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Abstract
Pull Request (PR) is a major contributor to external developers of open-source projects in GitHub. PR reviewing is an

important part of open-source software developments to ensure the quality of project. Recommending suitable candidates

of reviewer to the new PRs will make the PR reviewing more efficient. However, there is not a mechanism of automatic

reviewer recommendation for PR in GitHub. In this paper, we propose an automatic core-reviewer recommendation

approach, which combines PR topic model with collaborators in the social network. First PR topics will be extracted from

PRs by the latent Dirichlet allocation, and then the collaborator–PR network will be constructed with the connection

between collaborators and PRs, and the influence of each collaborator will be calculated via the improved PageRank

algorithm which combines with HITS. Finally, the relationship between topics and collaborators will also be built by the

history of PR reviewing. When a new PR presents, a collaborator will be chosen as a core reviewer according to the

influence of collaborators and the relationship between the new PR and collaborators. The experiment results show in the

matching score calculation processing, the influence of collaborators shows higher than that with the expert, and the

recommendation precision is better than 70%.

Keywords Pull Request � Core-reviewer recommendation � GitHub � LDA � Social network

1 Introduction

GitHub, a popular open-source community (Begel et al.

2013; Liao et al. 2018), has attracted the participations of

tens of millions of developers and millions of open-source

projects. Pull Request (PR) is a major contributor to

external developers of open-source projects (Gousios et al.

2014). When an external developer has implemented some

new features or fixed some bugs, he or she can contribute

his or her code via submitting a PR. Then, the core

developers decide how to deal with the PR after taking all

the opinions of reviewers into consideration.

With the rise of big data (Kuang et al. 2018) and service

computing (Liao et al. 2019; Li et al. 2018), GitHub is

becoming more and more hot and popular. The recent

studies showed that the popular projects receive nearly 100

PRs per day from external contributors (Liao et al. 2018).

To improve the efficiency of PR reviewing, some

researchers (Yu et al. 2014; Balachandran 2013; Thong-

tanunam et al. 2014) have proposed some proposals to

recommend appropriate reviewers for new PR. However,

the reviewers they recommend include any developers,

whatever the core developer or external developer he or she

is. If the recommender is an external developer, he or she

just can review the PR, but he or she cannot decide to

refuse or merge the PR. The PR still needs waiting for a

core developer to do the final decision. The delay might be
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a long time. However, if the recommender is the core

developer, the delay can be reduced greatly.

In this paper, we propose a NTCRA (Social Network

and Topic Model-based Core-Reviewer Recommendation

Algorithm) algorithm to match the appropriate collabora-

tors as the reviewer for new PR. However, the active

reviewers are always recommended frequently in the

majority reviewer recommendation methods. To reduce the

recommendation frequency of the active collaborators, we

calculate the influence of each collaborator by the collab-

orator–PR network. Then, we use the influence as the

weight to calculate the recommendation score between

each collaborator and the new PR.

The structure of this paper is organized as follows. We

present the existing research results in Sect. 2. Section 3

introduces the algorithm methodology and details of

NTCRA. We explain the results of experiment and its

validation in Sects. 4 and 5. Section 6 introduces the pos-

sible problems and draws conclusions.

2 Related work

2.1 Influential people mining

Influential people mining is a popular issue in the social

network. Currently, most of the influence calculation

methods are based on PageRank, HITS, and their methods

of variation. Hassan Sayyadi (2009) constructed an author-

paper heterogeneous network, and proposed a method to

rank the nodes which combines HITS and PageRank.

Hassan Sayyadi used HITS to calculate the importance of

paper, and used the PageRank to calculate the importance

of author. Thung et al. (2013) proposed a network of

developers and projects, and applied the PageRank algo-

rithm to calculate the weight of the nodes. Fan et al. (2018)

proposed a kind of discovery algorithm based on local core

members to solve the problem of community detection in

social networks, and get the importance of each node in the

process. Yang et al. (2012) studied the graph structure and

random walk model and proposed the SocialRank algo-

rithm to calculate the individual influence. Li et al. (2015)

proposed a measure called CommRank, which calculates

the influence of communities in the social network. And

based on the CommRank, they improved algorithm to deal

with the problem of maximizing influence. We means that

most of the methods described above are based on HITS,

PageRank or Katz models. These methods have better

results than traditional methods based on degree and

closeness.

