
Soft Computing (2019) 23:2187–2197
https://doi.org/10.1007/s00500-018-3365-9

FOCUS

New complexity results for Łukasiewicz logic

Miquel Bofill1 · Felip Manyà2 · Amanda Vidal3 ·Mateu Villaret1

Published online: 11 July 2018
© The Author(s) 2018

Abstract
One aspect that has been poorly studied in multiple-valued logics, and in particular in Łukasiewicz logic, is the generation of
instances of varying difficulty for evaluating, comparing and improving satisfiability solvers. With the ultimate goal of finding
challenging benchmarks for Łukasiewicz satisfiability solvers, we start by defining a natural and intuitive class of clausal forms
(simple Ł-clausal forms) and studying their complexity. Since we prove that the satisfiability problem of simple Ł-clausal
forms can be solved in linear time, we then define two new classes of clausal forms (Ł-clausal forms and restricted Ł-clausal
forms) that truly exploit the non-lattice operations of Łukasiewicz logic and whose satisfiability problems are NP-complete
when clauses have at least three literals, and admit linear-time algorithms when clauses have at most two literals. We also
define an efficient satisfiability preserving translation of Łukasiewicz logic formulas into Ł-clausal forms. Finally, we describe
a random generator of Ł-clausal forms and report on an empirical investigation in which we identify an easy-hard-easy pattern
and a phase transition phenomenon for Ł-clausal forms.

Keywords Łukasiewicz logics · Clausal forms · Complexity · Instance generator

1 Introduction

The proof theory of multiple-valued logics, as well as its
complexity, has been deeply studied for awide variety of log-
ics (Aguzzoli et al. 2005; Hájek 1998; Metcalfe et al. 2009,
2005). However, the development of satisfiability solvers has
received less attention despite the fact that, without competi-
tive solvers, it is extremely difficult to apply multiple-valued
logics to solve real-world problems.

In the quest for developing fast satisfiability solvers, it
is crucial to have both random and structured challenging
instances for evaluating and comparing solvers, as happens

Communicated by C. Noguera.

B Felip Manyà
felip@iiia.csic.es

Miquel Bofill
miquel.bofill@udg.edu

1 Dept. IMAE, Universitat de Girona, Carrer de la UdG 6,
17003 Girona, Spain

2 Artificial Intelligence Research Institut (IIIA, CSIC) Campus
UAB, Carrer de Can Planas, Zona 2, 08193 Bellaterra, Spain

3 Institute of Computer Science, Czech Academy of Sciences,
Prague, Czech Republic

in close areas such as Boolean satisfiability testing and con-
straint programming.

Given the recent development of satisfiability modulo
theory-based (SMT based) SAT solvers for multiple-valued
logics (Ansótegui et al. 2012, 2015, 2016; Vidal 2016; Vidal
et al. 2012), as well as the need of empirically evaluating and
comparing themwith other existing approaches, the objective
of this paper is to develop suitable benchmarks for satisfia-
bility testing in Łukasiewicz logic, as well as analyze their
complexity from both a theoretical and practical perspective.

More specifically, we begin this paper by analyzing how
the conjunctive normal forms (CNFs) used by SAT solvers
can be extended to Łukasiewicz logics by really making use
of the non-lattice operations (while still being restricted to the
logical language).1 In a first very natural attempt, we replace
the classical disjunction in Boolean CNFs with Łukasiewicz
strong disjunction and interpret negation using Łukasiewicz
negation. Interestingly enough, it turns out that the satisfia-
bility problem of these clausal forms can be solved in linear
time in the length of the formula, regardless of the size of the
clauses and the cardinality of the truth value set (assuming it

1 For what concerns CNFs as conjunctions of disjunctions of literals
see, e.g., Mundici and Olivetti (1998). On the other hand, resolution for
a particular class of formulas defined by means of integer constants has
also been studied in Wagner (1998).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3365-9&domain=pdf

2188 M. Bofill et al.

is greater than two). Recall that, in contrast, deciding the sat-
isfiability of Boolean CNFs is NP-complete when there are
clauses with at least three literals (Garey and Johnson 1979).
In multiple-valued logics, it can be even NP-complete when
there are clauses with at least two literals (Beckert et al. 1999,
2000; Manyà 2000).

The focus is then moved to producing instances that are
on the one hand computationally challenging, and so, rich
enough to model complex notions, and on the other, gen-
erated in a simple and regular way that opens the door to a
systematic study (complexity, resolution methods, etc). With
this aim, we introduce a new class of clausal forms, called
Łukasiewicz (Ł-)clausal forms, that are CNFs in which,
besides replacing classical disjunction with Łukasiewicz
strong disjunction, we allow negations above the literal level,
i.e., clauses are strong disjunctions of terms, and terms are
either literals or negated strong disjunctions of literals. We
show that, in this case, 3-SAT is NP-complete, while 2-
SAT has linear-time complexity.2 Hence, these problems
have the same complexity as their Boolean counterparts. We
also propose a Tseitin-like transformation (Tseitin 1968) that
translates any Łukasiewicz logic formula into a satisfiability
preserving Ł-clausal form, showing that Ł-clausal forms are
in fact a normal form for Łukasiewicz logic. Moreover, we
introduce a fragment of Ł-clausal forms, called restricted
Ł-clausal forms, and show that their 3-SAT problem is
NP-complete and their 2-SAT problem admits linear-time
algorithms.

Moreover, we report on an empirical investigation in
which we identify—when testing the satisfiability of ran-
domly generated Ł-clausal forms having a fixed number of
literals per clause with SMT andmixed integer programming
(MIP) solvers—an easy-hard-easy pattern and a phase tran-
sition phenomenon as the clause-to-variable ratio varies. It
turns out that there is a point where the hardest instances
occur. Such a point is between an under-constrained region
where the instances are almost surely satisfiable, and an over-
constrained region where the instances are almost surely
unsatisfiable. In the transition region, there is a threshold
where roughly half of the instances are satisfiable, and half
of the instances are unsatisfiable. So, we have developed a
generator that is able to produce both satisfiable and unsat-
isfiable instances of varying difficulty.

This paper is an extended and improved version of Bofill
et al. (2015b). The new contributions are the introduction
of restricted Ł-clausal forms and the complexity analysis of
satisfiability problems, the satisfiability preserving transla-
tion of Łukasiewicz logic formulas into Ł-clausal forms, and

2 When the number of literals per clause is fixed to k, the corresponding
SAT problem is called k-SAT. In the following, when we say linear-
time complexity we mean that the complexity is linear in the size of the
formula.

a more extensive experimental investigation that considers
both SMT and MIP solvers.

