm is

proposed.

Step 1 Establish the framework for assessing the EDM.

Step 2 The DMs provide individual preference informa-

tion on the decision alternatives.

Step 3 Aggregate the various evaluation information

from the DMs using the IVHF-weighted geometric

(IVHFWG) operator in Chen et al. 2013.

Step 4 Aggregate the evaluation level information from

the decision alternatives using Eqs. (2)–(17).

Step 4.1 Obtain the interval belief degrees using

Eqs. (2)–(6).

Step 4.2 Convert the interval belief degrees into

interval probability masses using Eqs. (7)–(9).

Step 4.3 Aggregate and transform the interval proba-

bility masses into the overall interval belief degrees

using Eqs. (10)–(17).

Step 5 Obtain the gains and losses using Tables 1 and 2.

Step 6 Obtain the dominance degree matrix using

Eq. (27).

Step 7 Find the overall dominance degree for ranking the

decision alternatives using Eqs. (28)–(30).

4 Numerical example and comparison

To validate the proposed method, we provide an example

of selecting an emergency decision alternative for a mas-

sive bushfire. Then, we perform a comparative analysis to

illustrate the novelty and superiority of our method com-

pared to some existing methods.

4.1 Emergency decision making for large
bushfire

A massive regional bushfire has occurred in summer,

threatening the lives and properties of many people and

native animals in the vicinity. A certain highway is labelled

as the line of containment to control the spread of the

bushfire. Because of the dry and unpredictable wind con-

ditions, the fire can transition to three states: (1) the fire

spreads to the highway and onto the city; (2) the fire

engulfs the farms and homes in the vicinity; (3) heavy rain

occurs in the vicinity, which can douse the fire. To obtain

the evaluation information of this large bushfire, this paper

adopts the methods of expert surveys and questionnaires to

obtain the decision alternatives and attribute values. The

expert panel consists of three stakeholder groups. Stake-

holder group D1 comprises experts from regional govern-

ment, stakeholder group D2 is composed of the experts

from resident communities, and stakeholder group D3

comprises the experts from the regional firefighting ser-

vices. In this paper, the role of the expert panel is to

evaluate the qualitative evaluation attributes of each crisis

solution alternative and provide the evaluation values in the

form of an IVHFS for a better selection of the optimal

choices to solve the bushfire crisis. Three emergency

decision alternatives A¼ A1;A2;A3f g are given by three

stakeholder groups for each state, namely

A1 : Close the highway completely, launch large-scale

firefighting to contain the fire;

A2 : Close the highway partially, introduce controlled

firefighting to contain the fire, and evacuate people and

animals using what is left of the highway;

A3 : Leave the highway open, continue to fight the fire

using the region’s emergency fire services, and send out

fire advisories to the residents in the vicinity to be on the

alert.

Each decision alternative has five attributes

C ¼ C1;C2;C3;C4;C5f g, with C1: spread of the fire, C2:

weather, C3: size of the bushland, C4: topography, and C5:

social condition. The weights of the DMs are assigned a

priori as WE ¼ 0:2722; 0:2561; 0:4717f g. The DMs

express their evaluations using the IVHFS found in

Tables 3, 4, and 5. Table 6 shows the assessment level for

each attribute, as revised by the DMs.

Using the weight vector WE, the overall information is

obtained by aggregating the evaluation information from

the experts using the IVHFWG operator in Chen et al.

(2013) (see Table 7). For example, the value of alternative

A1 in state Z1 with respect to attribute C1 is obtained as:

0:8 ^ 0:2722� 0:7 ^ 0:2561� 0:6 ^ 0:4717 	 0:68,

0:9 ^ 0:2722� 0:8 ^ 0:2561� 0:7 ^ 0:4717 	 0:78.

Suppose the attribute weights are x1;x2;x3;x4;ð
x5ÞT ¼ 0:274; 0:077; 0:075; 0:281; 0:293ð ÞT. Aggregate the
evaluation level information from the decision alternatives

using Eqs. (5)–(12) as follows:

First, aggregate IVHF numbers as interval-valued

numbers (IVNs) for the three states, as shown in Tables 8,

9, and 10 (e.g., the value of alternative A1 in state Z1 with

respect to attribute C1 is obtained as

0:68 ^ 0:27� 0:28 ^ 0:27 ¼ 0:63):

Using Step 4.1, the interval belief degrees can be

obtained as Tables 11, 12, and 13, with the help of Table 6.

For instance, take the interval belief degree of A1 under

state Z1 with respect to C1. The evaluation value of C1A1

after aggregating is an interval value [0.63, 0.72], which
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Table 3 Decision matrix from DMs under state Z1

Alternative DM Attribute

C1 C2 C3 C4 C5

A1 D1 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D2 0:7; 0:8½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:5; 0:6½ �; 0:4; 0:5½ �f g 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g
D3 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:2; 0:3½ �f g 0:3; 0:4½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g

A2 D1 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:5; 0:6½ �; 0:4; 0:5½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g
D2 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D3 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �f g

A3 D1 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:6; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g
D2 0:1; 0:2½ �; 0:8; 0:9½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �f g
D3 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:5; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g

