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Abstract
This paper proposes a new fault tolerant control scheme for a class of nonlinear systems including robotic systems and

aeronautical systems. In this method, a sliding mode control is applied to maintain system stability under the post-fault

dynamics. A neural network is used as on-line estimator to reconstruct the change rate of the fault and compensate for the

impact of the fault on the system performance. The control law and the neural network learning algorithms are derived

using the Lyapunov method, so that the neural estimator is guaranteed to converge to the fault change rate, while the entire

closed-loop system stability and tracking control is guaranteed. Compared with the existing methods, the proposed method

achieved fault tolerant control for time-varying fault, rather than just constant fault. This greatly expands the industrial

applications of the developed method to enhance system reliability. The main contribution and novelty of the developed

method is that the system stability is guaranteed and the fault estimation is also guaranteed for convergence when the

system subject to a time-varying fault. A simulation example is used to demonstrate the design procedure and the

effectiveness of the method. The simulation results demonstrated that the post-fault is stable and the performance is

maintained.

Keywords Fault tolerant control � Intelligent method � Sliding mode control � Adaptive neural estimator �
Data analysis

1 Introduction

Fault tolerant control for industrial systems has attracted

great attention in the past decades, and different methods

have been proposed. A popular method for fault detection

of nonlinear dynamic systems is using a nonlinear state

observer (Liu et al. 2017; Yang et al. 2015a; Zhang et al.

2016) or a fuzzy observer-based method (Dong et al. 2018;

Li et al. 2016). In these methods, observers were used to

predict system state. The residual would then be generated

as a function of state estimation error. While the fault

occurrence can be detected, however, the identification of

fault amplitude will normally be difficult. Therefore, these

methods do not make a large contribution in passive fault

tolerant control design. Another type of fault diagnosis

system uses a nonlinear dynamic model to predict system

output. The model can be constructed with fuzzy logic or

neural networks (Kamal et al. 2014; Yu et al. 2014). In

recent years, a nonlinear observer with an on-line estimator

method (Zhang et al. 2002; Ferrari et al. 2009; Polycarpou

et al. 2004) attracted much attention of researchers. This

method uses an on-line estimator in the dynamic equation

of the system to estimate a fault or disturbance. While the

fault is estimated by the on-line estimator and compensated

for in the state dynamics, the observed state under the fault

condition converges to the nominal system state. It there-

fore naturally forms a passive fault tolerant control

strategy.
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Recently developed methods for fault tolerant control

include the use of adaptive neural networks (Chen et al.

2016), back-stepping method (Kwan and Lewis 2000),

terminal sliding mode control method (Van et al. 2018),

etc. The adaptive observer method for fault tolerant control

usually uses an on-line estimator to estimate a fault, where

the fault estimator can be implemented using different

components and are adapted with different learning algo-

rithms. A radial basis function (RBF) network was used in

Trunov and Polycarpou (1999) and Polycarpou and Trunov

(2000) as the on-line estimator, and a projection-based

learning algorithm was developed to tune the weights of

the network. As the reported work was in an early stage,

simulations showed that the tuning of the estimator is very

difficult and the convergence of the estimation is slow.

Rather than directly estimate disturbance, neural networks

have also been used to estimate unknown parameters in a

nonlinear uncertain system without combining with a

nonlinear state observer. In the air-to-fuel ratio (AFR)

control of air path in a spark ignition (SI) engine using a

sliding mode method (Wang and Yu 2008), an RBF net-

work was used to estimate two unknown parameters, the

partial derivative of air passed the throttle with respect to

the air manifold pressure and that w.r.t. crankshaft speed.

The adaptive law of the network estimator was derived so

that the states out of sliding mode will be guaranteed to

converge to the sliding mode in finite time. Moreover, a

RBF network was used to estimate the optimal sliding gain

in Wang and Yu (2007) to achieve an optimal robust per-

formance in AFR control against model uncertainty and

measurement noise.

