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Abstract
This paper proposes a novel method, which is coined as ARBBPNN, for biometric-oriented face detection, based on

autoregressive model with Bayes backpropagation neural network (BBPNN). Firstly, the given input colour key face image

is modelled to HSV and YCbCr models. A hybrid model, called HS–YCbCr, is formulated based on the HSV and YCbCr

models. The submodel, H, is divided into various sliding windows of size, 3 9 3. The model parameters are estimated for

the window using the BBPNN. Based on the model coefficients, autocorrelation coefficients (ACCs) are computed. An

autocorrelation test tests the significance of the ACCs. If the ACC passes the test, then it is inferred that the small image

region, viz. the window, represents the texture and it is treated as the texture feature. Otherwise, it is regarded as structure,

which is treated as the shape feature. The texture and shape features are formulated as feature vectors (FV) separately, and

they are combined into a single FV. This process is performed for all colour submodels. The FVs of the submodels are

combined into a single holistic vector, which is treated as the FV of the key face image. The key FV has twenty feature

elements. The similarity of the key and target face images is examined, based on the key and target FVs, by deploying

multivariate parametric statistical tests. If the FVs of the key and target images pass the tests, then it is concluded that the

key and target face images are the same; otherwise, they are regarded as different. The GT, FSW, Pointing’04, and BioID

datasets are considered for the experiments. In addition to the above datasets, we have constructed a dataset with face

images collected from Google, and many images captured through a digital camera. It is also subjected to the experiment.

The obtained recognition results show that the proposed ARBBPNN method outperforms the existing methods.
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1 Introduction

With the advent of the advanced digital technologies, such

as ICT, IoT, WoT, mass volume of storage devices, and

fast computational methods, the biometric system has

tremendously evolved during the last two decades. Nowa-

days, almost all the organizations, irrespective of size and

installation capability, use the biometric-driven security

systems. In biometric systems, especially in the public-

security-driven biometric system, face recognition plays a

vital role in identifying the criminals and preventing the

crime and its related activities in public. Also, it has got

proper attention of research communities of computer

vision and pattern recognition.

Specifically, during and after the global pandemic

Covid-19, the facial-based biometric system has slewed the

attention of the biometric technology vendors because the

users in worldwide are avoiding fingerprint and other

contact-based biometric systems. Thus, worldwide organ-

isations that had implemented the contact-based biometric

systems have turned on to non-touch facial authentication

platform as a result of Covid-19. Hence, in the future, there
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will be a spike in demand for non-contact biometric sys-

tems in organisations. Therefore, this paper believes that it

will reflect in research organisations, which involved in

biometric technology-oriented systems development.

Moreover, it will induce the biometric research community

to concentrate more on contactless biometric systems

development like facial, iris, gait, and voice recognition

(Carlaw 2020; News 2020a).

In face recognition, the features and feature extraction

methods play a significant role. They have been broadly

categorized into global and local. The local methods are

too effective than the global for face recognition, even if it

is a minute feature (Singh and Chabra 2018). Several local

feature extraction methods, such as local binary pattern

(LBP), local ternary pattern (LTD), local derivative pattern

(LDP), Weber’s local descriptor (WLB), histogram of

oriented gradient (HOG), have been proposed by many

researchers (Shi et al. 2010; Tan and Triggs 2010; Chai

et al. 2014; Singh and Chabra 2018; He et al. 2018; Muqeet

and Holambe 2019) for face recognition. They have

reported that the local feature extraction methods yield

better results than the global methods. In recent years,

ordinal measures have drawn the attention of the research

community of facial recognition (Chai et al. 2014; He et al.

2018). The binary-code-driven ordinal features are robust

to intra-class variations during binarization (He et al.

2018). He et al. suggest, in biometric systems, an ordinal

measure represents the average brightness of two adjacent

regions or the relative ordering of two colour channels

within the same region. The colour feature plays a note-

worthy role in facial image representation and recognition.

Many researchers have used colour features at the local

level for pattern recognition, especially for image retrieval

(Theoharatos et al. 2005; Bindemann and Burton 2009; Liu

and Liu 2010; Seetharaman 2015; Pavithra and Sharmila

2017) and face recognition (Liu and Liu 2008; Thakur et al.

2011; Uçar 2014; Pujol et al. 2017; Sharifara et al. 2017);

they have reported that the colour features show good

results. The literature reveals that spatial orientation feature

and texture feature significantly contributed to face

recognition (Liu and Liu 2010).

2 Related works

Liu and Liu (2008) have presented a method based on a

combination of colour feature and frequency feature for

face identification. They have combined the R component

of the RGB colour model, and I and Q components of the

YIQ colour model; reported that the proposed hybrid

method gives a good result. Thakur et al. (2011) have

introduced a skin colour model, RGB–HS–CbCr, for face

identification, and they report that the HS, Cb, and Cr

components yield better results than the RGB colour

model. Thus, they use a set of bounding rules, based on the

colour distribution to detect the boundary of the human

face. Terrillon et al. (2000) have performed a comparative

study of nine different colour models and reported that the

HSV and YCbCr models result in better segmentation than

the others. Wang et al. (2018) have adopted the YCbCr

model as it has excellent segregation characteristics of the

skin tone and background scenes, and they have reported

that it demands minimal computational cost than the HSV

colour model.

The LBP, LDP, LTD, and HOG encode the image

pixels, based on the positional number system. The posi-

tional number-based encoding system could lead to wrong

encoding and results in less precision. For example, LBP

and LTP methods assign the weights 1 and 128 to the

pixels at locations (1, 1) and (3, 3) of the sub-image of size

(3 9 3), respectively. It is not correct because spatially, the

pixels at locations (1, 1) and (3, 3) equally contribute to the

centre pixel. The descriptors derived in both methods,

based on the positional number system, are not rational

because it shows a great discrimination on weights given to

the pixels at locations (1, 1) and (3, 3). It could lead to a

wrong or partial feature description in the small image

region.

In order to overcome this problem, this paper presents

an autocorrelation (AC)-based feature extraction method,

which is the best representation of the spatial information

about the pixels. The proposed method builds a hybrid

colour model with a combination of H and S of the HSV

model and YCbCr model, called HS–YCbCr, and extracts

AC coefficient (ACC) from the HS–YCbCr model. The H

and S represent hue and saturation; Y and CbCr represent

luminance and chrominance, respectively; Cb and Cr

denote blue and red chrominance, respectively. The ACC is

computed from each submodel of the HS–YCbCr model.

The computed ACC is subjected to the significance test at a

specific level of significance to examine the degree of

correlation of the pixels in the small image region, called

the window. The literature (Hatamikia et al. 2014) reveals

that ACC is the best representation of the spatial infor-

mation about the pixels. Hence, the proposed method

deploys ACC-driven feature descriptor for face

recognition.

The literature reveals that many researchers have

applied statistical models for face detection (Wang et al.

2009; Mil et al. 2012; Yan et al. 2013; Hatamikia et al.

2014; Wu et al. 2017). Wang et al. (2009) have proposed a

Bayesian method, based on Markov random field model,

for face recognition. They have used Gabor wavelet fea-

tures, and the relationships between the Gabor features at

different pixel locations, which provides higher-order

contextual constraints. Hatamikia et al. (2014) have
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investigated the performance of autoregressive (AR) fea-

tures for the classification of emotional states, based on the

AR model, sequential forward feature selection, and

k-nearest neighbour classifier using EEG signals during

emotional audio-visual inductions. They have reported that

the AR features outperform the existing methods. Arashloo

(2016) has constructed a deep multilayer architecture and

undirected graphical models based on Markov random

field. Wu et al. (2017) have introduced a coupled hidden

Markov random field model for face clustering, face

tracking, and their interactions. Liu et al. (2019) have

presented a method based on conditional random regres-

sion forests, which detects the real-time smiling face

detection. They claim that the proposed method is not

sensitive to head poses as the relationship between the

image patches and smile intensity is conditionally mod-

elled to head pose. The techniques—regression forest,

multiple-label dataset augmentation, and non-informative

patch removal—have been deployed to achieve high

performance.

