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Abstract
For finite m and q we study the lattice L(V) = (L(V),+,∩, {�0}, V ) of subspaces of an m-dimensional vector space V over a
fieldK of cardinality q. We present formulas for the number of d-dimensional subspaces ofV, for the number of complements
of a subspace and for the number of e-dimensional subspaces including a given d-dimensional subspace. It was shown in
Eckmann and Zabey (Helv Phys Acta 42:420–424, 1969) that L(V) possesses an orthocomplementation only in case m = 2
and charK �= 2. Hence, only in this case L(V) can be considered as an orthomodular lattice. On the contrary, we show that a
complementation ′ on L(V) can be chosen in such a way that (L(V),+,∩, ′) is both weakly orthomodular and dually weakly
orthomodular. Moreover, we show that (L(V),+,∩,⊥, {�0}, V ) is paraorthomodular in the sense of Giuntini et al. (Stud Log
104:1145–1177, 2016).

Keywords Vector space ·Finite field ·Lattice of subspaces ·Antitone · Involution ·Complementation ·Orthocomplementation ·
Ortholattice · Orthomodular lattice · Weakly orthomodular lattice · Dually weakly orthomodular lattice · Paraorthomodular
lattice

It is well known that in a Hilbert space H there exists a
one-to-one correspondence between the set of projection
operators and the set of closed subspaces. These subspaces
form an orthomodular lattice (L(H),∨,∩,⊥, {�0}, H)where
for M, N ∈ L(H) we have M ∨ N = M + N .

Somedoubts concerning the relevanceof such an approach
for an algebraic treatment of quantummechanics arose when
it was discovered that the class of orthomodular lattices aris-
ing from projections on Hilbert spaces does not generate the
variety of orthomodular lattices showing that there are equa-
tional properties of event-state systems that are not correctly
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reflected by the proposed mathematical abstraction. Hence,
alternative approaches appeared in the literature, see, e.g.,
the paper by Eckmann and Zabey (1969) on subspaces of a
vector space over a finite field or the approach by Giuntini,
Ledda and Paoli (Giuntini et al. 2016) concerning so-called
paraorthomodular lattices and Kleene lattices.

The aim of the present paper is to describe the lattice
L(V) of subspaces of a finite-dimensional vector space over
a finite field with respect to the question of defining a suitable
complementation. Similarly as in Giuntini et al. (2016), we
do not restrict ourselves to orthomodular lattices, but we also
consider so-called weakly orthomodular and dually weakly
orthomodular lattices which were recently introduced and
studied by the authors in Chajda and Länger (2018). It turns
out that despite the fact that L(V) is orthomodular only in
very exceptional cases, it is paraorthomodular with respect
to orthogonality.

Throughout the paper let m > 1 be an integer and V =
(V ,+, ·) an m-dimensional vector space over some finite
fieldK = (K ,+, ·)of cardinalityq. In the following,without
loss of generality we identifyVwithKm . We denote the zero
element ofV by �0 and the zero element ofK by 0. Moreover,
we denote by L(V) = (L(V),+,∩, {�0}, V ) the lattice of
subspaces of V. For every d ∈ {0, . . . ,m} let Ld(V) denote
the set of d-dimensional subspaces of V. Finally, we define
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a0 := 1 and

an :=
n∏

i=1

(qi − 1)

for every natural number n.

Theorem 1 We have

|Ld(V)| = am
adam−d

for all d ∈ {0, . . . ,m}.
Proof Let d ∈ {0, . . . ,m}. Put

A := {(�x1, . . . , �xd) ∈ V d | �x1,
. . . , �xd are linearly independent}.

We want to determine |A|. For choosing �x1 we have qm − 1
possibilities. For every single one of these qm−1 possibilities
for choosing �x1 we have qm −q possibilities for choosing �x2.
Hence we have (qm − 1)(qm − q) possibilities for choosing
(�x1, �x2). For every single one of these (qm −1)(qm −q) pos-
sibilities for choosing (�x1, �x2) we have qm −q2 possibilities
for choosing �x3. Hence we have (qm −1)(qm −q)(qm −q2)
possibilities for choosing (�x1, �x2, �x3). Going on in this way
we finally obtain

|A| =
d−1∏

i=0

(qm − qi ) = qd(d−1)/2am
am−d

.