2.2 Reviewer recommendation

As an essential part of GitHub, more and more researchers

have focused on improving the efficiency of PR reviewing.

Zhang et al. (2014a, b) conducted an exploratory study of

@-mention in PR-based software development, and found

that @-mention is beneficial to speed up the review of PR.

However, due to the large number of people in the open-

source community, developers are not able to find the

suitable reviewers quickly and accurately. To solve this

problem, some researchers have proposed some reviewer

recommenders. For example, Balachandran et al. (2013)

developed a Review Bot to find developers who frequently

submit code changes as reviewers. Later, Thongtanunam

et al. (2014) proposed a method of using the file path to

find reviewers. Yu et al. (2014) proposed a reviewer rec-

ommendation algorithm based on the review network.

Lipcak et al. (2018) conducted big data experiments on

various methods above and found that the results of these

methods for large-scale projects are not very satisfactory,

but they have a good effect on medium-scale projects. Xia

et al. (2017) proposed a recommendation algorithm that

considers implicit relations and neighborhood models. This

method can extract the possible implicit information in the

PR comment records, and then are collided and filtered

through the neighbor model to obtain the final recom-

mender. Yang et al. (2018) proposed a two-layer reviewer

recommendation model that matches by combining rec-

ommendation scores with reviewer types. This method sets

up different types of reviewers based on the common

recommendation methods, and distinguishes and recom-

mends the reviewers from the perspective of technology

and management.

All these recommendation methods include text analy-

sis, deep learning (Chang et al. 2017; Gong et al. 2017; Li

et al. 2017), collaborative filtering, and multiple network

(Deng et al. 2019), but those existing methods are lack of

considerations of the multi-dimensional features (Zhang

et al. 2018) of prediction (Kuang et al. 2018, 2019) and

recommendation. Meanwhile, their approaches focus on

recommending reviewers for new PRs, but the recom-

mended reviewers include all developers, not only the core

developers. In open-source ecosystem like GitHub (Liao

et al. 2018, 2019a, b), if the recommended reviewer is not a

core developer, the reviewer cannot merge or refuse the PR

when he or she thinks the PR meets or does not meet the

demand of the project directly. The PR still needs waiting

core developer to do the merging or refusing operation.

However, if the reviewer is a core developer, he or she can

merge or refuse the PR directly in that case. And all these

approaches face the repeating recommendation problems

of active reviewers which will bring a heavy workload to
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the active reviewer. A large amount of research content

above indicate that there is still a huge room for

improvement of PR review.

3 Methodology

In GitHub, the core developers are the managers of the

project. They can submit the revisions to the main repos-

itory directly, and they can refuse or merge the PR which

the external developers submit. These core developers are

called collaborators of the project in GitHub. Usually, a

collaborator gets higher expertise of the project than the

external developers. Hence, if they are recommended as the

reviewers to PRs, he or she would make a decision to

merge/refuse the PR quickly. In this case, the collaborators

are matched as a reviewer of that PR. As the rule, a PR just

can be merged or refused by the collaborators of the pro-

ject. In other words, if a reviewer is not a collaborator, he/

she will not have the permission to merge or refuse the

PRs. If the reviewer is a collaborator, he/she can make the

final decision immediately after reviewing the PRs.

In order to better introduce our methods and related

nouns, we give the following definitions.

Definition If the reviewer is a collaborator, he/she will be

called core reviewer of the PR.

Usually, the title and description of one PR reflect the

theme of the PR. We propose a NTCRA algorithm to

calculate the relationship between the theme and reviewer

(only include collaborators). Generally, a higher influence

a person gets, the more possibility he will be a collaborator.

That means, he will get more work to do and sometimes the

situation will decrease the PR integrating efficiency. To

reduce the frequency of active collaborator recommenda-

tion, we construct a collaborator–PR heterogeneous net-

work in NTCRA to calculate the influence of each

collaborator. In NTCRA, if a developer reviews that PR,

we assume that he or she is interested in the theme of that

PR. The topics which represent the theme of the PR will be

extracted from PRs via LDA model (Blei et al. 2003;

Kuang et al. 2018). And the topic-document distributions

will be used to calculate the relationship between topics

and collaborators. Meanwhile, to reduce the cost of topic-

document distributions calculation of new PRs, we use the

distributions calculation of new PRs, and obtain the topic

distributions of new PR from the word-topic distributions

which generated by topic extracted processing previously.