Table 4 Decision matrix for DMs under state Z2

Alternative DM Attribute

C1 C2 C3 C4 C5

A1 D1 0:2; 0:3½ � 0:7; 0:8½ �f g 0:5; 0:6½ �; 0:4; 0:5½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g
D2 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D3 0:6; 0:7½ �f g 0:3; 0:4½ � 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �f g

A2 D1 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:6; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g
D2 0:1; 0:2½ �; 0:8; 0:9½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �f g
D3 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:5; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g

A3 D1 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:3; 0:4½ � 0:6; 0:7½ �f g 0:3; 0:4½ � 0:6; 0:7½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D2 0:7; 0:8½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:5; 0:6½ �; 0:4; 0:5½ �f g 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g
D3 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:2; 0:3½ �f g 0:3; 0:4½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g

Table 5 Decision matrix for DMs under state Z3

Alternative DM Attribute

C1 C2 C3 C4 C5

A1 D1 0:8; 0:9½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g
D2 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g
D3 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g

A2 D1 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D2 0:7; 0:8½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:5; 0:6½ � 0:4; 0:5½ �f g 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g
D3 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:2; 0:3½ �f g 0:3; 0:4½ �f g 0:6; 0:7½ �; 0:3; 0:4½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g

A3 D1 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:5; 0:6½ �; 0:4; 0:5½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g
D2 0:8; 0:9½ �; 0:1; 0:2½ �f g 0:8; 0:9½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:2; 0:3½ �; 0:7; 0:8½ �f g 0:8; 0:9½ �; 0:1; 0:2½ �f g
D3 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:3; 0:4½ �; 0:6; 0:7½ �f g 0:7; 0:8½ �; 0:2; 0:3½ �f g 0:7; 0:8½ �f g
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lies between assessment levels G and V. The interval belief

degrees, on which C1A1 is assessed to lie between G and V,

can be found as follows:

b�3;1 A1ð Þ ¼ 0:8� 0:72

0:8� 0:6
¼ 0:38 and bþ3;1 A1ð Þ ¼ 0:8� 0:63

0:8� 0:6
¼ 0:84

b�4;1 A1ð Þ¼ 0:63� 0:6

0:8� 0:6
¼0:16 and bþ4;1 A1ð Þ¼ 0:72� 0:6

0:8� 0:6
¼0:62

Therefore, C1A1 under state Z1 can be modeled by using

an interval belief structure as {(G, [0.38, 0.84]), (V, [0.16,

0.62])}.

Next, using Step 4.2, convert the interval belief degrees

to interval probability masses using Eqs. (7)–(9). For

instance, for C1A1 under state Z1, we have

m1;1 ¼ m2;1 ¼ m5;1 ¼ 0

m3;1 ¼ m�
3;1;m

þ
3;1

h i
¼ x1 � b�3;1; b

þ
3;1

h i

¼ 0:274� 0:38; 0:84½ � ¼ 0:105; 0:231½ �

m4;1 ¼ m�
4;1;m

þ
4;1

h i
¼ x1 � b�4;1; b

þ
4;1

h i

¼ 0:274� 0:16; 0:62½ � ¼ 0:043; 0:169½ �

mH;1 ¼ m1 Hð Þ ¼ 1� x1 ¼ 1� 0:27 ¼ 0:73

~mH;1 ¼ ~m1ðHÞ 2 ~m�
H;1; ~m

þ
H;1

h i
¼ x1b

�
H;1 alð Þ;x1b

þ
H;1 alð Þ

h i

¼ ½0:27� 0; 0:27� 0:46� ¼ ½0; 0:13�

b�H;1 alð Þ ¼ max 0; 1�
PN

n¼1

bþn;1 alð Þ

 �

¼ max 0; 1� 0:84� 0:62ð Þ ¼ 0

bþH;i alð Þ ¼ 1�
PN

n¼1

b�n;i alð Þ ¼ 1� 0:38� 0:16 ¼ 0:46

8
>>><

>>>:

Using Step 4.3, aggregate and transform the interval

probability masses to the overall interval belief degrees

using Eqs. (10)–(17). Table 14 shows the aggregated

interval-valued distribution assessment for each alternative.

Based on the positional relationship between each of the

interval belief degrees shown in Table 1, the gains and

losses can be computed according to Tables 1 and 2. In the

interest of space, we will list only the results of Z1 as

shown in Table 15.

The dominance value of alternative Ai over alternative

Aq, given that state Zk occurs for attribute Cj can be

obtained from Eq. (27) (see Table 16).

The overall dominance degree is found from Eqs. (28)–

(30), and Table 17 shows the ranking.

From Table 17, it is apparent that the decision alterna-

tives are state dependent. The optimal decision alternatives

for states Z1, Z2, and Z3 are A1, A3, and A2, respectively.

Clearly, as the bushfire is highly dependent on the real-

ization of the states which can change rapidly over time, it

is preferable to offer a suite of ‘‘good’’ solutions for the

DMs to consider rather than to point to a single ‘‘optimal’’

solution as suggested by the extant literature. Flexibility

during an emergency response to mega disasters is needed

especially when dealing with the capriciousness of such

states as the recent incident of emergency events in many

actual life-threatening bushfires, e.g., China and Australia

have testified. The outcome of this numerical example

validates the proposed method.