Now let (�a1, . . . , �ad) be a fixed element of A. We want to
determine the number of ordered bases of the subspace U
of V generated by {�a1, . . . , �ad}. It is easy to see that a sub-
set {�b1, . . . , �bd} of V is a basis of U if and only if there
exists a regular matrix B ∈ Kd×d with (�a1, . . . , �ad)B =
(�b1, . . . , �bd) and that the number of such ordered n-tuples
(�b1, . . . , �bn) coincides with the number of regular d × d-
matrices B overK. But this number can be easily computed.
For choosing the first row of B we have qd − 1 possibilities.
For every single one of these qd −1 possibilities for choosing
the first row of B we have qd − q possibilities for choosing
the second row of B. Hence we have (qd −1)(qd −q) possi-
bilities for choosing the first two rows of B. For every single
one of these (qd − 1)(qd − q) possibilities for choosing the
first two rows of B we have qd −q2 possibilities for choosing
the third row of B. Hence we have (qd −1)(qd −q)(qd −q2)
possibilities for choosing the first three rows of B. Going on
in this way we finally obtain

d−1∏

i=0

(qd − qi ) = qd(d−1)/2ad

possibilities for B. Hence

|Ld(V)| = qd(d−1)/2am/am−d

qd(d−1)/2ad
= am

adam−d
.

	

Remark 2 Theorem 1 also holds in case m ∈ {0, 1}.
Lemma 3 |Ld(V)| = |Lm−d(V)| for all d = 0, . . . ,m.

Proof We have

|Ld(V)| = am
adam−d

= am
am−dad

= |Lm−d(V)|

for all d = 0, . . . ,m. 	

Lemma 4 If m is even then |Lm/2(V)| = (qm/2 + 1)|Lm/2

(Km−1)|.
Proof If m is even then

|Lm/2(V)| = am
a2m/2

= (qm − 1)am−1

(qm/2 − 1)am/2−1am/2

= (qm/2 + 1)|Lm/2(Km−1)|.

	

Theorem 5 |L(V)| is odd if and only if m is even and
charK = 2.

Proof We have

|L(V)| =
m∑

d=0

|Ld(V)|.

If m is odd then

|L(V)| = 2
(m−1)/2∑

d=0

|Ld(V)|

according to Lemma 3 showing evenness of |L(V)|. If m is
even and charK = 2 then am is odd, and hence, |Ld(V)| is
odd for every d = 0, . . . ,m showing oddness of |L(V)|. If,
finally, m is even and charK �= 2 then q is odd and

|L(V)| = 2
m/2−1∑

d=0

|Ld(V)| + |Lm/2(V)| = 2
m/2−1∑

d=0

|Ld(V)|

+(qm/2 + 1)|Lm/2(Km−1)|

according to Lemma 4 showing evenness of |L(V)|. 	

Let L = (L,∨,∧, 0, 1) be a bounded lattice. A unary

operation ′ on L is called
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• antitone if x ≤ y implies y′ ≤ x ′ (x, y ∈ L),
• an involution if it satisfies the identity (x ′)′ ≈ x ,
• a complementation if it satisfies the identities x ∨ x ′ ≈ 1

and x ∧ x ′ ≈ 0,
• an orthocomplementation if it is both a complementation
and an antitone involution.

A bounded lattice with an orthocomplementation is called an
ortholattice.

Lemma 6 If L = (L,∨,∧, ′, 0, 1) is a non-trivial finite
bounded lattice with a complementation which is an invo-
lution then |L| is even.
Proof It is easy to see that the binary relation R defined by
x R y if and only if y = x or y = x ′ (x, y ∈ L) is an
equivalence relation on L consisting of two-element classes
only. 	

Corollary 7 If m is even and charK = 2 then L(V) has no
complementation which is an involution and hence no ortho-
complementation.

Proof This follows from Theorem 5 and Lemma 6. 	

A lattice L = (L,∨,∧) is calledmodular if (x ∨ y)∧ z =

x ∨ (y ∧ z) or all x, y, z ∈ L with x ≤ z.
The following result is well known.