Paul et al. (2020) have proposed a method, based on

geometrical distance and statistical pattern matching of

binary facial components: eyes, nose, and mouth regions. It

employs the statistical pattern matching tools—standard

deviation of Chi-square values with a probability of white

pixels (PWPs), standard deviation of HuMIs with Hu’s

seven-moment invariants, Abs-DifPWPs, and geometrical

distance values (GDVs)—for recognition. GDVs are

computed between two similar facial corner points (FCPs),

and nine FCPs are extracted from whole binary face and

BFCs. Pixel intensity values (PIVs) are determined using

L2 norms from greyscale values of the whole face and

greyscale values of the face components. In this method,

the corner points of the eyes, nose, and mouth regions are

considered as the geometrical points; GDVs are computed

based on the corner points. The GDV-based similarity

could lead to wrong results or less precision because they

measure the region of the components; the region is com-

puted using the Otsu’s algorithm. One cannot regard the

regions, which is segmented by Otsu’s algorithm, for

geometrical points detection because the Otsu’s algorithm

approximately segments the object or region of interest

from the background scenes. Also, they extract statistical

features from the greyscale and binary pattern images that

are not sufficient and appropriate for face recognition.

Because the facial images fully rely on the skin colour

chromaticity. Thus, this paper believes that the features

extracted from greyscale and binary pattern could not lead

to good results or results in with less recognition rate.

On the other hand, in recent years, deep neural networks

(DNN) attracted many researchers. However, there are

some drawbacks as reported in Goswami et al. (2019) that

the DNN architecture-based methods are mostly a black

box method since it is not easy to mathematically formu-

late the functions that are learned within its many layers of

representation. They have examined the robustness of

DNNs for face recognition and reported that the perfor-

mance of deep learning-based face recognition algorithms

significantly suffers in the presence of vulnerabilities and

adversaries. Wu et al. (2019) reported that the CNN

methods use identical operations to all local regions of each

face for feature aggregation and give equal weight to all

local features for the face detection process. Also, they

suggest that these methods not only regard the local fea-

tures as suboptimal owing to ignoring region-wise dis-

tinctions, but also the overall face representations are

semantically inconsistent. Realizing this, many researchers

have exploited the drawbacks of deep learning-based

algorithms that questions their robustness and singularities.

This paper also believes, as suggested by Goswami

et al., most of the DNN architectures do not transparently

discuss the methods involved in feature selection, feature

matching, and other kinds of facial image analyses. Despite

there is no second thought of the accuracy of the results

attained by DNN, however, one thing is clear that whatever

the techniques deployed for recognizing human faces

without mathematical conception, it is a challenging and

time-consuming process because the human face recogni-

tion significantly contributed to mathematical conception.

Also, the literature reveals that the DNN methods require

more computation cost as it comprises many layers, and

this is another disadvantage of the DNN. Hence, to shun

these problems mainly computation cost, the proposed

method is designed with a Bayes backpropagation neural

network (BBPNN), which is deployed only for feature

selection, not for the entire face recognition process.

Conventional procedures are used for feature matching and

face identification. The experimental results show that the

proposed method achieves better results with less compu-

tation cost than the state-of-the-art methods.

Although many statistical models have been developed

for face recognition, the literature reveals that yet to

develop a holistic model because the existing models are

complementary to each other. It motivated us to develop a

holistic method for face recognition; thus, this paper

attempts to build such a comprehensive model with less

computation cost. The proposed method addresses the

drawbacks mentioned above as follows:

1. The proposed method uses HS–YCbCr colour model

instead of greyscale and binary image, and extract

features from each colour submodel such as H, S, Y,

Cb, and Cr.

2. The proposed AR model with Bayes backpropagation

neural network (ARBBPNN) method learns deep shape

and deep texture features from each colour submodel.
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It is observed from the literature that mainly the facial

images rely on colour chromaticity and skin textural

patterns, and the ACC is the best representation of the

spatial orientation of the pixels and textural patterns.

2.1 Outline of the proposed method

The proposed ARBBPNN method performs face recogni-

tion process in three stages: first, pre-processes the given

input image; secondly, extracts the features using the

BBPNN method; finally, it performs searching and

matching the target face images.

Pre-process At first, the given input key image is

denoised; then, it is converted to HSV and YCbCr colour

models if it is colour. If the key image is greyscale, then it

is taken into account for further analysis as it is. The

proposed method builds a hybrid colour model, called HS–

YCbCr, with a combination of H and S submodels of the

HSV model and the YCbCr colour model. Each colour

submodel, such as H, S, Y, Cb, and Cr, is segregated into

texture and shape components. For example, the denoised

and the texture and shape components are presented in

Figs. 6 and 7, respectively.

Feature extraction The ACC-based feature descriptor is

computed from each colour submodel, based on the AR

model coefficients. The coefficients are computed using the

model parameters. The BBPNN model is employed to

estimate the parameters of the AR model. The hidden

layer-4 of the BBPNN computes the model coefficients,

and the ACCs are calculated using the model coefficients.

The hidden layer-5 tests the significance of the ACC, based

on the AC test. If the degree of AC is high, then it is

inferred that the small image region contributes to texture;

otherwise, it is regarded as shape or structure. The ACC

with high degree is formulated into a feature vector (FV),

called texture feature vector FVtð Þ, and the ACC with low

degree is formulated as a separate FV, which is termed as a

shape feature vector FVsð Þ. Each FV consists of ten feature

elements. The shape-driven and the texture-driven features

are merged into a single FV, as shown in Eq. (36), which

has twenty FV elements and denoted by FVk.

Searching and matching The target face image identi-

fication is performed in two stages: (1) tests the similarity

of the FVs of the key and target face images in terms of

variation; (2) tests the distance between the mean vectors

of the FVs of the key and target images, provided the

images passed the test conducted at stage (1). In order to

perform the above two tests, a hypothesis is formulated, i.e.

null hypothesis (H0): the key and target face images are the

same; otherwise, the alternative hypothesis (Ha): the key

and target face images differ. At the first stage, the test for

equality of covariance of the FV of the key and target

images is performed; at stage two, the test for equality of

mean values of the FVs of the key and target images is

conducted. If H0 is accepted, then it is inferred that the key

and target face images are the same; otherwise, they differ.

The overall functions of the proposed method are illus-

trated in Fig. 1.

The rest of the paper is organized as follows. Section 3

discusses the pre-processing technique. Section 4 describes

the proposed feature selection methods based on the

BBPNN method and AR model, while Sect. 5 discusses the

test statistics for face recognition. In Sect. 6, the experi-

mental setups and the performance evaluation methods are

briefed; the experimental results are demonstrated with

suitable diagrams. Section 7 deals with computation cost.

Section 8 concludes the papers with a conclusion and

provides a future direction for the proposed method.

3 Pre-process

There are many possibilities of incorporating different

kinds of noises in the images while capturing or manipu-

lating for further analysis. So, the proposed method

employs a pre-processing technique, called soft-SVVD

(Liu et al. 2014), to remove or mitigate the effects of the

noise (abnormality) in the image. The main objective of the

SVDD is to identify the noised pixels in the feature space;

feature space means the transformed domain of the image.

The identified noised pixels are replaced by median values

of the normal (except abnormal) pixels of the image. The

denoising technique is expressed in Eq. (1), which enriches

the proposed face recognition method even if the image is

profoundly affected by different noises. In order to identify

the abnormal pixels in the image, the given input image is

divided into sliding windows of size, 3 9 3.

fk;l � Ck;l

�
�

�
�

2 � r2 ð1Þ

where �k k is the Euclidean norm; Ck;l is the mean intensity

value of the pixels in the window, which is computed using

the expression in Eq. (2).

