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Abstract
We introduce and investigate the strong p-semisimple property for some generalizations of BCI algebras. For BCI algebras,
the strong p-semisimple property is equivalent to the p-semisimple property. We describe the connections of strongly p-
semisimple algebras and various generalizations of groups (such as, for example, involutive moons and goops). Moreover,
we present some examples of proper strongly p-semisimple algebras.
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1 Introduction

Iséki (1966) introduced BCI algebras as algebraic models of
BCI-logic. Hu and Li (1983) defined BCH algebras, which
are a generalization of BCI algebras. Later on, Ye (1991)
introduced the notion of BZ algebras. It is known that BCI
algebras are contained in the class of BZ algebras. Next, the
new class of algebras called BH algebras was introduced by
Jun et al. (1998). These algebras are a common generaliza-
tion of BCH and BZ algebras (hence also a generalization of
BCI algebras). Recently, Iorgulescu (2016) introduced new
generalizations of BCI algebras such as aRM**, *aRM**,
BCH** algebras, and many others. All of the algebras men-
tioned above are contained in the class of RM algebras (a
RM algebra is an algebra (A;→, 1) of type (2, 0) satisfying
the equations: x → x = 1 and 1 → x = x). The implicative
and commutative properties for some subclasses of the class
of RM algebras were studied by Walendziak (2018, 2019).
Lei and Xi (1985) defined p-semisimple BCI algebras and
proved that p-semisimple BCI algebras are equivalent with
abelian groups. The p-semisimple BCI algebras have been
extensively investigated in many papers (for example Meng
(1987), Hoo (1990), Aslam and Thaheem (1991), Zhang
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(1991), Kim and Park (2005)). Zhang and Ye (1995) showed
that p-semisimple BZ algebras are equivalent with groups.

In this paper, we introduce the notion of strongly p-
semisimple RMalgebra. For BZ andBCI algebras, the strong
p-semisimple property is equivalent to the p-semisimple
property.Wedescribe the connections of stronglyp-semisimple
algebras and various generalizations of groups (such as, for
example, involutive moons and goops, which were intro-
duced by Iorgulescu (2018)). In particular, we prove that
strongly p-semisimple RMalgebras are equivalent with invo-
lutive moons. Moreover, we give some examples of proper
strongly p-semisimple algebras.

2 Preliminaries

2.1 Generalizations of BCI algebras

LetA = (A;→, 1) be an algebra of type (2, 0). We consider
the following list of properties (cf. Iorgulescu 2016) that can
be satisfied by A:

(An) x → y = 1 = y → x �⇒ x = y,
(B) (y → z) → [(x → y) → (x → z)] = 1,

(BB) (y → z) → [(z → x) → (y → x)] = 1,
(D) x → ((x → y) → y) = 1,
(D1) x → ((x → 1) → 1) = 1,
(Ex) x → (y → z) = y → (x → z),
(M) 1 → x = x ,
(Re) x → x = 1,
(*) y → z = 1 �⇒ (x → y) → (x → z) = 1,
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12782 A. WALENDZIAK

(**) y → z = 1 �⇒ (z → x) → (y → x) = 1,
(Tr) x → y = 1 = y → z �⇒ x → z = 1.

Lemma 2.1 (Iorgulescu 2016) Let A = (A;→, 1) be an
algebra of type (2, 0) . Then the following hold:

(i) (Re) + (Ex) + (An) imply (M),
(ii) (M) + (B) imply (*) and (**),
(iii) (M) + (*) imply (Tr),
(iv) (M) + (**) imply (Tr),
(v) (M) + (BB) imply (B),
(vi) (Re) + (Ex) imply (D),
(vii) (Re) + (Ex) + (*) imply (BB),
(viii) (M) + (BB) + (An) imply (Ex).
(ix) (Ex) + (B) imply (BB).

An algebra A = (A;→, 1) is a BCH algebra if (Re),
(Ex) and (An) are fulfilled, instead a BCH algebra A is a
BCI algebra if (B) holds. Additionally, an algebraA is a RM
algebra if (Re) and (M) hold. By Lemma 2.1(i), BCH and
BCI algebras are particular cases of RM algebras.

Following Iorgulescu (2016), we say that a RM algebra
A is an aRM algebra if it satisfies (An). We note that aRM
algebras are also called BH algebras [see, for example, Yu
et al. (1999), Zhang et al. (2001), Jun et al. (2004)].