Intelligent methods have been developed for data anal-

ysis (Al-Janabi and Alkaim 2019; Al Janabi and Abaid

Mahdi 2019; Al Janabi 2018) and applied to networks and

communications (Alkaim and Al Janabi 2020; Al Janabi

et al. 2020). In fault detection area, fault prediction and

fault diagnosis using different analytical methods and data

driving method have also investigated (Al-Janabi et al.

2014; Patel et al. 2015; Al-Janabi 2017; Al-Janabi et al.

2015; Ali 2012). The application of these methods greatly

enhanced system reliability. Numerical solutions and soft

computing have been widely studied Abu Arqub and Abo-

Hammour (2014), Abu Arqub et al. (2016) and applied to

solve scientific computing and engineering applications

(Abu Arqub et al. 2017; Abu Arqub and Maayanh 2018).

2 Related work

Fault tolerant control is defined as a control strategy that

guarantees system stability and maintains control perfor-

mance after a system fault occurs. If an external distur-

bance is a matched one or the distribution matrix of the

system fault is the same as that of the control input, robust

control can be achieved easily by using a basic sliding

model method. For mismatched disturbance, Chen et al.

(2000), Chen and Chen (2010) and Yang et al. (2011)

proposed a disturbance observer for a class of nonlinear

systems. The developed method can estimate a constant

fault but cannot estimate a time-varying fault. A sliding

mode method was developed for disturbance estimation in

Yang et al. (2013), which used the disturbance observer of

Chen et al. (2000) in the sliding surface. While the dis-

turbance estimation converges, the initial state out of the

sliding mode would converge to the sliding mode. The

method can guarantee the stability of the whole system, but

is still robust to constant disturbance only. So, the afore-

mentioned method will have very limited applications in

practice as most faults considered in real industrial systems

are time-varying. The disturbance observer was also used

in Kayacan et al. (2017) to design a robust control for

nonlinear systems. In this method, the disturbance esti-

mation was achieved by combining the disturbance

observer with a type-2 neural-fuzzy network (T2NFN) in

Kayacan et al. (2015), and was tuned by combining three

adaptive laws: a conventional estimation law, a robust

estimation law and the T2NFN law. While the method can

estimate time-varying disturbance without bias, the struc-

ture of the estimation system is rather complex and the

computing load is high.

A class of nonlinear systems discussed in this paper is

described by the state space model in (1). The model

represents many industrial systems, including magnetic

levitation suspension systems (Michail 2009), the chaotic

Duffing oscillators (Shu 2012), a three-dimension of free-

dom model helicopter system (Chen et al. 2016), near

space vehicle systems (Jiang et al. 2014), robotic manip-

ulators (Yang et al. 2015b), etc. This paper proposes a new

fault diagnosis and fault tolerant control method for this

class of nonlinear systems. The novelty and contributions

of the proposed paper are as follows. The method uses a

sliding mode approach and includes an on-line fault esti-

mator in the sliding surface.

The major contribution in this paper is that the proposed

method is used to design a feedback tracking system tol-

erant to time-varying faults compared with the existing

methods that can be tolerant to constant fault only, or to

time-varying faults but with very high computing load. The

fault tolerant control is achieved by compensating the

impact of the fault on the system performance. Here, the

RBF network is used to on-line estimate the first-order

derivative of the fault w.r.t. time and is included in the

control law, so that the time-varying fault is tolerated. The

Lyapunov method is used to derive the adaptation laws for

the RBF estimator, so that the convergence of the estimator

and the stability of the entire system are guaranteed.
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Compared with the three typical existing fault tolerant

control methods, the disturbance observer method, the

disturbance observer plus neural-fuzzy network and the

integral sliding mode method, the advantages of the pro-

posed method are listed in Table 1.