According to the influence of collaborator calculated by

collaborator–PR network, we can work out at the matching

scores for each collaborator from the relationship between

topics and collaborators. The collaborator who gets the

highest score will be recommended as core reviewer to the

PR. The overview of the proposed algorithm NTCRA is

shown in Fig. 1. We will expand more details of the

NTCRA algorithm in the following sections.

3.1 Collaborator–PR network construction

We construct the Collaborator–PR Network individually in

every project. In a given project, the reviewing relationship

between PRs and collaborators is many to many. As shown

in Fig. 2, there are many Pull Requests in Project P. A

collaborator can review several PRs, and a PR can be

reviewed by several collaborators more than once (posting

one comment represents reviewing once). For example,

Collaborator C1 reviewed Pull Request PR1 W1 times, and

reviewed Pull Request PR2 W2 times. Pull Request PR2 is

reviewed by C1, C2, C3, respectively.

The Collaborator–PR network is defined as a hetero-

geneous network, and it is a weighted undirected graph

which includes two types of nodes and two types of edges.

The two types of nodes are collaborators and PRs, the two

types of edges are review edges and common interest

edges, shown as in Fig. 3. If collaborator ci reviewed PRj

at least once, there is an edge wij between ci and PRj. The

weight wij is defined as the reviewing times of PRj. If

collaborator ci and cj reviewed a PR together, there is a

common interest shared between them. Hence, there is an

edge between collaborator ci and cj, and the weight is

defined as the number of PRs reviewed by them together.

(All of them have posted comments to the PR.)

3.2 Collaborator influence calculation

In order to better analyze the corresponding rules of the

influence network, we partition the collaborator–PR net-

work into two networks. The network on the left contains

collaborators and PRs, and they are connected with each

other through review edges. This network is a bipartite

network which can map onto the HITS network; we define

collaborators as hub nodes and PRs as authority nodes.

Thus, we can use the HITS to transfer authority scores

between collaborators and PRs. The network on the right

contains the collaborator nodes and common interest edges,

so we can use PageRank algorithm to calculate authority

scores between collaborators. Figure 4 shows the example

of partition.

Traditional approaches consider the network structure as

non-weighted; the propagation process is in uniform dis-

tribution. In fact, the relationship between different col-

laborators and PRs is different. Hence, the propagation

should be different too. In this paper, we propose an

asymmetric strategy to pass authority scores. We use

propagated matrices to show the propagated process; the

propagation matrices are calculated as follows:
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Mcpði; jÞ ¼ Mrði; jÞ � wij
PjCj