Proposition 8 The lattice L(V) is modular.

Definition 9 (cf. Chajda and Länger 2018) Let L = (L,∨,
∧, ′) be a lattice with a unary operation ′. L is called weakly
orthomodular if y = x∨(y∧x ′) for all x, y ∈ L with x ≤ y,
and it is called dually weakly orthomodular if x = y∧(x∨y′)
for all x, y ∈ L with x ≤ y. Now assume L to be bounded.
The element b of L is called a complement of the element
a of L if both a ∨ b = 1 and a ∧ b = 0. An ortholattice
is called an orthomodular lattice if it is weakly orthomodu-
lar or, equivalently, if it is dually weakly orthomodular. The
corresponding condition is then called the orthomodular law.

Lemma 10 (cf. Chajda and Länger 2018) Every bounded
modular lattice L = (L,∨,∧, ′, 0, 1) equipped with a
complementation ′ is both weakly orthomodular and dually
weakly orthomodular. Hence every modular ortholattice is
orthomodular.

Proof Let a, b ∈ L and assume a ≤ b. Then, using modu-
larity,

a ∨ (b ∧ a′) = a ∨ (a′ ∧ b) = (a ∨ a′) ∧ b = 1 ∧ b = b,

b ∧ (a ∨ b′) = (a ∨ b′) ∧ b = a ∨ (b′ ∧ b) = a ∨ 0 = a.

	


Theorem 11 Every d-dimensional subspace of V has
qd(m−d) complements. Hence, L(V) has

q

m∑
d=0

(d(m−d)am/(adam−d ))

complementations.

Proof Let d ∈ {0, . . . ,m}, U ∈ Ld(V) and {�b1, . . . , �bd} be
a basis of U and put

A := {(�xd+1, . . . , �xm) ∈ Vm−d | �b1, . . . , �bd , �xd+1,

. . . , �xm are linearly independent}.

We want to determine |A|. For choosing �xd+1 we have
qm − qd possibilities. For every single one of these qm − qd

possibilities for choosing �xd+1 we have qm −qd+1 possibili-
ties for choosing �xd+2. Hencewe have (qm−qd)(qm−qd+1)

possibilities for choosing (�xd+1, �xd+2). For every single one
of these (qm − qd)(qm − qd+1) possibilities for choosing
(�xd+1, �xd+2) we have qm − qd+2 possibilities for choosing
�xd+3. Hence we have (qm − qd)(qm − qd+1)(qm − qd+2)

possibilities for choosing (�xd+1, �xd+2, �xd+3). Going on in
this way we finally obtain

|A| =
m−1∏

i=d

(qm − qi ) = q(m+d−1)(m−d)/2am−d .

As in the proof of Theorem 1 we see that there are
q(m−d)(m−d−1)/2am−d ordered bases of an (m − d)-
dimensional subspace of V. Hence U has

q(m+d−1)(m−d)/2am−d

q(m−d−1)(m−d)/2am−d
= qd(m−d)

complements. Together with Theorem 1 we conclude that
L(V) has

m∏

d=0

(qd(m−d))(am/(adam−d )) = q

m∑
d=0

(d(m−d)am/(adam−d ))

complementations. 	

Corollary 12 For any complementation ′ onL(V), (L(V),+,

∩, ′) is both weakly orthomodular and dually weakly ortho-
modular.

Proof This follows from Proposition 8 and Lemma 10. 	

As pointed out in Eckmann and Zabey (1969), the fact that

a complementation on L(V) is an orthocomplementation is
very exceptional:

Theorem 13 The lattice L(V) has an orthocomplementation
if and only if m = 2 and charK �= 2.

123



3264 I. Chajda, H. Länger

Hence by defining a unary operation on L(V) in a suitable
way, L(V) can be transformed into an orthomodular lattice
if and only if m = 2 and charK �= 2. The cases m = 2 and
charK = 2 as well as m = 2 and charK �= 2 will be shown
in the next examples. At first, we recall some concepts from
lattice theory.