The paper is structured as follows. Section 2 defines
basic concepts in Łukasiewicz logics. Section 3 defines three
types of clausal forms with Łukasiewicz strong disjunction
and Łukasiewicz negation. We show that the satisfiability
problem is decidable in linear time for the first type of
clausal forms but is NP-complete for the other types. Sec-
tion 4 defines an efficient satisfiability preserving translation
of Łukasiewicz logic formulas into Ł-clausal forms. Sec-
tion 5 describes the random generator of Ł-clausal forms and
reports on the conducted empirical investigation. Section 6
concludes and points out future research directions.

2 Preliminaries

In this section, we introduce the theoretical basis neces-
sary for the development of the rest of the paper. For a
deeper insight intomany-valued logics, see, e.g.,Cintula et al.
(2011).

Definition 1 A propositional language is a pairL = 〈Θ,α〉,
where Θ is a set of logical connectives and α : Θ →
N defines the arity of each connective. Connectives with
arity 0 are called constants. A language 〈Θ,α〉 with a
finite set of connectives Θ = {θ1, . . . , θr } is denoted by
〈θ1/α(θ1), . . . , θr/α(θr)〉.

Given a set of propositional variables V , the set LV of
L-formulas over V is inductively defined as the smallest set
with the following properties: (i) V ⊆ LV ; (ii) if θ ∈ Θ and
α(θ) = 0, then θ ∈ LV ; and (iii) if φ1, . . . , φm ∈ LV , θ ∈ Θ

and α(θ) = m, then θ(φ1, . . . , φm) ∈ LV .

Definition 2 A many-valued logic L is a tuple 〈L, N , A, D〉
where L = 〈Θ,α〉 is a propositional language, N is a truth
value set, A is an interpretation of the operation symbols that
assigns to each θ ∈ Θ a function Aθ : Nα(θ) → N and
D ⊂ N is a set of designated truth values.

The set of designated truth values from the previous defi-
nition can be understood as those which affirm satisfaction.

Definition 3 Let L be a many-valued logic. An interpreta-
tion on L is a function I : V → N . I is extended to arbitrary
formulas φ in the usual way:

1. If φ is a logical constant, then I (φ) = Aφ .
2. If φ = θ(φ1, . . . , φr), then I (θ(φ1, . . . , φr)) =

Aθ (I (φ1), . . . , I (φr)).

A formula φ is satisfiable iff there is an interpretation I
such that I (φ) ∈ D.

123

New complexity results for Łukasiewicz logic 2189

Throughout this work, we focus on a particular family of
many-valued logics: the finite-valued and infinitely-valued
Łukasiewicz logics. These were born from the generalization
of a three-valued logic proposed by J. Łukasiewicz in the
early twentieth century and have been deeply studied both
from theoretical and practical points of view. For a deeper
study on these matters, see for instance (Cignoli et al. 2000;
Hájek 1998).

The language of Łukasiewicz logic is given by

LŁuk = 〈0/0, 1/0,¬/1,→ /2,∧/2,∨/2,
/2,⊕/2〉.

We refer to ¬ as negation, → as implication, ∧ as weak
conjunction, ∨ as weak disjunction,
 as (strong) conjunc-
tion, and ⊕ as (strong) disjunction. We will use the standard
notation to shorten products and powers, namely for k ∈ N,

kϕ := ϕ ⊕ · · · ⊕ ϕ
︸ ︷︷ ︸

k times

and ϕk := ϕ
 . . .
 ϕ
︸ ︷︷ ︸

k times

where 0ϕ := 0 and ϕ0 := 1.

Definition 4 The infinitely-valued Łukasiewicz logic, denoted
by [0, 1]Ł, is the many-valued logic 〈LŁuk, [0, 1], AŁ, {1}〉
where the interpretation of the operation symbols AŁ is given
by:

A¬(x) = 1 − x
A→(x, y) = min{1, 1 − x + y}
A∧(x, y) = min{x, y}
A∨(x, y) = max{x, y}
A
(x, y) = max{0, x + y − 1}
A⊕(x, y) = min{1, x + y}

The n-valued Łukasiewicz logic, denoted by Łn, is the
logic defined from the infinitely-valued Łukasiewicz logic
by restricting the universe of evaluation to the set Nn =
{0, 1

n−1 , . . . ,
n−1
n−1 }. That is to say,Łn = 〈LŁuk, Nn, AŁ, {1}〉.

Note that the operations are well defined because Nn is a
subalgebra of [0, 1] with the interpretation of the operation
symbols AŁ (for any operation A∗ and any value/pair of val-
ues of Nn , the result of the A∗ over this/these values also
belongs to Nn).

The function interpreting negation is called Łukasiewicz
negation, the function interpreting strong conjunction is
called Łukasiewicz t-norm, the function interpreting impli-
cation is called its residuum, and the function interpreting
strong disjunction is called Łukasiewicz t-conorm.

We say that a logic L is a Łukasiewicz logic if it is either
[0, 1]Ł or Łn for some natural number n.

Given a Łukasiewicz logic L, we denote by SATL the set
of satisfiable formulas in L; i.e.,

SATL = {ϕ : I (ϕ) = 1 for some interpretation I on L}.

The problem of deciding whether or not a formula belongs
to the set SATL is called the L-satisfiability problem.

We say that two formulas ϕ,ψ are equivalent (and write
ϕ ≡ ψ) if, for each interpretation I , I (ϕ) = I (ψ).

It is remarkable that, in Łukasiewicz logic, many oper-
ations enjoy interdefinability properties among them. In
particular, Łukasiewicz logic can be equivalently formulated
using only the constants, ¬ and →. Let us include here two
important relations between operations that we use through-
out the paper:

x → y ≡ ¬x ⊕ y ¬(x ⊕ y) ≡ ¬x
 ¬y,

where the latter one is called De Morgan’s law for the strong
conjunction and strong disjunction.

It is worth mentioning that one of the reasons we focus
on Łukasiewicz logics is because SATBool ⊂ SATL. This
is not the case for other relevant logics such as Gödel (G)
and Product (Π), where SATG = SATΠ = SATBool (Hájek
1998). So, while Boolean solvers suffice for deciding the
satisfiability of propositional formulas of G and Π , specific
solvers are needed to decide the satisfiability of propositional
formulas of L.

3 Łukasiewicz clausal forms

In Boolean satisfiability, benchmarks are commonly rep-
resented in conjunctive normal form (CNF), i.e., as a
conjunction of clauses, where each clause is a disjunc-
tion of literals. This formalism is very convenient because
state-of-the-art Boolean SAT solvers implement variants
of the Davis–Putnam–Logemann–Loveland (DPLL) proce-
dure (Davis et al. 1962), andDPLL requires the input in CNF.
Hence, it seems reasonable to ask how Boolean CNFs could
be adapted to Łukasiewicz logic in order to define challeng-
ing benchmarks for evaluating and comparing Łukasiewicz
SAT solvers, as well as in order to develop DPLL-like pro-
cedures for Łukasiewicz logic.