i¼1 wij

ð1Þ

Mpcði; jÞ ¼ Mrði; jÞT � wji
PjPRj

j¼1 wij

ð2Þ

Mccði; jÞ ¼ Mcði; jÞ � eij
PjCj

i¼1 eij
ð3Þ

where Mcp(i,j) is the propagated matrix from collaborators

to PRs; Mpc(i,j) indicates the propagated matrix from PRs

to collaborators; Mcc(i,j) represents the propagation matrix

from collaborators to collaborators;Mr(i,j) is the adjacency

matrices of review network; if collaborator i reviewed PR j,

then Mr(i,j) = 1, otherwise Mr(i,j) = 0; Mc(i,j) is the

adjacency matrices of interest network; if collaborator i, j

reviewed a PR together at least once, then Mr(i,j) = 1,

Calculation

Matching
Vector of PRVector of PR

Data format

Topicextra cti on

Topic-Collaborator
relation matrix

Topic-Collaborator
relation matrix

Construct relation
matrix

Pull-Request datasetsPull-Request datasets

Topic-document
distributions

Topic-document
distributions

Collaborator PR

Collaborator-PR Network Collaborator Influence Rank

Construct Network

Topic
distributions

Core_reviewer

New PRs

Influence
Calculation

Word-topic distributions

3

4

1

2

Fig. 1 Overview of the algorithm NTCRA. NTCRA includes four

steps: (1) generates the word-topic and topic-document distributions,

and builds the relation matrix between collaborators and topics via the

topic-document distributions; (2) builds the collaborator–PR network

and calculates the influence of each collaborator; (3) calculates the

topic-document distributions by using the word-topic distribution

generated in previous topic generation process; (4) calculates the

matching scores according to the influence of collaborators and the

relation matrix

Project PProject P

Pull Request PR1Pul Request PR1

Pull Request PR2Pull

l

Request PR2

Pull Request PR3Pull Request PR3

Pull Request PRnPull Request PRn

Collaborator C1Collaborator C1

Collaborator C2Collaborator C2

Collaborator C3Collaborator C3

Collaborator CmCollaborator Cm

W1

W2

W3

W4

W5

Wi

Wj

Fig. 2 Review relations between PRs and collaborators
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Fig. 3 Example of collaborator–PR network
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Fig. 4 Network Decomposition: a review network and an interest

network
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otherwise Mr(i,j) = 0; wij is the weight in review network;

eij is the weight in interest network.

We use vectors to represent the ranking scores, where

R(C) represents the ranking scores of collaborators and

R(PR) represents the ranking scores of PRs. We use 1/n to

initial the PR ranking scores, and use 1/m to initiate the

collaborator ranking score, where n and m correspond to

the number of PRs and collaborators, respectively. We

update the ranking scores by the iteration steps, until the

error between two iterations less than the error value set

previously. The iteration steps are defined as follows:

RkðPRÞ ¼ Mcp� Rk�1ðCÞ ð4Þ
RkðCÞ ¼ a�Mpc� Rk�1ðPRÞ þ b�Mcc� Rk�1ðCÞ

ð5Þ

whereMpc, Mcp, Mcc are the propagation matrices, k is the

times of iterations, a and b are the parameters using to

adjust the weight of the two network, a ? b=1.

3.3 PR topic-collaborator relation matrix
construction

We construct the corresponding relation matrix individu-

ally in every project. In this paper, PRs were extracted by

GitHub API, and each PR includes title and descriptions. A

vector is used to represent each PR which is described by

the probability of topics extracted by LDA and labeled with

a set of collaborators who reviewed that PR. For applying

the LDA on the corpus, we preprocess the text of each PR.

We remove stop words from public data set of Google, and

restore the rest of the words to a unified tense. In a PR, the

probability of a topic indicates the importance of the topic

in the PR. The bigger the probability is, the more impor-

tance the topic in the PR is. Meanwhile, the probability also

can represent the relationship between topics and review-

ers. In GitHub, a developer review a PR based on his

interest. Generally, the higher the probability is, the

stronger the relationship between topic and reviewer is. We

calculate multiple topic probabilities (Bian et al. 2014)

with PRs that reviewed by the same collaborator, since

each collaborator has reviewed a lot of PRs.

Usually, the importance of the topic is different in dif-

ferent PRs, and the importance of the topic is related to the

length of the text of PR. The larger the number of text in PR,

the greater the importance of the topic should be. Therefore,

we define the topic-importance of PR as follows,

importðtiÞ ¼
PD

d NdPðtijdÞ
PD

d Nd

ð6Þ

where ti represents the i-th topic; D indicates the PR set; Nd

is the number of words in d-th PR; P(ti|d) represents topic

distribution for PR extracted by LDA algorithm.

However, a collaborator just reviewed some PRs which

he or she is interested in. The relationship between a col-

laborator and topics should be calculated by the part of PRs

he or she reviewed. Therefore, we define the relationship

between collaborators and topics as follows:

Rðci; tiÞ ¼
PD

d kdiNdPðtijdÞ
PD

d kdiNd

ð7Þ

where ci is the i-th collaborator; kdi is the control param-

eter. kdi = 1 means that this PR is reviewed by the i-th

collaborator, otherwise kdi = 0 denotes no, d represents any

document, and D represents the PR set.