4.2 Comparison analysis

To highlight the effectiveness of the proposed method, this

section compares the proposed method with two existing

methods, namely

(1) The proposed method is compared with a group-

based method based on prospect theory (Wang et al.

2017), which excludes the dynamic factors.

(2) The proposed approach is compared with a distance-

based group decision-making method (Yu and Lai

2011), which ignores the psychological behavior of

the DMs.

Table 18 provides the rankings of the three emergency

alternatives based on the three states.

From Table 18, when the proposed method is compared

against the group method based on prospect theory (Wang

et al. 2017) and with a distance-based group decision-

making method (Yu and Lai 2011), there is a difference in

the outcomes. There are some reasons for this difference:

(1) The group-based method, based on prospect theory

(Wang et al. 2017), does not take into account the

Table 6 Assessment level for

attribute Cj
Assessment level Poor (P) Average (A) Good (G) Very Good (V) Excellent (E)

C1 0 0.4 0.6 0.8 1.0

C2 0.2 0.4 0.6 0.8 1.0

C3 0.1 0.3 0.5 0.7 0.9

C4 0.3 0.5 0.7 0.9 1.0

C5 0 0.2 0.4 0.6 0.8
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nature of emergency events. In reality, emergency

decisions should be dynamically adjusted to improve

the emergency response levels as bushfire emergen-

cies can rapidly transition between states in a short

time window of hours, as more information from the

field is collected in that time. So, decision making

must reflect that nuance of the bushfire situation felt

by the DMs. From Table 18, the optimal decision

alternative changes with state Zi as the assessment

levels vary. Therefore, the dynamic evolution of the

emergencies must be captured during the emergency

decision-making process. This is the main benefit of

using the proposed method in dynamic emergency

decision making.

(2) The method in Yu and Lai 2011 focuses on exact

values to make a fair comparison, lower bound,

average point, upper bound of the interval values,

which are aggregated from the interval-valued fuzzy

hesitant numbers, to compute the rankings. It is thus

important to note that the DMs exercised bounded

rationality even in the context of risk and uncer-

tainty. However, in extreme emergency response

situations such as large bushfires, some DMs, for one

reason or another, may be guided by their psycho-

logical behavior. However, the method in Yu and Lai

2011 ignores the psychological behavior of the DMs.

What we have shown through this example is that

ignoring the behavior of the DMs (e.g., sudden and

untimely death of the firefighters during an emer-

gency response) can lead to the wrong ranking

results and hence an inferior final decision selection.

From the analysis, the proposed approach can offer

several benefits, namely:

(1) By using an IVHF set, the proposed method can

better reflect the uncertainty of the DMs on the

evaluation information. This is especially helpful for

emergency decision-making problems characterized

by incomplete information, uncertainty, and limited

expertise.

(2) The proposed method takes full account of the

dynamics of the emergency events; the optimal

choice can be adjusted dynamically based on the

state. In this way, the DMs can exercise realistic

judgement calls and improve the applicability of the

proposed method.

(3) The IVHF-TODIM method accommodates the DM’s

psychological behavior in the context of risk and

uncertainty for a large-scale emergency response

situation and hence is better calibrated to accommo-

date the qualitative attributes of the DMs.
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Table 8 Aggregated IVHFNs

into IVNs under state Z1
Alternative Z1 Attribute

C1 C2 C3 C4 C5

A1 [0.63, 0.72] [0.82, 0.86] [0.86, 0.89] [0.65, 0.73] [0.57, 0.66]

A2 [0.63, 0.73] [0.90, 0.93] [0.88, 0.91] [0.58, 0.67] [0.64, 0.74]

A3 [0.54, 0.65] [0.85, 0.89] [0.89, 0.92] [0.61, 0.73] [0.65, 0.74]

Table 9 Aggregated IVHFNs

into IVNs under state Z2
Alternative Z2 Attribute

C1 C2 C3 C4 C5

A1 [0.63, 0.73] [0.90, 0.93] [0.88, 0.91] [0.58, 0.67] [0.64, 0.74]

A2 [0.54, 0.65] [0.85, 0.89] [0.89, 0.92] [0.61, 0.73] [0.65, 0.74]

A3 [0.63, 0.72] [0.82, 0.86] [0.86, 0.89] [0.65, 0.73] [0.57, 0.66]

Table 10 Aggregated IVHFNs

into IVNs under state Z3
Alternative Z3 Attribute

C1 C2 C3 C4 C5

A1 [0.69, 0.76] [0.85, 0.89] [0.87, 0.90] [0.61, 0.69] [0.60, 0.69]

A2 [0.63, 0.72] [0.82, 0.86] [0.86, 0.89] [0.65, 0.73] [0.57, 0.66]

A3 [0.63, 0.73] [0.90, 0.93] [0.88, 0.91] [0.58, 0.67] [0.64, 0.74]