Now, we will define the following algebras (Iorgulescu
2016):

• An aRM** algebra is an aRM algebra satisfying (**).
• A BCH** algebra is a BCH algebra satisfying (**).
• An *aRM** algebra is an aRM** algebra satisfying
(*).

• An aRM**(D1) algebra (resp. *aRM**(D1) algebra )
is an aRM** algebra (resp. *aRM** algebra) satisfying
(D1).

• A BZ algebra is an aRM algebra satisfying (B).

LetA = (A;→, 1) be an algebra of type (2, 0).We define
the binary relation ≤ by: for all x, y ∈ A,

x ≤ y ⇐⇒ x → y = 1.

In RM algebras, ≤ is a reflexive relation; in aRM algebras,
it is reflexive and antisymmetric. If A is an aRM** algebra,
then≤ is also transitive by Lemma 2.1(iv). Therefore,≤ is an
order relation in aRM** algebras (hence also in aRM** (D1),
*aRM**, *aRM**(D1), BZ, BCH**, and BCI algebras).

Lemma 2.2 LetA = (A;→, 1) be an algebra of type (2, 0).
Then the following hold:

(i) (Re) + (Ex) �⇒ (D1),
(ii) (Re) + (M) + (B) �⇒ (D1).

BCI

*aRM**(D1)

BZ

*aRM** aRM**(D1)

BCH**

aRM**

aRM

RM

Fig. 1 The hierarchy between BCI and RM

Proof

(i) This follows easily from Lemma 2.1(vi).
(ii) Let x ∈ A. By (M), (B) and (Re),

x = 1 → x ≤ (x → 1) → (x → x) = (x → 1) → 1,

that is, (D1) is satisfied. �	

Denote by RM, aRM, aRM**, aRM**(D1), *aRM**,
*aRM**(D1), BZ, BCH**, and BCI the classes of RM,
aRM, aRM**, aRM**(D1), *aRM**, *aRM**(D1), BZ,
BCH**, and BCI algebras, respectively. From the definitions
and Lemmas 2.1(ii) and 2.2(ii) it follows that

BCI ⊂ BZ ⊂ *aRM**(D1) ⊂ *aRM** ⊂ aRM** ⊂
aRM ⊂ RM.

ByLemma 2.2(i),BCH**⊂ aRM**(D1). The interrelation-
ships between the classes of algebras mentioned before are
visualized in Figure 1. (An arrow indicates proper inclusion,
that is, if X and Y are classes of algebras, then X −→ Y
means X⊂Y.)

2.2 Generalizations of groups

Iorgulescu (2018) introduced and studied new generaliza-
tions of groups such as moons, goops, and many others.

Definition 2.3 A moon is an algebra G = (G; ·,−1 , 1) of
type (2, 1, 0) satisfying

(U) x · 1 = x = 1 · x ,
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(Iv) x · x−1 = 1 = x−1 · x.
A moon is involutive if it satisfies

(DN) (x−1)−1 = x .
A moon is associative if it satisfies

(Ass) x · (y · z) = (x · y) · z.
A moon is commutative if it satisfies

(Com) x · y = y · x .

Note that the associative moon is just the group.

Definition 2.4 (Iorgulescu 2018) A goop is an algebra
(G; ·,−1 , 1) of type (2, 1, 0) satisfying (U) and the following
conditions:

(GP1) y · x−1 = 1 ⇐⇒ x−1 · y = 1,
(GP2) y · x−1 = 1 ⇐⇒ x = y.

Proposition 2.5 An algebra G = (G; ·,−1 , 1) of type
(2, 1, 0) is a goop if and only if it is an involutive moon
satisfying

(GP) y · x−1 = 1 �⇒ x = y.

Proof Let G be a goop. Observe that it satisfies (Iv). Indeed,
let x ∈ G. We have

x = x
(GP2)⇐⇒ x · x−1 = 1

(GP1)⇐⇒ x−1 · x = 1.

Therefore, (Iv) holds. By (Iv), (x−1)−1 · x−1 = 1. From
(GP2)we conclude that (x−1)−1 = x . ThusG is an involutive
moon. By (GP2), it satisfies (GP).

Conversely, let G satisfy (U), (Iv), (DN) and (GP). Let
x, y ∈ G. To prove (GP1), we first assume that y · x−1 = 1.