Ck;l ¼
Xpþn

u¼1

kuh fk;l
� �

ð2Þ

ku denotes the Lagrange multiplier; h fk;l
� �

is a vector form

of the pixel intensity values; fk;l is the intensity value of the

pixel to be classified, whether it is noised or not.

To classify the pixel,fk;l, the distance between the fk;l and

Ck;l is computed. If it is less than or equal to radius, r, that

is, it satisfies the condition in Eq. (1), then fk;l is accepted

as a normal pixel; otherwise, it is identified as abnormal.

In order to derive the function in Eq. (1), let

fk;l 2 Rn; i; k ¼ 1; 2; 3
� �

be a set of targeted pixels in the
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Fig. 1 Overall functions of the

proposed method
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window. In which, the functions mnor f nor
k; l

� �

and mneg f neg
k; l

� �

represent the degree of the membership of a pixel, fk;l,

towards normal class and negative class, respectively. The

functions f nor
k;l and f neg

k;l contain the group of normal and

abnormal pixels, respectively. The solution to the soft-

SVDD can be achieved by solving the following opti-

mization problem.

min G ¼ r2 þ x1

X

mnor fk;l
� �

ni þ x2m
neg gk;l
� �

nj

s: t: fk;l � Ck;l

�
�

�
�� r2 þ ni; fk;l 2 Snor

gk;l � Ck;l

�
�

�
�� r2 þ nj; gk;l 2 Sneg

ni � 0; nj � 0;

ð3Þ

where x1 and x2 control the trade-off between the pixels in

the window and the error; ni and nj are defined as a mea-

sure of error. The terms mnor f nor
k;l

� �

ni and mneg f
neg
k;l

� �

nj can

be regarded as a measure of error with different weighing

factors. It is noted that a smaller value of mnor f nor
k;l

� �

could

reduce the effect of the parameter ni in Eq. (3), such that

the corresponding pixel, f nor
k;l , becomes less significant.

The decision boundary of the normal and abnormal

pixels is constructed by deploying the conditions of the

following Lagrange-multiplier’s theorem and the Karush–

Kuhn–Tucker complementarity (Vapnik 1998), and then,

one can obtain the radius, r, of the hyper-plane.

Theorem The solution to the problem expressed in Eq. (3)

can be arrived by optimizing the problem in Eq. (4):

max
Xmþn

i¼1

kiK mnor f nor
k;l

� �

;mnor f nor
k;l

� �� �

�
Xmþn

i¼1

Xmþn

j¼1

kikjK mnor f nor
k;l

� �

;mneg f neg
k;l

� �� �

s: t: 0� ki �xp
i ; i ¼ 1; 2; . . .;mþ n;

Xmþn

i¼1

ki ¼ 1

ð4Þ

where ki; ki � 0 are the Lagrange multipliers;

xp
i ¼ x1m

nor f nor
k;l

� �

; ði ¼ 1; 2; . . .; lÞ
n o

and xp
i ¼f

x2m
neg f neg

k;l

� �

; ði ¼ lþ 1; lþ 2; . . .; lþ nÞg.

Let us assume f uk;l is one of the patterns of the pixels in

the window, and r can be measured as follows:

r2 ¼ f uk;l � Ck;l

�
�
�

�
�
�

2

¼ f uk;l � Ck;l

� �

� f uk;l � Ck;l

� �

r2 ¼ f uk;l

� �2

þ Ck;l

� �2�2 f uk;l

� �

� Ck;l

� �

ð5Þ

Based on the Mercer’s Kernel function, Eq. (5) can be

written as in Eq. (6):

r2 ¼ K f uk;l; f
u
k;l

� �

þ K Ck;l;Ck;l

� �

� 2K f uk;l;Ck;l

� �

ð6Þ

By applying the Karush–Kuhn–Tucker (Vapnik 1998),

one can derive the distance, r, from the decision boundary

of the pixels in the window to its mean intensity values of

the pixels.

r2 ¼ K f uk;l; f
u
k;l

� �

þ
Xmþn

i¼1

Xmþn

j¼1

LiLjK f nor
k;l ; f

neg
k;l

� �

� K
Xmþn

i¼1

Li f neg
k;l ; f

u
k;l

� �

ð7Þ

To identify whether a pixel in the window is noised or

not, it is enough to compute the distance from the decision

boundary of the pixels in the window to the mean value of

the pixels in the window. If the distance is less than or

equal to r, that is,

fk;l � Ck;l

�
�

�
�

2 � r2; ð8Þ

then it is inferred that the pixel, fk;l, is normal. Otherwise, it

is treated as an abnormal.

For more details about Lagrange-multiplier and Karush–

Kuhn–Tucker complementarity, readers can refer to Liu

et al. (2014) and Vapnik (1998).

In the sequel, the denoised key face image was converted

to HS–YCbCr colour model. The ACC was computed from

each colour submodel—H, S, Y, Cb, Cr, based on the sliding

window of size 3 9 3. The computed ACC was tested,

whether it is highly correlated or not, using the significance

test discussed in Sect. 4.2.1. If the ACC is highly correlated,

then it is taken into account of texture features; otherwise, it

treated as shape features. For example, the structure and shape

of an image are shown in Fig. 7.

4 Proposed feature descriptor

Guo et al. (2010) have reported that despite the LBP per-

forms well for pattern recognition; still, it requires more

investigation for better results. They have presented a

complete model for local binary pattern operator (CLBP)

and employed for classification of texture, and claimed that

it addresses the above problems. But, still, it needs further

investigation because the CLBP method again assigns the
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binary values based on the difference between the centre

and the neighbouring pixels. Seetharamana and Palanivel

(2013) suggested that the assignment of binary and ternary

codes, based on the difference between the centre and the

adjacent pixels, is not rational. This paper believes that

again the problem arises in CLBP as in the case of LBP. In

order to overcome this problem, this paper computes AC;

the AC coefficient is tested whether it is significantly

correlated or not. The computation of the ACC and the

significance test are detailed in the proceeding sections.

4.1 Spatial-driven descriptor

Let the pixel intensity, f, at the location (k, l), of an image,

be a random process at equal interval of discrete-time

space, t. The pixel at location (k, l) can be denoted by fk;l.

Let us assume that the pixel, fk;l, be a value generated by a

given run of the process at the time, t. Suppose the process

has mean, l, and variance, r2, at discrete-time space, t, for

each t. In the context of image analysis, the dataset is

considered as a two-dimensional (2-D) data as depicted in

Fig. 2. In this paper, the full-range autoregressive model

proposed in Seetharaman (2012) is adopted and recon-

structed into an AR model with order two, i.e. AR(2) as in

Eq. (9), which is employed to compute the ACC for a small

image region of size, 3 9 3, as depicted in Fig. 2.

fk;l ¼
X1

p¼�1

X1

q¼�1

kqfkþp;lþq þ ep;q;

s: t: q ¼ pþ qj j; p ¼ q 6¼ 0; k; l ¼ 0:

ð9Þ

kq ¼ K sin qhð Þ cos quð Þð Þ
aq

; s: t:; q ¼ 1; 2: ð10Þ

where k; l represent the row and column index of the

centre pixel, which is treated as origin of the region, of the

small image region.

The model coefficients kq are computed as discussed

below. According to the following stationarity theorem, the

following conditions are imposed on the AR model coef-

ficients as follows.

Stationarity , k1 þ k2\1; �k1 þ k2\1; k1j j\2; and

k2j j\1:

ð11Þ

Stationarity theorem A necessary and sufficient condition

for the AR(p) model to be stationary is that all of the roots of

the polynomial in Eq. (12) lie outside the unit circle.

kðbÞ ¼
Yp

i¼1

1 � Gibð Þ ¼ 0: ð12Þ

The ACC is computed, based on the model coefficients.