3.1 Simple Ł-clausal forms

A first natural attempt to generalize Boolean CNF formulas
is to replace classical disjunction with Łukasiewicz strong
disjunction, and negation with Łukasiewicz negation:

∧

1≤i≤n

⎛

⎝

⊕

1≤ j≤ki

li j

⎞

⎠

for i, j, ki , n ∈ N and li j literals. Note that a clausal form
can still be interpreted as a set (of clauses) due to the use of
weak conjunction. In fact, every clause represents a constraint

123

2190 M. Bofill et al.

and a SAT solver determines whether all the constraints are
satisfied. Relevant questions like MaxSAT (Li and Manyà
2009), that counts the number of unsatisfied clauses, have
this approach. The use of strong conjunction would serve
more involved notions by combining degrees of satisfaction,
instead of simply representing the total or partial satisfaction
of a set of clauses.

In the following, we refer to these formulas as sim-
ple Łukasiewicz clausal forms (simple Ł-clausal forms)
and denote by mc(ϕ) the length of the shortest clauses
in a simple Ł-clausal form ϕ. That is to say, if ϕ =
∧

1≤i≤n(
⊕

1≤ j≤ki
li j), then mc(ϕ) = min{ki : 1 ≤ i ≤ n}.

Throughout this work, we assume that simple Ł-clausal
forms are interpreted using a truth value set with at least
three elements.

Unfortunately, the expressive power of these clausal forms
is quite limited. As Lemma 2 shows, the satisfiability prob-
lem for simple Ł-clausal forms has linear-time complexity,
contrarily to what happens in Boolean SAT, which is NP-
complete when there are clauses with at least three literals.
Hence, complex problems cannot be encoded using this for-
malism.

It is quite easy to prove (see Lemma 1) that any simple
Ł-clausal form ϕ is always satisfiable if mc(ϕ) is greater
than two, or if mc(ϕ) = 2 and the cardinality of the truth
value set is odd or infinite. Interestingly, there is a particular
case, for finitely-valued logics, that is more subtle: when
mc(ϕ) = 2 and the cardinality of the truth value set is even.
In this case, deciding the satisfiability of a simple Ł-clausal
form ϕ turns out to be equivalent to deciding the satisfiability,
under Boolean semantics, of the subformula of ϕ containing
exclusively the clauses of ϕ with length 2; i.e., it is equivalent
to deciding the satisfiability of a Boolean 2-SAT instance.We
denote such a subformula by B2(ϕ); i.e., ifϕ = ∧

1≤i≤n Ci =
∧

1≤i≤n(
⊕

1≤ j≤ki
li j), then

B2(ϕ) =
∧

Ci ∈ϕ,ki =2

(li1 ∨ li2)

Example 1 The simpleŁ-clausal formϕ = (x1⊕x2)∧(¬x1⊕
x2) ∧ (¬x1 ⊕ ¬x2) ∧ (x1 ⊕ x3) ∧ (x2 ⊕ x3) ∧ (x1 ⊕ ¬x2 ⊕
¬x3) is satisfiable in Ł4 because the Boolean 2-SAT instance
(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (x2 ∨
x3) is satisfiable. However, ϕ is unsatisfiable under Boolean
semantics. Recall that SATBool ⊂ SATL.

The treatment of formulas with unit clauses (i.e., containing
exactly one literal) is doneby applyingunit propagation (UP).
UP consists in applying the unit literal rule until the empty
clause is derived or a saturation state is reached. Applying
the unit literal rule to an Ł-clausal form ϕ containing the
unit clause li amounts to removing from ϕ all the clauses

containing li , and removing in ϕ all the occurrences of ¬li .
If we remove a literal from a unit clause,we obtain the bottom
element ⊥. We denote by UP(ϕ) the formula obtained after
applying UP to ϕ. UP(ϕ) is either empty (meaning that it
is satisfiable), a formula containing the bottom element ⊥
(meaning that there exists a contradiction at the unitary level,
and so, the formula is directly unsatisfiable) ormc(UP(ϕ)) >

1, and so we fall in one of the scenarios discussed above.
Formally, we can express the previous results as follows.

Lemma 1 Let ϕ be a simple Ł-clausal form, and let L be a
Łukasiewicz logic with a truth value set N such that |N | > 2.
Then,

1. If mc(ϕ) > 1, ϕ belongs to SATL if one of the following
conditions hold:

– |N | = 2s + 1 for s ≥ 1 or |N | ≥ ℵ0

– mc(ϕ) ≥ 3

2. If mc(ϕ) = 2 and |N | = 2s +2 for s ≥ 1, then ϕ belongs
to SATL iff B2(ϕ) belongs to SATBool.

3. If mc(ϕ) = 1, then ϕ belongs to SATL iff UP(ϕ) belongs
to SATL.

Proof 1. It is easy to see that whenever 1
2 belongs to the uni-

verse of evaluation (i.e., whenever |N | = 2s + 1 or L is
the infinitely-valued Łukasiewicz logic), the interpreta-
tion that assigns 1

2 to each variable satisfies any possible
simple Ł-clausal form ϕ such that mc(ϕ) ≥ 2. On the
other hand, if mc(ϕ) ≥ 3 and |N | = 2s + 2 for some
s ≥ 1 (N = {0, 1

2s+1 , . . . ,
2s+1
2s+1 }), the interpretation that

assigns s+1
2s+1 to each variable x satisfies any clause of ϕ

in L. It is clear that s + 1 < 2s + 1, so s+1
2s+1 ∈ N . On the

other hand, by the definition of Łukasiewicz negation,
the interpretation of ¬x is 1 − s+1

2s+1 = s
2s+1 , and it is

routine to check that s+1
2s+1 > s

2s+1 ≥ 1
3 . Thus, for any

clause l1 ⊕· · ·⊕ lk in ϕ, the interpretation of each one of
its literals is greater than or equal to 1

3 . Since mc(ϕ) ≥ 3,
we have that the interpretation of each clause is always 1.

