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Abstract
Numerical computing is a key part of the traditional computer architecture. Almost all traditional computers implement
the IEEE 754-1985 binary floating point standard to represent and work with numbers. The architectural limitations of
traditional computers make impossible to work with infinite and infinitesimal quantities numerically. This paper is dedicated
to the Infinity Computer, a new kind of a supercomputer that allows one to perform numerical computations with finite,
infinite, and infinitesimal numbers. The already available software simulator of the Infinity Computer is used in different
research domains for solving important real-world problems, where precision represents a key aspect. However, the software
simulator is not suitable for solving problems in control theory and dynamics, where visual programming tools like Simulink
are used frequently. In this context, the paper presents an innovative solution that allows one to use the Infinity Computer
arithmetic within the Simulink environment. It is shown that the proposed solution is user-friendly, general purpose, and
domain independent.

Keywords Infinity computer · Scientific computing · Numerical differentiation

1 Introduction

Traditional computers implement the IEEE 754-1985 binary
floating point standard to represent and work with numbers
[see IEEE (1985)]. Although computers are able toworkwith
finite numbers, numerical computations that involve infinite
and infinitesimal quantities are impossible due to both the
presence of indeterminate forms and the impossibility to put
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the infinite representation of a number in the finite computer
memory [see Sergeyev (2017)].

The Infinity Computer is a new kind of a supercomputer
that allows one to work numerically with finite, infinite, and
infinitesimal numbers. The software simulator of the Infinity
Computerwaswritten in theC++ language and is used in sev-
eral research domains, especially inmathematics and physics
to solve difficult real-life problems [see Sergeyev (2017) and
references given therein]. Nevertheless, the software simu-
lator is not yet sufficiently mature to address problems in
control theory and dynamic systems due to implementative
issues related to extending and integrating the C++ source
code of the arithmetical and elementary operations in well-
known environments like Simulink.

To overcome these issues, the paper presents an innova-
tive solution that allows one to use the Infinity Computer
arithmetic within the Simulink environment, which is a well-
known graphical programming environment, developed by
MathWorks, for studying and analyzing dynamic systems
[see Falcone and Garro (2019)]. Simulink provides a graph-
ical block diagramming notation tightly integrated with the
Matlab environment. Simulink is widely used in the model-
ing and simulation domain, including distributed simulation,
Co-Simulation ofCyber-Physical Systems (CPS) andModel-
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Based design [seeBocciarelli et al. (2018);D’Ambrogio et al.
(2019); Möller et al. (2016b, 2017)].

The rest of the paper is organized as follows. Section
2 provides an introduction to the Infinity Computer and
MATLAB/Simulink concepts and background knowledge on
the research domain. Section 3 presents the Simulink-based
solution for operating with the Infinity Computing concepts
within the Simulink environment. In Sect. 4, three series of
numerical experiments are presented to show the feasibility
and validity of the solution. Finally, conclusions and future
works are delineated in Sect. 5.

2 Background

Thepaper uses notions and concepts from InfinityComputing
and its representation of numbers alongwith related algebraic
operations, and MATLAB/Simulink, as described in the fol-
lowing subsections.

2.1 Infinity computing and representation of
numbers

In the Infinity Computing framework [see Sergeyev (2017)],
all numbers are represented using the positional numeral sys-
tem with the infinite radix 1© introduced as the number of
elements of the set of natural numbers [see, e.g., Sergeyev
(2017)]:

C = d0 1©p0 + d1 1©p1 + . . . + dn 1©pn , (1)

where quantities di , i = 0, . . . , n, are finite (positive or
negative) floating-point numbers called grossdigi ts, and
pi , i = 0, . . . , n, are called grosspowers and can be finite,
infinite and infinitesimal (positive or negative), n is the num-
ber of grosspowers used in computations (can be fixed or
variable for all computations)1. Due to limitations of the
Simulink (e.g., difficulties in working with variable-sized
matrices in algebraic loops) and for simplicity, only finite
floating-point grosspowers are considered in this paper. It
should be noted that this methodology is not related to non-
standard analysis [see Sergeyev (2019) for details].