Table 11 Interval belief degrees under state Z1

Attribute Z1 Alternative

A1 A2 A3

C1 {(G,[0.38,0.84]), (V,[0.16,0.62])} {(G,[0.37,0.83]), (V,[0.17,0.63])} {(A,[0,0]), (G,[0,1]), (V,[0,1])}

C2 {(V,[0.69,0.92]), (E,[0.08,0.31])} {(V,[0.36,0.50]), (E,[0.50,0.64])} {(V,[0.55,0.77]), (E,[0.23,0.45])}

C3 {(V,[0.04,,0.20]), (E,[0.80,0.96])} {(V,[0.00,0.12]), (E,[0.88,1])} {(V,[0.06,0.09]), (E,[0.94,1])}

C4 {(A,[0,0]), (G,[0,1]), (V,[0,0])} {(A,[0.15,0.62]), (G,[0.38,0.85])} {(A,[0,0]), (G,[0,1]), (V,[0,0])}

C5 {(G,[0,0]), (V,[0,1]), (E,[0,0])} {(V,[0.31,0.80]), (E,[0.20,0.69])} {(V,[0.32,0.74]), (E,[0.26,0.68])}

Table 12 Interval belief degrees under state Z2

Attribute Z2 Alternative

A1 A2 A3

C1 {(G,[0.37,0.83]), (V,[0.17,0.63])} {(A,[0,0]), (G,[0,1]), (V,[0,1])} {(G,[0.38,0.84]), (V,[0.16,0.62])}

C2 {(V,[0.36,0.50]), (E,[0.50,0.64])} {(V,[0.55,0.77]), (E,[0.23,0.45])} {(V,[0.69,0.92]), (E,[0.08,0.31])}

C3 {(V,[0.00,0.12]), (E,[0.88,1])} {(V,[0.06,0.09]), (E,[0.94,1])} {(V,[0.04,,0.20]), (E,[0.80,0.96])}

C4 {(A,[0.15,0.62]), (G,[0.38,0.85])} {(A,[0,0]), (G,[0,1]), (V,[0,0])} {(A,[0,0]), (G,[0,1]), (V,[0,0])}

C5 {(V,[0.31,0.80]), (E,[0.20,0.69])} {(V,[0.32,0.74]), (E,[0.26,0.68])} {(G,[0,0]), (V,[0,1]), (E,[0,0])}
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5 Conclusion

The emergency decision selection problem is important to

emergency management, as the decisions made at critical

moments can directly influence the performance of the

emergency response. From this perspective, the proposed

method offers much value. Many MADM methods have

been used for emergency alternative selection problems,

but they often neglect the DM’s psychological behavior.

For that, the IVHF-TODIM method solves the dynamic

emergency response problem by considering the DM’s

psychological behavior. Compared to prospect theory

which also considers the psychological behavior of the

DM, the proposed method does not need to predetermine

the aspiration levels of the attributes.

In this paper, the IVHF-TODIM method is introduced to

handle the EDM problems under an IVHF environment, in

which all attribute information provided to the DMs is in

the form of IVHF sets. A new function to compute the

degrees of gain and loss based on the geometric area

Table 13 Interval belief degrees under state Z3

Attribute Z3 Alternative

A1 A2 A3

C1 {(G,[0.18,0.56]), (V,[0.44,0.82])} {(G,[0.25,0.64]), (V,[0.36,0.75])} {(A,[0,0]), (G,[0,1]), (V,[0,0])}

C2 {(V,[0.57,0.75]), (E,[0.25,0.43])} {(V,[0.52,0.68]), (E,[0.32,0.48])} {(V,[0.47,0.62]), (E,[0.38,0.53])}

C3 {(V,[0.041,0.16]), (E,[0.84,1])} {(V,[0.04,,0.10]), (E,[0.96,1])} {(V,[0.03,,0.11]), (E,[0.97,1])}

C4 {(A,[0.04,0.47]), (G,[0.53,0.96])} {(A,[0.15,0.62]), (G,[0.38,0.85])} {(A,[0,0]), (G,[0,1]), (V,[0,0])}

C5 {(V,[0.56,0.98]), (E,[0.02,0.44])} {(V,[0.14,0.53]), (E,[0.47,0.86])} {(G,[0,0]), (V,[0,1]), (E,[0,0])}

Table 14 Aggregated interval-

valued belief degrees for each

decision alternative

Alternative State Attribute

P A G V E H

A1 Z1 [0.00, 0.00] [0.00, 0.26] [0.10, 0.83] [0.07,0.67] [0.04, 0.22] [0.00, 0.65]

Z2 [0.00, 0.00] [0.04, 0.20] [0.20, 0.54] [0.12, 0.51] [0.14, 0.36] [0.00, 0.37]

Z3 [0.00, 0.00] [0.01, 0.14] [0.18, 0.47] [0.33, 0.65] [0.07, 0.24] [0.00, 0.31]

A2 Z1 [0.00, 0.00] [0.04, 0.20] [0.20, 0.54] [0.12, 0.51] [0.14, 0.36] [0.00, 0.37]

Z2 [0.00, 0.00] [0.00, 0.24] [0.00, 0.42] [0.13, 0.40] [0.16, 0.39] [0.11, 0.61]

Z3 [0.00, 0.00] [0.00, 0.26] [0.10, 0.83] [0.07, 0.67] [0.04, 0.22] [0.00, 0.65]

A3 Z1 [0.00, 0.00] [0.00, 0.24] [0.00, 0.42] [0.13, 0.40] [0.16, 0.39] [0.11, 0.61]

Z2 [0.00, 0.00] [0.00, 0.26] [0.10, 0.83] [0.07,0.67] [0.04, 0.22] [0.00, 0.65]

