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Abstract
Static analysis tools, automatically detecting potential source code defects at an early phase during the software development
process, are diffusely applied in safety-critical software fields. However, alarms reported by the tools need to be inspected
manually by developers, which is inevitable and costly, whereas a large proportion of them are found to be false positives.
Aiming at automatically classifying the reported alarms into true defects and false positives, we propose a defect identification
model based onmachine learning.We design a set of novel features at variable level, called variable characteristics, for building
the classification model, which is more fine-grained than the existing traditional features. We select 13 base classifiers and
two ensemble learning methods for model building based on our proposed approach, and the reported alarms classified as
unactionable (false positives) are pruned for the purpose of mitigating the effort of manual inspection. In this paper, we
firstly evaluate the approach on four open-source C projects, and the classification results show that the proposed model
achieves high performance and reliability in practice. Then, we conduct a baseline experiment to evaluate the effectiveness
of our proposed model in contrast to traditional features, indicating that features at variable level improve the performance
significantly in defect identification. Additionally, we use machine learning techniques to rank the variable characteristics in
order to identify the contribution of each feature to our proposed model.

Keywords Machine learning · Static analysis · Automated defect identification · Alarm classification · Model evaluation

1 Introduction

Software testing based on defect pattern (Quinlan et al. 2007)
is a source code static analysis technology developed in this
century. For its high efficiency and accuracy, various static
analysis tools, such as Coverity (Bessey et al. 2010), PREfix
(Bush et al. 2000), Defect Testing System (DTS) (Yang et al.
2008) and FindBugs (Ayewah and Pugh 2010), have been
widely applied in automatically detecting potential source
code defects at an early software development phase.
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Although static analysis tools have proven themselves to
be useful and significant in some domains, several researches
(Johnson et al. 2013; Kumar and Nori 2013; Beller et al.
2016; Christakis and Bird 2016) demonstrate that such tools
are faced with challenges in practice. One of the most crucial
challenges involves false positives, which is a common prob-
lemof software testingbasedondefect pattern.Because static
analysis technology cannot obtain the dynamic execution
information, static analysis tools are required to speculate on
how the program will behave actually (Ruthruff et al. 2008).
As a result, a large scale of alarms reported by the tools are
found to be false positives, which is inevitable (Dillig et al.
2012). Therefore, manual inspection of the reported alarms
would be a costly and unavoidable work for developers.

Tomitigate the effort ofmanual inspection, efficient defect
identification techniques for handling static analysis alarms
have been put forward by numerous studies and summa-
rized in a few literature reviews (Heckman and Williams
2011; Muske and Serebrenik 2016). One of the promising
approaches addressing the problem is to come up with a set
of artifact characteristics for classifying alarms as actionable
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Table 1 Evaluated projects

Project Download website Description Size (KLOC) # of IPs NPD rate (%)

antiword-0.37 https://launchpad.net/ubuntu/
+source/antiword/0.37-11

A free MS Word reader for Linux 20 90 52

spell-1.0 https://ftp.gnu.org/gnu/spell/ A spell checking program 2 74 84

sphinxbase-0.3 https://sourceforge.net/projects/
cmusphinx/files/sphinxbase/

A speech recognition toolkit 23 240 59

uucp-1.07 http://www.airs.com/ian/uucp.html A complete UUCP package 53 943 76

and unactionable, probability-based ranking of each alarm
being true, and clustering by the similarity of alarms. The
artifact characteristics are based on semantic, structure or
historical information about the source codes and reported
alarms.

The objective of our research is to build a binary clas-
sification model based on machine learning methods for
automatically identifying the reported alarms. The reported
alarms are classified either as actionable (true defects) or
unactionable (false positives), and the unactionable ones are
pruned and not reported to developers, thus reducing the
workload of manual inspection. Despite the fact that numer-
ous machine learning methods have been applied in the
classification of alarms with positive results, no individual
learner can always achieve perfect performance due to the
limitation of each machine learning algorithm. Therefore,
ensemble learning methods, combining multiple classifiers
with strategies, have become a better choice for classification
tasks. We select 13 base classifiers in our research for build-
ing defect identification models. They are selected from five
categories built in Weka in order to reflect the diversity of
machine learning algorithms and the fairness of evaluation
analysis. And then, two ensemble learningmethods are intro-
duced to improve the classification performance compared to
base classifiers.

In this paper, we discuss the potential defects from four
open-source C projects (listed in Table 1 with full descrip-
tion) detected by DTS, a tool to catch defects in source code
using static testing techniques (Yang et al. 2008). The amount
of reported alarms from each project, called inspection points
(IPs) in DTS, is listed in the fifth column of Table 1. Since
the characteristics of different defect patterns are specific, the
model proposed in this paper is merely for null pointer deref-
erence (NPD) that occupies the majority of the IPs reported
by DTS, which can be seen in the NPD Rate column.