One can see that a finite floating-point number A can
be easily expressed in this framework using only one
grosspower p0 = 0 : A = A 1©0. Moreover, different infi-
nite and infinitesimal numbers can be also expressed: e.g., the
numbers 1©, 1©2,−1.5 1©2.5,−1.2 1©3.2−1.2 1©0+2.3 1©−1.2

are infinite, since they contain at least one finite positive

1 It should be noted that in the literature dedicated to the Infinity Com-
puter, a different notation with p0 = 0 is usually used, but here we used
this matrix notation, since it better reflects the details of our implemen-
tation.

grosspower, while the numbers 1©−1 = 1
1© , 2.5 1©−1.5,

1.3 1©−2.2 − 1.7 1©−3.1 are infinitesimal, since they contain
only finite negative grosspowers. Let us call the numbers
expressed in the form (1) as grossnumbers hereinafter.

The Infinity Computer has been already successfully used
for solving problems in applied mathematics, e.g., in opti-
mization [see Cococcioni et al. (2020b, 2018); De Cosmis
and De Leone (2012); De Leone (2018); De Leone et al.
(2018); Gaudioso et al. (2018); Sergeyev et al. (2018)],
infinite series [see Zhigljavsky (2012)], game theory and
probability [see Calude and Dumitrescu (2020a); Fiaschi
and Cococcioni (2018); Rizza (2019)], fractals and cellular
automata [see Caldarola (2018); D’Alotto (2015); Sergeyev
(2011b, 2016)], numerical differentiation and ordinary dif-
ferential equations [see Amodio et al. (2016); Falcone et al.
(2020b); Iavernaro et al. (2019); Sergeyev (2011a, 2013);
Sergeyev et al. (2016)], etc.

2.2 MATLAB/Simulink

Simulink is a software developed byMathWorks as extension
of MATLAB [see MathWorks (2019a)]. It allows engineers
to rapidly build, simulate and analyze dynamic systems using
block diagram notation before moving to hardware. More-
over, Simulink offers a graphical support that shows the
progress of a simulation, significantly increasing understand-
ing of the system’s behavior.

The potential productivity improvement achieved with
Simulink to programming is impressive [see Falcone and
Garro (2019); MathWorks (2019a)]. In the past, the common
approach to develop a system was to start from its compo-
nents by describing their logic through blocks. Then, blocks
were translated into the corresponding source code accord-
ing to a given programming language (e.g., C/C++). This
approach involved duplication of effort, since the system had
to be described twice; the first time using block notation and
then in a programming language. This practice exposed to
accuracy risks in the translation process fromblocks to source
code,making debugging phases difficult because errors could
be in the design (block diagram level), in the programming
(programming level), and/or in the translation process. With
Simulink, this approach is no longer necessary since blocks
are the “program”.

Simulink iswidely used in research and industry to explore
and analyze different design alternatives of complex system
in order to find the best configuration that meets the require-
ments. Research teams can exploit the multi-domain nature
of Simulink to collaboratively simulate the behavior of the
system’s components, each of which developed by a team,
also to understand how components influence the behavior of
the entire system Falcone and Garro (2016a); Falcone et al.
(2017a, b, 2018a).
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Simulink allows one: to reduce expensive prototypes by
testing the system in otherwise risky and/or time-consuming
conditions; to validate the system design with hardware-
in-the-loop testing and rapid prototyping; and to maintain
traceability of requirements from design down to the corre-
sponding source code.

3 A simulink-based solution for operating
with the infinity computer

This section presents a Simulink-based solution for oper-
ating with the Infinity Computing concepts presented in
Subsection 2.1. The subsequent subsections are devoted to
the presentation of the architecture of the solution and the
three functional modules Arithmetic Blocks Module (ABM),
Elementary Blocks Module (EBM), Utility Blocks Module
(UBM). For each module sets of blocks are described along
with examples showing their validity.

3.1 Architecture

The proposed solution brings the power of the Infinity
Computer into the Simulink Graphical Programming Envi-
ronment (GPE). The solution has been designed to facilitate
themodeling and simulation of dynamic systems by allowing
engineers to focus on the specific aspects of their system’s
components, without dealing with the low level functionali-
ties exposed by the InfinityComputerArithmetic C++ library
(ICA-lib).