By (GP), x = y. Then x−1 · y = x−1 · x (Iv)= 1. Now suppose

that x−1 · y = 1. Therefore, 1 = x−1 · y (DN)= x−1 · (y−1)−1.
Applying (GP), we see that x−1 = y−1. Hence y · x−1 =
y · y−1 = 1. Consequently, (GP1) holds. Using (GP) and
(Iv), we have (GP2). Thus, G is a goop. �	
Definition 2.6 We say that an algebra (G; ·,−1 , 1) of type
(2, 1, 0) is aweakly goop if it is an involutivemoon satisfying

(wGP) y · x−1 = 1 = x · y−1 �⇒ x = y.

Example 2.7 The algebra G = ({a, b, 1}; ·,−1 , 1) , with

· a b 1
a 1 a a
b 1 1 b
1 a b 1

and x−1 = x for x ∈ {a, b, 1} , is a weakly goop. Since
b · a−1 = b · a = 1 and a−1 · b = a · b = a �= 1 , G does not
satisfy (GP1). Therefore, it is not a goop.

Let involutive moon, weakly goop, goop, group, and
abelian group denote the class of all involutive moons,
weakly goops, goops, groups, and abelian groups, respec-
tively. From the definitions we obtain

involutive moon ⊂ weakly goop ⊂ goop ⊂ group ⊂
abelian group.

3 The (strong) p-semisimple property

3.1 p-semisimple and strongly p-semisimple
algebras

Let A = (A;→, 1) be an algebra of type (2, 0). Consider
the following properties that can be satisfied by A:

(p-s) x ≤ y �⇒ x = y,
(p-s1) x ≤ 1 �⇒ x = 1,
(D1=) x = (x → 1) → 1,
(PS) (x → 1) → y = (y → 1) → x .

Note that, in Iorgulescu (2018), the concept of negation, −1,
is defined by x−1 = x → 1, and hence

(D1 =) ⇐⇒ (x−1)−1 = x and

(PS) ⇐⇒ x−1 → y = y−1 → x .

Thus (D1=) is in fact the double negation property (DN) and
(PS) is the property (pDNeg2), in the commutative case, from
the book Iorgulescu (2018).

Remark that RM algebras satisfying (PS) were studied in
Walendziak (2020).

First we present connections between the conditions in the
above list.

Lemma 3.1 If an algebraA verifies (Re) or (M), then (D1=)
implies (p-s1).

Proof The proof is immediate. �	
Proposition 3.2 If A is an aRM** algebra, then (p-s1) ⇐⇒
(p-s).

Proof LetA be an aRM** algebra. Suppose that (p-s1) holds
in A. Let x, y ∈ A and x ≤ y. By (**), y → x ≤ x → x =
1. Hence, using (p-s1), we have y → x = 1 , that is, y ≤ x .
From (An) we conclude that x = y. Thus (p-s) is satisfied.
The converse is obvious. �	
Proposition 3.3 Let A be an aRM**(D1) algebra. Then

(p-s1) ⇐⇒ (p-s) ⇐⇒ (D1=).

123



12784 A. WALENDZIAK

Proof From Proposition 3.2 we see that (p-s1) ⇐⇒ (p-s).
Let (p-s) hold and x ∈ A. By (D1), x ≤ (x → 1) → 1.
Applying (p-s), we obtain (D1=). Suppose now that (D1=)
holds. Let x ≤ 1. Then x → 1 = 1, and hence x = (x →
1) → 1 = 1 → 1 = 1. We thus get (p-s1). �	
Proposition 3.4 If A is a BCH** algebra, then

(p-s1) ⇐⇒ (p-s) ⇐⇒ (D1=) ⇐⇒ (PS).

Proof By definition and Lemma 2.1(vi), A satisfies (An),
(Re), (M), (Ex), (**), (D). Applying Proposition 3.3, we con-
clude that (p-s1) ⇐⇒ (p-s) ⇐⇒ (D1=).

(D1=) �⇒ (PS): We have (y → 1) → x
(D1=)= (y →

1) → ((x → 1) → 1)
(Ex)= (x → 1) → ((y → 1) →

1)
(D1=)= (x → 1) → y.
(PS) �⇒ (D1=): Putting y = 1 in (PS), and using (M),

we obtain (D1=). �	
Definition 3.5 ARMalgebra is calledp-semisimple (strongly
p-semisimple ) if it satisfies (p-s1) (resp. (D1=)).