In the following, for n ≥ 3 let Mn denote the modular
lattice whose Hasse diagram is visualized in Fig. 1

0

a1 a2 an−1 an

1

Fig. 1
and for n ≥ 2 letMOn denote themodular ortholattice whose
Hasse diagram is visualized in Fig. 2.

0 = 1

a1 a1 an an

1 = 0

Fig. 2

The situation described by Theorems 1 and 5, Corollary 7,
Proposition 8 and Theorem 11 is illustrated by the following
examples.

Example 14 Let (m, q) = (2, 2), i.e., charK = 2. Then the
Hasse diagram of L(V) looks as follows (see Fig. 3):

{(0, 0)}

A B C

V

A := {(0,

Fig. 3

where

0), (0, 1)},
B := {(0, 0), (1, 0)},
C := {(0, 0), (1, 1)}.

Hence L(V) ∼= M3. It is easy to see that there are the
following eight possibilities for defining a complementation
′ on L(V):

A′ B ′ C ′
B A A
B A B
B C A
B C B
C A A
C A B
C C A
C C B

This is in accordance with Theorem 11. Every single of these
complementations is antitone, but none of them is an ortho-
complementation.

More generally, we have

Theorem 15 If m = 2 and charK = 2 then L(V) ∼= Mq+1

and any complementation on L(V) is antitone, but none of
them is an orthocomplementation.

Proof Assumem = 2 and charK = 2. Since |L1(V)| = q+
1 according to Theorem 1 we have L(V) ∼= Mq+1. Clearly,
any complementation on L(V) is antitone. That L(V) has
no orthocomplementation follows from Corollary 7 and it
follows from Theorem 13. 	


Now let us introduce the concept of orthogonality in V.
Let �a = (a1, . . . , am), �b = (b1, . . . , bm) ∈ V . By �a�b we

denote the inner or scalar product a1b1 + · · · + ambm of �a
and �b. Define �a ⊥ �b if �a�b = 0, and for any subset A of V
put A⊥ := {�x ∈ V | �x �y = 0 for all �y ∈ A}.
Lemma 16 The mapping ⊥ : U �→ U⊥ is an antitone invo-
lution on L(V).

Proof Let U ∈ L(V). The definition of U⊥ implies that ⊥
is antitone and U ⊆ U⊥⊥. From the theory concerning the
solving of systems of linear equations (Gaussian elimination
method) one easily obtains that dimU+dimU⊥ = m. Hence
also dimU⊥ + dimU⊥⊥ = m, and we obtain

dimU⊥⊥ = m − dimU⊥ = m − (m − dimU ) = dimU

showing that U = U⊥⊥, i.e., ⊥ is an involution on L(V). 	

In general, ⊥ is not an orthocomplementation on L(V).

For example, in Example 14 we have

U A B C
U⊥ B A C

Moreover, dimU⊥ = m − dimU for every U ∈ L(V).

123



The lattice of subspaces of a vector space over a finite field 3265

Example 17 Let (m, q) = (2, 3), i.e., charK �= 2. Then the
Hasse diagram of L(V) looks as follows (see Fig. 4):

{(0, 0)}

A B C D

V

A := {(0, 0), (0, 1), (0, 2)},
B := {(0, 0), (1, 0), (2, 0)},
C := {(0, 0), (1, 1), (2, 2)},
D := {(0, 0), (1, 2), (2, 1)}.

Fig. 4

where

Hence L(V) ∼= M4. It is easy to see that the pos-
sible orthocomplementations on L(V) are in one-to-one
correspondence with the partitions of {A, B,C, D} into two-
element classes. For any of these orthocomplementations ′,
(L(V),+,∩, ′, {�0}, V ) ∼= MO2 is a modular ortholattice.
Moreover,

U A B C D
U⊥ B A D C

and hence ⊥ is an orthocomplementation. It should be
remarked that in case (m, q) = (2, 5), ⊥ is not an ortho-
complementation on L(V) since U⊥ = U for

U = {(0, 0), (1, 3), (2, 1), (3, 4), (4, 2)}.

More generally, we have

Theorem 18 If m = 2 and charK �= 2 then there exist

(q + 1)!
2(q+1)/2((q + 1)/2)!
orthocomplementations ′ on L(V). With any of these (L(V),
+,∩, ′, {�0}, V ) ∼= MO(q+1)/2 is a modular ortholattice.