The presented Simulink-based solution is general-purpose
and domain-independent; as a consequence, it can be
exploited in all industrial and scientific domainswhere a high
level of accuracy in the calculations represents a mainstay
(e.g., Cyber-Physical Systems, Robotics and Automation,
Aerospace [see Falcone and Garro (2018); Falcone et al.
(2017b); Garro et al. (2015, 2018b)]).

The design and implementation of the solution have been
focused on standard software engineering methods and tech-
niques, in particular, on the Agile software development
process [see Martin (2002); Venkatesh et al. (2020)]. The
solution has been developed through the use of standard
Simulink Blocks and S-Functions, which allows engineers
to jointly exploit the advantages coming from the Infinity
Computer and the already available Simulink functionali-
ties. Figure 1 presents an overview of the Simulink-based
InfinityComputing solution and its integrationwith theMAT-
LAB/Simulink environments.

In the following Fig. 1, the Simulink-based solution is
placed in the middle of three layers.

The Simulink UI represents the Simulink environment
used for modeling, analyzing and simulating dynamic sys-
tems through the graphical block diagramming tool accord-

ing to the Model-Based Design (MBD) paradigm [see Fal-
cone and Garro (2017b)]. MBD offers an efficient approach
to address problems associated with the design and imple-
mentation of complex systems, signal processing equipment
and communication components. This approach provides a
common framework where engineers can definemodels with
advanced functionalities using continuous-time and discrete-
time blocks. The so-obtained models can be simulated in
Simulink by using different operational conditions leading
to rapid prototyping, testing and verification of the system’s
requirements and performances.

The Simulink Environment layer provides all the standard
Simulink blocks alongwith the ones offered by the Simulink-
based Infinity Computer solution (details will be given in
Subsection 3.3).

The Matlab Environment represents the Matlab infras-
tructure where the Infinity Computer arithmetic C++ library
(ICA-lib) has been integrated in order to handle infinite,
finite, and infinitesimal computations. The integration of the
ICA-lib in Simulink has been done by creating a MATLAB
executable file (MEX), which provides an interface between
the involved parts. When compiled, the MEX file is dynam-
ically loaded by Simulink and permits to invoke the Infinity
Computer arithmetic functions as if they were natively built-
in.

The ICA-lib offers a set of services, each of which offers
some C++ classes and interfaces that implement specific
functionalities to handle infinite, finite, and infinitesimal
quantities along with related computations.

3.2 Representation of grossnumbers in Simulink

In the Simulink-based solution of the Infinity Computer, a
grossnumber x is represented through a standard Simulink
Constant block as a variable-sized vector (1-D array) or
matrix (2-D array) depending on the dimensionality of
the “Constant value” parameter [see MathWorks (2019a)].
Specifically, the output has the same dimensions and ele-
ments as the “Constant value” parameter. If “Constant value”
is a vector and “Interpret vector parameters as 1-D” is
enabled, Simulink treats the output as a 1-D array; other-
wise, the output is managed as a matrix (i.e., a 2-D array).
Regardless of the output size, the first column represents the
grossdigits, whereas the second one defines the grosspow-
ers of a number written in the form (1): the number (1) is
represented by the following matrix:

C =

⎡
⎢⎢⎣
d0 p0
d1 p1
· · ·
dn pn

⎤
⎥⎥⎦ . (2)
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Fig. 1 Overview of the
Simulink-based Infinity
Computer solution and its
integration in the
MATLAB/Simulink
environment

For instance, the number 2 is represented in this solution
through a vector

[
2 0

]
, while the number 5 1©0 + 1 1©−1 is

represented by the matrix

[
5 0
1 −1

]
.

3.3 Functional blocks

A set of functional blocks have been created to manage
computations on infinite, finite, and infinitesimal quanti-
ties written in the form (2) that each functional block takes
as input infinite, finite, and infinitesimal quantities that are
forwarded to the associated S-Function to perform the com-
putation by interacting with ICA-lib. Figure 2 shows the
functional block modules that constitute the Simulink-based
Infinity Computer solution.