The proposed method and mentioned three major pre-

vious existing methods are all methods for control systems

design in nature. Therefore, the system stability is the key

feature. Also, a fault tolerant control method is mainly

featured by its post-fault stabilization ability. Proving sta-

bility is most challenging task in developing these new

methods. Because of this, the first feature we compared

between the proposed method and the existing methods is

chosen stability. Secondly, these methods are usually use

algorithm on-line adaptation, or self-learning neural net-

works. Therefore, the convergence of self-learning network

or adaptive algorithms would be the second important

feature to be considered. Then, if the fault could be toler-

ated, and if the time-varying fault rather than constant fault

only can be tolerated, is also an important feature. Finally,

the two features considered are tracking control and com-

puting load, which is also important due to the requirement

for real system implementation.

A numerical simulation is used to evaluate the devel-

oped method, and the results prove the effectiveness of the

method in the passive fault tolerant control by automatic

fault compensation. The paper is organized in the following

way. The sliding mode control and fault estimators are

described in Sect. 3. Convergence of the adaptive laws for

the fault estimators and system stability is proved in

Sect. 4. Section 5 presents a simulation example, and

Sect. 6 draws some conclusions.

3 Fault tolerant control design

In engineering applications, many dynamic systems

including robotic systems and aeronautical systems can be

modelled with the following class of second-order non-

linear model,

_x1 ¼ x2 þ f ðtÞ;
_x2 ¼ G xð Þ þ Q xð ÞuðtÞ;
y ¼ x1:

ð1Þ

where x1, x2 are system states, u is the control variable, f

denotes the system component fault that is a smooth non-

linear function, y is the output, G(.) and Q(.) are nonlinear

functions of state x, and Q is supposed to be invertible. We

consider the system component fault which can be pre-

sented by the term f(t) in (1). Some model-system param-

eter mismatch or external disturbance can also be presented

by this term, and be considered in robust control system

design. Note that in the second term of the right-hand side

of the second equation in (1), the input is separable from

the function of state, so that a sliding mode control strategy

can be applied to the dynamic system to guarantee the

system stability and reference tracking property.

For the purpose of fault tolerant control, we propose to

use sliding mode control strategy to form a discontinued

state feedback control to stabilize the closed-loop system.

The sliding mode control is a type of discontinuous state

feedback control, in which a sliding surface is designed

such that any state of the surface will be driven onto the

surface, and converge to zero along the surface. In this

system, a neural network of RBF type will be used to

estimate the fault change rate, _f ðtÞ. As a class of linearly

parameterized neural networks, the RBF network can

approximate any smooth nonlinear mapping to any accu-

racy if provided with enough hidden layer nodes, due to its

universal approximation ability. In further, the sliding

mode control is such designed that the output is robust to

the system fault, to realize the fault tolerant control.

A sliding mode control is developed for the system in

(1) with the sliding surface designed as follows:

s ¼ c1 _x1 þ _x2 þ b_f þ c2x1; ð2Þ

where c1, c2 are two designing parameters, which will be

chosen in the design to give more design freedom and to

determine the system response speed, and
b_f is an estimate

of the change rate of the fault by a RBF network, NNðzÞ :
Rq ! R as follows:

Table 1 Feature comparison between different methods

Methods Stability Convergence Tolerant fault Tracking control Computing load

Disturbance observer (DB) Stable Converge Constant fault Yes Low

DB ? neural-fuzzy Not sure Converge Time-varying fault Not sure High

Integral SMC Stable N/A Constant fault Yes Low

Proposed method Stable Converge Time-varying fault Yes Low
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b_f ¼ NN zð Þ ¼ bW T/ðzÞ; ð3Þ

where z ¼ ½z1; . . .; zq�T 2 <q is the input vector of the RBF

network, UðzÞ ¼ ½u1ðzÞ;u2ðzÞ; . . .;upðzÞ�T 2 <p is the

output of the nonlinear basis function, Ŵ 2 <p is the

weight vector. The Gaussian function is chosen in this

research as the basis function,

uiðzÞ ¼ exp � z� cik k2

r2i

 !

; i ¼ 1; . . .; p; ð4Þ

where ci is a vector of the same dimension with z and is

called the centre of the ith hidden layer node and ri is the
radius of the ith Gaussian function. There are several

nonlinear basis functions which can be used in RBF net-

work, e.g. sigmoid function, hyperbolic tangent, etc. We

used Gaussian function because it is commonly used by

most researchers for nonlinear mapping.