Given that the number of PRs reviewed by each col-

laborator is different, the relationship matrix of topics and

collaborators will change due to the activity of the col-

laborators. More active collaborators have higher topic

scores, and less active collaborators have less obvious

topical characteristics. To solve this problem, we weight

topic score of each collaborator. Therefore, the weight is

defined as follows:

matrixðci; tjÞ ¼
Rðci; tjÞ

PK
k Rðci; tkÞ

ð8Þ

where K is the number of topics in PRs, and tk represents

the k-th topic.

3.4 Topic-distribution calculation of new PR

Based on the results calculated in the above steps, the final

two steps for recommending the appropriate reviewers for

the new PR are to calculate the topic distribution of the

new PR and recommend the reviewers for new PR based

on the topic and influence score.

Considering the characteristics of the LDA method for

extracting text topics, we have two different methods for

calculating the topic distribution of the new PR. The first

method is to put the text of the new PR into the training set

to extract the topic probability, and the other method is to

calculate the topic probability of the new PR by using the

topic-word distribution extracted by the training set. We

assume to have a training data set with 100 PRs and a test

data set with 10 PRs. If we use the first method, then we

need to run the LDA method and the recommended algo-

rithm for a total of (100 ? 1) * 10 times, since each new

PR needs to run the LDA method to extract new topics, and

the distribution of reviewers and topics also needs to be

updated synchronously. If we use the second method, we

only need to run the program 100 ? 10 times. Obviously,

the first method will greatly increase the system time

complexity with the number of new PRs. The second

method only needs to run the LDA method to extract topic

information once, and the accuracy of the topic is only
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slightly reduced. Based on the comparisons of the above

two methods, we take the second way to calculate the topic

distribution of new PR.

The second method calculates the subject probability of

the new PR using the topic-word distribution generated

during the LDA extracting topic process. Therefore, PðtijdÞ
is as follows:

PðtijdÞ ¼
P

w2V cðw; dÞPðwjtiÞPK
k

P
v2V cðv; dÞPðvjtkÞ

ð9Þ

where c(w,d) indicates the number of w-th word in d-th

document, and P(w|ti) represents the i-th topic-word

distribution.

3.5 Recommendation reviewer for new PR

Based on the relationship between the topic and the collab-

orator, the topic probability of the new PR, and the influence

score of the collaborator, we can integrate the above steps to

recommend the appropriate reviewer for the new PR. If the

topic distribution contains multiple maximum values, it

means that this PR may be related to multiple collaborators,

all of them can be recommended as the reviewers of the PR.

As shown in Algorithm 1, NTCRA first obtains the maxi-

mum value of the new PR topic. Then, NTCRA matches the

collaborator’s topic distribution to get thematching score for

the new PR and all collaborators. Finally, NTCRA finds the

biggest scorer, which is the best core reviewer for the new

PR. In case that there are multiple collaborators getting the

maximum score, all of themwill be recommended for the PR

as the candidates of core reviewers.

Algorithm I  Core Reviewers Recommendation 
Input:Vector of New PR: , 
  Topic-Collaborator Distribution: matrix(ti ,ci) 
  Influence of Collaborator: influence(cj) 
1. Topic_PR=list() 
2. for r in range(v): 
3.    Topic_PR.add(max[topics(v)]) 
4. Reviewers=list() 
5. for r in range(v): 
6.  for j in collaborators: 
7.   socre(j)=influence(cj) * matrix(ti ,ci) * 
8.                          Topic_PR( ) 
9.   reviewer( ).add(socre(j)) 
10. Reviewers.add(max[reviewer( )]) 
Output: Reviewers 

4 Experiments

4.1 Datasets

We have obtained data from three popular projects from

GitHub. The details of the datasets are shown in Table 1.

We introduced the PR in the experiment closed on august 1,

2016, and downloaded it via the api provided by GitHub.

The api provided by GitHub contains various information

data of PR. Usually, we think that the number of developers

of a project can roughly reflect the scale of a project. In the

following experiments, we have used contributor with

similar capabilities to developer as indicator. According to

the number of contributors, we selected projects of different

sizes as experimental data, as shown in the following

Table 1. The scale of a project is defined as follows:

Small: The number of contributors less than 100.

Medium base: The number of contributors more than

100, but less than 500.

Large: The number of contributors more than 500.

4.2 Experiments design

We have proposed four key questions to be solved as

follows:

Q1 How about the quality of the influence of

collaborator calculation method?