3.3.1 Arithmetic blocks module

This section is devoted to the Arithmetic Blocks Module
(ABM). It provides a set of blocks devoted to perform
arithmetic computations on infinite, finite, and infinitesimal
quantities, such asSum,Subtraction,Multiplication andDivi-
sion.

All the blocks take as input two arguments x, y, which are
defined as follow:

x =

⎡
⎢⎢⎣
x0 p0
x1 p1
· · ·
xN pN

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎣
y0 q0
y1 q1
· · ·
yN qN

⎤
⎥⎥⎦ , (3)

where N is a configuration parameter that represents themax-
imum precision used to perform operations. This number
fixes the number of rows in the matrix representation (2) of
each grossnumber (1). It is defined within each block and by
default its value is set to 20.

The real precision of the Infinity Computer is defined
through the parameter n, n ≤ N , which can be config-
ured in the “n_configuration.m” file.

The x, y arguments represent the grossnumbers

x = x0 1©p0 + x1 1©p1 + ... + xN 1©pN ,

y = y0 1©q0 + y1 1©q1 + ... + yN 1©qN .
(4)

The result of the applied operation is a matrix z ∈ R
N×2:

z = z0 1©γ0 + z1 1©γ1 + ... + zN 1©γN , (5)
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Fig. 2 The Simulink-based infinity computer solution with provided functional block modules

where z has dimension and number of elements according to
the Infinity Computer algebra [see Sergeyev (2003)], where
the first n rows are significant, whereas the other N − n ones
are null.

For each block included inABM, the specific function and
an example that shows its application are presented, here-
inafter.

Sum. This block performs addition on its inputs. The
Simulink model shown in Fig. 3a performs the addition
of A = 3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1.
After the Start simulation command is executed, the result
C = 1 1©1 + 5 1©0 + 6 1©−1 is shown through the standard
Display block.

The grossnumbers A, B, and C are defined as:

A =
K∑
i=1

aki 1©ki , B =
M∑
j=1

bm j 1©m j ,C =
L∑

i=1

cli 1©li . (6)

The result C is defined by including both the items of A,
aki 1©ki : ki �= m j with 1 ≤ j ≤ M and the ones of B,
bm j 1©m j : m j �= ki with 1 ≤ i ≤ K , and the terms having
the same grosspower (ali +bli ) 1©li , according to the Infinity
Computer arithmetic described in Sergeyev (2017).

Subtraction. This block performs subtraction on its gross-
numbers in inputs. This operation is a direct consequence
of the Sum block above described. Figure 3b shows a
Simulink model that performs the subtraction between A =
3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1. The result
C = −1 1©1 + 1 1©0 − 4 1©−1 is shown by using the Display
block.

Multiplication. This block performs multiplication on
its inputs. Figure 3c shows a Simulink model that carry
out the multiplication operation between the grossnumbers

A = 3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1.
The Display block shows the result of the operation C =
3 1©1 + 7 1©0 + 17 1©−1 + 5 1©−2 defined as follow:

C =
M∑
j=1

C j , 1 ≤ j ≤ M, (7)

where C j = bm j 1©m j · A = ∑K
i=1 aki bm j 1©ki+m j .

Division. This block performs division on its inputs. The
Simulink model shown in Fig. 3d performs the division
operation between the grossnumbers A = 3 1©0 + 1 1©−1

and B = 1 1©1 + 2 1©0 + 5 1©−1. The grossnumber C =
3 1©−1 − 5 1©−2 − 5 1©−3 + 35 1©−4... that is the result of the
computation is shown by the Display block.

The division operation C = A/B leads to a result C plus
a reminer R, where the first grossdigits are ckK = alL /bmM

and the maximal exponent is kK = lL − mM .
The first partial reminder R∗ is derived as: R∗ = A −

ckK 1©kK · B. The calculation ends when either R∗ = 0 or
the default accuracy is reached; otherwise, the number A
is substituted by R∗ and the computation starts again [see
Sergeyev (2017)].

3.3.2 Elementary blocks module

The Elementary Blocks Module (EBM) offers common ele-
mentary functions, such as cosine, sine, exponential, and
logarithm.