Z3 [0.00, 0.00] [0.04, 0.20] [0.20, 0.54] [0.12, 0.51] [0.14, 0.36] [0.00, 0.37]

Table 15 Gain and loss values for each decision alternative under state Z1

P A G V E H

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Gain A1 0.50 0.50 0.50 0.50 0.59 0.52 0.50 0.63 0.61 0.50 0.59 0.64 0.50 0.77 0.83 0.50 0.61 0.56

A2 0.50 0.50 0.50 0.36 0.50 0.38 0.21 0.50 0.21 0.36 0.50 0.58 0.28 0.50 0.54 0.31 0.50 0.38

A3 0.50 0.50 0.50 0.48 0.58 0.50 0.44 0.73 0.50 0.20 0.39 0.50 0.25 0.46 0.50 0.42 0.66 0.50

Loss A1 0.50 0.50 0.50 0.50 0.41 0.48 0.50 0.37 0.39 0.50 0.41 0.36 0.50 0.23 0.17 0.50 0.39 0.44

A2 0.50 0.50 0.50 0.64 0.50 0.62 0.79 0.50 0.79 0.64 0.50 0.42 0.72 0.50 0.46 0.69 0.50 0.62

A3 0.50 0.50 0.50 0.52 0.42 0.50 0.56 0.27 0.50 0.80 0.61 0.50 0.75 0.54 0.50 0.58 0.34 0.50
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method is used. Applying the probability density function

and geometric area method, the gain and loss matrices of

the interval belief degrees are developed. Next, we put

forward a new expression to form the dominance degree

matrix. The validity of the proposed method has been

demonstrated using a recent example of an emergency

alternative selection of a large bushfire in Australia during

the start of summer. The novelty and value of the proposed

method are shown through a comparative analysis.

Naturally, the proposed method has its limitations too.

First, the weight of attributes is known in advance. Next,

the proposed method only considers the attribute values to

be in the form of IVHF sets. In some complex EDM

problems, the attribute weights may be unknown or par-

tially known, and the format of the attribute values may not

be a single expression. Thus, for future work, one research

direction is to supply a rigorous and realistic method for

obtaining the attribute weights. We can also combine the

proposed the interval-valued hesitant fuzzy TODIM

method with other MADM techniques to deal with MADM

problems posed under extreme uncertainty such as

COVID-19.

Appendix

We show how to obtain the gain and loss degrees for

Table 2. Let gkiqs (lkiqs) be the gain (loss) degree of alter-

native Ai relative to Aq, given that emergency state Zk
occurs under assessment level ms, respectively. By Defi-

nition 4, x is a random variable in the interval belief degree

brk Aið Þ ¼ b�rk Aið Þ; bþrk Aið Þ
� �

.

Case 1 As br1k Aið Þ\br2kðAqÞ, then

b�r1k Aið Þ� bþr1k Aið Þ� b�r2kðAqÞ� bþr2kðAqÞ. lkiqs; g
k
iqs

h i
can be

given as follows:

S1br1k Aið Þ ¼ 0; S ¼ 0 S2br2kðAqÞ ¼ 0;

Sbr1k Aið Þ ¼
Z bþr1k

Aið Þ

b�r1k Aið Þ

1

bþr1k Aið Þ � b�r1k Aið Þ
dx ¼ 1;

Sbr2k Aqð Þ ¼
Z bþr2k

Aqð Þ

b�r2k Aqð Þ
1

bþr2k Aq

� �
� b�r2k Aq

� � dx ¼ 1;

gkiqs br1k Aið Þ� br2kðAqÞ
� �

¼ 1

2

S1br1k Aið Þ þ S=2

Sbr1k Aið Þ
þ
S2br2kðAqÞ þ S=2

Sbr2k Aqð Þ

 !

¼ 0

lkiqs br1k Aið Þ\br2kðAqÞ
� �

¼ 1� gkiqs br1k Aið Þ� br2kðAqÞ
� �

¼ 1

i; q ¼ 1; . . .; n; k ¼ 1; . . .; t; r1; r2 ¼ 1; . . .; r.
Case 2 Since br1k Aið Þ ¼ br2kðAqÞ, we have

b�r1k Aið Þ ¼ b�r2kðAqÞ; bþr1k Aið Þ ¼ bþr2kðAqÞ, and lkiqs; g
k
iqs

h i
can

be stated as follows:

S1br1k Aið Þ ¼ S2br2kðAqÞ ¼ 0;

Table 17 Overall dominance degree values and corresponding

ranking

Alternative n1 Aið Þ (Rank) n2 Aið Þ (Rank) n3 Aið Þ (Rank)

A1 1.00(1) 0.00(3) 0.00(3)

A2 0.00(3) 0.37(2) 1.00(1)

A3 0.37(2) 1.00(1) 0.61(2)

Table 18 Comparison results between proposed method and other methods

Method Ranking of alternatives for Z1 Ranking of alternatives for Z2 Ranking of alternatives for Z3

Proposed A1 [A3 [A2 A3 [A2 [A1 A3 [A1 [A2

Wang et al. (2017) A2 [A3 [A1 A1 [A2 [A3 A1 [A3 [A2

Yu and Lai (2011) Lower bound: A2 [A1 [A3 Lower bound: A1 [A3 [A2 Lower bound: A1 [A3 [A2