In order to establish a defect-specific model, we need to
firstly draw the discrepancy between true defects and false
positives from the source codes related to the reported alarms.
The existing approaches havemanually designed various fea-
tures to classify the alarms, such as softwaremetrics features,
source code history and churn features based on file or mod-
ule level, and alarms-based features. However, these features

Fig. 1 A motivating example

lack precision in representing the distinct semantics of alarms
leading to a large amount of false positives. For example,
Fig. 1 shows a C language function str_add_char from
spell with two alarms reported by DTS. Alarm NPD1 is
determined as actionable after manual inspection because of
dereferencing of a parameter str that may be null, while
alarm NPD2 is determined as unactionable. The feature
vectors of these two alarms are identical under traditional
features, because these two alarms have the same character-
istics in terms of if statements, assignment statements and
lines of code, etc. However, the manual inspection results
of these two alarms are opposite. Therefore, false positives
may occur when we use traditional features to classify the
reported alarms.

To bridge the gap between the reported alarms’ semantics
and features used for defect identification, a set of novel fea-
tures at variable level, named variable characteristics (VCs),
are raised in this paper, which is based on the related infor-
mation of variables that cause defects. Each reported alarm
can be transformed into one feature vector with designed
VCs via a mapping function. Then, a predictive model can
be trained using machine learning methods in an ensemble
way to automatically identify new reported alarms either as
actionable or unactionable. The contributions of this paper
are fourfold:

– Two ensemble learning methods and 13 base classifiers
are selected to build the automated defect identification
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models in order to mitigate the effort of manual inspec-
tion.

– A set of novel artifact characteristics at variable level,
named variable characteristics, are designed to build the
proposed model.

– Experiments are conducted on four open-source C
projects to evaluate the performance of our approach in
the case of identifying alarms reported from the same
project.

– Variable characteristics are ranked by three different sin-
gle attribute evaluators to identify the impact of these
features on our proposed model.

The rest of this paper is organized as follows. We survey
related work in Sect. 2. Sections 3 and 4 describe variable
characteristics and model building process, respectively. We
provide the experimental setup in Sect. 5. Section 6 shows
the analyzing results of model evaluation. We conclude this
paper and present the future work in Sect. 7.

2 Related work

There have been an increasing number of approaches for
handling static analysis alarms, and the approaches are cat-
egorized in a few literature reviews (Heckman and Williams
2011; Muske and Serebrenik 2016). One of the promising
approaches is in a position to simplify the inspection effort
by designing a set of features from the related information
of source codes and reported alarms for clustering, ranking
schemes and classification tasks.

Clustering Static analysis alarms are clustered by the
dependence among them. Since the grouped alarms are dom-
inated by the alarm on which they are depending, not only
the number of alarms that need to be inspected is reduced,
but also the superfluous inspection effort is eliminated (Le
and Soffa 2010; Lee et al. 2012; Zhang et al. 2013; Podelski
et al. 2016; Muske et al. 2018). Podelski et al. (2016) pro-
posed a set of semantic-based features for each alarm, and
the alarms of the same feature values were grouped. Le and
Soffa (2010) constructed a correlation graph by collecting the
data about the characteristics of fault correlations, and this
graph could integrate fault correlations on different paths and
among multiple faults. Zhang et al. (2013) presented a sound
alarm correlation algorithm based on trace semantic to auto-
mate alarm identification. Muske et al. (2018) described a
novel technique that reduces alarms by repositioning, which
uses the information of control flow to group the related
alarms.

Ranking One ranking approach is to make a priority of
the alarms that have a high probability to be true defects,
and artifact characteristics are used to compute the likeli-
hood of each alarm being actionable. Jung et al. (2005) made

use of syntactic alarm context as input of Bayesian to com-
pute the probability of each alarm to be true and ranked the
alarms based on the probability before reporting. Kim and
Ernst (2007a, b) put forward a warning prioritization algo-
rithm based on the software change history features that were
mined from the source code repository, while their underly-
ing intuition was that alarms eliminated by fix-changes are
important. On the similar lines, Williams and Hollingsworth
(2005) raised a method to utilize the source code change
history of a software project to drive and help to refine the
search for defects. Addressing the weakness of other rank-
ing schemes, that is, rankings should be adaptive as reports
are inspected, Kremenek et al. (2004) took advantage of
correlation behavior among reports and user feedback for
alarm ranking. Compared with the clustering approach, this
approach needs to inspect all the ranked alarms.

Classification The classification approach can identify
whether the alarms as actionable or unactionable. The unac-
tionable alarms are not reported to the users for these alarms
aremore likely to be false positives. Ayewah et al. (2007) dis-
cussed the kinds of generated alarms and classified the types
of alarms into false positives, trivial bugs and serious bugs.
Ruthruff et al. (2008) proposed a logistic regression model
based on 33 features extracted from the alarms themselves to
predict actionable alarms found by FindBugs, and a screen-
ing methodology was used to quickly discard features with
low predictive power in order to build cost-effectively predic-
tive models. Reynolds et al. (2017) used a set of descriptive
attributes to standardize the patterns of false positives. Sev-
eral studies (Brun and Ernst 2004; Yi et al. 2007; Heckman
andWilliams 2009; Liang et al. 2010;Yuksel andSözer 2013;
Hanam et al. 2014; Yoon et al. 2014; Flynn et al. 2018) have
utilized machine learning classification models to abstract
the difference between the actionable alarms and the unac-
tionable alarms for automatically identifying defects. Brun
and Ernst (2004) presented a machine learning-based tech-
nique that builds models of program properties and used the
built models to classify the program properties that may lead
to latent defects. Heckman andWilliams (2009) evaluated 15
machine learning algorithms based on distinct sets of alarms
characteristics out of 51 candidate characteristics, which is
one of the most comprehensive studies in predicting action-
able alarms and achieves high performance. Additionally,
they proposed a benchmark inHeckman andWilliams (2008)
for evaluation and comparison of the automated defect identi-
fication models. Liang et al. (2010) constructed a training set
automatically to compute the learning weights effectively for
different features, and then, the reported alarms were ranked
and classified by computing the scores using these learning
weights. Hanam et al. (2014) put forward a method for dif-
ferentiating actionable and unactionable alarms by finding
similar code patterns that are based on the code surrounding
each static analysis alarm. Flynn et al. (2018) developed and
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Table 2 Semantic metrics Assignment statements