Each elementary function f (x) has been implemented
using the truncated Taylor series:

f (x) = f (x0) +
N∑
i=1

di f (x0)

dxi
(x − x0)i

i ! , (8)
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Fig. 3 Simulink models that perform addition (a), subtraction (b), multiplication (c), and division (d) of the grossnumbers 3 1©0 + 1 1©−1 and
1 1©1 + 2 1©0 + 5 1©−1

where x0 is a finite floating-point number. For each elemen-
tary function f (x), where f (x) ∈ {sin(x), cos(x), exp(x),
log(x), x p (p is finite),

√
x}, its Taylor expansion (8) is

known and the analytical formulae for the respective deriva-

tives di f (x0)
dxi

are also known and simple to implement. For
each elementary function, except x p and log(x), the value x0
is chosen as the finite part of the input x even if this finite part
is equal to 0. For the functions x p and log(x), since they are
not differentiable at the point x0 = 0, then the value x0 was
chosen as the finite part of x , if it is different from 0, and 0.1,
otherwise (the number 0.1 has been chosen in order to be
not too small nor too large and just to keep the computations
also in the case, when x0 = 0). Since the number x and the
numbers (x − x0) are grossnumbers, then the computations
in this Taylor expansion are performed using the arithmetic
operations implemented in the Infinity Computer library. The
value N is the same as in (1), since the resulting value f (x)
at a grossnumber x is also a grossnumber of the form (1).

All the blocks take as input one argument x (except the
block Pow implementing the function x p, which takes also
the second input p defined as the standard floating-point
number), which is defined as follows:

x =

⎡
⎢⎢⎣
x0 p0
x1 p1
· · ·
xN pN

⎤
⎥⎥⎦ , (9)

where N is the configuration parameter with the same sig-
nificance as previously. The real precision of the Infinity
Computer is also defined as previously through the parame-
ter n (i.e., the rows in (9) starting from the (n + 1)th contain
only zeros).

In this solution, the expansions (8) have significance only
if the input x is not infinite; otherwise, the Taylor series
become divergent. If these elementary functions should be
evaluated also at the infinite points x , then another imple-
mentations should be used (e.g., the Newton method).

Sin. This block performs the trigonometric sine of an argu-
ment x expressed as a grossnumber. The values ± sin(x0)
and ± cos(x0) being the respective derivatives used in the
Taylor formula (8) are calculated using the standard C + +
library math.h. Figure 4a shows a Simulink model that
performs the computation sin(2 1©0 + 1 1©−1). The result
0.9093 1©0 − 0.4161 1©−1 − 0.4546 1©−2... is shown by the
Display block.

Cos. This block performs the trigonometric cosine of
an argument x expressed as a grossnumber. The values
± sin(x0) and± cos(x0) being the respective derivatives used
in the Taylor formula (8) are calculated using the standard
C + + library math.h. The Simulink model shown in Fig.
4b performs the computation cos(2 1©0 + 1 1©−1). The result
−0.4161 1©0 −0.9093 1©−1 −0.2081 1©−2... is shown by the
Display block.

Exp. This block computes the base-e exponential func-
tion of a grossnumber x , which is e raised to the power
x : ex . The value exp(x0) being the respective derivative
used in the Taylor formula (8) is calculated using the stan-
dard C + + library math.h. Figure 4c depicts a Simulink
model that performs the computation e(2 1©0+1 1©−1). The
result 7.389 1©0 + 7.389 1©−1 + 3.695 1©−2... is shown by
the Display block.

Log. This block allows to calculate the natural logarithm
of a grossnumber x . The values log(x0) and x p

0 , where p is
finite, used for the computation of the respective derivatives
in the Taylor formula (8) are calculated using the standard
C++ librarymath.h. Figure 4d shows aSimulinkmodel that
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performs the computation log(2 1©0 + 1 1©−1). The Display
block shows the result 0.6931 1©00.5 1©−1 − 0.125 1©−2 +
0.04167 1©−3... of the computation.