Q2 What is the relationship between topic and

collaborator? Is the relationship between topic and

collaborator many to many or one to many or others?

Q3 What is the performance of the new PR topic

probability calculation method? Can the proposed

topic-distribution calculation method be

implemented smoothly?

Q4 What about the performance of the proposed

method? Is the influence of collaborator performs

better than the expertise? And how is the

performance changed among the number of topics

extracted by the topic model?

For Q1, we will compare the influence rank with the

expertise rank of collaborators. The expertise of a collab-

orator is defined as the number of PRs he or she reviewed.

Meanwhile, the influence in PR reviewing will be

Table 1 Detail of datasets

Project PR Collaborator Contributor

fastlane 2779 17 613

mopidy 588 8 93

coala 952 32 209

5688 Z Liao et al.
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calculated by the proposed method. Through the compar-

ison, we will get how the influence and expertise distri-

bution look like, and get the one which is more suitable for

the recommendation.

For Q2, we will apply LDA to extract the topics for PRs,

and construct the relation matrix. Then, we will apply

punch card to visualize the relation matrix, and recognize

the relation pattern between topics and collaborators.

For Q3, the divergence of topic distribution by LDA and

topic-distribution calculation method of new PRs is mea-

sured by Jensen–Shannon divergence (Lin 1991). It is an

improved version of the Kullback–Leibler divergence,

calculated as

Djsðp; qÞ ¼
1

2
Dkl p;

pþ q

2

� �
þ Dkl q;

pþ q

2

� �� �
ð10Þ

where p and q is the topic distributions of different texts.

For Q4, we use the precision and recall to measure the

performance of the proposed method. To compare the

performance between influence and expertise, we will

apply influence and expertise to calculate the precision and

recall, respectively. In order to more intuitively and accu-

rately analyze the performance differences between dif-

ferent topics, we chose to experiment with the number of

relatively representative topics.

In the topic extraction process, we used JGibbsLDA1

implemented by Gibbs sampling. We used the default

hyper-parameters beta and alpha, and the iteration param-

eter was set to 1000. Since the LDA topic extraction

method is a probability model, it is possible that the

returned results are not exactly the same each time. But the

distribution of topics is generally consistent, and we value

the relationship between different topics and collaborators,

rather than the specific content of each topic. For example,

we run the LDA method twice and get two topic distri-

butions. It is very likely that the results of the two execu-

tions are different. But we can always find the

corresponding relationship in the two result sets. And what

we need is the relationship between the collaborators and

different topics, so although the results are different in

different implementations, there is no significant impact on

the final recommendation results.

4.3 Evaluation method

We use accuracy and recall to measure the performance of

the proposed algorithm in real projects, which have been

widely used in the field of recommended systems.

According to our definition of core reviewer in section III,

the core reviewer of a PR may be more than one. Hence,

the precision and recall should be calculated as

Precision ¼ jact coreRev \ recom coreRevj
jrecom coreRevj ð11Þ

Recall ¼ jact coreRev \ recom coreRevj
jact coreRevj ð12Þ

where act_coreRev is the set of actual core reviewers; The

recom_coreRev is the set of core reviewers of the PR

recommended by the proposed method.

4.4 Model complexity

In order to better explain the construction and implemen-

tation of the model, we have analyzed the algorithm

complexity and time performance of the model. In

NTCRA, when we recommend a reviewer for a new PR,

we obtain the appropriate reviewer by calculating the

product of the reviewer’s topic distribution of the subject

probability of the new PR and the influence factor of the

reviewer. Therefore, the complexity of the algorithm is

mainly affected by the number of reviewers, the number of

keywords in the new PR, the number of topics, the number

of keywords in the training text, and the number of PR in

the training data, which can be expressed as O wtqrrþqnð Þ,
where w represents the number of keywords in the training

text, t represents the number of topics, q represents the

number of PRs in the training data, r represents the number

of reviewers, and n represents the number of keywords in

the new PR. When NTCRA recommends a reviewer for a

new PR, the algorithm obtains the appropriate K reviewers

by calculating the match value of each reviewer and the

PR. The main time for the program to run is to calculate the

matching value of the new PR and each reviewer and its

ordering. The average matching time of one reviewer is

36.4 ms (ms).