Proof Assume m = 2 and charK �= 2. It is clear that there
is a one-to-one correspondence between the set of all ortho-
complementations on L(V) and the set of all partitions of
L1(V) into two-element classes. It is easy to see by induc-
tion on n that for an arbitrary positive integer n there are
exactly (2n − 1)(2n − 3) · . . . · 1 different partitions of a
2n-element set into two-element classes. Now we have

(2n − 1)(2n − 3) · . . . · 1 = (2n)(2n − 1) · . . . · 1
(2n)(2n − 2) · . . . · 2

= (2n)!
2nn(n − 1) · . . . · 1 = (2n)!

2nn! .

This shows that there are

(q + 1)!
2(q+1)/2((q + 1)/2)!

different partitions of the (q+1)-element set L1(V) into two-
element classes. That with any of these (L(V),+,∩, ′, {�0},
V ) ∼= MO(q+1)/2 is a modular ortholattice is clear. 	


As mentioned in the introduction, another approach to the
latticeL(V)wasdeveloped inGiuntini et al. (2016).We recall
the following definition:

Definition 19 A bounded lattice L = (L,∨,∧, ′, 0, 1) with
an antitone involution ′ is called paraorthomodular if

x = y for all x, y ∈ L satisfying both x ≤ y and x ′∧y = 0.

(1)

It was shown in Giuntini et al. (2016) that for ortholattices
(1) is equivalent to the orthomodular law. Note that in Def-
inition 19 we do not ask ′ to be a complementation, and we
only ask ′ to be an antitone involution.

The following result is taken from Giuntini et al. (2016).
For the reader’s convenience we provide a proof.

Proposition 20 Every bounded modular lattice with an anti-
tone involution is paraorthomodular.

Proof If (L,∨,∧, ′, 0, 1) is a bounded modular lattice with
an antitone involution, a, b ∈ L , a ≤ b and a′ ∧ b = 0 then
a ∨ a′ ≥ a ∨ b′ = (a′ ∧ b)′ = 0′ = 1 and hence a ∨ a′ = 1
whence a = a∨0 = a∨(a′ ∧b) = (a∨a′)∧b = 1∧b = b.

	

Corollary 21 The lattice (L(V),+,∩,⊥, {�0}, V ) is paraortho-
modular.

Proof This follows from Proposition 8, Lemma 16 and
Proposition 20. There exists also another proof of Corol-
lary 21 not explicitly using modularity. If U ,W ∈ L(V),
U ⊆ W and U⊥ ∩ W = {�0} then

dimU ≤ dimW = dim(U⊥ + W ) − dimU⊥

= dim(U⊥ + W ) − m + dimU ≤ dimU

and hence dimU = dimW , i.e., U = W . 	

Example 22 Let (m, q) = (3, 2), i.e., charK = 2. Then the
Hasse diagram of L(V) looks as follows (see Fig. 5):
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{(0, 0, 0)}

A B C D E F G

H I J K L M N

V

A := {(0, 0, 0), (0, 0, 1)},
B := {(0, 0, 0), (0, 1, 0)},
C := {(0, 0, 0), (0, 1, 1)},
D := {(0, 0, 0), (1, 0, 0)},
E := {(0, 0, 0), (1, 0, 1)},
F := {(0, 0, 0), (1, 1, 0)},
G := {(0, 0, 0), (1, 1, 1)},
H := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)},
I := {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)},
J := {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)},
K := {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},
L := {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)},
M := {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)},
N := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Fig. 5

where

It is easy to see that the following table defines a comple-
mentation on L(V) which is an involution:

x A B C D E F G
x ′ K I J H M L N

but ′ is not an orthocomplementation on L(V) since A ⊆ J ,
but J ′ = C � K = A′. Moreover, ⊥ is given by

U A B C D E F G
U⊥ K I M H L J N

Since C + C⊥ = M �= V , ⊥ is not an orthocomplementa-
tion on L(V). If ′ were an orthocomplementation on L(V)
then

⋃

(U ,W )∈P

{(U ,W ), (W ′,U ′)}2

would be an equivalence relation on

P := {(U ,W ) ∈ L1(V) × L2(V) | U ⊆ W }

consisting of two-element classes only contradicting |M | =
21.