Pow. This block applies the function that returns the base
x to the power p, defined as x p. The values xq0 , where q are
finite, used for the computation of the respective derivatives
in the Taylor formula (8) are calculated using the standard
C + + library math.h. The value p is defined as a stan-
dard floating-point number. Figure 4e shows a Simulink
model that performs the computation (2 1©0 + 1 1©−1)−2.5.
TheDisplay block shows the result 0.1768 1©0−0.221 1©−1+
0.1933 1©−2 − 0.415 1©−3 of the computation.

Sqrt. This block, which has been added for convenience,
uses the function defined in the Pow block to return the
square root of a grossnumber x : √

x = x1/2. Figure 4f
shows a Simulink model that performs the computation√

(2 1©0 + 1 1©−1). The Display block shows the result
1.414 1©0 + 0.3536 1©−1 − 0.04419 1©−2... of the computa-
tion.

3.3.3 Utility blocks module

The Utility Blocks Module (UBM) provides common util-
ity function blocks, which are required for supporting the
implementation ofmodels according to the InfinityComputer
solution and making them compatible with the Simulink
environment.

Continuous2Discrete. This utility block allows one to set
the Sample Time to Discrete for all variable size blocks and
Signals. It allows to sample time directly as a discrete numer-
ical value. The produced value is used to update, during the
simulation execution, the blocks internal states.

fillGrossnumber. This block adds zero rows to the matrix
representation of its input in order to fix the size of all
variables (by default the size of all variables representing
grossnumbers is equal to 20 by 2, i.e., the number N from
(2) is set to 20). Specifically, given a matrix M ∈ R

n×m with
m = 2 and i < n significant rows, the function adds an
k-by-m rows of zeros, where k = n − i to fill M .

This block is required, for instance, to workwith Simulink
models containing algebraic loops where variable size vari-
ables are not allowed.

toGross. This block transforms a floating point number x
in the corresponding matrix representation

[
x 0

]
from (2).

The so-obtained result is compatible with the Infinity Com-
puter Simulink solution and therefore can be used as input
for the other provided blocks.

getFinitePart. This block returns the finite part of a gross-
number x as a standard floating point number. For instance,

given x =
⎡
⎣

2 1
5 0
3.1 −5

⎤
⎦, this block returns the value 5, while

for y =
[
3 2
3.1 −1

]
the result is 0.

4 Assessment and evaluation

In this section, three series of numerical experiments are
presented in order to evaluate the proposed solution. First,
several benchmark test functions are implemented using the
proposed solution and using the standard Simulink blocks.
Then, these functions are evaluated using different inputs
given as grossnumbers. Finally, a simple approach for the
exact higher-order differentiation is implemented for these
benchmarks.

4.1 Benchmark functions

In this subsection, the following three test functions from
Sergeyev et al. (2016) are considered:

f1(x) = x2 − 5x + 6

x2 + 1
, (10)

f2(x) = sin(x) + sin(
10x

3
), (11)

f3(x) = −(16x2 − 24x + 5)e−x . (12)

These functions have been chosen among the 24 test func-
tions from Sergeyev et al. (2016) for the following reasons.
First, they contain different elementary functions: f1(x) is
rational, f2(x) is trigonometric, f3(x) contains the exponen-
tial function. Second, these functions are simple to implement
for a fast visualization, do not contain a lot of blocks of the
same type or algebraic loops. Finally, all these functions are
infinitely differentiable.

In Figs. 5, 6, and 7, the implementations of the functions
fi , i = 1, 2, 3, are presented using the proposed solution
(a) and using standard Simulink blocks (b). One can see
that these implementations are straightforward and simular.
A unique difference consists of the block toGross, which
transforms the input x from the traditional computational
framework to the form (2) and the block get Fini tePart ,
which returns the finite part of the result f (x). The util-
ity blocks have been added in these implementations only
to keep the computations in the traditional computational
framework outside the functions, which can be useful in
practice (so, there is nonecessity to re-write all the implemen-
tations of the systems to the presented solution; this solution
is used only where it is necessary). One can see from this fig-
ure, that the implementation of the functions in the proposed
solution does not require a lot of additional knowledge about

123



17532 A. Falcone et al.

Fig. 4 Simulink models that perform the trigonometric function sin x (a), the trigonometric function cos x (b), the base-e exponential function ex