The computation of the model coefficients is discussed in

the next section.

4.1.1 Parameters learning

The proposed BBPNN model is effectively used to esti-

mate the parameters of the AR(2) model. It consists of 6

layers, such as one input and one output layers, and four

hidden layers. Its structure is illustrated in Fig. 3. The

parameters are learned as follows.

According to Bayes rules, the point estimates of the

parameters, a; h; /, and K, are regarded as means of the

respective marginal posterior distribution, i.e. posterior

means. In a view to minimizing the computational cost,

first, the posterior mean of a is computed. Then, a is fixed

at its posterior mean, and the conditional means of h and /

are evaluated. The a
^
; h

^
; and /

^
are set at their posterior

means, and then, the conditional mean of K is estimated.

Thus, the estimates are

a
^ ¼ E að Þ

h
^
;u
^

	 


¼ E h;uj a^
� �

K
^
¼ E Kj a^; h

^
;u
^

	 


ð13Þ

First, the image is divided into various sliding windows

w k; lð Þ of size 3 9 3, where k ranges from - 1 to 1, and

estimate the parameters as follows.

Estimation of a First, the hidden layer-1 estimates the

posterior mean, based on the seed values received from

input layer that are treated as prior information, as follows.

It is not a difficult task to set the seed values to the

parameters because their ranges are known.

a
^

ij

¼ EðaijÞ ¼ EðaijÞ ¼
P

i a� f ðiÞ
P

i f ðiÞ
ð14Þ

where f ðiÞ ¼
P

r

P

s Tðr; sÞ ¼ e�bða�1ÞC�da�1=2

d ¼ TP

2
; D ¼ p

TP
; a ¼ b

2
; b ¼ Var fið Þ

f

where T(r, s) is a matrix with order p 9 q; TP is the

number of pixels in the window, i.e. TP = 9; a is a weight

factor; f(i) is the likelihood of observations;
P

i f ðiÞ is a

normalizing factor.

The kqs q ¼ 1; 2. . .ð Þ are computed by substituting a
^

ij

and h; /; K in Eq. (10), for example, which is exemplified

f(-1,-1) f(-1,0) f(-1,1)

f(0,-1) f(0,0) f(0,1)

f(1,-1) f(1,0) f(1,1)

Fig. 2 Spatial relationships of

the pixels
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in Eq. (18); a
^

ij
is estimated in hidden layer 1, and the

parameters, h; /; K, are received from input layer. The

computed kqs are stored in k k; lð Þ as illustrated in Eq. (15).

In order to learn kq, k k; lð Þ and w k; lð Þ are convolved as

depicted in Eq. (16). The R is computed using Eq. (17). If

R falls in the interval mentioned in Eq. (17), then the

iteration process is terminated, and the estimated parame-

ters are sent to hidden layer 4. Otherwise, a
^

ij
is sent to the

hidden layer 2.

k k; lð Þ ¼
k2 k1 k2

k1 k1

k2 k1 k2

2

4

3

5 ð15Þ

g ¼
X1

i¼�1

X1

j¼�1

k k; lð Þ � w k; lð Þ; s: t: k ¼ l 6¼ 0 ð16Þ

R ¼ wðk; lÞ
g

2 0:95; 1:05½ � ð17Þ

k1 ¼ K sin 1hð Þ cos 1/ð Þð Þ
a1

and k2 ¼ K sin 2hð Þ cos 2/ð Þð Þ
a2

ð18Þ

while R falls in the interval given in Eq. (17), the iteration

process is saturated; it means that the predicted pixel has

become the same or nearer to the actual pixel.

Estimation of h and / (hidden layer 2) The a is fixed at

its posterior mean, a
^
, as in Eq. (13), then h and / are

learned, based on the expressions in Eq. (19), using the

seed values of h and / received from the input layer that

are regarded as prior information.

h
^
¼ EðhÞ ¼

P

i h� f ðiÞ
P

i f ðiÞ
; /

^
¼ Eð/Þ

P

i /� f ðiÞ
P

i f ðiÞ
ð19Þ

The hidden layer-2 computes kq, based on a
^
; h

^
; /

^
; K;

and stored as in Eq. (15); this layer learns the parameters, h
^

and /
^

, while a
^

and K are received from the hidden layer-1

and input layer, respectively. The value of g is computed as

discussed above and applies in Eq. (16); examines whether

R falls in the interval 0:95; 1:05½ �. If R 2 0:95; 1:05½ �, then

the iteration process is terminated, and the estimated

parameters are sent to hidden layer 4. Otherwise, a
^
, h
^
, and

/
^

are fed as input to hidden layer-3.

Fig. 3 Structure of the BBPNN with three-layer perceptron
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Estimate of K (hidden layer 3) The a; h; and / are fixed

at their respective posterior means, a
^
; h

^
, and /

^
; then, K is

learned, based on the expression in Eq. (20), using the seed

value of K received from the input layer that is regarded as

prior information.

K
^
¼ b=a ð20Þ

Layer-3 computes R, based on a
^
; h

^
; /

^
; K

^
, and examines

whether R falls in the interval 0:95; 1:05½ �. If R falls in the

interval, then the iteration process is terminated, and the

estimated parameters are sent to hidden layer 4. Otherwise,

the sliding window moves to (k ?1)th position with half of

the values of the parameters estimated in kth position; and the

weight factor is updated for each parameter as in Eq. (21)

until the function in Eq. (17) satisfies the condition. The

above process is repeated for the entire image. Ultimately, the

BBPNN derives a tensor matrix F(I, J, K) with ACC values,

which is output of the BBPNN model.

a
^
i ¼ a

^
i�1 þ Di

h
^
i ¼ h

^
i�1 þ Di

/
^
i ¼ /

^
i�1 þ Di

K
^
i ¼ K

^
i�1 þ Di

9

>>>>>>=

>>>>>>;

ð21Þ

where i denotes the ith iteration of updating the parameters;

Di is a very small quantity.

Hidden layer 4 Based on the estimated parameters, it

computes the model coefficients k1 and k2, as exemplified

in Eq. (18). The ACCs, q1, and q2, are computed by sub-

stituting the model coefficients in Eqs. (29) and (30), and

the ACCs are sent to the hidden layer-5.

Hidden layer 5 This layer performs a significance test on

computed ACCs, based on the test statistic expressed in

Eq. (31). It computes the test statistics, ACm; based on the

computed AC and tests whether it falls within the confi-

dence limit, 	aðr=
ffiffiffi
n

p
Þ. If the ACm falls within the limit,

then it is inferred that the ACCs are not highly significant,

viz. the small image region of the window contains shape

feature, and it is formulated as a FV as depicted in

Eq. (34); otherwise, it is assumed that it contains texture

feature and formulated as a FV as demonstrated in

Eq. (35). The formulated FVs are sent to the output layer.

The output layer outputs the FVs.

4.2 Basis for computation of ACC

In order to compute ACC, we have to compute the auto-

covariance for the AR(2) process. More general form of the

autocovariance function can be written as in Eq. (22):

- pþqj j ¼ E fk;lfkþp;lþq

� �

ð22Þ

where p and q are the lag variables in row and column

directions of the 2D image pixel intensity values, respec-

tively. In the case of the proposed study, Eq. (22) can be

written as follows:

-q ¼ E
X

p

X

q

kq fk;lfk�p;jþq

� �

( )

þ E ek;lekþp;lþq

� �

;

s: t: p ¼ �1; 0; 1; q ¼ �1; 0; 1:

ð23Þ
-q ¼ E kq f0;0 f�1;0 þ f0;1 þ f1;0 þ f0;�1

� �� 
� �

þ E kq f0;0 f�1;�1 þ f�1;1 þ f1;1 þ f1;�1

� �� 
� �

þ E e0;0ep;q
� �

s: t: p ¼ �1 to 1; q ¼ �1 to 1

ð24Þ
-r ¼ k1-r�1 þ k2-r�2 ð25Þ

where q ¼ pþ qj j, q represents order of the autocovariance

function.