2. First suppose there is an interpretation I onL that satisfies
ϕ, and recall that 1

2 /∈ N . We can then define a Boolean
interpretation I ′ that satisfies B2(ϕ) by letting

I ′(x) =
{

1 if I (x) > 1
2

0 otherwise

For each binary clause l1 ⊕ l2 from ϕ, at least one of
the strict inequalities I (l1) > 1

2 or I (l2) > 1
2 must hold

in order that I satisfies the clause. So, we can assume,
without loss of generality, that I (l1) > 1

2 . If l1 is a positive
literal (equal to a variable x1), then by definition I ′(x1) =
1, and so, I (x1 ∨ l2) = 1. Otherwise (l1 = ¬x1), it holds

123

New complexity results for Łukasiewicz logic 2191

that I (x1) < 1
2 . Then, by definition, I ′(x1) = 0. So

I ′(¬x1) = 1, and thus I ′(¬x1 ∨ l2) = 1.
To prove the other direction, let |N | = 2s + 2 for some
s ≥ 1, and suppose I is an interpretation on {0, 1} that
satisfies B2(ϕ). Then, let I ′ be the interpretation in L
defined by

I ′(x) =
{ s+1

2s+1 if I (x) = 1
1 − s+1

2s+1 otherwise

As was proven in 1, this interpretation satisfies all the
clauses of length at least 3, so we just need to check that
the binary clauses from ϕ are also satisfied. Let l1 ⊕ l2
be a binary clause of ϕ. Then, l1 ∨ l2 is a clause from
B2(ϕ), and thus, I (l1∨l2) = 1.Without loss of generality,
assume that I (l1) = 1. If it is a positive literal (l1 = x1),
then I ′(x1) = s+1

2s+1 and I ′(l2) ≥ 1 − s+1
2s+1 , so I ′(x1 ⊕

l2) ≥ s+1
2s+1 + 1 − s+1

2s+1 = 1. Otherwise, I (¬x1) = 1

implies that I (x1) = 0, and thus, I ′(x1) = 1− s+1
2s+1 . Then

again, I ′(¬x1 ⊕ l2) ≥ 1 − (1 − s+1
2s+1) + 1 − s+1

2s+1 = 1.
3. UP preserves the satisfiability when applied to a simple

Ł-clausal form ϕ. If UP(ϕ) contains the empty clause,
then ϕ is unsatisfiable. If UP(ϕ) is the empty formula,
then ϕ is satisfiable. In the rest of cases, since UP(ϕ)

contains no unit clauses, the satisfiability of UP(ϕ) can
be decided using either case 1 or case 2 of this lemma.

��
Lemma 2 The satisfiability of any simple Ł-clausal form is
decidable in linear time.

Proof Case 1 of Lemma 1 can be clearly solved in linear
time because we only have to check whether the cardinality
of the truth value set is either odd or even. In the latter case,
we also have to check whether all the clauses contain at least
three literals, and this can be achieved by traversing once the
clausal form.

Case 2 of Lemma 1 can be also solved in linear time.
Checking whether the cardinality of the truth value set is
even, and identifying the binary clauses in the simple Ł-
clausal form can be easily done in linear time. In addition,
there are algorithms for solving the resulting Boolean 2-SAT
problem in linear time (Aspvall et al. 1979).

Case 3 of Lemma 1 can be solved using the same algo-
rithms that are applied for Boolean unit propagation, which
have linear-time complexity (Zhang and Stickel 1996). ��

3.2 Ł-clausal forms

To overcome the limitations of simple Ł-clausal forms
explained above, we now define a new family of test
instances, called Łukasiewicz clausal forms (Ł-clausal
forms). These instances have a higher expressive power and

are interesting from a practical point of view because they
exhibit an easy-hard-easy pattern and a phase transition phe-
nomenon similar to the ones found in other combinatorial
problems like Boolean 3-SAT (Mitchell et al. 1992) and reg-
ular 3-SAT (Béjar and Manyà 1999; Manyà et al. 1998). So,
one can generate both satisfiable and unsatisfiable instances
of varying difficulty by adjusting the clause-to-variable ratio.

Definition 5 – A literal is a propositional variable or a
negated propositional variable.

– A term is either a literal or an expression of the form
¬(l1 ⊕ · · · ⊕ ln), where l1, . . . , ln are literals.

– A Łukasiewicz clause (Ł-clause) is an expression of the
form t1 ⊕ · · · ⊕ tn , where t1, . . . , tn are terms.

– A Łukasiewicz clausal form (Ł-clausal form) is a
(weak) conjunction of Ł-clauses; i.e., it is an expression
of the form

∧k
i=1 Ci , where Ci is an Ł-clause.

Definition 6 TheSAT problem for anŁ-clausal formconsists
in finding an interpretation that satisfies all its Ł-clauses. If
eachŁ-clause contains exactly k literals, it is called the k-SAT
problem for Ł-clausal forms.

Example 2 The Ł-clausal form ¬x2 ∧ (x1 ⊕ x3) ∧ (¬(x1 ⊕
x2) ⊕ ¬x3) is satisfied by the interpretation that assigns the
value 0 to x1 and x2 and assigns the value 1 to x3.

Lemma 3 The 3-SAT problem for Ł-clausal forms is NP-
complete.

Proof We will show that (i) this problem belongs to NP and
(ii) the Boolean 3-SAT problem is polynomially reducible to
the 3-SAT problem for Ł-clausal forms.

The 3-SAT problem for Ł-clausal forms clearly belongs
to NP: Given a satisfiable Ł-clausal form, a nondeterministic
algorithm can guess a satisfying interpretation and check that
it satisfies the formula in polynomial time.

Let {li j |1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of liter-
als over the set of Boolean variables {x1, . . . , xm}, and let
φ = ∧n

i=1(li1 ∨ li2 ∨ li3) be a Boolean 3-SAT instance.
We derive an Ł-clausal form 3-SAT instance φ′ from φ as
follows:

1. For every Boolean variable xk , 1 ≤ k ≤ m, we add the
Ł-clause ¬(xk ⊕ xk) ⊕ xk in φ′.

2. For every clause li1 ∨ li2 ∨ li3 in φ, we add the Ł-clause
li1 ⊕ li2 ⊕ li3 in φ′.

So, φ′ = ∧m
k=1(¬(xk ⊕ xk) ⊕ xk) ∧ ∧n

i=1(li1 ⊕ li2 ⊕ li3).
This reduction can obviously be performed in polynomial
time, and the size of φ′ is linear in the size of φ.

We now prove that φ′ is satisfiable iff φ is satisfiable.
Assume that φ′ is satisfiable. Then, every variable xk must be
evaluated to either 0 or 1. This is so because ¬(xk ⊕ xk)⊕ xk

123

2192 M. Bofill et al.

evaluates to 1 iff xk evaluates to either 0 or 1. Since the
semantics of Łukasiewicz strong disjunction when restricted
to 0 and 1 is identical to the semantics of Boolean disjunction,
any model of φ′ is a model of φ. Therefore, φ is satisfiable.

Assume that φ is satisfiable. Any Boolean model of φ can
be transformed to a many-valued model by assigning 0 to
the variables that evaluate to false, and 1 to the variables that
evaluate to true. If xk evaluates either to 0 or 1,¬(xk⊕xk)⊕xk

evaluates to 1, and li1⊕li2⊕li3 also evaluates to 1 becausewe
assumed that every Boolean clause li1 ∨ li2 ∨ li3 is satisfied.
Therefore, φ′ is satisfiable. ��

These instances are interesting because the 3-SAT prob-
lem for Ł-clausal forms is NP-complete while it is decidable
in linear time if negations are not allowed above the literal
level; i.e., the 3-SAT problem for simple Ł-clausal forms.
Moreover, Ł-clausal forms are genuinely multiple-valued in
the sense that there exist Ł-clausal forms that are satisfi-
able under Łukasiewicz semantics but are unsatisfiable under
Boolean semantics.