(c), the natural logarithm log x (d), the base x to the exponent power p, x p , where p = −2.5 e, and the square root
√
x (f) of the grossnumber

x = 2 1©0 + 1 1©−1

Fig. 5 Implementations of the function f1(x) from (10) using the proposed solution (a) and using standard Simulink blocks (b)
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Fig. 6 The implementations of the function f2(x) from (11) using the proposed solution (a) and using standard Simulink blocks (b)

Fig. 7 The implementations of the function f3(x) from (12) using the proposed solution (a) and using standard Simulink blocks (b)
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Fig. 8 The evaluation of the functions fi (x), i = 1, 2, 3, from (10) to (12) at the points x1 = 3 1©0 + 1.5 1©−1 (left) and x2 = 2.5 1©−1.5 −
3.6 1©−2 + 5 1©−3.2 (right)

Fig. 9 Computation of the first 2 derivatives of a function f (x) at the points x = t given by the Simulink “clock” block

the InfinityComputer or about the low-level implementations
of the Infinity Computer arithmetic. The number of the used
blocks is the same, so there is no additional costs in imple-
mentation of the functions (except the addition of the utility
blocks at the initial and final parts of the Simulink system,
which has a constant complexity). One can see also that the
results of the computation of these two implementations of
the test functions at the points x∗

i , i = 1, 2, 3, fromSergeyev
et al. (2016) also coincide (the points x∗

i , which are the global

minimizers of the functions fi (x), respectively, have been
chosen just for simplicity: the results of the computations at
any finite point x0 coincide for these two implementations).

4.2 Evaluation

Let us now evaluate these functions at the inputs given as
the grossnumbers, i.e., without the utility blocks toGross
and get Fini tePart . In Fig. 8, the results of the computa-
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Fig. 10 Graphs of the derivatives f ′
i (x) (left) and f ′′

i (x) (right) of the functions fi (x), i = 1, 2, 3, from (10) to (12) at the interval [0, 10] obtained
by the Infinity Computer and analytically. It can be seen that the graphs obtained by the Infinity Computer and by the analytical formulae coincide
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tion at two different points x1 = 3 1©0 + 1.5 1©−1 (on the
left side) and x2 = 2.5 1©−1.5 − 3.6 1©−2 + 5 1©−3.2 (on the
right side) are presented. The computations are kept with the
precision n = 5, i.e., using 5 grosspowers in (1). One can see
that computations with different grossnumbers are allowed
in this solution. Moreover, the grosspowers are not neces-
sarily integer, but can be different floating-point numbers, as
well. It is very important that the user could not know how
the arithmetic operations are implemented inside the func-
tions f (x). Namely, it is sufficient to give an input x and
the output f (x) will be automatically generated in the form
(1) without the necessity to deal with the C + + class of the
Infinity Computer simulator.

4.3 Exact higher-order differentiation

Let us consider now an important application of the proposed
solution in the numerical analysis field. Suppose thatwewant
to calculate thefirst k, k ≥ 1,derivatives of the function f (x)
implemented using the Simulink arithmetic blocks. Tradi-
tionally [see Karris (2006b)], the internal Simulink block
“Derivative” allows one to calculate the derivatives only
using the finite forward differences, which are usually not
accurate. Moreover, since using the forward differences for
computation of the first k, k ≥ 1, derivatives, at least k + 1
observations of the function f (x) are needed, then the values
of the derivatives at the first x0, x1, …, xk−1 points cannot
be calculated using the Simulink’s “derivative” blocks. The
obtained error is of order 1, i.e., proportional to theSimulink’s
system sample time �t , and often cannot be small enough
due numerical cancellation errors.

Another possibility to calculate the exact higher-order
derivatives in Simulink is using external packages, e.g., for
automatic differentiation. However, this solution has several
disadvantages. First, using external packages requires addi-
tional knowledge on how they work and how to use them.
Second, if the function f (x) is difficult and uses a lot of
subsystems and external dependencies, then the resulting for-
mulae or systems obtained by the automatic differentiation
can be too difficult and can require a lot of computational
resources to generate them. Moreover, in this case, the eval-
uation of the higher-order derivatives can be too slow or even
impossible [see, e.g., Iavernaro et al. (2020a)].