Note that from Lemma 3.1 it follows that every strongly
p-semisimple RM algebra is p-semisimple.

Example 3.6 (Iorgulescu2016)Consider the set A = {a, b, c,
1} with the following table of →:

→ a b c 1
a 1 a a a
b a 1 a a
c a a 1 a
1 a b c 1

Properties (Re), (M), (An), (*), (**) (hence (Tr)), and (p-s)
are satisfied. The algebra A = (A;→, 1) does not satisfy
(D1=). Therefore,A is a p-semisimple *aRM** algebra that
is not strongly p-semisimple.

From Proposition 3.3 we obtain

Corollary 3.7 For aRM**(D1) algebras (hence also for
*aRM**(D1), BZ, BCH**, and BCI algebras), the strong
p-semisimple property is equivalent to the p-semisimple
property.

Proposition 3.8 Let A = (A;→, 1) be an algebra of type
(2, 0). The following are equivalent:

(i) A is a strongly p-semisimple aRM** algebra,
(ii) A is a p-semisimple aRM**(D1) algebra,
(iii) A is a strongly p-semisimple *aRM** algebra,
(iv) A is a p-semisimple *aRM**(D1) algebra.

Proof (i) �⇒ (ii) and (iii) �⇒ (iv) are obvious.
(ii) �⇒ (iii): From Proposition 3.3 we conclude that A

verifies (p-s) and (D1=). Hence A also verifies (*), and con-
sequently it is a strongly p-semisimple *aRM** algebra.

(iv) �⇒ (i): This follows from Proposition 3.3. �	
Denote by strongly p-s-aRM** the class of all strongly p-

semisimple aRM** algebras (= the class of all p-semisimple
aRM**(D1) algebras = the class of all strongly p-semisimple
*aRM** algebras = class of all p-semisimple *aRM**(D1)
algebras).

Proposition 3.9 Let A = (A;→, 1) be an algebra of type
(2, 0). The following are equivalent:

(i) A is a p-semisimple BCH** algebra,
(ii) A is a p-semisimple BCI algebra.

Proof Let A be a p-semisimple BCH** algebra. By Propo-
sition 3.2, A satisfies (p-s). From (p-s) we deduce that A
also satisfies (*). Applying Lemma 2.1(vii) and (v) we see
that (B) holds in A. Consequently, A is a BCI algebra. The
converse is obvious. �	

Denote by p-s-BCI the class of all p-semisimple BCI
algebras (= the class of all p-semisimple BCH** algebras).
Let p-s-BZ (resp. strongly p-s-RM, strongly p-s-aRM)
denote the class of all p-semisimple BZ algebras (resp.
strongly p-semisimple RM algebras, strongly p-semisimple
aRM algebras).

3.2 Connections between RM algebras, moons and
goops

In this subsection, we establish the connections between:

stronglyp-semisimpleRMalgebras and involutivemoons,
strongly p-semisimple aRM algebras and weakly goops,
strongly p-semisimple aRM** algebras and goops.

Let A = (A;→, 1) be an algebra of type (2, 0). Define
�(A) = (

A; ·,−1 , 1
)
by: for all x, y ∈ A, x · y = (y →

1) → x and x−1 = x → 1.
Let G = (

G; ·,−1 , 1
)
be an algebra of type (2, 1, 0).

Define �(G) = (G;→, 1) by: for all x, y ∈ G, x → y =
y · x−1.

Theorem 3.10

(i) LetA = (A;→, 1) textitbe a strongly p-semisimpleRM
algebra. Then �(A) = (

A; ·,−1 , 1
)
is an involutive

moon.
(ii) Let G = (

G; ·,−1 , 1
)
be an involutive moon. Then

�(G) = (G;→, 1) is a strongly p-semisimpleRMalge-
bra.
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(iii) Given A and G as above we have ��(A) = A and
��(G) = G.

Proof

(i) Let x ∈ A. By (M), x · 1 = (1 → 1) → x = x .
Applying (D1=), we get 1 · x = (x → 1) → 1 = x .
Therefore,�(A) satisfies (U). From (D1=) and (Re) we
obtain

x · x−1 = ((x → 1) → 1) → x = x → x = 1 and

x−1 · x = (x → 1) → (x → 1) = 1.

Then (Iv) holds in �(A). Again using (D1=), we have
(DN). Thus �(A) is an involutive moon.