Example 3 The formula (x1⊕x2)∧(¬x1⊕x2)∧(x1⊕¬x2)∧
(¬x1 ⊕ ¬x2) is satisfied in Łukasiewicz logic if x1 and x2
evaluate to 1

2 , but (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧
(¬x1 ∨ ¬x2) is unsatisfiable in the Boolean case.

We now prove that the 2-SAT problem for Ł-clausal forms
can be solved in linear time.

Lemma 4 The 2-SAT problem for Ł-clausal forms is decid-
able in linear time.

Proof The only Ł-clauses of 2-SAT instances that are dif-
ferent from the clauses in simple Ł-clausal forms are of the
form ¬(li ⊕ l j), where li , l j are literals. However, clauses of
the form ¬(li ⊕ l j) can be replaced with ¬li ∧ ¬l j because
¬(li ⊕ l j) is satisfiable iff li and l j evaluate both to 0. Hence,
replacing all the Ł-clauses¬(li ⊕l j)with¬li ∧¬l j produces
a simple Ł-clausal form, whose satisfiability can be decided
in linear time according to Lemma 2. ��

3.3 Restricted Ł-clausal forms

In the proof of Lemma 3, we saw that the full expressive
capacity of Ł-clausal forms is not necessary for checking
the NP-completeness of SAT over those formulas. Indeed,
we can naturally provide an alternative clausal form for
Łukasiewicz logic that still is NP-complete, while it is pos-
sibly simpler in some aspects than the Ł-clausal forms
introduced above.

Definition 7 An Ł-clausal form is a restricted Ł-clausal
form iff it is of the form

∧

i∈I

⊕

j∈Ji

l
ci j
i j

for I , Ji finite sets of indexes, li j a literal for each i, j in the
corresponding indexing sets, and ci j ∈ N.

Example 4 The Ł-clausal form ¬x2 ∧ (¬(x1 ⊕ x1) ⊕ x3) ∧
(¬(¬x2⊕¬x2)⊕¬x3) corresponds to the restrictedŁ-clausal
form ¬x2 ∧ ((¬x1)2 ⊕ x3) ∧ ((x2)2 ⊕ ¬x3).

Lemma 5 The 3-SAT problem for restricted Ł-clausal forms
is NP-complete.

Proof This can be proved in an analogous way to Lemma
3. Just observe that the formula ¬(x ⊕ x) ⊕ x (added to
the Ł-clausal form that reduces Boolean 3-SAT) is in fact
equivalent, by the definition of ⊕ in Ł, to (¬x)2 ⊕ x ,
which is a restricted Ł-clause. Thus, the same proof of NP-
completeness is valid for restricted Ł-clausal forms. ��
Lemma 6 The 2-SAT problem for restricted Ł-clausal form
is decidable in linear time.

Proof Similarly to the proof of Lemma 4, observe that the
only clauses different from simple Ł-clauses are of the form
l2, which simply imposes l = 1, not adding any complexity
to the solution search. ��

4 Reducing Łukasiewicz formulas to
equivalent Ł-clausal forms

In a similar way as any Boolean propositional formula can
be reduced to a polynomial-size CNF formula that pre-
serves satisfiability (see, e.g., Tseitin 1968), we describe how
we can polynomially reduce any formula ϕ in Łukasiewicz
logic (with variables Var(ϕ)) to a satisfiability preserving Ł-
clausal form ϕ∗ over Var(ϕ) and a set of auxiliary variables
that abbreviate more complex formulas. The relevance of the
translation in this context comes from the fact that the for-
mulas encoding the equivalence between the new variables
and the corresponding complex formulas can also be written
as Ł-clauses.

Let ϕ be a Łukasiewicz formula3 and let SFm(ϕ) denote
the set of subformulas of ϕ. For each χ in SFm(ϕ) that is
not a literal nor ϕ, we introduce a new auxiliary variable xχ .
Then, let ϕ′ be defined by substituting the formula(s) of the
last level of operations by the corresponding (possibly new)
variables. That is to say,

x ′ := x

(¬ψ)′ := ¬xψ

(ψ → χ)′ := ¬xψ ⊕ xχ

3 Recall that any Łukasiewicz formula can be written using only ¬ and
→ operators (see, e.g., Cignoli et al. 2000), and that ϕ → ψ ≡ ¬ϕ⊕ψ

in Łukasiewicz logic.

123

New complexity results for Łukasiewicz logic 2193

where xψ is simply ψ in the case ψ is a literal. Then, let
Δ(ϕ) be the set of formulas inductively fixing the value of
each new xψ to its intended one, by relying on the equivalence
of ψ → χ and ¬ψ ⊕ χ in Łukasiewicz logic. Formally, for
each new variable x¬ψ , add the formulas

¬x¬ψ ⊕ ¬xψ and x¬ψ ⊕ xψ

and, for each new variable xψ→χ , add the formulas

¬xψ→χ ⊕ ¬xψ ⊕ xχ and ¬(¬xψ ⊕ xχ) ⊕ xψ→χ

Example 5 Consider the formula

ϕ ≡ ((z → w) → ¬z) → w.

Then, ϕ′ ≡ ¬x((z→w)→¬z) ⊕ w, and

Δ(ϕ) = {¬x(z→w)→¬z ⊕ ¬xz→w ⊕ ¬z,

¬(¬xz→w ⊕ ¬z) ⊕ x((z→w)→¬z)

¬xz→w ⊕ ¬z ⊕ w

¬(¬z ⊕ w) ⊕ xz→w}

Let ϕ∗ := ϕ′ ∧ ∧

χ∈Δ(ϕ) χ . Observe that the total number
of conjuncts ofϕ∗ is boundedby1+2(|SFm(ϕ)|−1−|V(ϕ)|).
Proposition 1 Let ϕ be a Łukasiewicz formula and let ϕ∗
be the formula obtained with the above-defined translation.
Then,

1. ϕ∗ is a Ł-clausal form with at most three literals in each
clause.

2. For each interpretation, I into Ł∞, if I (Δ(ϕ)) ⊆ {1},
then

I (ϕ) = I (ϕ′).

Proof 1. By definition, ϕ′ is a clause of a simple Ł-clausal
form (and thus, a clause of a Ł-clausal form), that has at
most two variables (one if ϕ ≡ ¬ψ for some ψ). Also
following the definition, each one of the formulas inΔ(ϕ)

is a clause in Ł-clausal form with at most three literals
(three for the clauses encoding the value of a variable of
the form xψ→χ , and two for the ones concerning x¬ψ).