5 Results

5.1 Collaborator influence

We have constructed the Collaborator–PR network and

calculated the influence of each collaborator of the project

coala. When calculating the influence of each collaborator,

we have tried multiple group values of a, b. We find that

the influence calculation algorithm performs better when

setting a = 0.7, b = 0.3. As our expectation, the Collabo-

rator–PR network should focus on the review network,

supplemented by the common interest network. The com-

mon interest network plays a role of balance between

active collaborators and less active collaborators. Hence,

the result is correct. To verify the performance of the

influence calculation algorithm, we conducted a
1 http://jgibblda.sourceforge.net/.
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comparison experiment between influence and expertise.

The expertise is calculated by the number of reviewed PRs.

The more PRs who reviewed, the higher expertise who will

get. Figure 5 shows the results of comparison between

influence and expertise. Compared with the expertise, the

influence between collaborators performs more balance

than the expertise. As shown in Fig. 5b, we can see that the

difference of expertise between active collaborators and

less active collaborators is extra huge. The expertise of less

active collaborator is covered by the active collaborators

entirely. As shown in Fig. 5a, there is still a big gap

between active collaborators and less active collaborators.

But the gap nerve as big as the expertise, it has been

reduced extremely. The reduction in gap between active

collaborators and less active collaborators will benefit the

core-reviewer recommendation very much.

5.2 The structure of relation matrix

For Q2, we constructed a relationship matrix between

collaborators and topics according the proposed method,

and showed the results of the relationship matrix on a

punch card. As shown in Fig. 6, the punch card shows the

relationship matrix of collaborators and topics in the coala

project, and the size of punch reflects the strength of the

relationship between the collaborators and the topics. The

larger the relationship value between the collaborator and

the topic, the larger the corresponding node on the punch

card. For the convenience of observation, we just extract 15

topics. The Y-axis denotes the collaborators, the X-axis

denotes the topics. From Fig. 6, we can find that the most

collaborators always relate to several topics mostly. And

the closest topics of different collaborators always are

different. According to Fig. 5, we can find punch card of

the most active and less active collaborator present very

similar. All the size of the punches present nearly. That

means that they have the same relationship with all topics.

In this case, the influence of collaborators will help rec-

ognize the different between them.

5.3 Topic distributions

For Q3, we have randomly selected seven PRs, and worked

out at the topic distribution by LDA method and the pro-

posed topic-distribution calculation method of new PRs,

respectively. To compare the two distributions, we use the

stacked histograms to visualize the results. As shown in

Fig. 7, the X-axis denotes the documents, the Y-axis

denotes the probability of topics. Each document includes

two distributions, the distribution on the left side denotes

the distribution calculated by LDA, on the right side one

denotes the distribution calculated by the proposed method.

(a) Influence rank of collaborators

(b)  expertise rank of collaborators

Fig. 5 Comparison between influence and expertise of collaborator in

project coala (a) influence rank of collaborators calculated by the

algorithm with parameter a = 0.7, b = 0.3; b expertise rank calcu-

lated by the number of collaborators reviewed, respectively Fig. 6 Relation matrix of project coala visualized by punch card. The

size of punch reflects the strength of the relationship between

collaborators and topics. The larger the relationship value between

collaborator and topic, the larger the corresponding node on the card
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The probability of topics from bottom to top responds

topic0–topic14, respectively. From Fig. 7, we can find the

maximum entry of the topic distributions between the two

methods that tend to be consistent. Since we recommend

core reviewer to the new PR based on the topic with the

largest value, differences between topics of lower proba-

bility do not affect the final recommendation. Moreover,

we have selected 1000 comments to separately calculate

the topic distribution obtained by LDA and the proposed

method, and used Jensen–Shannon divergence to measure

the difference between the two results. Jensen–Shannon

divergence has a value range of 0 to 1. The smaller the

difference between the two distributions, the smaller the

value of the Jensen–Shannon divergence. We calculated

the Jensen–Shannon divergence in the above 1000 com-

ment data, the average difference is only 0.050. The Jen-

sen–Shannon divergence close to 0 means that the

difference between the two distributions is small. Hence,

the results show that the proposed method for calculating

the topic distribution is effective and feasible.