Average point: A2 [A1 [A3 Average point: A1 [A3 [A2 Average point: A1 [A3 [A2

Upper bound: A2 [A1 [A3 Upper bound: A1 [A3 [A2 Upper bound: A1 [A3 [A2
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S ¼ Sbr1k Aið Þ ¼
Z bþr1k

Aið Þ

b�r1k Aið Þ

1

bþr1k Aið Þ � b�r1k Aið Þ
dx ¼ Sbr2k Aqð Þ

¼
Z bþr2k

ðAqÞ

b�r2kðAqÞ

1

bþr2kðAqÞ � b�r2k Aq

� � dx ¼ 1

gkiqs br1k Aið Þ� br2k Aq

� �� �

¼ 1

2

S1br1k Aið Þ þ S=2

Sbr1k Aið Þ
þ
S1
br2k Aqð Þ þ S=2

Sbr2k Aqð Þ

0

@

1

A ¼ 1

2

lkiqs br1k Aið Þ\br2k Aq

� �� �
¼ 1� gkiqs br1k Aið Þ� br2k Aq

� �� �

¼ 1

2

i; q ¼ 1; . . .; n; k ¼ 1; . . .; t; r1; r2 ¼ 1; . . .; r:

Case 3 As br1k Aið Þ \ br2kðAqÞ, we have

b�r1k Aið Þ\b�r2kðAqÞ\bþr1k Aið Þ\ bþr2kðAqÞ, and lkiqs; g
k
iqs

h i
can

be written as:

S ¼
Z bþr1k

Aið Þ

b�r2kðAqÞ

1

bþr2kðAqÞ � b�r2k Aq

� � dx

¼ FðxÞ
bþr1k

Aið Þ
b�r2kðAqÞ

���� ¼
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� ��
b�r2k Aq

� �
� b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

¼
bþr1k Aið Þ � b�r2k Aq

� �

bþr2kðAqÞ � b�r2k Aq

� �

Sbr1k Aið Þ ¼
Z bþr1k

Aið Þ

b�r1k Aið Þ

1

bþr1k Aið Þ � b�r1k Aið Þ
dx ¼ Sbr2k Aqð Þ

¼
Z bþr2k

ðAqÞ

b�r2kðAqÞ

1

bþr2k Aq

� �
� b�r2k Aq

� � dx ¼ 1

S1br1k Aið Þ ¼
Z b�r2k Aqð Þ

b�r1k Aið Þ

1

bþr1k Aið Þ � b�r1k Aið Þ
dx

¼ FðxÞ b�r2k Aqð Þ
b�r1k Aið Þ

���� ¼
b�r2k Aq

� �
� b�r1k Aið Þ

bþr1k Aið Þ � b�r1k Aið Þ
�
b�r1k Aið Þ � b�r1k Aið Þ
bþr1k Aið Þ � b�r1k Aið Þ

¼
b�r2kðAqÞ � b�r1k Aið Þ
bþr1k Aið Þ � b�r1k Aið Þ

S2
br2k Aqð Þ ¼

Z bþr2k
Aqð Þ

bþr1k
Aið Þ

1

bþr2k Aq

� �
� b�r2k Aq

� � dx

¼ FðxÞ
bþr2k

Aqð Þ
bþr1k

Aið Þ

���� ¼
bþr2k Aq

� �
� b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� ��
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

¼ 1�
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

gkiqs br1k Aið Þ� br2k Aq

� �� �
¼ 1

2

S1br1k Aið Þ þ S=2

Sbr1k Aið Þ
þ
S2
br2k Aqð Þ þ S=2

Sbr2k Aqð Þ

0

@

1

A

¼ 1

2

b�r2k Aqð Þ�b�r1k Aið Þ
bþr1k

Aið Þ�b�r1k Aið Þ þ
bþr1k

Aið Þ�b�r2k Aqð Þ
bþr2k

Aqð Þ�b�r2k Aqð Þ


 �
=2

1

0

BB@

þ
1� bþr1k

Aið Þ�b�r2k Aqð Þ
bþr2k

Aqð Þ�b�r2k Aqð Þ


 �
þ bþr1k

Aið Þ�b�r2k Aqð Þ
bþr2k

Aqð Þ�b�r2k Aqð Þ


 �
=2

1

1

CCA

¼ 1

2

b�r2k Aq

� �
� b�r1k Aið Þ

bþr1k Aið Þ � b�r1k Aið Þ
þ

bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

 !

=2

 

þ 1�
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

 !

þ
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

 !

=2

!

¼ 1

2

b�r2k Aq

� �
� b�r1k Aið Þ

bþr1k Aið Þ � b�r1k Aið Þ
þ

bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

 ! 

þ 1�
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

 !!

¼ 1

2

b�r2k Aq

� �
� b�r1k Aið Þ

bþr1k Aið Þ � b�r1k Aið Þ
þ 1

 !

¼ 1

2

b�r2kðAqÞ � b�r1k Aið Þ
bþr1k Aið Þ � b�r1k Aið Þ

 !