According to the universal approximation of neural

networks, the smooth nonlinear function of the change rate

of f(t) can be approximated by an optimal network NN�

with a minimal approximation error, i.e.

_f tð Þ ¼ NN� zð Þ þ e; ð5Þ

where e is the approximation error. The weight of the

optimal network NN� is called optimal weight W�, which
gives the minimum approximation error e and is defined as

follows:

W� ¼ arg min
W2Xf

sup NN zjWð Þ � _f
�

�

�

�

� �

: ð6Þ

where Xf ¼ Ŵ : Ŵ
�

�

�

��M
� �

is a valid field of the esti-

mated weight Ŵ , M[0 is a design parameter, and Sz � <q

is an allowable set of the state vectors. The optimal weight

will then generate

_f tð Þ ¼ W�T/ zð Þ þ e�; ð7Þ

with the minimal approximation error bounded by

e� � e; ð8Þ

where �e is a positive number.

Now, with the
b_f ðtÞ, the estimate of the first-order

derivative of the disturbance w.r.t. time given as

b_f tð Þ ¼
X

p

i¼1

bwi exp � z� c2i

rið Þ2

 !

: ð9Þ

We propose the control law as follows:

u ¼ U�1ðxÞðu1 þ u2Þ
u1 ¼ �G xð Þ � c1x2 � b_f � c2x1
_u2 ¼ �c1 bW

T/ zð Þ � k � sgnðsÞ

8

>

<

>

:

; ð10Þ

where sgnðsÞ is the sign function of s defined as follows:

sgnðsÞ ¼
1; s[ 0

0; s ¼ 0

�1; s\0

8

<

:

: ð11Þ

The estimate of the fault change rate is used to generate

fault estimation that is used as fault detection residual. In

addition, the estimation of the fault change rate is mainly

used in the control system as compensation to form the

fault tolerant control. The fault tolerant control configura-

tion including sliding mode control and neural network

estimator is demonstrated in the flow chart in Fig. 1.

To outline the algorithm proposed in this paper for fault

tolerant control system design, the algorithm is named as

the Adaptive Neural Network Estimator based Fault Tol-

erant Control Scheme (ANNEFTCS). The neural network

is used to estimate the fault change rate and is on-line

adapted to cope with the post-fault dynamics when the

system is subject to fault occurrence. The estimation is then

used by the fault compensation mechanism in the fault

tolerant control. The stabilization of the post-fault

dynamics is operated by the integral sliding mode, which is

also used to realize set-point tracking control. In aeronau-

tical engineering and robotic engineering, control systems

no

yes

start

Ini�alize state, RBF network.

Calculate s using (2);

Calculate using (9);
Calculate control u using (10).

Send u to the plant and take y back.

Update RBF weights using (12).

Finished?

stop

Fig. 1 Flow chart of operational procedure of the fault tolerant

control system
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are often subject to component or actuator faults. The

proposed ANNEFTCS will definitely enhance the relia-

bility of these systems.

4 Estimation convergence and stability
analysis

As the fault estimator used in this research will estimate the

fault change rate on-line, the convergence of the estimation

is very important. In addition, when a fault occurs within

the system, the post-fault dynamics may cause the system

unstable. Therefore, stabilize the post-fault system is also

important. For the sliding surface designed in (2) and

control law in (10), we now prove system stability and

neural estimator convergence. These will be given in the

following theorem.

Assumption 1 The system fault f(t) is a smooth time

function, i.e. its first-order derivative exists and bounded.

_f ðtÞ� _f ; ð12Þ

where _f is a constant.