Finally, we want to present a new proof of the fact that
L(V) has no orthocomplementation in case charK = 2.

Theorem 23 If 0 ≤ d ≤ e ≤ m then every d-dimensional
subspace of V is included in

am−d

am−eae−d

e-dimensional subspaces of V.

Proof Assume 0 ≤ d ≤ e ≤ m, let U ∈ Ld(V) and
{�b1, . . . , �bd} be a basis of U and put

A := {(�xd+1, . . . , �xe) ∈ V e−d | �b1, . . . , �bd , �xd+1, . . . ,

�xe are linearly independent}.

We want to determine |A|. For choosing �xd+1 we have
qm − qd possibilities. For every single one of these qm − qd

possibilities for choosing �xd+1 we have qm −qd+1 possibili-
ties for choosing �xd+2. Hencewe have (qm−qd)(qm−qd+1)

possibilities for choosing (�xd+1, �xd+2). For every single one
of these (qm − qd)(qm − qd+1) possibilities for choosing
(�xd+1, �xd+2) we have qm − qd+2 possibilities for choosing
�xd+3. Hence we have (qm − qd)(qm − qd+1)(qm − qd+2)

possibilities for choosing (�xd+1, �xd+2, �xd+3). Going on in
this way we finally obtain

|A| =
e−1∏

i=d

(qm − qi ) = q(e+d−1)(e−d)/2am−d

am−e
.

Now let (�ad+1, . . . , �ae) be a fixed element of A. We want to
determine the number of ordered bases of the subspace of
V generated by {�b1, . . . , �bd , �ad+1, . . . , �ae} which are of the
form (�b1, . . . , �bd , �xd+1, . . . , �xe). Similarly as in the proof of
Theorem 1 it is easy to see that the number of such ordered
bases coincides with the number of regular e× e-matrices B
over K the first d columns of which coincide with the first d
canonical unit vectors of Ke. But this number can be easily
computed. For choosing the (d +1)-th column of B we have
qe − qd possibilities. For every single one of these qe − qd

possibilities for choosing the (d+1)-th column of B we have
qe − qd+1 possibilities for choosing the (d + 2)-th column
of B. Hence we have (qe − qd)(qe − qd+1) possibilities for
choosing the (d + 1)-th and (d + 2)-th column of B. For
every single one of these (qe − qd)(qe − qd+1) possibilities
for choosing the (d + 1)-th and (d + 2)-th column of B
we have qe − qd+2 possibilities for choosing the (d + 3)-th
columnof B.Hencewehave (qe−qd)(qe−qd+1)(qe−qd+2)

possibilities for choosing the (d+1)-th, (d+2)-th and (d+3)-
th column of B. Going on in this way we finally obtain

e−1∏

i=d

(qe − qi ) = q(e+d−1)(e−d)/2ae−d
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possibilities for B. Hence U is included in

q(e+d−1)(e−d)/2am−d/am−e

q(e+d−1)(e−d)/2ae−d
= am−d

am−eae−d

e-dimensional subspaces of V. 	

Theorem 24 If charK = 2 then L(V) has no orthocomple-
mentation.

Proof If charK = 2 and ′ were an orthocomplementation on
L(V) then

⋃

(U ,W )∈M
{(U ,W ), (W ′,U ′)}2

would be an equivalence relation on

M := {(U ,W ) ∈ L1(V) × Lm−1(V) | U ⊆ W }

consisting of two-element classes only contradicting oddness
of |M | which follows from

|M | = (qm − 1)(qm−1 − 1)

(q − 1)2

according to Theorems 1 and 23. 	

We can summarize our results as follows: Despite the fact

that (L(V),+,∩, ′, {�0}, V )with an appropriate ′ is an ortho-
modular lattice in exceptional cases only, we have shown that
this lattice is weakly orthomodular, dually weakly orthomod-
ular and paraorthomodular when ′ is chosen in a appropriate
way. This motivates further study of these structures.
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