þ 1

2

lkiqs br1k Aið Þ\br2k Aq

� �� �
¼ 1� gkiqs br1k Aið Þ� br2k Aq

� �� �

¼ 1� 1

2

b�r2k Aq

� �
� b�r1k Aið Þ

bþr1k Aið Þ � b�r1k Aið Þ

 !

� 1

2
:

Case 4 When br1k Aið Þ � br2kðAqÞ, then

b�r1k Aið Þ\bþr1k Aið Þ\b�r2kðAqÞ\ bþr2kðAqÞ. lkiqs; g
k
iqs

h i
can be

stated as:

S ¼ Sbr1k Aið Þ ¼
Z bþr1k

Aið Þ

b�r1k Aið Þ

1

bþr2k Aq

� �
� b�r2k Aq

� � dx

¼ FðxÞ
bþr1k

Aið Þ
b�r1k Aið Þ

���� ¼
bþr1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� ��
b�r1k Aið Þ � b�r2k Aq

� �

bþr2k Aq

� �
� b�r2k Aq

� �

¼
bþr1k Aið Þ � b�r1k Aið Þ
bþr2k Aq

� �
� b�r2k Aq

� �

S1br1k Aið Þ ¼ 0; Sbr2k Aqð Þ ¼ 1:

S2
br2k Aqð Þ ¼ 1� s¼ 1�

bþr1k Aið Þ � b�r1k Aið Þ
bþr2k Aq

� �
� b�r2k Aq

� � :
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gkiqs br1k Aið Þ� br2kðAqÞ
� �

¼ 1

2

0þ bþr1k
Aið Þ�b�r1k Aið Þ

bþr2k
ðAqÞ�b�r2kðAqÞ


 �
=2

bþr1k
Aið Þ�b�r1k Aið Þ

bþr2k
ðAqÞ�b�r2kðAqÞ

þ
1� bþr1k

Aið Þ�b�r1k Aið Þ
bþr2k

ðAqÞ�b�r2kðAqÞ
þ bþr1k

Aið Þ�b�r1k Aið Þ
bþr2k

ðAqÞ�b�r2kðAqÞ


 �
=2

1

0

BB@

1

CCA

¼ 1

2

3

2
�

bþr1k Aið Þ � b�r1k Aið Þ
bþr2kðAqÞ � b�r2kðAqÞ

 !

=2

 !

¼ 3

4
� 1

4

bþr1k Aið Þ � b�r1k Aið Þ
bþr2kðAqÞ � b�r2kðAqÞ

 !

lkiqs br1k Aið Þ\br2kðAqÞ
� �

¼ 1� gkiqs br1k Aið Þ� br2kðAqÞ
� �

¼ 1� 3

4
þ 1

4

bþr1k Aið Þ � b�r1k Aið Þ
bþr2kðAqÞ � b�r2kðAqÞ

 !

¼ 1

4
þ 1

4

bþr1k Aið Þ � b�r1k Aið Þ
bþr2kðAqÞ � b�r2kðAqÞ

 !
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Baptista S, Barbosa-Póvoa AP, Escudero LF, Gomes MS, Pizarro C

(2019) On risk management of a two-stage stochastic mixed 0–1

model for the closed-loop supply chain design problem. Eur J

Oper Res 274(1):91–107

Chen N, Xu Z, Xia M (2013) Interval-valued hesitant preference

relations and their applications to group decision making.

Knowl-Based Syst 37:528–540

Cheng X, Gu J, Xu Z (2018) Venture capital group decision-making

with interaction under probabilistic linguistic environment.

Knowl-Based Syst 140:82–91

Dempster AP (1967) Upper and lower probabilities induced by a

multivalued mapping. Ann Math Stat 38:325–339

Ding XF, Liu HC, Shi H (2019) A dynamic approach for emergency

decision making based on prospect theory with interval-valued

Pythagorean fuzzy linguistic variables. Comput Ind Eng

131:57–65

Fan ZP, Liu Y (2010) An approach to solve group-decision-making

problems with ordinal interval numbers. IEEE Trans Syst Man

Cybern Part B (Cybern) 40(5):1413–1423

Farhadinia B, Herrera-Viedma E (2019) Multiple criteria group

decision making method based on extended hesitant fuzzy sets

with unknown weight information. Appl Soft Comput

78:310–323

Garg H, Kaur G (2020) Quantifying gesture information in brain

hemorrhage patients using probabilistic dual hesitant fuzzy sets

with unknown probability information. Comput Ind Eng

140:106211

Gomes L, Lima M (1992) TODIM: Basics and application to

multicriteria ranking of projects with environmental impacts.

Found Comput Decis Sci 16(4):113–127

Hatzisymeon M, Kamenopoulos S, Tsoutsos T (2019) Risk assess-

ment of the life-cycle of the used cooking oil-to-biodiesel supply

chain. J Clean Prod 217:836–843

Hong Y, Xu D, Xiang K, Qiao H (2019) Multi-attribute decision-

making based on preference perspective with interval neutro-

sophic sets in venture capital. Mathematics 7(3):257

Li MY, Cao PP (2019) Extended TODIM method for multi-attribute

risk decision making problems in emergency response. Comput

Ind Eng 135:1286–1293

Li P, Wei C (2019) An emergency decision-making method based on

DS evidence theory for probabilistic linguistic term sets. Int J

Disaster Risk Reduct 37:101178

Li D, Zeng W, Yin Q (2018) Novel ranking method of interval

numbers based on the Boolean matrix. Soft Comput

22(12):4113–4122

Liu Y, Fan ZP, Zhang Y (2014) Risk decision analysis in emergency

response: a method based on cumulative prospect theory.