Theorem 1 Consider the nonlinear system in (1) with a

fault satisfying Assumption 1. If the neural estimator is

updated using the adaption law as follows:

bwi t þ Dtð Þ ¼ bwi tð Þ þ r
tþDt

t

1

c
s � exp � z� c2i

r2i

� �

dt;

i ¼ 1; . . .; p;

ð13Þ

the system states will be guaranteed to be attracted on the

sliding mode (2) and along it to converge to 0, the neural

estimator will converge to the optimal estimators given in

(7).

Proof Proof is given in ‘‘Appendix.’’ h

4.1 Tracking control

We consider the case of zero reference. Deriving x2 ¼
_x1 � f from (1) with respect to t, and substitute it into (2),

we have

s ¼ c1 _x1 þ _x2 þ b_f þ c2x1 ¼ €x1 þ c1 _x1 þ c2x1 � e_f ; ð14Þ

where

e_f ¼ _f � b_f : ð15Þ

when the state converges to the sliding surface,s ¼ 0, we

have

€x1 þ c1 _x1 þ c2x1 ¼ e_f : ð16Þ

Lemma 1 (Khalil and Grizzle 1996) If a nonlinear system

Fðx; uÞ is input-to-state stable, and the input satisfies

Limt!1 u ¼ 0, then the state satisfies Limt!1 x ¼ 0. h

By choosing appropriate c1 and c2 such that the left-

hand side polynomial in (16) is Hurwitz, Eq. (16) will be

input-to-state stable. Also keep in mind that
e_f converges to

0, we can conclude that according to Lemma 1,

Limt!1 x1 ¼ 0. This proves the output converges to the

zero reference,y ¼ x1 ! 0.

4.2 Limitations and hypothesis

To guarantee the stability of the post-fault dynamics of the

entire system and the convergence of the adaptive neural

network estimator, a limitation to the fault type has to be

applied. That is that the change rate of the time-varying

fault must be bounded, i.e. the fault change rate should be

equal to or smaller than a pre-specified value given in

assumption 1. The developed algorithm extends the type of

the fault tolerated from the existing methods to time-

varying fault. And the bound of fault change rate makes the

stabilization of the system and the adaptive algorithm

convergence guaranteed. However, this condition limited

the applicability of the developed algorithm in practice, as

in aeronautical and robotic engineering some system faults

with a big change rate and therefore cannot be tolerable

with the developed method. More complexed method may

be developed to tackle the faults with too big change rate,

but the computing load will correspondingly increased.

This will also bring difficulty for practical applications.

Besides, to ensure the designed system output tracks set-

point, the system must be input-state stable. This condition

is not strict, as most engineering systems possess this

feature. If a special system that is not input to state stable,

then the stabilization would be first priority in the design.

It is well known the sliding mode control will be sub-

jected to chattering problem that is especially not desirable

when the developed method is applied to practical systems.

However, we have addressed this problem in the paper by

applying an approximating to the sigh function with (24).

The simulation example proves that it works very well.

5 Simulation example

5.1 Existing method

To compare the performance of the proposed method with

an existing method in Yang et al. (2013), the numerical

example used in Yang et al. (2013) is adopted in this paper,

and the integral sliding mode method developed in Yang
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et al. (2013) is also used for the numerical example that is

as follows:

_x1 ¼ x2 þ f tð Þ;
_x2 ¼ �2x1 � x2 þ ex1 þ u

y ¼ x1:

ð17Þ

with the initial states xð0Þ ¼ ½1; �1�T. To simulate the

control system and compare the performance, a zero ref-

erence is used for the output and the fault is simulated as

follows:

fðtÞ ¼
0; 0� t\6ðsÞ
0:5; 6� t\12ðsÞ
sin½ðt � 12Þ � 2p=8�; 12� t\20ðsÞ

8

<

:

ð18Þ

Here, the three piece of time function of the fault are

used to present: no fault for the first 6 s, then a constant

fault of 0.5 for the second 6 s, and finally a sinusoidal

function as time-varying function for the last 8 s.

The integral sliding mode control in Yang et al. (2013)

used the sliding mode:

s ¼ x2 þ c1x1 þ c2

Z

x1; ð19Þ

and the control law is:

u ¼ �B�1ðxÞ½AðxÞ þ c1x2 þ c2x1 þ k sgnðsÞ�: ð20Þ

The design parameters are c1 ¼ 5; c2 ¼ 6; k ¼ 3.