VC Description

AS_C Related variable assigned by a constant value

AS_V Related variable assigned by a variable value

AS_NULL Related variable assigned by a null value

AS_LFUNC Related variable assigned by a library function return value

AS_UFUNC Related variable assigned by an user-defined function return value

AS_IF Related variable assigned in an if statement

AS_FOR Related variable assigned in a for statement

AS_WHILE Related variable assigned in a while statement

Reference statements

VC Description

RS_V Related variable referenced by a variable

RS_LFUNC Related variable referenced by a library function

RS_UFUNC Related variable referenced by an user-defined function

RS_IF Related variable referenced in an if statement

RS_FOR Related variable referenced in a for statement

RS_WHILE Related variable referenced in a while statement

Control-flow statements

VC Description

CS_IF Related variable occurs in an if statement

CS_FOR Related variable occurs in a for statement

CS_WHILE Related variable occurs in a while statement

tested four classification models for static analysis alarms
mapped to CERT rules, using a novel combination of mul-
tiple static analysis tools and 28 features extracted from the
alarms.

To the best of our knowledge, no research gives a set of
artifact characteristics at variable level. In this paper, alarms
are reported with detailed description after detected by DTS,
including the variable information of each static analysis
alarm. Information from source codes and reported alarms
is extracted to represent variable characteristics, which will
be described in Sect.3.

3 Variable characteristics

There are a growing number of features designed in the exist-
ing studies (Heckman and Williams 2009; Podelski et al.
2016; Hanam et al. 2014; Yuksel and Sözer 2013; Yoon et al.
2014) to classify the alarms. In this paper, a set of novel
artifact characteristics, called VCs, are designed for each
reported alarm, which are based on the related information of
variables that cause potential defects. These VCs are derived
from three sources: the information of data flow and condi-
tional predicate of related variable in the source codes, the

lines of code (LOC) metrics, and the defect pattern definition
in DTS. Details of the VCs are shown in the following three
subsections.

3.1 Semantic metrics

For our paper, we firstly utilize abstract syntax tree (AST)
to extract source code semantics. When analyzing source
code files, we pour attention into the statements of data flow
and conditional predicate of related variable, which has a
great impact on leading to potential NPD defects (Wang et al.
2013). Then, we reduce the number of statements to inspect
by generating a backwards program slice. A backwards pro-
gram slice takes the statement containing the related variable
as the seed statement and extracts three types of statements
that could have affected the outcome of the seed statement
as characteristics, namely assignment statements, reference
statements and control-flow statements, respectively. We
totally design 17 VCs based on the three types of statements
listed in Table 2 with detailed description.

For example, we consider the code in Fig. 2 where the
pointer variable pzchat (defined at line 95) causes a poten-
tial NPD defect at line 160. Line 160 is used as the seed
statement for computing a backwards program slice, which
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Fig. 2 An example of variable characteristics extraction

Table 3 Mapping between
initial status cases and integers

Case Integer

Assignment 0

Reference 1

IF 2

FOR 3

WHILE 4

will produce the set of statements at lines {95, 146, 148, 160}.
In the code, the related variable pzchat is defined at line
95, is assigned by a variable qchat->uuconf_pzchat
at line 146, occurs in a while statement at line 148, and is
referenced by a library function strlen at line 160. Then,
the following VCs are extracted:

– AS_V: line 146
– CS_WHILE: line 148
– RS_LFUNC: line 160

The initial status of the variable after defined is also con-
sidered as a variable characteristic called I_STATE. As an
example, again consider the pointer variable pzchat in
Fig. 2, which occurs in an assignment statement after it is
defined. Therefore, we take the attitude that the initial sta-
tus of such variable is Assignment. Furthermore, five initial
cases are considered and mapped into integers to construct
feature vectors as input for the classification model, which is
given in Table 3.

3.2 LOCmetrics

Heckman and Williams (2009) collected LOC metrics at
three different levels of granularity, that is, method, file and
package, respectively. Podelski et al. (2016) have utilized the
LOC metrics to classify bugs. For LOC metrics containing
different levels of granularity, the LOC metrics are collected

at variable and method levels in our model. The LOCmetrics
designed in this paper are listed below:

– IP_LOC: the number of source code lines counted from
the definition statement of the related variable to the state-
ment that contains the variable causing a potential NPD
defect. As shown in Fig. 2, the pointer variable pzchat
is defined at line 95 and line 160 is the statement where
pzchat causes a potential NPD defect, and thus, the
value of IP_LOC is 66.