Comput Oper Res 42:75–82

Liu Z, Ming X, Song W (2019) A framework integrating interval-

valued hesitant fuzzy DEMATEL method to capture and

evaluate co-creative value propositions for smart PSS. J Clean

Prod 215:611–625

Mardani A, Saraji MK, Mishra AR, Rani P (2020) A novel extended

approach under hesitant fuzzy sets to design a framework for

assessing the key challenges of digital health interventions

adoption during the COVID-19 outbreak. Appl Soft Comput

96:106613

Nagarajan M, Shechter S (2014) Prospect theory and the newsvendor

problem. Manage Sci 60(4):1057–1062

Niu L, Li J, Li F, Wang Z-X (2020) Multi-criteria decision-making

method with double risk parameters in interval-valued intuition-

istic fuzzy environments. Complex Intel Syst 6:1–11

Peng X, Garg H (2018) Algorithms for interval-valued fuzzy soft sets

in emergency decision making based on WDBA and CODAS

with new information measure. Comput Ind Eng 119:439–452

Pramanik S, Mallick R (2019) TODIM strategy for multi-attribute

group decision making in trapezoidal neutrosophic number

environment. Complex Intell Syst 5(4):379–389

Ren P, Xu Z, Hao Z (2017) Hesitant fuzzy thermodynamic method for

emergency decision making based on prospect theory. IEEE

Trans Cybern 47(9):2531–2543

Shafer G (1976) A mathematical theory of evidence. Princeton

University Press

Simon HA (1955) A behavioral model of rational choice. Q J Econ

69(1):99–118

Tang J, Meng F (2018) Ranking objects from group decision making

with interval-valued hesitant fuzzy preference relations in view

of additive consistency and consensus. Knowl-Based Syst

162:46–61

Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

8278 Q. Ding et al.

123



Tversky A, Kahneman D (1979) Prospect theory: an analysis of

decision under risk. Econometrica 47(2):263–291

Tversky A, Kahneman D (1992) Advances in prospect theory:

cumulative representation of uncertainty. J Risk Uncertain

5(4):297–323

Wang YM, Yang JB, Xu DL, Chin K-S (2006) The evidential

reasoning approach for multiple attribute decision analysis using

interval belief degrees. Eur J Oper Res 175(1):35–66

Wang L, Wang YM, Martı́nez L (2017) A group decision method

based on prospect theory for emergency situations. Inf Sci

418:119–135

Wang T, Guomai S, Zhang L, Li G, Lu Y, Chen J (2019) Earthquake

emergency response framework on campus based on multi-

source data monitoring. J Clean Prod 238:117965

Xue W, Xu Z, Wang H, Ren Z (2019) Hazard assessment of landslide

dams using the evidential reasoning algorithm with multi-scale

hesitant fuzzy linguistic information. Appl Soft Comput

79:74–86

Yang J, Li S, Xu Z, Liu H, Yao W (2020) An understandable way to

extend the ordinary linear order on real numbers to a linear order

on interval numbers. IEEE Trans Fuzzy Syst. https://doi.org/10.

1109/TFUZZ.2020.3006557

Yu L, Lai KK (2011) A distance-based group decision-making

methodology for multi-person multi-criteria emergency decision

support. Decis Support Syst 51(2):307–315

Zeng W, Li D, Yin Q (2019) Weighted interval-valued hesitant fuzzy

sets and its application in group decision making. Int J Fuzzy

Syst 21(2):421–432

Zhang J (2000) Fuzzy analytical hierarchy process. Fuzzy Syst Math

14(2):80–88

Zhang LJ, Li LS (2019) People-oriented emergency response

mechanism—an example of the emergency work when typhoon

Meranti struck Xiamen. Int J Disaster Risk Reduct 38:101185

Zhou M, Liu X-B, Chen Y-W, Yang J-B (2018) Evidential reasoning

rule for MADM with both weights and reliabilities in group

decision making. Knowl-Based Syst 143:142–161

Zhou M, Liu X-B, Yang J-B, Chen Y-W, Wu J (2019) Evidential

reasoning approach with multiple kinds of attributes and

entropy-based weight assignment. Knowl-Based Syst

163:358–375

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Interval-valued hesitant fuzzy TODIM method for dynamic emergency responses 8279

123

https://doi.org/10.1109/TFUZZ.2020.3006557
https://doi.org/10.1109/TFUZZ.2020.3006557

	Interval-valued hesitant fuzzy TODIM method for dynamic emergency responses
	Abstract
	Introduction
	Preliminaries: concepts and definitions
	Interval evidential reasoning (IER)
	Classical TODIM method

	IVHF-TODIM method based on IER
	Gain and loss functions based on geometric area method
	Dominance degree matrix
	Comprehensive dominance value

	Numerical example and comparison
	Emergency decision making for large bushfire
	Comparison analysis

	Conclusion
	Appendix
	Acknowledgements
	References