5.4 Performance

To verify the performance and compare the performance

between influence and expertise, we have conducted a

comparison experiment between influence and expertise.

We apply the proposed method to calculate the perfor-

mance with influence and expertise on three projects which

is shown in Table 1, respectively. Here, the number of

topics extracted by LDA is 20. The results are shown in

Fig. 8. From the comparison figure, we can find that the

influence performs better than the expertise. Even though

the recall does not improve in each project, but the preci-

sion is improved in each project. Especially in project

coala, the precision improved significantly. We also can

find that the recall in project fastlane and mopidy is lower

than the project coala. We check the datasets, and find that

there always have more than one collaborators to review

the same PR, but the proposed method recommends the

collaborator who get the highest score as the core reviewer

which means there is just one collaborator matched to the

PR. So, the recall is just around 50%.

Fig. 7 Topic distributions comparison between LDA and NTCRA.

The maximum topics always be consistent of the seven PRs extracted

by the two methods

Fig. 8 Performance comparison between influence and expertise of

the proposed method. The number of topics extracted is 20.

Compared with expertise, the performance has been improved

Fig. 9 Performance comparison between different number of topics

extracted from PR. Performance calculated with the number of

topics = 10, 15, 20, 25, 30, 40, respectively
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To explore the influence of number of topics extracted

from PRs to the proposed method, we apply the proposed

method extracts topics with K(number of topics) = 10, 15,

20, 25, 30, 40, and calculate the precision and recall in each

setting, respectively. Figure 9 shows the results. As shown

in Fig. 9, in the process of increasing the number of topics

from 10 to 40, the recommended accuracy and recall

curves of the three projects do not change notably. We also

can find the average precision of these three projects is

greater than 70%.

6 Discussion and conclusions

6.1 Discussion

Limitation of NTCRA The recall of the proposed method

always gets a low score. The proposed method just rec-

ommends the collaborator who gets highest score as the

core reviewer. Since the mechanism of the proposed

method, the number of collaborators who get the highest

score is just one in the most situations. However, in some

projects, the PR is reviewed by more than one collaborator.

Hence, the recall is always less than 50%.

Meanwhile, if there is not enough history data, the

algorithm also will get a poor performance.

Frequent matching of active collaborators From the

observation, the phenomenon of frequent matching active

collaborators as core reviewer still exists, even though the

phenomenon reduces a lot comparing with the matching by

expertise.

6.2 Conclusions

In this paper, we have proposed an algorithm that recom-

mends a suitable core reviewer for PR, which combines

topic model with social network. The NTCRA algorithm

uses the text information in PR and comments to build the

relationship between collaborators and topics. Meanwhile,

we use the review relation of collaborators to construct a

collaborator–PR heterogeneous network. Based on the

network, we apply a collaborator influence calculation

algorithm to calculate the influence of each collaborator to

the PRs. Finally, based on the relationship between topics

and collaborators, the topic probability of new PR, and the

influence score of collaborators, we can integrate the above

steps to recommend the appropriate core reviewers for new

PR. We have combined the three real open-source projects

(fastlane, coala and mopidy) to study the performance of

our algorithm, the influence of reviewer, and the topic

distribution. After detailed verification, we have the fol-

lowing conclusions:

(1) The proposed influence calculation algorithm is

feasible. The algorithm plays an important role to

balance the gap between active collaborators and less

active collaborators.

(2) Each collaborator always relates with some closest

topics and for different collaborators, the closest

topics are different. The most active collaborators

may have same relationship to all topics.

(3) The maximum topic calculated by the LDA method

is basically the same as the proposed topic-distribu-

tion method. The Jensen–Shannon divergence

between the two results is only 0.05, and the data

indicate that their difference is small.

(4) Overall, the recommended precision of the proposed

algorithm is better than 70%, and the change in the

number of topics has little effect on the final result.

Even though our algorithm can get an average precision

greater than 70%, there still exist a lot of problems. In view

of the current low recall rate and fewer core reviewers, we

will conduct more detailed analysis and improvement in

subsequent studies. We will consider extending the core

reviewers to all reviewers in the community, as well as

analyzing the reviewer’s characteristics and topic prefer-

ences to improve the recall rate of the algorithm.
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