Computer software of Math Works, Matlab/Simulink, is

used for simulation. A Simulink model is developed to

represent the plant, while an M-file is developed to

implement the control. The simulation result is shown in

Fig. 2.

We can see that the output is insensitive to the constant

fault for t = 6–12 s, but deviates away from the zero ref-

erence for the period t = 12–20 s.

0 5 10 15 20
-0.5

0

0.5

1

x 1

0 5 10 15 20
-2

-1

0

1

2

x 2

0 5 10 15 20
-5

0

5

u

0 5 10 15 20
-4

-2

0

2

4

s

t(sec)

Fig. 2 Control performance of

existing method for comparison
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The method developed in Yang et al. (2013) used a

disturbance observer to estimate the fault, based on which a

siding mode control law is derived. However, the distur-

bance observer can only estimate a constant disturbance

ð _d ¼ 0Þ and not a time-varying fault. This is why the

output is not zero for t = 12–20 s. As most faults in real

systems are time varying, the method in Yang et al. (2013)

cannot be used for fault diagnosis and fault tolerant control

of most industrial systems.

5.2 The proposed method

In the simulation of our developed neural estimator based

fault tolerant control, we used a similar nonlinear system

modified from system (17) used in Yang et al. (2013) to

make it more complex. The modified system is as follows:

_x1 ¼ x2 þ f tð Þ;
_x2 ¼ �x1 � 3x2 þ e0:8x1 þ u

y ¼ x1:

ð21Þ

To make the simulation results to be illustrated clearer,

the fault is also modified as follows. A zero reference is

used for the output, and the fault is simulated as follows:

f tð Þ ¼

0; 0� t\10 s

2; 10� t\20 s

sin t � 20ð Þ � 2p
10

� 	

; 20� t\30 s

8

>

>

<

>

>

:

: ð22Þ

Here, the three piece of time function of the fault are

used to present: no fault for the first 10 s, then a constant

fault of 2 for the second 10 s, and finally a sinusoidal

function as time-varying function for the last 10 s.

The design follows the following design procedure.

5.2.1 Step 1: Set RBF network parameters

The network input vector is chosen as:

z kð Þ ¼ ½x1 kð Þ; x2 kð Þ; b_d k � 1ð Þ�: ð23Þ

10 centres are chosen to be evenly distributed in the

region between zd;min ¼ ½�1; �1; �3�T and

zd;max ¼ ½1; 1; 3�T. 10 widths of the Gaussian function are

r ¼ ½2; . . .; 2�T. The input data were scaled before feeding

into the network by a linear scale: zscale ¼ z�zmin

zmax�zmin
.

5.2.2 Step 2: Initialization

The initial value for states is x1 0ð Þ ¼ 1; x2 0ð Þ ¼ �1. The

initial value for network weights is chosen as a random

value between 0 and 0.001.

5.2.3 Step 3: Set control parameters

The design parameters are chosen as

c1 ¼ 12; c2 ¼ 36; k ¼ 15, to set the two poles at p1;2 ¼ �6.

The learning rate for network weight updating is chosen as
1
c ¼ 0:2ðc ¼ 5Þ.

In addition, to avoid chattering around the sliding sur-

face, an approximation to the sign function is applied as

follows:

sgnðsÞ ¼ s

sj j þ d
ð24Þ

with d ¼ 0:05.

5.2.4 Step 4: Simulation

The sampling time is chosen as Ts ¼ 0:01 s, and the sim-

ulation runs for 30 s. The results are displayed in Fig. 3.