The AC function expressed in Eq. (26) can be obtained

by dividing Eq. (24) by the variation between the pixel

values of the subimage, fk;l.

Var fi;j
� �

¼
P3

i¼1

P3

j¼1
fi;j

N�1
, where N is a number of pixels in

the small image region of size, 3 9 3.

qr ¼ k1qr�1 þ k2qr�2 ð26Þ

Since q1 ¼ q�1, Eq. (26) can be written as:

q1 ¼ k1 þ k2q�1 ð27Þ
q1 ¼ k1 þ k2q1 ð28Þ

q1 ¼ k1

1 � k2

ð29Þ

Similarly, the second-order ACC can be computed as

follows:

q2 ¼ k2
1 þ k1 þ k2

2

1 � k2

ð30Þ

where q1 and q2 represent the first- and second-order ACC,

respectively.

4.2.1 Significance test for ACC

In order to test the significance of the ACC in a small

image region of size 3 9 3, the proposed method adopts

the test statistic expressed in Eq. (31), which is presented

by Pena and Rodriguez (2002).
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ACm ¼ 1 � ~qmj j
1
m

h i

ð31Þ

where ~qm is the correlation matrix, which is formulated

using the standardized ACC, ~qm, m is the order of the AC.

The correlation matrix is expressed in Eq. (32):

~qm ¼

1 ~r1 . . . ~rm
~r1 1 . . . ~rm�1

..

. ..
. . .

. ..
.

~rm ~rm�1 . . . 1

2

6
6
6
4

3

7
7
7
5
; ~r2

m ¼ ðnþ 2Þ
ðnþ kÞ r

2
m ð32Þ

where n is the number of samples and m is the lag variable.

The significance test statistic, ACm; is performed based

on the confidence measure, 	aðr=
ffiffiffi
n

p
Þ, where a represents

significance level; r denotes standard deviation. To per-

form the confidence test at a given significance level a,

under H0 that there is no AC at lag m, the computed ACm is

compared to �aðr=
ffiffiffi
n

p
Þ; þaðr=

ffiffiffi
n

p
Þð Þ. If the ACm falls

outside the interval, then H0 is rejected at the level of

significance a, i.e. the image pixels are correlated; other-

wise, the H0 is accepted, i.e. the image pixels are not

correlated. If the AC is high, then it is assumed that the

small image region represents texture feature; otherwise,

the region represents shape feature. If the AC test is

accepted at significance level, a, then the ACC value is

stored as a vector as depicted in Eq. (33), which is treated

as shape features; otherwise, it is treated as a texture fea-

ture and stored as a vector as depicted in Eq. (34).

The above process is repeated for all submodels (H, S,

Y, Cb, and Cr), and finally, the FVks and FVkt are merged

into a single holistic FV of the key face image, which is

denoted as FVk.

FV
�!ks

¼ H
!s

q1i; q2ið Þ; S
!s

q1i; q2ið Þ; Y
!s q1i; q2ið Þ; Cb

�!s
q1i; q2ið Þ; Cr

�!s
q1i;q2ið Þ

n o

ð33Þ

FV
�!kt

¼ H
!t

q1i; q2ið Þ; S
!t

q1i;q2ið Þ; Y
!t

q1i; q2ið Þ; Cb
�!t

q1i; q2ið Þ; Cr
�!t

q1i; q2ið Þ
n o

ð34Þ

where FVks and FVkt denote shape and texture FVs of the

key face image, respectively; i represents the number of

sliding windows (number of samples of the features) of the

face image.

Similarly, the FVs for target face images of the face

image database are computed, which is denoted by FVtr,

and stored in the FV database of the face image. The for-

mulation of the FVtr is discussed in Sect. 6.

FV
�! k

¼ qHs
1i ; q

Hs
2i ; q

Ss
1i ; q

Ss
2i ; q

Ys
1i ; q

Ys
2i ; q

Cbs
1i ; qCbs

2i ; qCrs
1i ;

�

qCrs
2i ; q

Ht
1i ; q

Ht
2i ; q

St
1i ; q

Sst
2i ; q

Yt
1i ; q

Yt
2i ; q

Cbt
1i ;qCbt

2i ; qCrt
1i ; q

Crt
2i

�

ð35Þ

5 Proposed face recognition test statistics

The combined FVk in Eq. (35) is treated as a feature space,

which is measurable. Let us assume that the FV space is a

sigma field (X). The shape and texture features are regar-

ded as a subfield of X. The shape and texture subspaces are

denoted by S and T ;, respectively, such that S 
 X and

T 
 X. Also, it satisfies S [ T 2 X and S \ T 2 X. The

subspaces, S and T; are assumed as enfolded Gaussian

random fields (Carbó-Dorca and Besalú 2011; Kukush

2019). Let Fki and Ftri (i = 1, 2, …, 20) be the multidi-

mensional Gaussian distribution functions that can be

denoted as Fki �N Mk;Wkð Þ and Ftri �N Mt;Wtð Þ with

mean vector Mð�Þ and covariance matrix Wð�Þ. Each feature

space, such as shape and texture, has five submodels that

are extracted from HS–YCbCr colour model; each sub-

model has two FVs, such as q1 and q2, as illustrated in

Eq. (35). As a result, the FV consists of twenty FV ele-

ments, which is expressed in Eq. (35).

In order to identify the target face image, the multi-

variate parametric tests, such as the test for equality of

covariance matrices and the test for equality of mean

vectors, are employed. The test for equality of covariance

between the FVk and FVtr is expressed in Eq. (36).

Let f
ðgÞ
a ; a ¼ k; tr; g ¼ 1; 2; . . .; 10 be an observation

from gth FV of the key (k) face image or the target (tr)

image which follows Gaussian distribution with mean

vector Mð�Þ and covariance matrix Wð�Þ. According to the

law of distribution that can be denoted as Fki �N Mk;Wkð Þ
and Fki �N Mtr;Wtrð Þ.

5.1 Test for equality of variation between key
and target face images

To test whether the covariance matrices of the key and

target images are the same or not, the hypothesis is for-

mulated as follows:

H0 : Rk ¼ Rtr Null hypothesis

Ha : Rk 6¼ Rtr Alternative hypothesis

The equality of covariance matrices of the key and

target face images with 20-feature components of multi-

variate normal populations can be examined against the

alternative of general positive definite matrices. The test

statistic given in Eq. (36) interprets the similarity (dis-

tance) between the key and target face images, which

approximately distributed to Chi-square distribution with

degrees of freedom 1=2 q� 1ð Þp pþ 1ð Þ (Anderson 2003).
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DCov ¼
X

ng ln Wj j �
Xq

g¼1

ng lnWg

 !

C�1 ð36Þ

where

Wg ¼
1

Ng
Sg;

Sg ¼
X

g

f ga � f
ðgÞ� �T

f ga � f
ðgÞ� �

; a ¼ k; tr

f
ðgÞ ¼ 1

Na

XNg

g

f ðgÞa ; a ¼ k; tr

C�1 ¼ 1 � 2g2 þ 3g� 1

6 gþ 1ð Þ a� 1ð Þ
X2

a¼1

1

na
� 1

Rna

 !

ð37Þ

where Sg is a sum of squares of cross-products of variation

about the mean of the components in a sample, which is

drawn from the multivariate normal population; Ng is the

number of observations of the gth component of the ath

population. The covariance matrix Wg is a positive definite

in the parameter space, X.