(ii) Let x ∈ G. By (Iv), x → x = x · x−1 = 1, that is, (Re)
holds in �(G). Applying (U) and (Iv), we get

1 → x = x · 1−1 = x · (1 · 1−1) = x · 1 = x ,

i.e., �(G) satisfies (M). Thus �(G) is a RM algebra.
Since, by (U) and (DN), (x → 1) → 1 = 1 · (1 ·
x−1)−1 = x , it is strongly p-semisimple.

(iii) SupposeA = (A;→, 1) is a stronglyp-semisimpleRM
algebra and x ∈ A. Then with�(A) = (

A; ·,−1 , 1
)
we

have x−1 = x → 1 and y ·x−1 = y ·(x → 1) = ((x →
1) → 1) → y = x → y . Thus ��(A) = A.

Next suppose G = (
G; ·,−1 , 1

)
is an involutive moon.

Then with �(G) = (G;→, 1) and x, y ∈ G, x → 1 = 1 ·
x−1 = x−1 and (y → 1) → x = y−1 → x = x ·(y−1)−1 =
x · y. Thus ��(G) = G. �	

Hence, by above Theorem 3.10, we have the equivalence

strongly p-s-RM ≡ involutive moon,

that is, the strongly p-semisimple RM algebras are term
equivalent to the involutive moons.

Theorem 3.11

(i) Let A = (A;→, 1) be a strongly p-semisimple aRM
algebra (aRM** algebra). Then �(A) = (

A; ·,−1 , 1
)

is a weakly goop (goop, respectively).
(ii) Let G = (

G; ·,−1 , 1
)
be a weakly goop (goop). Then

�(G) = (G;→, 1) is a strongly p-semisimple aRM
algebra (aRM** algebra, respectively).

(iii) Given A and G as above we have ��(A) = A and
��(G) = G.

Proof

(i) Let A be a strongly p-semisimple aRM algebra. By
Theorem 3.10, �(A) is an involutive moon. Let x, y ∈
A and suppose that y · x−1 = 1 = x · y−1. Hence x ≤ y
and y ≤ x . Therefore x = y by (An). Then (wGP)
holds in �(A), that is, �(A) is a weakly goop.
Let nowA be a strongly p-semisimple aRM** algebra.
Then A satisfies (p-s1), and also (p-s) by Proposition
3.2. Let y · x−1 = 1, and hence x ≤ y. From (p-s) it
follows that x = y . Consequently, (GP) holds in�(A),
that is, �(A) is a goop by Proposition 2.5.

(ii) Let G be a weakly goop. By Theorem 3.10, �(G) is
a strongly p-semisimple RM algebra. From (wGP) we
deduce that (An) holds in�(G). Thus�(G) is a strongly
p-semisimple aRM algebra.
Let now G be a goop. From (GP) it follows that (p-s)
holds in �(G). Hence, obviously, �(G) satisfies (**).
Thus �(G) is a strongly p-semisimple aRM** algebra.

(iii) See the proof of Theorem 3.10(iii).

�	
Hence, by above Theorem 3.11, we have the equivalences:

strongly p-s-aRM ≡ weakly goop,

strongly p-s-aRM** ≡ goop,

that is, the strongly p-semisimple aRM algebras are term
equivalent to theweakly goops and the strongly p-semisimple
aRM** algebras are term equivalent to the goops.

Theorem 3.12 (Walendziak 2020) IfA = (A;→, 1) is a RM
algebra satisfying (PS), then �(A) = (

A; ·,−1 , 1
)
is a com-

mutative involutive moon. Conversely, if G = (
G; ·,−1 , 1

)
is

a commutative involutive moon, then �(G) = (G;→, 1) is
a RM algebra with (PS).

Theorem 3.13 (Walendziak 2020) If A = (A;→, 1) is
an aRM algebra (*aRM** algebra) satisfying (PS), then
�(A) = (

A; ·,−1 , 1
)
is a commutative weakly goop (com-

mutative goop, respectively). If G = (
G; ·,−1 , 1

)
is a

commutativeweakly goop (commutative goop), then�(G) =
(G;→, 1) is an aRM algebra (*aRM** algebra, respec-
tively) with (PS).

From Theorems 3.12 and 3.13 it follows that the RM
algebras with (PS) are term equivalent to the commutative
involutivemoons, the aRMalgebraswith (PS) are termequiv-
alent to the commutative weakly goops, and the *aRM**
algebras with (PS) are term equivalent to the commutative
goops.