– METHOD_LOC: the number of source code lines within
the method containing the variable. As shown in Fig. 2,
the pointer variable pzchat is contained in the method
fchat, and thus, the value of METHOD_LOC is 214
(counted from line 80 to line 293).

3.3 Defect pattern definitionmetric

In DTS, NPD is further defined as five categories in terms
of analyzing C programming language projects, which is
considered as a variable characteristic CLASS. In addition,
a mapping between categories and integers is built to con-
struct feature vectors as input for the classification model,
which is shown below:

– NPD: dereferencing of a local pointer that may be null
and mapped into the value of 0.

– NPD_CHECK: dereferencing of a checked parameter or
global pointer that may be null andmapped into the value
of 1.

– NPD_EXP: dereferencing of an expression that may be
null and mapped into the value of 2.

– NPD_PARAM: dereferencing of a functional returned
parameter that may be null and mapped into the value of
3.

– NPD_PRE: dereferencing of a parameter or global
pointer that may be null and mapped into the value of
4.

4 Model building process

There is a strategy for classification tasks using machine
learning outlined by Witten et al. (2016), and Fig. 3 illus-
trates a complete procedure of building a classificationmodel
for automatically identifying defects based on the strategy.
For the following four subsections, we describe the model
building process proposed in this paper.

4.1 DTS’s architecture

DTS is a defect pattern-driven tool. Each defect pattern is
defined using a defect pattern state machine (DPSM), which
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Fig. 3 Model building process

is stored in an xml file. A DPSM can be represented as a
triple (S, T ,C), in which:

– S is a state set and S = {Sstart, Serror, Send, Sother}, where
Sstart denotes the initial state, Serror denotes the error state,
Send denotes the end state and Sother denotes other inter-
mediate states,

– T is a state transition set, which is defined as T : S×C →
S,

– C is a transition condition set, which denotes the state
transition conditions.

DTS’s architecture is shown in Fig. 4. Firstly, DTS trans-
forms the source code file into a programmodel that indicates
the analyzed codes with a set of data structures. As the AST
is built for the analyzed codes, the tool constructs a symbol
table alongside it. The symbol table is linked to each iden-
tifier in the analyzed codes with its type and a pointer to its
declaration or definition.

DTS proposes the interval computation technique in
control-flow and data-flow analysis, of which the purpose
is to compute the state of DPSM. Defect patterns tell the
defect patterns analysis engine how to model the environ-
ment and the effects of library and system call. If a DPSM is
transited to an error state, then a defect is reported by DTS.
Since the static analysis tools would produce the false pos-
itives, the IPs reported by DTS are reviewed by our testing
team.

4.2 Data preparation

The four evaluated projects are originally analyzed statically
by DTS, and then, the reported IPs are inspected manually
by the developers in order to obtain the result of each IP
being either actionable or unactionable. After that, the infor-
mation of the variable causing a potential NPD defect is

Fig. 4 DTS’s architecture

received from the reporting log of each IP and is parsed
based on the source code files, which is fully explained in
Sect. 3.

4.3 Feature vector construction

As is described in Sect. 3, the feature vector is a mapping
between each reported IP and the VCs we designed, and
the construction process shown in Fig. 3 can be represented
according to the following mapping function:

IP �−→ FV = (VC, R (IP)) (1)

where IP is the inspection point reported by DTS, FV is the
mapped feature vector via Eq. (1), VC is a list of integer
numbers denoting the value of the 21 variable characteristics
calculated from IP, and R (IP) is themanual inspection result
of IP. The identification rule of R (IP) is defined below:
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Fig. 5 Feature vector construction

R(IP) =
{
TRUE, if IP is actionable;
FALSE, otherwise.

(2)

Figure 5 demonstrates an example of constructing a fea-
ture vector from the code in Fig. 2. The upper left corner
of the figure is the source code lines of the related variable
obtained from the IP’s reporting log in the upper right corner.
The ellipsis in the sample feature vector represent the vari-
able characteristics that value 0. Detailed mapping process
can be referred in Sect. 3.

4.4 Classification andVC ranking

To classify new IPs from the same source code project, we
need to keep track of the IPs that have been classified by our
testing team, along with the feature vector for each IP. This
firstly requires a training phase that our testing team inspect
a number of IPs and classify them as actionable or unaction-
able manually. Then, we use the inspected IPs to build and
train defect identification models based on machine learning
methods to differentiate the actionable and unactionable IPs.
Finally, we allow the models to automatically classify the
rest IPs in the project, thus reducing our burden of manual
inspection.

Moreover, we use machine learning techniques to rank
the variable characteristics in order to find out how much
proportion of classification performance these features can
contribute to our proposed model in Sect. 6.4.

5 Experimental setup

To evaluate our proposed approach, Weka (Witten et al.
2016), an open-source software developed by the Machine
LearningGroup at theUniversity ofWaikato inNewZealand,
is used formodel building. As shown in Fig. 6, the framework
consists of three major steps. Firstly, 13 base classifiers built
in Weka are selected to build individual classification model,
respectively. Secondly, two ensemble learning methods are
trained based on the output of the 13 base classifiers. Finally,
we evaluate all of the classification models including base
classifiers and ensemble learning methods by carrying out
tenfold cross-validation on four open-source projects.We use
the default parameters for all classifiers in Weka. Our exper-
iments are all run on a 3.7 GHz Intel Core i3-6100 machine
with 4GB RAM.