Let Sg be the unbiased estimate of Wg, based on ng
degrees of freedom, where ng ¼ Ng � 1 for the usual case

of a random sample of Ng observation vectors from the gth

population. While H0 is true,

S ¼ 1
P

na

X2

a¼1

naSa ð38Þ

is the pooled estimate of the covariance matrices.

If all nis (the number of pixels in the query and target

images) are equal, then C�1 can be written as follows:

C�1 ¼ 1 � 2g2 þ 3g� 1ð Þ aþ 1ð Þ
6 gþ 1ð Þa N � 1ð Þ ð39Þ

In the proposed work, there are only two populations,

such as key face image and target face image (a = 2), and

each population consists of twenty FVs (g = 20) as

depicted in Eqs. (35) and (45). The objective of this study

is to test the null hypothesis that H0 : Wk ¼ Wtr; where Wk

and Wtr represent covariance matrices of the key and target

face images. The pooled estimate of the common covari-

ance matrix, S, can be calculated as follows:

S ¼ 1

Nk � 1ð Þ þ Ntr � 1ð Þ

	 


Nk � 1ð ÞSk þ Ntr � 1ð ÞStr½ �

ð40Þ

The test statistic for the case of two populations is given

by

DCov ¼ Nk � 1ð Þ þ Ntr � 1ð Þ½ � ln Sj jð Þf
� Nk � 1ð Þ ln Skð Þ þ Ntr � 1ð Þ ln Strj j½ �ð ÞgC�1

ð41Þ

Critical region If DCov � v2
mðaÞ, then H0 is accepted. It

means that the covariance matrices of the key and target face

images are closely related, that is, the key and target face

images are the same or similar with respect to covariance.

Otherwise, H0 is rejected, i.e. the distance between the

covariance matrices of the key and target face images is

greater than the critical value of the Chi-square distribution.

The hypothesis is rejected means that the key face image does

not match with the targeted face image in terms of covariance,

where m ¼ 1=2 a� 1ð Þg gþ 1ð Þ, a is the level of significance.

If the hypothesis is rejected, then it drops the testing process

and takes another facial image from the database.

5.2 Test for equality of mean vectors of key
and target face images

If the key and target face images pass the above covariance

test, then one can proceed to test the mean vectors of the

two images, i.e. the test for equality of mean vectors;

otherwise, the matching process could be stopped and

proceed to the next image in the database. The test statistic

for testing the mean vectors of the features of the key and

target images is given in Eq. (43). The test of the

hypothesis is formulated as follows:

Tests of Hypothesis

H0 : Mk ¼ Mtr Null hypothesis

Ha : Mk 6¼ Mtr Alternative hypothesis

The test statistic for testing the mean vectors of two

populations, i.e. the key and target face images,

MVMean ¼ NkNtr

Nk þ Ntr
M

k
�M

tr

� �0
S�1 M

k
�M

tr

� �

ð42Þ

where

M
k
¼ 1

Nk

XNg

g¼1

f gk ; and M
tr
¼ 1

Ntr

XNg

g¼1

f gtr; ð43Þ

which are distributed to a Chi-squared distribution with

degrees of freedom m ¼ 1=2 a� 1ð Þg gþ 1ð Þ (Shi et al.

2010).

Critical region If MVMean � v2
m að Þ, then H0 may be

accepted, that is, the key and target face images are the

same. If MVMean [ v2
m að Þ, then the H0 may be rejected, i.e.

the key and target face images are different.

If the key and target face images pass both tests, such as

test for equality of covariance matrices and the test for

equality of mean vectors, at 15% significance level, then

the target face image is marked and indexed. The indexed

face images are displayed to users. The significance level,

15%, is fixed after conducting rigorous experiments.

The overall functions of the proposed face recognition

method were given in an algorithmic form as follows.
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6 Experiments and results

This section deals with databases construction, perfor-

mance measures, and experimental results and discussion.

6.1 Experimental setups

6.1.1 Face image datasets and feature databases
construction

Vintra, a Californian analytics specialist and IT service

provider, reported that most of the Western-based face

recognition algorithms are racially biased since they have

been formulated based on the publicly accessible databases

that contain ‘‘supermajority’’ of white faces. Also, it

reported that by deploying a tweak in algorithmic formu-

lation alone could not address this problem (News 2020b).

To validate the proposed face recognition method, tak-

ing into account of the above report, we have constructed a

face image database on our interest, and its details are

given below. Also, we have considered the datasets, such

as GT dataset (Mahmoodi and Sayedi 2015; Muqeet and

Holambe 2019), LFW dataset (Mahmoodi and Sayedi

2015), Pointing’04 dataset (Dantcheva et al. 2018), BioID

dataset (BioID) for the experiments.

GT dataset Georgia Tech faces dataset composed of 750

colour face images of 50 subjects. All subjects in the

dataset are represented by 15 colour JPEG images with the

cluttered background taken at resolution 640 9 480 pixels.

The average size of the faces in these images is 150 9 150

pixels. The pictures show frontal and tilted faces with

different facial expressions, lighting conditions and scale.

Each image is manually labelled to determine the position

of the face in the image.

LFW dataset The LFW dataset is one of the most pop-

ular datasets in face recognition domain that comprises all

variations of the face image in real-world situations,

including significant variations in head pose, lighting, and

skin colour. The LFW consists of 13,233 face images from

5749 different subjects like different ages, genders.

Pointing’04 dataset This dataset contains 15 subjects

with two series of 93 images of the same subject at dif-

ferent head poses. The face images of the 15 subjects are

with and without wearing glasses, and the skin colour may

vary one subject to another. The head pose orientation is

determined by two directions (horizontal and vertical) that

range from - 90� to ? 90�.
BioID face dataset (BioID, http://www.bioid.com/

downloads/facedb/index.php) It is composed of 1521

greyscale images of 23 persons attributed to various illu-

minations, expression, pose variations and partial

occlusions. The face area is located in different positions

with a complex background of size, 384 9 286 pixels.

Our dataset It is composed of 1503 face images of the

celebrities that gathered from Google through the Internet

and many different face images captured by a digital

camera.

At first, the face objects were cropped from the face

datasets and pre-processed, i.e. noises removed. The noises

were removed or alleviated by employing the method

discussed in Sect. 3. The noise removal process is repeated

until the process saturates; saturate means that the thresh-

old (T) falls within the band given in Eq. (44).

T ¼ CoVtn�1

CoVtn

� 0:95; 1:05½ � ð44Þ

where CoV �ð Þ ¼ r=lð Þ � 100, CoVtn�1
and CoVtn denote

the coefficient of variation for the (n - 1)th and nth time

process of the input face image.

The pre-processed face images were converted to HS–

YCbCr colour model, and the features extracted by

deploying the techniques discussed in Sect. 4, as did for the

key-face image. A face FV database was constructed as

discussed in Seetharaman and Jeyakarthic (2014), and the

extracted face features have been stored in the feature

database. The structure of the FV in the FV database is

demonstrated in Eq. (45). The face features were clustered

into various homogeneous groups using the fuzzy c-means

clustering algorithm (Bezdek 1981). The median value was

computed for each cluster. The FVs were indexed, based

on the median value. A link was established in a one-to-one

correspondence between the cluster index of the FV data-

base and the corresponding actual face images in the

database. It facilitates the users for quick recognition.

FV
�!tr

¼ qHs
1i ; q

Hs
2i ; q

Ss
1i ; q

Ss
2i ; q

Ys
1i ; q

Ys
2i ; q

Cbs
1i ; qCbs

2i ; qCrs
1i ;

�

qCrs
2i ; q

Ht
1i ; q

Ht
2i ; q

St
1i ; q

Sst
2i ; q

Yt
1i ; q

Yt
2i ; q

Cbt
1i ; q

Cbt
2i ; qCrt

1i ; q
Crt
2i

�

ð45Þ

In order to validate, the proposed ARBBPNN method is

robust to head pose, and a number of images with different

head poses such as the head pose ranges from - 90� to

? 90� (downward to upward direction) with the interval of

15� as well as the head pose ranges from - 90� to ? 90�
(left to right at each 15� of downward to upward direction),

collected from the database proposed in Gourier et al.