Theorem 3.14 (Zhang and Ye 1995) If A = (A;→, 1) is
a p-semisimple BZ algebra, then �(A) = (

A; ·,−1 , 1
)
is
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a group. Conversely, if G = (
G; ·,−1 , 1

)
is a group, then

�(G) = (G;→, 1) is a p-semisimple BZ algebra.

Theorem 3.15 (Lei and Xi 1985) If A = (A;→, 1) is a
p-semisimple BCI algebra (or, equivalently, p-semisimple
BCH** algebra), then �(A) = (

A; ·,−1 , 1
)
is an abelian

group. Conversely, if G = (
G; ·,−1 , 1

)
is an abelian group,

then �(G) = (G;→, 1) is a p-semisimple BCI algebra.

From Theorems 3.14 and 3.15 we see that

p-s-BZ ≡ group and p-s-BCI ≡ abelian group,

that is, the p-semisimple BZ algebras are term equivalent
to the groups and the p-semisimple BCI algebras are term
equivalent to the abelian groups.

4 Examples of proper strongly p-semisimple
algebras

Definition 4.1

P1. A proper strongly p-semisimple RM algebra is a
strongly p-semisimple RM algebra (i.e., verifying (Re),
(M), (D1=)) not verifying (An), (Ex), (Tr) (hence not
(B), (BB), (*), (**), by Lemma 2.1(ii)–(v)).

P2. A proper strongly p-semisimple aRM algebra is a
strongly p-semisimple aRM algebra (i.e., verifying
(An), (Re), (M), (D1=)) not verifying (Ex), (Tr) (hence
not (B), (BB), (*), (**)).

P3. A proper strongly p-semisimple aRM** algebra is a
strongly p-semisimple aRM** algebra (i.e., verifying
(An), (Re), (M), (**), (*), (Tr), (D1=)) not verifying
(B), (Ex) (hence not (BB), by Lemma 2.1 (viii)).

P4. A proper p-semisimple BZ algebra is a p-semisimple
BZ algebra (i.e., verifying (An), (Re), (M), (B), (*),
(**), (Tr), (D1=)) not verifying (BB) (hence not (Ex),
by Lemma 2.1(ix)).

Example 4.2 Consider the set A = {a, b, c, 1} and the oper-
ation → given by the following table:

→ a b c 1
a 1 1 b a
b 1 1 c b
c 1 b 1 c
1 a b c 1

.

We can observe that the properties (Re), (M), and (D1=)
(hence (p-s1)) are satisfied; (An) is not satisfied for (x, y) =
(a, b); (Ex) and (Tr) are not satisfied for (x, y, z) = (c, a, b).
Hence, (A;→, 1) is a proper strongly p-semisimple RM
algebra.

Example 4.3 Consider the set A = {a, b, c, 1} with the fol-
lowing table of →:

→ a b c 1
a 1 1 b a
b c 1 c b
c 1 b 1 c
1 a b c 1

.

The algebra A = (A;→, 1) satisfies properties (An), (Re),
(M), and (D1=) (hence (p-s1)). It does not satisfy (Ex) and
(Tr) for (x, y, z) = (c, a, b). Then A is a proper strongly
p-semisimple aRM algebra.

Example 4.4 Let A = {a, b, 1} and→ be defined as follows:

→ a b 1
a 1 a a
b b 1 b
1 a b 1

.

It is easy to see that the properties (An), (Re), (M), (*), (**),
(Tr), and (D1=) (hence (p-s1) and (p-s)) are satisfied; (B)
and (Ex) are not satisfied for (x, y, z) = (a, b, 1). Hence,
(A;→, 1) is a proper strongly p-semisimple aRM** algebra.

Example 4.5 Consider the set A = {a, b, c, d, e, 1} and the
operation → given by the following table:

→ a b c d e 1
a 1 d e b c a
b e 1 d c a b
c d e 1 a b c
d b c a 1 d e
e c a b e 1 d
1 a b c d e 1

.

Then the properties (An), (Re), (M), (B) (hence (*), (**),
(Tr)), (p-s1) (hence (p-s), (D1=)) are satisfied. (BB) is not
satisfied for (x, y, z) = (a, d, c). Therefore, (A;→, 1) is a
proper p-semisimple BZ algebra.
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