5.1 Base classifiers

Weka contains a series of machine learning algorithms for
classification tasks with understandable output results to
developers. We select 13 classification algorithms from five
categories built inWeka, which are fully described in Table 4.
The selection of these classifiers is based on their popularity
and diversity (Ruthruff et al. 2008; Heckman and Williams
2009; Yuksel and Sözer 2013; Hanam et al. 2014; Yoon et al.
2014; Flynn et al. 2018).
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Fig. 6 Framework of alarms classification using ensemble learning
methods

5.2 Ensemble learningmethods

Ensemble learning methods, also called multi-classifier sys-
tems (MCSs), use multiple learning algorithms to obtain
better predictive performance than could be obtained from
any of the constituent learning algorithms alone. A machine
learning ensemble trains each base classifier firstly by indi-
vidual machine learning algorithm, and then, these base
classifiers are integrated into oneMCSby strategy. In general,
ensemble learning methods can often perform better than

base classifiers (Dietterich 2000). For the purpose of improv-
ing the performance of defect identification, we choose two
different kinds of MCSs for building models in this paper:
One is that all base classifiers in the MCS are not one single
type (majority voting), and the other is that all base classi-
fiers are of the same type (random forest). The two MCSs
are described below.

5.2.1 Majority voting

Majority voting (MV) is themost common combination strat-
egy used in ensemble learning. The voting method derives
from the hypothesis that the decision of a group is superior to
that of the individuals. The flowchart of MV is presented in
Fig. 7. For binary classificationmodel proposed in this paper,
the ensemble consists of 13 base classifiers {h1, h2, . . . , h13},
and base classifier hi predicts a label for one test instance x
from the set of class label {c1, c2}, where c1 denotes TRUE
and c2 denotes FALSE. If x is identified as the same class by
most base classifiers, x is labeled to this class. Since the
number of base classifiers is odd, the two classes cannot
obtain the same voting value for x . Thus, x is always able
to be labeled to one certain class. The rule of class identifi-
cation for majority voting is shown in Eq. (3), where h j

i (x)
denotes the prediction output of base classifier hi on class
label c j .

H(x) =
⎧⎨
⎩
c1, if

∑13
i=1 h

1
i (x) > 0.5

∑2
j=1

∑13
i=1 h

j
i (x);

c2, otherwise.

(3)

Table 4 The selected 13 base classifiers

Category Classifier Description

Decision tree J48 Generating a pruned or unpruned C4.5 decision tree

LMT Building ‘logistic model trees,’ which are classification trees with logistic regression
functions at the leaves

REPTree Building a decision tree using information gain and pruning it using reduced-error pruning

Bayes classifier NaiveBayes A Naive Bayes classifier using estimator classes

BayesNet Bayes Network learning using various search algorithms and quality measures

Instance-based algorithm IBk A K-nearest neighbors classifier

KStar An instance-based classifier using an entropy-based distance function

LWL Locally weighted learning using an instance-based algorithm to assign instance weights

Rule-based algorithm PART Generating a PART decision list using separate-and-conquer

JRip A propositional rule learner repeating incremental pruning to produce error reduction

DecisionTable Building and using a simple decision table majority classifier

Function-based model SimpleLogistic Building linear logistic regression models

SMO Implementing sequential minimal optimization algorithm for training a support vector
classifier
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Fig. 7 Flowchart of majority voting

5.2.2 Random forest

Random forest (RF) is an ensemble learning method where
each two base classifiers have no strong dependency and can
be generated simultaneously and parallel. Differing from tra-
ditional decision tree algorithms, k attributes are randomly
selected at each node of an individual tree in the forest during
the procedure of building a random forest model. Breiman
(2001) suggested that k = log2 d, where d is the size of the
attribute set.

5.3 Experimental design

For within-project defect identification, datasets from the
same project are split into the training set and the test
set. When building models, we carry out tenfold cross-
validation to evaluate the effectiveness of classification. In
cross-validation, datasets are randomly split into ten approx-
imately equal subsets, and nine of the subsets are used to train
a model and the last subset to test. The process is repeated
ten times in order that each of the ten subsets would be tested
once. We repeat the tenfold cross-validation 100 times for
each model, as randomness would occur inevitably in split-
ting datasets (Arcuri and Briand 2011).

Furthermore, attribute selection in Weka (Witten et al.
2016), selecting a subset of attributes using attribute eval-
uator with one search method, is of great importance to
avoid reducing classifier performance because of redundant
and irrelevant attributes. In this paper, the ranking of vari-
able characteristics is what we concern about to show the
merit of each VC to our proposed model. Variable character-
istics designed in this paper are evaluated using three single
attribute evaluators of Weka with Ranker search method
(Witten et al. 2016).

5.4 Evaluationmetrics

To assess the performance of models trained in this paper,
the following metrics are adopted to evaluate defect identifi-
cation techniques.