(2004). Also, several face images that attribute to different

facial expressions of the subjects, have been inducted in the

face image database. For a sample, a few of them are

presented in Figs. 4 and 5. These face images, also, have

been incorporated in the newly constructed image database.

The newly built face image database contains 2173 images.

However, only few of them are presented in Fig. 4 owing

to the space constraint.
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Fig. 5 Face images with different expressions of the same person and other similar images of different persons (celebrities face images collected

from Google)

Fig. 4 Pointing’04 dataset. Face

images with different angles
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6.1.2 System specification

The proposed method was implemented using Python cv2

with the system specification: Intel Core i5 processor-based

PC with 3.5 GHz, 16 GB DDR4 RAM, Asus Mother Board

D97, and 4.0 GB Video Card.

6.2 Performance measure

To validate the performance of the ARBBPNN method, the

Precision@a (P@a) was deployed, where a denotes the

significance level. The P@a is computed for the entire

dataset as follows:

P@a ¼ 1

m

Xm

C¼1

1

n

Xn

g¼1

Pg

 !

ð46Þ

where

P ¼ Number of Similar Images from the Identified images

Total Number of Images Identified

g represents the number of head poses and facial expres-

sions; C represents the number of persons in a dataset; a
ranges from 1 to 25% at the interval of 5%. As the preci-

sion, recall, and F1 score are most popular performance

measures in the domain of pattern recognition and infor-

mation retrieval, those are not discussed in this paper.

6.3 Experimental results

The constructed face image database is subjected to

experiment to validate the proposed ARBBPNN method.

The face image in Fig. 6a was submitted to the proposed

method. At first, the input colour key face image was

denoised as discussed earlier, based on the technique

briefed in Sect. 3. For example, the pre-processed image is

given in Fig. 6. In sequel, the given key image was con-

verted to HS–YCbCr colour model. The ACC was com-

puted from each colour component—H, S, Y, Cb, Cr, based

on the sliding window of size 3 9 3. The computed ACC

was tested, whether it is highly correlated or not, using the

significance test discussed in Sect. 4. If the ACC is highly

correlated, then it is taken into account of texture features;

otherwise, it treated as shape features. For example, the

shape and texture parts of an image are shown in Fig. 7.

The process was repeated for the entire input image. The

extracted shape and texture features were stored in a two-

dimensional array, which is treated as an n-dimensional

Euclidean space with Gaussian enfoldment. The shape and

texture features derived from each HS–YCbCr colour

Fig. 6 Pre-processed images.

a Noised input image;

b denoised image at threshold t1

(first-time); c denoised image at

threshold t2 (second-time);

denoised image at threshold t3

(third-time)
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model were formulated as a FV as described in Eqs. (33)

and (34). Both shape and texture FVs were combined. As a

result, there are twenty feature attributes to each key and

target face images that are presented in Eqs. (35) and (45).

The test statistics discussed in Sect. 5 were deployed at

different significant levels. The image in Fig. 8a was sub-

mitted as an input key to the proposed system, and the

identified same or similar images are shown in Fig. 8b.

Images in row 1 of Fig. 8b were recognized at the 5% level

of significance; images in rows 1 and 2 were identified at

the 10% level of significance; at the level of significance

15%, the images in rows 1, 2, and 3 were recognized, while

fixing a at 20%, the images in rows 1, 2, 3, and 4 were

recognized. All images in Fig. 8b were recognized while

fixing a at 25%.

We have made an attempt to examine the robustness of

the proposed method for rotation and scale. The face

images with different head poses of the fifteen persons of

the Pointing’04 dataset were merged as a grand dataset and

subjected to the experiments. More than fifty per cent of

the head pose images were randomly selected from each

subject, and the experiment was conducted at various sig-

nificant levels. However, for example, only few of them

have been presented owing to the space constraint. The

image in Fig. 9a was submitted to the ARBBPNN system,

and the corresponding identified same or similar images are

presented in Fig. 9b. The images in row 1 were detected at

the 5% level of significance; at 10%, the system has

resulted in the images in rows 1 and 2; at 15%, the images

in rows 1, 2, and 3 were identified; at 20%, the images in

rows 1–4 were identified. The images in Fig. 9b were

recognized while fixing a at 25%.

Furthermore, the image dataset, which has face images

with different expressions of South Asian people, was

subjected to the experiment to examine the robustness of

the proposed system for different facial expressions of a

person. The image in Fig. 10a was subjected to experi-

ments, and the system recognized the same or similar

images that are given in Fig. 10b. The images in row 1 of

Fig. 10b were detected at 5% level of significance; the

images in rows 1 and 2 were identified at the level of Fig. 8 a Input key image; b identified images

Fig. 7 a Actual colour image;

b greyscale image; c shape

pattern; d texture pattern
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significance, 10%. The system resulted in no images at the

level of significance, 15%, while fixing the significance

level at 20%, it detected the images in rows 1, 2, and 3; the

images in Fig. 10b were detected at the level of signifi-

cance, 25%. The experimental results show that the pro-

posed system addresses the racial biasedness suggested in

News (2020b), i.e. performs well for all types of datasets

(white faces, black faces, and the trade-off between them—

South Asians).

The average recognition rate was computed for the

results obtained, at a particular significance level, for a

subject with various combinations of the face images

within the database; various combination means the com-

bination of different head poses and facial expressions of a

subject. The obtained recognition rate for each dataset is

tabulated in Table 1, and a line graph was drawn, which is

illustrated in Fig. 11. The results in Table 1 reveal that the

proposed method shows a cent per cent average recognition

rate for all the datasets at the 1% level of significance,

except the BioID dataset. At 5%, it resulted in 98.7% and

80.1% for LFW and BioID datasets, respectively, whereas

it yields almost cent per cent for other datasets. At 10%, the

ARBBPNN method has resulted in about cent per cent for

the GT, Pointing’04, and Our datasets, while showing

97.4% and 73.81% for LFW and BioID datasets, respec-

tively, while fixing a at 15%, the ARBBPNN method has

yielded 99%, 97.1%, and 97% recognition rate for Point-

ing’04, GT, and Our datasets, respectively, and it gives

96% and 64.3% for the LFW and BioID datasets, respec-

tively. At the 20% level of significance, it has responded

approximately 97%, 96% %, 94.4%, and 94% recognition

rate for Pointing’04, GT, Our, and LFW datasets, respec-

tively, while it performed about 58.24% for BioID dataset.

The proposed ARBBPNN method has reported 96.5%,

94%, 93%, 91%, and 56% for the Pointing’04, GT, Our,

and LFW datasets, respectively.

Furthermore, precision, recall, and F1 score were cal-

culated dataset-wise, which show that the average precision

Fig. 9 Robustness for head pose, rotation, and scale. a Input key image; b identified output images
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score for LFW and BioID datasets is 95.8% and 68.5%

while around 97% for other datasets. The ARBBPNN

method returns a recall score of approximately 99% for

Pointing’04 dataset and 98% for GT and Our datasets; and

returns 97.2% and 74.4% for LFW and BioID datasets,

respectively. The ARBBPNN method resulted in about

96.5% and 71.4% F1 score for LFW and BioID datasets,

respectively, while it shows about 98% score for other

datasets. The dataset-wise comparison results show that the

ARBBPNN method performs better for GT, Pointing’04,

and proposed datasets than the LFW and BioID datasets.

The following could be the main reasons:

Reasons for LFW dataset

1. The size of the LFW dataset is comparatively more

massive than the others.