2. We can prove by induction on ϕ that I (Δ(ϕ)) ⊆ {1}
implies that I (ϕ) = I (ϕ′). Observe before proceeding
that ifψ is a subformula ofϕ, then I (Δ(ϕ)) ⊆ {1} implies
I (Δ(ψ)) ⊆ {1}.
– For propositional variables it is trivial, because ϕ and

ϕ′ are the same formula.
– Assume ϕ ≡ ¬ψ . By definition, I (ϕ′) = I (¬xψ).

Since I (Δ(ϕ)) ⊆ {1}, in particular it holds that

I (¬xψ ⊕ ψ ′) = 1 and I (¬ψ ′ ⊕ xψ) = 1. By inter-
pretation of the Ł connectives, we get that I (xψ) =
I (ψ ′), and so I (ϕ′) = I (¬ψ ′) = ¬I (ψ ′). Now,
from the observation above, we can apply the induc-
tion hypothesis and get ¬I (ψ ′) = ¬I (ψ), and so
conclude I (ϕ′) = I (¬ψ) = I (ϕ).

– If ϕ ≡ ψ1 → ψ2, so I (ϕ′) = I (¬xψ1 ⊕ ψ ′
2). As

before, it is immediate that I (ϕ′) = ¬I (ψ ′
1)⊕ I (ψ ′

2).
By the induction hypothesis, this equals to¬I (ψ1)⊕
I (ψ2) = I (ϕ), concluding the proof.

��

An immediate corollary of the previous translation,
together with Lemma 3, is a new proof of the already known
result of NP-completeness of SAT in Łukasiewicz logic (e.g.,
Mundici 1987).

It seems, however, not clear whether it is possible to
do a reduction from arbitrary Łukasiewicz formulas to Ł-
clausal forms preserving the set of variables and allowing
longer clauses (which is easy in classical logic although the
derived formula can have exponential size). In contrast to
what happens in classical logic (with the lattice operators),
in Łukasiewicz logic
 does not distribute over ⊕.

5 Experimental results

We first describe the generator of Ł-clausal forms that we
have developed and then report on the empirical investigation
conducted to identify challenging benchmarks.

The generator of Ł-clausal form 3-SAT instances used
works as follows: given n variables and k clauses, each of
the k clauses is constructed from three variables (xi1 , xi2 , xi3)

which are drawn uniformly at random. Then, one of the fol-
lowing eleven possible Ł-clauses xi1 ⊕xi2 ⊕xi3 ,¬xi1 ⊕xi2 ⊕
xi3 , xi1 ⊕ ¬xi2 ⊕ xi3 , xi1 ⊕ xi2 ⊕ ¬xi3 , ¬xi1 ⊕ ¬xi2 ⊕ xi3 ,
¬xi1 ⊕ xi2 ⊕ ¬xi3 , xi1 ⊕ ¬xi2 ⊕ ¬xi3 , ¬xi1 ⊕ ¬xi2 ⊕ ¬xi3 ,
¬(xi1 ⊕ xi2)⊕ xi3 , ¬(xi1 ⊕ xi3)⊕ xi2 , and xi1 ⊕¬(xi2 ⊕ xi3)

is selected with the same probability. We consider this set
of clauses because it can be observed in the reduction from
Boolean 3-SAT to Ł-clausal forms that these types of nega-
tions suffice to get NP-hardness.

In the experiments, we solved sets of 100 Ł-clausal form
3-SAT instances with 1500 variables, and a number of vari-
ables ranging from 100 to 6000 with steps of 100. We
considered the 3-valued, 5-valued and 7-valued Łukasiewicz
logics, as well as the infinitely-valued Łukasiewicz logic.
Instances were solved with the SMT solver Yices (Dutertre
2014) (version 2.5.1), with a theorem prover similar to those
described in Ansótegui et al. (2012), as well as with the exact
MIP solver SCIP (Cook et al. 2013) (version 3.0.0) linked
with the linear programming solver CPLEX (version 12.6).

123

2194 M. Bofill et al.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

20

40

60

#clauses

Se
co
nd

s

L7 median time
L5 median time
L3 median time

0

0.2

0.4

0.6

0.8

1

P
ro
b(

sa
t)Prob(sat)

Fig. 1 Phase transition and easy-hard-easy pattern for Ł-clausal form3-
SAT instances with 1500 variables, in 3-valued, 5-valued and 7-valued
Łukasiewicz logics (Yices 2.5.1)

The experiments were run on an Intel® Xeon® E3-1220v2
machine at 3.10 GHz with Turbo Boost disabled.

We start by depicting the results obtained with the SMT
solver. Figure 1 shows the results for the finitely-valued
case.We observe a phase transition between satisfiability and
unsatisfiability similar to that of Boolean random 3-SAT, as
well as an easy-hard-easy pattern in the median difficulty of
the problems around the phase transition. Prob(sat) indicates
the probability that an instance has to be satisfiable. In the
threshold point of the phase transition, roughly half of the
instances are satisfiable; on its left, most of the instances are
satisfiable; and on its right, most of the instances are unsat-
isfiable. Moreover, we observe that the difficulty increases
with the cardinality of the truth value set, especially in the
hardest instances.

It is worth noting that in Crawford and Auton (1993) the
threshold point for Boolean random 3-SAT was accurately
identified to correspond to a clause-to-variable ratio equal to
4.24. Interestingly, in our case it corresponds to a ratio of
approximately 1.9, regardless of the cardinality of the truth
value set.

Figure 2 shows the results for the infinitely-valued case.
We observe the same phase transition and a similar easy-
hard-easy pattern, but the hard instances become prettymuch
harder, with median solving times increasing to thousands of
seconds.

We have also considered solving the generated formulas
with a mixed integer programming (MIP) solver; in particu-
lar, using the MIP solver SCIP, which allows to solve MIPs
exactly over the rational numbers. Note that all standardMIP
solvers work with finite precision (floating point) arithmetic.
This allows efficient computations but also introduces round-
ing errors, which cannot be neglected in our setting, as they
could lead to incorrect results. On the other side, all SMT

0 1,000 2,000 3,000 4,000 5,000 6,000

0

1,000

2,000

#clauses

Se
co
nd

s

[0, 1]L median time

0

0.2

0.4

0.6

0.8

1

P
ro
b(

sa
t)

Prob(sat)

Fig. 2 Phase transition and easy-hard-easy pattern for Ł-clausal form
3-SAT instances with 1500 variables, in infinitely-valued Łukasiewicz
logic (Yices 2.5.1)

solvers, as well as the exact version of the MIP solver SCIP,
work with arbitrary precision arithmetic, typically using the
GNU Multiple Precision Arithmetic Library (GMP).

For the MIP experiments, we use the encodings to MIP
defined in Hähnle (1994). They are summarized in the fol-
lowing lemmas.