5.4.1 Accuracy

Accuracy is one of the most shared evaluation metrics for
classification tasks. According to individual model M built
on dataset D, the definition of accuracy is shown in Eq. (4),
where S is the size of D, and M(xi ) and yi represent the
results of the model prediction and the manual inspection,
respectively.

accuracy(M; D) = 1

S

S∑
i=1

I(M(xi ) = yi ) (4)

5.4.2 Kappa statistic

Kappa statistic is a coefficient for consistency test, that is,
to determine whether the model prediction results and the
actual results are consistent. Kappa coefficient values from
0 to 1. When the coefficient is larger than 0.6, the model
prediction result is reliable.

5.4.3 Indicators derived from confusion matrix

For a binary classification problem, instances can be divided
into true positive, false positive, true negative and false neg-
ative combining by the predicted results of the model and
actual results of the manual inspection, which consist of the
confusionmatrix. The threemetrics, precision (P), recall (R)
and F-measure (F1), are derived from the confusion matrix.
Here is a brief introduction:

P = true positive

true positive + false positive
(5)

R = true positive

true positive + false negative
(6)

F1 = 2 ∗ P ∗ R

P + R
(7)

Precision and recall are a pair of contradictory metrics. In
general, higher precision means that more true defects can
be classified as positive, while a growing rate of recall can
reveal more true defects. F-measure that takes consideration
of both precision and recall is a harmonic mean value.

5.4.4 ROC curve and area under ROC curve

Receiver operating characteristic (ROC) curve that is widely
used in machine learning is an effective tool to visualize
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the generalization performance of classifiers. However, ROC
curve has a drawback when the curves of two classifiers
are intersected, and we can hardly predicate which classifier
is superior. Thus, area under ROC curve (AUC), summing
up the area of each part under ROC curve, is introduced as
an evaluation metric. Assuming that the ROC curve is con-
nected by a series of points {(x1, y1), (x2, y2), . . . , (xn, yn)}
in sequence, AUC can be calculated as shown in Eq. (8):

AUC = 1

2

n∑
i=1

(xi+1 − xi ) · (yi+1 − yi ) (8)

6 Experimental results and analysis

6.1 Ground truth

To evaluate our proposed models, we should firstly classify
the reported NPD IPs as actionable and unactionable accu-
rately. As is described in Sect. 4.4, our method in this paper is
looking through the reportedNPD IPsmanually and classify-
ing them into the two classes. The result ofmanual inspection
is given in Table 5. The TRUE column indicates the number
of NPD IPs that are classified as actionable, and the number
of unactionable NPD IPs is listed in the FALSE column.

We classify 890 NPD IPs in total and use these IPs in our
experiments. A total of 582 of these are actionable, and 308
are unactionable. The machine learning methods mentioned
in Sects. 5.1 and 5.2 are used to make a classification of these
IPs, and we repeat the experiment designed in Sect. 5.3 100
times on each classifier built for each project so as to evalu-
ate the performance of models based on our designed VCs.
Furthermore, we calculate a weighted average of the eval-
uation metrics except accuracy and kappa statistic referred
in Sect. 5.4 across both classes (TRUE and FALSE), which
is according to the number of NPD IPs in each class. The
weighted average (WA) is shown in Eq. (9), where [M]T
denotes the metric value of precision, recall, F-measure or
AUC for class TRUE, [M]F denotes the metric value of
precision, recall, F-measure or AUC for class FALSE, AIP

denotes the number of actionable NPD IPs, and UIP denotes
the number of unactionable NPD IPs.

Table 5 The manual inspection
result on evaluated projects

Project TRUE FALSE

antiword 27 12

spell 40 20

sphinxbase 42 81

uucp 473 195

Total 582 308
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(9)

6.2 Evaluationmetrics analysis

6.2.1 Accuracy and kappa statistic

The results of accuracy and kappa statistic are listed in
Table 6, where the best result values of accuracy and kappa
statistic on each evaluated project are highlighted in bold.
Each column represents the machine learning methods given
to the project (by row). The machine learning methods are
divided by double vertical lines according to their categories
as is described inSects. 5.1 and5.2.Overall, the average accu-
racy and kappa statistic (across all projects and classifiers)
are 83.36% and 0.5986, respectively. According to the statis-
tics from Table 6, half of the models’ accuracy surpass 85%
and the proportion of the models with kappa statistic above
0.6 is 60%, indicating that our approach based on machine
learning is precise and credible enough to provide a reliable
prediction result. As shown in Table 6, we can find out that
the best model based on accuracy and kappa statistic for the
four projects is specific. The best model for antiword is
SMO. SMO is a support vector machine classifier and has an
advantage in solving the classification of small dataset, and
thus, it performs better than other machine learning methods
for antiword. PART, a rule-based learner, is the bestmodel
for spell, and RF is the best model for both sphinxbase
and uucp. Furthermore, the two MCSs enhance the classifi-
cation accuracy and kappa statistic in most cases compared
to the 13 base classifiers.