Let us see, how the higher-order derivatives can be calcu-
lated on the Infinity Computer. Suppose that the function
f (x) has only finite values at the finite points x (i.e., it
does not depend on 1©). Suppose also that there exists the
(unknown) Taylor expansion of the function f (x) around the
finite point x0. Then, the result of the computation of f (x) at
the point x0 + 1©−1 truncated after k + 1 grosspowers gives

us the exact2 higher-order derivatives of the function f (x) at
the point x0:

f (x0 + 1©−1) = f0 + f1 · 1©−1 + ... + fk · 1©−k, (13)

from where one can obtain that f (x0) = f0, f ′(x0) = f1,
f ′′(x0) = f2 ·2!,…, f (k)(x) = fk · k! [see Sergeyev (2011a,
2017) for details].

In Fig. 9, the Simulink subsystem for computation of the
first 2 derivatives of a function f (x) implemented in the sub-
system “f(x)” at the time steps t using the proposed solution
of the Infinity Computer is presented. Since the derivative is
calculated with respect to the time t , then let us call the func-
tions f (x) as the functions depending on time t , i.e., f (t),
hereinafter. First, the input t given by the standard Simulink
block “clock” is transformed to the grossnumber tgross by the
block “toGross”. Then, the infinitesimal 1©−1 expressed by
the constant block is added to the transformed input tgross .
The obtained grossnumber is moved to the input of the block
“f(x)”. The output of the block “f(x)” is multiplied by 1© and
the result arrives to the block “getFinitePart” (fromwhere the
value f ′(t) is obtained), at the same time the output of the
block “f(x)” is multiplied by 2 1©2 and the result arrives to the
block “getFinitePart” as well (from where the value f ′′(t) is
obtained). The obtained values of the derivatives arrive to the
scope blocks in order to construct their graphs.

The graphs of the first two derivatives for each test func-
tion fi (t), i = 1, 2, 3, from (10) to (12) are presented in
Fig. 10, from where one can see that the derivatives obtained
by the Infinity Computer coincide with the exact derivatives
obtained analytically.

One can see that the differentiation using the presented
solution is simple and almost does not require any additional
knowledge and/or tools. Higher-order derivatives can be eas-
ily calculated using only the proposed blocks without the
necessity of an additional specific tool or block. More appli-
cations are provided in the accompanying paper [see Falcone
et al. (2020a)].

5 Conclusion

AnewSimulink-based software solution to the Infinity Com-
puter has been proposed in this paper. This solution uses the
software simulator of the Infinity Computer written inC++
according to the patents [see Sergeyev (2010a)] and loaded
in Matlab using MEX-files for the implementation of the
low-level arithmetic. The proposed solution is user-friendly,
simple, general purpose and domain independent, i.e., it can

2 The word “exact” means up to machine precision, since the compu-
tations on the Infinity Computer are numeric not symbolic.
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be used in any domain where a high precision of the compu-
tations is required.

Four arithmetic blocks representing four operations+,−,
×, and /, have been proposed as well as the blocks for the
elementary functions sin(x), cos(x), exp(x), log(x), x p, and√
x . Moreover, four utility blocks for supporting the imple-

mentation of models have been also proposed. The usage
of the proposed blocks is similar to their internal Simulink
analogues, so it does not require any additional tools or
sophisticated techniques.

The solution has been evaluated on three benchmark test
problems. It has been shown that the complexity of imple-
mentation of the functions using the proposed solution and
using traditional Simulink blocks is the same, while the pro-
posed solution allows one to use all the potentiality of the
Infinity Computer in Simulink without the necessity of refer-
ring to the low-level implementation of the procedures on
the Infinity Computer. As an example of the potential usage
of the solution, an exact higher-order differentiation of the
univariate functions has been considered. It has been shown
that the proposed solution allows one to calculate the exact
higher-order derivatives in a simple and efficient waywithout
using any additional tool.

Future research efforts will be devoted to: (1) improve and
extend the proposed solution to support a wider set of con-
cepts and operations delineated by the Infinity Computer; (2)
perform further experimentations of the solution in different
application domains.
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