In Fig. 3, the top figure displays the fault that is applied

to the system. We can see from the second figure that the

output y ¼ x1 converges to the reference value of zero

when the fault is zero (t = 0–10 s), a nonzero constant

(t = 11–20 s), and is time varying (t = 21–30 s). This

confirms that the proposed method is tolerant from the

constant fault and time-varying fault. The third figure dis-

plays that the other state x2 is bounded, which implies the

entire system including the neural estimator is bounded and

the stability of the post-fault system is guaranteed. The

fourth figure displays the control signal u(t), which has no

chattering due to the damped sign function. At the bottom,

the fifth figure displays the sliding mode s(t), which indi-

cates that the state is attracted on to the sliding mode s = 0

and stick on it for the whole simulation period. With the

compensation of the estimated fault change rate, the system

output is not affected by the occurrence of the fault. In

addition, the sliding mode control guarantees the entire

system stability under the appearance of the fault. Thus, the

fault tolerant control is achieved.

6 Conclusions

The paper proposes a new fault diagnosis and fault tolerant

control method for a class of nonlinear system. The main

contribution of this paper is the tracking control of non-

linear system tolerant to time-varying fault. This is

achieved by using a neural network to on-line estimate the

change rate of the fault in the sliding mode control scheme.

The estimator is on-line adapted to model post-fault

dynamics, and the adaptation law is derived using the

Lyapunov method. With the estimated fault compensation,

fault tolerant control is achieved in terms of maintaining

the entire system stability and closed-loop system
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performance. A numerical example is simulated to evaluate

the proposed method, and the results indicate the effec-

tiveness of the method. As the method is simple and

straightforward to implement, it has a great potential to be

applied in real fault tolerant control for industrial systems.

A limitation to the application of the method is that the

fault should be a smooth time function due to the network

modelling ability. Otherwise, the modelling accuracy and

consequently the fault tolerance will be affected. Further

work would be to investigate application to an industrial

system with real data experiment.
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Appendix

Proof of Theorem 1.

Proof

A Lyapunov function as follows is designed:

V ¼ 1

2
s2 þ 1

2
cc1 eW

T
eW ðA1Þ

where eW ¼ W� � bW , W 2 Rq is the weight vector of the

RBF estimator and eW is the weight optimization error, c is
the learning rate for the network weight. h

Fig. 3 Performance of the

proposed fault tolerant control

system
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Generally, a Lyapunov function should be chosen such

that it represents some variables that must converge to zero

in the system, such as the sliding surface in (A1) (for sta-

bility) and weight estimation error in (A1) (for network

convergence). In addition, the Lyapunov function must be

chosen greater than zero, and its first-order derivative with

respect to time can be proved to be less than zero.

From (2), we have

s ¼ _x2 þ c1 _x1 þ b_f þ c2x1

¼ Z xð Þ þ U xð Þu tð Þ þ c1x2 þ c1f þ b_f þ c2x1

ðA2Þ

Substituting u(t) in (10) into (A2),

s ¼ c1f þ u2 ðA3Þ

Then, using u2 in (10) and _f in (7) we have

_s ¼ _u2 þ c1 _f ¼ �c1 bW
T/ zð Þ � k � sgn sð Þ þ c1 W�T/ zð Þ þ e�


 �

¼ c1 eW
T/ zð Þ � k � sgn sð Þ þ c1e

�

ðA4Þ

Having prepared _s, we now have

_V ¼ s _sþ cc1 eW
T
eW
:

¼ c1 eW
T s/ zð Þ � c eW

:� 	

� k sj j þ c1se
�

ðA5Þ

Now, we choose the updating rate of the RBF network

weight bW
:

as,

bW
:

¼ 1

c
s/ðzÞ ðA6Þ

Then, we have

_V ¼ �k sj j þ c1se
�

� � k � c1eð Þ sj j
ðA7Þ

It can then be seen that in (A7) if k is designed such that

k[ c1e, _V\0 will hold true. According to the Lyapunov

stability theory, V will converge to zero, implying that

system state will converge to the sliding surface (s = 0). At

the same time, the adaptive weights of the RBF estimator

will converge to the optimal weight existing for the change

rate of the fault. On the other hand, weight updating law in

(A6) directly leads to Eq. (10) in the theorem.
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