6.2.2 Weighted precision, recall and F-measure

Table 7 shows the results of weighted precision, recall and
F-measure for the models, which are calculated as described
in Eq. (9). The values highlighted in bold are the highest pre-
cision, recall and F-measure on each evaluated project. In
general, the average weighted precision (across all projects
and classifiers) is 0.8367, the average weighted recall is
0.8336, and the average weighted F-measure is 0.8349.
Statistics from Table 7 shows that nearly half of the models’
three indicators (weighted precision, recall and F-measure)
exceed 0.85, indicating the high performance of our pro-
posed approach. According to Table 7, the best model for
each evaluated project is the same as discussed in the anal-
ysis of accuracy and kappa statistic. In most instances, the
performance of the two MCSs surpasses the 13 base classi-
fiers.
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Fig. 8 ROC curves on evaluated projects: a antiword, b spell, c sphinxbase, d uucp

6.2.3 ROC curve and weighted AUC

ROCcurves for each project of different classifiers are shown
in Fig. 8, and Table 8 presents the classification performance
of weighted AUC, where the best weighted AUC values of
the classifiers built on each project are highlighted in bold.
Generally, our proposed approach achieves a weighted AUC
of 0.8273 on the average (across all projects and classifiers).
Based on the statistics in Table 8, one-third of the models

obtain a weighted AUC value that over 0.85. To be specific
in all machine learning methods, RF measures up the best
performance for all of the evaluated projects. However, the
weightedAUCofMV is inferior to the base classifiers inmost
cases. Consequently, there is little or nothingwe can judge on
the AUC performance between MV and the base classifiers.
Generally speaking, two ensemble learningmethods perform
well especially RF.
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73 6.3 Baseline comparison analysis

6.3.1 A baseline for comparison

To evaluate the performance of semantic metrics we raised in
Sect. 3.1 in defect identification, we compare semantic met-
rics with traditional metrics. Our baseline of traditional met-
rics consists of three VCs, that is, IP_LOC,METHOD_LOC
and CLASS (described in Sects. 3.2 and 3.3).

6.3.2 Evaluation setup

The project for the baseline comparison is uucp, which
is large enough to contain many IPs. We select six (J48,
NaiveBayes, KStar, PART, SimpleLogistic and RF) out of 15
machine learning methods to run our experiment designed in
Sect. 5.3, for their large variance and high evaluation perfor-
mance according our analysis in Sect. 6.2. The six metrics
described in Sect. 5.4 are used to evaluate the baseline com-
parison.

6.3.3 Result analysis

As is shown in Table 9, each column represents the machine
learning methods given to the project uucp, and the evalu-
ation results of each metric are listed by row. The machine
learningmethods are divided by double vertical lines accord-
ing to their categories.Generally,we can observe a significant
improvement of the six evaluation metrics from baseline to
our approach proposed in this paper in the Average col-
umn. In all cases, our approach is more accurate than the
baseline; that is, fewer IPs are classified incorrectly, which
shows that our models minimize the number of unactionable
IPs (false positives) developers need to inspect. Since the
reported IPs classified as unactionable would be pruned for
reducing the workload of manual inspection, the increment
in precision, recall and F-measure indicates that our mod-
els can reveal more true defects as well as lower the rate of
false negative. Overall, our proposed model with semantic
metrics at variable level improves the performance in defect
identification.

6.4 VC ranking analysis

Single attribute evaluator with Ranker evaluates each VC
individually and returns an ordered list of VCs with merit
values (Witten et al. 2016). Based on the merit values cal-
culated from each evaluator for each project, the top 5 out
of 21 designed VCs for each case are presented in Table 10.
Among the ranked VCs in Table 10, the merit values range
from 0.0356 to 0.6829. Overall, 16 out of 21 designed VCs
are ranked into the top 5 at least one time, which demon-
strates that over three quarters of the designed VCs have a
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Table 9 The comparison of evaluation metrics results on uucp

J48 NaiveBayes KStar PART SimpleLogistic RF Average

Accuracy Baseline 0.8205 0.6932 0.7804 0.7822 0.7075 0.8378 0.7703

Our approach 0.8708 0.7649 0.8967 0.8600 0.8030 0.9032 0.8498

Kappa Baseline 0.5460 0.1001 0.4493 0.4282 0.0012 0.5976 0.3533

Our approach 0.6784 0.3805 0.7456 0.6611 0.4654 0.7564 0.6146

Precision Baseline 0.8152 0.6429 0.7739 0.7741 0.5022 0.8347 0.7238

Our approach 0.8686 0.7516 0.8954 0.8600 0.7971 0.9023 0.8458

Recall Baseline 0.8205 0.6932 0.7804 0.7822 0.7075 0.8378 0.7703

Our approach 0.8708 0.7649 0.8967 0.8600 0.8030 0.9032 0.8498

F-measure Baseline 0.8178 0.6671 0.7771 0.7781 0.5874 0.8362 0.7440

Our approach 0.8697 0.7582 0.8960 0.8600 0.8000 0.9028 0.8478

AUC Baseline 0.7955 0.6105 0.8295 0.7983 0.5014 0.8990 0.7390

Our approach 0.8729 0.6928 0.9544 0.8793 0.8431 0.9573 0.8667

Table 10 The top 5 VC ranking

Ranking 1st 2nd 3rd 4th 5th

Project Evaluator VC Merit VC Merit VC Merit VC Merit VC Merit

antiword Correlation IP_LOC 0.6829 METHOD_LOC 0.6607 RS_LFUNC 0.6158 RS_V 0.5804 AS_NULL 0.5058