2. Several face images suffered from poor lighting,

extreme pose, strong occlusions, and low resolution.

3. The LFW dataset is not designed to have enough

statistical conclusions about the subgroups.

4. About 1680 of the subjects have two or more different

facial images in the data set. It reflects in the results of

the false negative case, which also influences the F1

score.

The above complications are not prevalent in the GT,

Pointing’04 datasets; especially, the Pointing’04 dataset is

perfectly designed according to the persons. There also

exists a problem in BioID dataset, which is different from

the LFW dataset, as given below. Anyhow, the proposed

ARBBPNN method has to be improved in the future to

tackle the above problem even though it is not inferior to

state-of-the-art methods, and it requires minimal time

compared to the existing methods. The obtained results

have been presented in Table 2, and a bar chart was drawn

for the results in Table 2, which is depicted in Fig. 12.

Reason for BioID dataset

1. The features, such as shape and texture, are extracted

from the greyscale image only. Hence, totally, only

four features out of twenty are extracted for the BioID

Fig. 10 Robustness of the proposed system for different expressions of a person. a Input key image; b detected images

Table 1 Dataset-wise P@a

Sig. level GT LFW Pointing’04 BioID Our database

0.01 1 1 1 0.8825 1

0.05 1 0.9867 1 0.8014 0.9999

0.1 0.9986 0.9742 0.9999 0.7381 0.9864

0.15 0.9712 0.9597 0.9889 0.6425 0.9691

0.2 0.9587 0.9387 0.9705 0.5824 0.9441

0.25 0.9392 0.9092 0.9647 0.5604 0.9281

Average 0.9780 0.9614 0.9873 0.7012 0.9713
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dataset. It is minimal while compared to that of the

other datasets. It evidences that the HS–YCbCr colour

model and the features extracted from it are more

appropriate and sufficient for achieving high accuracy

of face recognition.

Moreover, to validate the proposed ARBBPNN method,

the obtained results were compared to state-of-the-art

methods in terms of F1 score. The F1 score obtained by the

ARBBPNN method and the F1 scores available in Mah-

moodi and Sayedi (2015), Muqeet and Holambe (2019) and

Liu et al. (2019) have been taken into account for com-

parison, which is given in Table 3. In Mahmoodi and

Sayedi (2015), the F1 score is available only for the GT

and LFW datasets; in CRRF (Liu et al. 2019) method, the

F1 score was calculated for LFW dataset; we calculated the

F1 score for the DIWT method using the rank-one score

and other results available in Muqeet and Holambe (2019).

The results presented in Table 3 show that the proposed

method gives better results than the state-of-the-art meth-

ods in terms of F1 score. Figure 13 illustrates the results

given in Table 3.
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Fig. 11 Line graph for different

datasets: significance level

versus retrieval rate

Table 2 Dataset-wise performance measure

Dataset Precision Recall F1 score

GT 0.9701 0.9812 0.9756

LFW 0.9582 0.9715 0.9648

Pointing’04 0.9732 0.9892 0.9811

BioID 0.6852 0.7443 0.7139

Our dataset 0.9679 0.9801 0.9740
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7 Computational cost

In literature, most articles discuss the computational cost in

terms of qualitative rather than quantitative (Muqeet and

Holambe 2019; Paul et al. 2020). Therefore, this paper

presents the computational cost for only the proposed

ARBBPNN method. The computation cost was measured

from submission of the input key face image until obtain-

ing the output recognized face images. The computational

cost was calculated phase-wise, and it is given in Table 4.

The obtained results show that the overall time con-

sumed for BioID dataset was lesser than the others because

it has only one component, viz. the greyscale (Y submodel),

while the others have five submodels. It is the main reason

that only four feature attributes, such as Ytrt q1; q2ð Þ and

Ytrs q1; q2ð Þ, are extracted from the BioID dataset so that it

consumes lesser time for feature extraction. It shows the

insufficiency of the features, which has reflected in the

accuracy of the recognition rate. The obtained recognition

results are presented in Table 3. The other datasets, except

LFW, demand almost the same computational cost.

Because of the LFW dataset is composed of 13,233 face

images, which is larger while compared to others, it

demands more time than the others.

Table 3 Comparison of

different methods in terms of F1

score

Method Dataset

GT LFW Pointing’04 BioID Our

KPM (Mahmoodi and Sayedi 2015) 94.59 90.51 – –

CRRF (Liu et al. 2019) – 94.05 – –

DIWT (Muqeet and Holambe 2019) 96.93 – – –

Component-based method (Paul et al. 2020) – – – 47.04 –

Proposed ARBBPNN 97.56 96.48 98.11 71.39 97.40

Table 4 Dataset-wise

computational cost for the

proposed ARBBPNN method

Phases of process Average time consumed (in seconds)

GT LFW Pointing’04 BioID Our

Pre-processing the key face image 16 17 15 09 17

BBPNN method for feature extraction 45 46 46 22 46

Searching and matching 16 42 21 12 23

Holistic face recognition process 77 105 82 43 86

86

88

90
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96

98

100

KPM CRRF DIWT Comp.-Based ARBBPNN

F1
 S
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re

 (%
)

Methods

GT dataset LFW dataset

Pointing'04 dataset BioID dataset

Ours dataset

Fig. 13 Comparison of

performance of different

methods in terms of F1 score
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8 Discussion and conclusion

8.1 Discussion

The proposed ARBBPNN method achieves good perfor-

mance for biometric-based face image detection, which

outperforms the methods developed, based on the hand-

crafted features; also, it is comparable to the systems

developed with the deep neural network. The ARBBPNN

method acts as a trade-off between the deep learning

methods and the hand-crafted methods in terms of less

computational cost and high accuracy. Because the

ARBBPNN method employs BBPNN method for only the

features extraction and adopts hand-crafted techniques for

feature matching, it has the properties of both deep learning

and hand-crafted methods. At the same time, it maintains

high accuracy, as the feature matching is performed in two

stages: (1) test the variation between the key and target

face images with respect to covariance; (2) test the equality

of spectrum of FVs of the key and target face images,

provided the images pass the test at stage (1). Though the

performance of the ARBBPNN method is comparable to

the deep neural network-based methods, we have a plan, in

the future, to improve the ARBBPNN method in the light

of the end-to-end deep learning methods.

The precision and F1 score obtained dataset-wise evi-

dence that the HS–YCbCr colour model is sufficient and

efficient for face characterization and feature extraction

than the single colour model like greyscale.

8.2 Conclusion

The proposed ARBBPNN method was developed for bio-

metric-based face recognition because of the sudden

demand for non-touch biometric systems like face recog-

nition in the future due to the impact of pandemic disease

COVID-19. Both public and private organizations that

maintain a biometric-based attendance system will begin to

shun the touch-based methods like a fingerprint. The pro-

posed system is a hybrid of the hand-crafted, and DNN

features so that it results in a reasonable face detection

accuracy with minimal computational cost. The obtained

results are comparable to state-of-the-art methods. We have

subjected four different publicly available benchmark

datasets—GT, LFW, BioID, and Pointing’04—to the

experiments. In addition to that, we constructed a dataset

with celebrities’ face images, which is also subjected to the

experiments. The proposed ARBBPNN-based method has

responded around 97.5% average recognition rate for GT

and Our datasets, while 98.1%, 96.5%, and 71.4% for

Pointing’04, LFW, and BioID datasets, respectively. The

obtained average recognition results are comparable to

state-of-the-art methods.

8.3 Future direction

The accuracy of the recognition rate of the ARBBPNN

method can be improved in the future, even for the datasets

that have complicated nature or structures like LFW and

other datasets with massive facial images, in the light of the

end-to-end DNN and higher-order AR model. The pro-

posed ARBBPNN method could be deployed for iris

recognition and also in the domain of big-data analytics.
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