Lemma 7 For any infinitely-valued Ł-clausal forms φ and
ψ , any i ∈ [0, 1] and any interpretation I ,

1. I (¬φ) ≥ i iff I (φ) ≤ 1 − i .
2. I (¬φ) ≤ i iff I (φ) ≥ 1 − i .
3. I (φ ⊕ ψ) ≥ i iff there are i1, i2 ∈ [0, 1] such that

I (φ) ≥ i1
I (ψ) ≥ i2
i1 + i2 = i

4. I (φ⊕ψ) ≤ i iff there are i1, i2 ∈ [0, 1] and vaux ∈ {0, 1}
such that

I (φ) ≤ i1
y I (ψ) ≤ i2
vaux ≤ i
vaux ≤ i1
vaux ≤ i2
vaux + i = i1 + i2

Note that I (φ⊕ψ) ≤ i will hold either if I (φ)+ I (ψ) ≤ i
or i = 1. If vaux = 0, then the constraint system simplifies
to I (φ) ≤ i1, I (ψ) ≤ i2, 0 ≤ i, 0 ≤ i1, 0 ≤ i2, i = i1 + i2,
where 0 ≤ i , 0 ≤ i1, and 0 ≤ i2 are redundant. If vaux = 1,
then the constraint system simplifies to I (φ) ≤ i1, I (ψ) ≤
i2, 1 ≤ i, 1 ≤ i1, 1 ≤ i2, 1 + i = i1 + i2, which implies
i = 1, i1 = 1, i2 = 1, making the system to become trivially
satisfiable.

123

New complexity results for Łukasiewicz logic 2195

0 1,000 2,000 3,000 4,000 5,000 6,000

0

2,000

4,000

6,000

#clauses

Se
co
nd

s

L7 median time
L5 median time
L3 median time

0

0.2

0.4

0.6

0.8

1

P
ro
b(

sa
t)Prob(sat)

Fig. 3 Phase transition and easy-hard-easy pattern for Ł-clausal form3-
SAT instances with 1500 variables, in 3-valued, 5-valued and 7-valued
Łukasiewicz logics (SCIP 3.0.0)

We consider now the finitely-valued case with N =
{0, 1, . . . , n − 1} and D = {n − 1}.4

Lemma 8 For any finitely-valued Ł-clausal forms φ and ψ ,
any i ∈ {0, 1, . . . , n − 1} and any interpretation I ,

1. I (¬φ) ≥ i iff I (φ) ≤ n − 1 − i .
2. I (¬φ) ≤ i iff I (φ) ≥ n − 1 − i .
3. I (φ ⊕ψ) ≥ i iff there are i1, i2 ∈ {0, 1, . . . , n − 1} such

that

y I (φ) ≥ i1
I (ψ) ≥ i2
i1 + i2 = i

4. I (φ ⊕ ψ) ≤ i iff there are i1, i2 ∈ {0, 1, . . . , n − 1} and
vaux ∈ {0, 1} such that

I (φ) ≤ i1
I (ψ) ≤ i2
(n − 1) × vaux ≤ i
(n − 1) × vaux ≤ i1
y(n − 1) × vaux ≤ i2
(n − 1) × vaux + i = i1 + i2

Figure 3 shows the results for the finitely-valued case
when using the exact version of the MIP solver SCIP with
the encoding described in Lemma 8. We observe the same
pattern as in Fig. 1 for the results with the SMT solver Yices,
but here the solving times are about two orders of magnitude
higher in the hardest instances.

4 The set {0, 1, . . . , n−1} is isomorphic to the set {0, 1
n−1 , 2

n−1 , . . . , 1}
through the isomorphism in : {0, 1, . . . , n − 1} →
{0, 1

n−1 , 2
n−1 , . . . , 1}, in(x) = x

n−1 .

0 1,000 2,000 3,000 4,000 5,000 6,000

0

100

200

300

#clauses

Se
co
nd

s

[0, 1]L median time

0

0.2

0.4

0.6

0.8

1

P
ro
b(

sa
t)

Prob(sat)

Fig. 4 Phase transition and easy-hard-easy pattern for Ł-clausal form
3-SAT instances with 1500 variables, in infinitely-valued Łukasiewicz
logic (SCIP 3.0.0)

Figure 4 shows the results for the infinitely-valued case
when using the exact version of theMIP solver SCIPwith the
encoding described in Lemma 7. In this case, the MIP solver
exhibits much better performance in the hardest instances,
unlike the SMT solver.

We have identified the same phase transition phenomenon
andeasy-hard-easypattern forŁ-clausal form3-SAT instances
also with other SMT solvers, as well as with other MIP
solvers. Hence, it becomes apparent that our results are inde-
pendent from the encoding and the solver used and provide
a challenging benchmark. The results also suggest that the
SMT-based approach is more suitable in the finitely-valued
case, whereas the MIP-based approach is more suitable in
the infinitely-valued case.

6 Concluding remarks

We have defined three new clausal forms for Łukasiewicz
logic (simple Ł-clausal forms, Ł-clausal forms and restricted
Ł-clausal forms), analyzed the complexity of different sat-
isfiability problems for these clausal forms, and proposed a
method for translating any Łukasiewicz formula into a satis-
fiability preserving Ł-clausal form.We have also described a
generator that produces Ł-clausal forms of varying difficulty
to test Łukasiewicz SAT solvers and conducted an empiri-
cal investigation with SMT and MIP solvers to identify an
easy-hard-easy pattern and a phase transition phenomenon.
As future work, we plan to analytically derive tight lower
and upper bounds of the threshold point and find suitable
encodings of combinatorial problems using the formalism of
Ł-clausal forms.

Finally, we would like to mention the existence of two
related works (Borgwardt et al. 2014; Bofill et al. 2015a)

123

2196 M. Bofill et al.

that show the NP-completeness of the satisfiability prob-
lem of Łukasiewicz rules, which are a fragment of Ł-clausal
forms. Borgwardt et al. (2014) proved the NP-completeness
of Łukasiewicz rules when the cardinality of the truth value
set is greater than three.We thenproved inBofill et al. (2015a)
that the problem remains NP-complete when the truth value
set has three elements, and that it can be solved in polynomial
time when the rules have almost one literal in the consequent
of the rule.

Acknowledgements The authors would like to thank the anony-
mous reviewer for their valuable comments and suggestions. This
work was supported by Project LOGISTAR from the EU H2020
Research and Innovation Programme under Grant Agreement No.
769142, MINECO-FEDER Projects RASO (TIN2015-71799-C2-1-P)
andLoCos (TIN2015-66293-R), and theUdGProjectMPCUdG2016/055.
Vidal acknowledges the support from the Project GA17-04630S of the
Czech Science Foundation (GAČR).

Compliance with ethical standards

Conflict of interest Authors declare that theyhave no conflict of interest.