InfoGain RS_V 0.4130 IP_LOC 0.4130 METHOD_LOC 0.4130 RS_LFUNC 0.3230 AS_NULL 0.2100

ReliefF AS_NULL 0.3205 CLASS 0.3103 IP_LOC 0.2488 METHOD_LOC 0.2332 RS_LFUNC 0.2226

spell Correlation AS_V 0.4468 RS_FOR 0.4264 I_STATE 0.4254 RS_V 0.3589 CLASS 0.3351

InfoGain METHOD_LOC 0.4980 AS_V 0.1752 RS_FOR 0.1434 CS_FOR 0.1127 I_STATE 0.1088

ReliefF METHOD_LOC 0.1559 AS_UFUNC 0.1433 I_STATE 0.1342 RS_FOR 0.0733 AS_C 0.0617

sphinxbase Correlation AS_UFUNC 0.3190 AS_C 0.2574 RS_UFUNC 0.2247 RS_IF 0.2177 AS_V 0.2149

InfoGain AS_UFUNC 0.2655 AS_C 0.1095 RS_IF 0.0683 AS_V 0.0627 RS_UFUNC 0.0627

ReliefF CLASS 0.0764 AS_C 0.0661 RS_IF 0.0573 RS_UFUNC 0.0553 METHOD_LOC 0.0542

uucp Correlation I_STATE 0.3383 CS_IF 0.3067 CS_FOR 0.2758 IP_LOC 0.1863 RS_WHILE 0.1677

InfoGain METHOD_LOC 0.2755 I_STATE 0.1512 CS_FOR 0.1332 RS_FOR 0.0929 CS_IF 0.0827

ReliefF METHOD_LOC 0.0522 I_STATE 0.0410 RS_UFUNC 0.0407 RS_WHILE 0.0382 AS_V 0.0356

little contribution to the classification performance of our
proposed model.

Based on the statistics from Table 10, Fig. 9 presents the
number of times that aVC is ranked into the top 5 in one of the
three single attribute evaluators for each projectwith different
color. Hereby, METHOD_LOC, I_STATE and AS_V appear
to be the most relevant variable characteristics for classifica-
tion.Moreover,METHOD_LOC is contained in every project
at least once, which implies that the number of statements
within the method containing the alarm is predictive of the
actionability of the alarm. Additionally, there are five vari-
able characteristics contained in none of the four evaluated
projects, that is, AS_LFUNC, AS_IF, AS_FOR, AS_WHILE,
CS_WHILE, respectively, whichmay be less important to our
proposed model.

6.5 Threats to validity

Three main threats to validity in this paper, that is, external
validity, internal validity and construct validity, respectively,
are illustrated as follows.

6.5.1 External validity

The principal threat to external validity is that the evaluated
projects in this paper may not be of enough generalization
for all software projects. As a result, projects exclude in the
four projects might yield better or worse performance based
on our approach. But additional running of our proposed
model on other projects will minimize this threat to validity.
Since our model is only evaluated on open-source C projects,
its performance on projects written in other programming
languages is unknown.
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Fig. 9 Variable characteristics
ranking results (ordered)

6.5.2 Internal validity

For our paper, dataset preparation is the main concern of
internal validity. As is described in Sect. 4, the evaluated
projects are detected by DTS and the reported IPs are
inspected manually. Oversights of manual inspection could
invalidate a few of the model results. Multiple examination
by different developers will minimize this threat to internal
validity.

6.5.3 Construct validity

We cannot generalize our proposed model since variable
characteristics designed in this paper are specific for NPD
defect, which may not be representative, resulting in a threat
to construct validity. However, we consider various shared
features including LOC metrics applied in a multitude of the
existing research papers, which can contribute to improving
the generalization performance of our proposed model.

7 Conclusion and future work

In order tomitigate the effort ofmanual inspection, this paper
presents a machine learning-based model for automatically
identifying null pointer dereference (NPD) defects using a
set of novel and more fine-grained features. Specifically,
features, called variable characteristics (VCs), are extracted
from related source codes of the variable leading to a poten-
tial NPD defect analyzed by defect testing system (DTS),
as well as the DTS reporting log. Then, the designed VCs
are leveraged to build models for classifying the reported
alarms as actionable and unactionable. Since the unaction-
able alarms are pruned and only the actionable alarms are to
be inspected, the workload of manual inspection is reduced.

Our evaluation results on the four open-source C projects
show that the proposedmodels at variable level are promising
and can be a useful approach for automatically classify-
ing the static analysis alarms. Then, we perform a baseline
comparison experiment between semantic metrics and tradi-
tional metrics, evaluating the effectiveness of our proposed
model with semantic metrics in defect identification. Thus,
our proposed approach can be applied for automated defect
identification when new alarms are reported by static analy-
sis tools. Additionally, we use single attribute evaluator with
Ranker inWeka to rank the relevance of eachVC individually
and return an ordered list of ranked VCs.

In the future, we will extend our automated defect iden-
tification approach for more defect patterns. Moreover,
designing a set of artifact characteristics that may be shared
enough for the majority of defect patterns is considered to
be of great significance for our work. As is not mentioned in
this paper, however, there is a major challenge in raising the
accuracy of cross-project defect identification, namely using
a given project to train a model to identify the defects from
another project without manual inspection. We also plan to
leverage our model combined with transfer learning meth-
ods to automatically identify defects across projects, which
would be promising to increase the accuracy of cross-project
defect identification.
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