Ethical approval This article does not contain any studies with human
participants performed by any of the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Aguzzoli S, Gerla B, Haniková Z (2005) Complexity issues in basic
logic. Soft Comput 9(12):919–934

Ansótegui C, Bofill M, Manyà F, Villaret M (2012) Building automated
theorem provers for infinitely-valued logics with satisfiability
modulo theory solvers. In: Proceedings, 42nd international sym-
posiumonmultiple-valued logics (ISMVL),Victoria, BC, Canada.
IEEE CS Press, pp 25–30

Ansótegui C, Bofill M,Manyà F, Villaret M (2015) SAT and SMT tech-
nology for many-valued logics. Mult Valued Logic Soft Comput
24(1–4):151–172

Ansótegui C, Bofill M,Manyà F, Villaret M (2016) Automated theorem
provers formultiple-valued logicswith satisfiabilitymodulo theory
solvers. Fuzzy Sets Syst 292:32–48

Aspvall R, Plass M, Tarjan R (1979) A linear time algorithm for testing
the truth of certain quantified boolean formulae. Inf Process Lett
8(3):121–123

Beckert B, Hähnle R, Manyà F (1999) Transformations between signed
and classical clause logic. In: Proceedings, international sympo-
sium on multiple-valued logics, ISMVL’99, Freiburg, Germany.
IEEE Press, Los Alamitos, pp 248–255

Beckert B, Hähnle R, Manyà F (2000) The 2-SAT problem of regular
signed CNF formulas. In: Proceedings. 30th international sym-
posium on multiple-valued logics (ISMVL), Portland/OR, USA.
IEEE CS Press, Los Alamitos, pp 331–336

Béjar R,Manyà F (1999) Phase transitions in the regular random 3-SAT
problem. In: Proceedings of the 11th international symposium on
methodologies for intelligent systems, ISMIS’99,Warsaw, Poland.
Springer LNAI 1609, pp 292–300

Bofill M, Manyà F, Vidal A, Villaret M (2015a) The complexity
of 3-valued łukasiewicz rules. In: Proceedings, 12th interna-
tional conference on modeling decisions for artificial intelligence,
MDAI, Skövde, Sweden. Springer LNCS 9321, pp 221–229

Bofill M, Manyà F, Vidal A, Villaret M (2015b) Finding hard instances
of satisfiability in Łukasiewicz logics. In: Proceedings, 45th
international symposium on multiple-valued logics (ISMVL),
Waterloo, Canada. IEEE CS Press, pp 30–35

Borgwardt S, Cerami M, Peñaloza R (2014) Many-valued Horn logic is
hard. In: Proceedings of the first workshop on logics for reasoning
about preferences, uncertainty, and vagueness, PRUV 2014, co-
located with IJCAR 2014, Vienna, Austria, pp 52–58

Cignoli R, D’Ottaviano IML, Mundici D (2000) Algebraic foundations
of many-valued reasoning, trends in logic-studia logica library, vol
7. Kluwer Academic Publishers, Dordrecht

Cintula P, Hájek P, Noguera C (eds) (2011) Handbook of mathematical
fuzzy logic, 3 volumes, studies in logic. mathematical logic and
foundation, vols 37, 38 and 58. College Publications

Cook W, Koch T, Steffy DE, Wolter K (2013) A hybrid branch-and-
bound approach for exact rational mixed-integer programming.
Math Program Comput 5(3):305–344

Crawford JM, Auton LD (1993) Experimental results on the crossover
point in satisfiability problems. In: Proceedings of the 11th national
conference on artificial intelligence, AAAI’93, Washington, DC,
USA. AAAI Press, pp 21–27

Davis M, Logemann G, Loveland D (1962) A machine program for
theorem-proving. Commun ACM 5:394–397

Dutertre B (2014) Yices 2.2. In: Proceedings of the 26th international
conference on computer aided verification, CAV 2014, Lecture
Notes in Computer Science, vol 8559. Springer, pp 737–744

Garey MR, Johnson DS (1979) Computers and intractability: a guide
to the theory of NP-completeness. Freeman, San Francisco

Hähnle R (1994) Short conjunctive normal forms in finitely-valued log-
ics. J Log Comput 4(6):905–927

Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht
Li CM, Manyà F (2009) MaxSAT, hard and soft constraints. In: Biere

A, van Maaren H, Walsh T (eds) Handbook of satisfiability. IOS
Press, Amsterdam, pp 613–631

Manyà F (2000) The 2-SAT problem in signed CNF formulas. Mult
Valued Log Int J 5(4):307–325

Manyà F, Béjar R, Escalada-Imaz G (1998) The satisfiability problem
in regular CNF-formulas. Soft Comput 2(3):116–123

MetcalfeG,OlivettiN,GabbayD (2005)Lukasiewicz logic: Fromproof
systems to logic programming. Log J IGPL 12(5):561–585

MetcalfeG,Olivetti N,GabbayDM(2009) Proof theory of fuzzy logics,
applied logic series, vol 36. Springer, Berlin

Mitchell D, Selman B, Levesque H (1992) Hard and easy distributions
of SAT problems. In: Proceedings of the 10th national conference
on artificial intelligence, AAAI’92, San Jose, CA, USA. AAAI
Press, pp 459–465

Mundici D (1987) Satisfiability in many-valued sentential logic is NP-
complete. Theor Comput Sci 52:145–153

Mundici D, Olivetti N (1998) Resolution and model building in the
infinitely-valued calculus of Łukasiewicz. Theor Comput Sci
200(1–2):335–366

Tseitin G (1968) Studies in constructive mathematics andmathematical
logic, part II, chap. In: On the complexity of derivations in the
propositional calculus. Steklov Mathematical Institute, pp 115–
125

Vidal A (2016) MNiBLoS: a SMT-based solver for continuous t-norm
based logics and some of their modal expansions. Inf Sci 372:709–
730

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

New complexity results for Łukasiewicz logic 2197

Vidal A, Bou F, Godo L (2012) An SMT-based solver for continu-
ous t-norm based logics. In: Proceedings of the 6th international
conference on scalable uncertaintymanagement, SUM2012,Mar-
burg, Germany. Springer LNCS 7520, pp 633–640

Wagner H (1998) A new resolution calculus for the infinite-valued
propositional logic of lukasiewicz. In: FTP (LNCS selection).
Technical Report E1852-GS-981, TU Wien, pp 234–243

Zhang H, Stickel ME (1996) An efficient algorithm for unit propaga-
tion. In: In Proceedings of the fourth international symposium on
artificial intelligence andmathematics (AI-MATH’96), Fort Laud-
erdale (Florida), USA, pp 166–169

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	New complexity results for Łukasiewicz logic
	Abstract
	1 Introduction
	2 Preliminaries
	3 Łukasiewicz clausal forms
	3.1 Simple Ł-clausal forms
	3.2 Ł-clausal forms
	3.3 Restricted Ł-clausal forms

	4 Reducing Łukasiewicz formulas to equivalent Ł-clausal forms
	5 Experimental results
	6 Concluding remarks
	Acknowledgements
	References

