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Abstract
The so-called non-associative MV-algebras were introduced recently by the first author and J. Kühr in order to have an
appropriate tool for certain logics used in expert systems where associativity of the binary operation is excluded, see, e.g.,
Botur and Halaš (Arch Math Log 48:243–255, 2009). Since implication is an important logical connective in practically
every propositional logic, in the present paper we investigate the implication reducts of non-associative MV-algebras. We also
determine their structures based on the underlying posets. The natural questionwhen a posetwith the greatest element equipped
with sectional switching involutions can be organized into an implication NMV-algebra is solved. Moreover, congruence
properties of the variety of implication NMV-algebras with, respectively, without zero are investigated. Analogously to
classical propositional logic, we introduce a certain kind of Sheffer operation and we obtain a one-to-one correspondence
between NMV-algebras and certain algebras built up by a Sheffer-like operation together with a unary operation.

Keywords MV-algebra · Non-associative MV-algebra · Implication · Congruence conditions · Sheffer operation

1 Introduction

The role of MV-algebras introduced in Chang (1958) for
multiple-valued reasoning iswell known, see, e.g., themono-
graph (Cignoli et al. 2000). As shown by Botur and Halaš
(2009), in some problems concerning expert systems in par-
ticular or in artificial intelligence in general, associativity
of the binary operation of an MV-algebra can produce seri-
ous problems, see also, e.g., Chajda and Länger (2017) for
motivation. This was the reason why the so-called non-
associative MV-algebras were introduced and studied in
Chajda and Kühr (2007) and Chajda and Länger (2017).
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Since MV-algebras form an algebraic semantics of fuzzy
logics and because implication is the most fundamental
logical connective, some attempts were made to describe
so-called implication reducts of MV-algebras. Such reducts
were investigated for MV-algebras in Chajda et al. (2004a)
under the name weak implication algebras. However, it turns
out that these implication reducts are in fact BCK-algebras
and the investigations in Chajda et al. (2004a) provide a new
axiomatization of BCK-algebras which is very similar to that
derived by Abbott (1967).

Our first goal is to derive an implication algebra (or
implication reduct) of the above-mentioned non-associative
MV-algebras. The main difference to other implication
reducts, e.g., for Boolean algebras in Abbott (1967), for MV-
algebras in Chajda et al. (2004a) or for orthomodular lattices
or ortholattices inAbbott (1976), Chajda et al. (2001), Chajda
et al. (2004b) and Chajda et al. (2008) is that non-associative
MV-algebras do not have a lattice as their underlying struc-
ture. Namely, their underlying structure is only a bounded
poset equipped with involutions on principal order filters.
Hence, our attempt is rather exceptional, but it turns out that
it works well and the results are fully comparable with that
corresponding to lattice structures.

The secondmotivation is the fact that the so-called Sheffer
operation alias Sheffer stroke was studied by several authors
in Boolean algebras (Sheffer 1913),MV-algebras, basic alge-
bras (Oner and Senturk 2017), orthomodular lattices and
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3936 I. Chajda et al.

ortholattices (Chajda 2005), but to our knowledge not on
structures which are posets only. In the present paper, we
show that we can also introduce and investigate a Sheffer
stroke operation in non-associative MV-algebras.

2 Implication NMV-algebras

For the reader’s convenience, we repeat the definition of our
basic concept.

Definition 2.1 Anon-associative MV-algebra (NMV-algebra,
for short) is an algebra A = (A,⊕, ¬, 0) of type (2, 1, 0)
satisfying the identities

x ⊕ y ≈ y ⊕ x, (1)

x ⊕ 0 ≈ x, (2)

x ⊕ 1 ≈ 1, (3)

¬(¬x) ≈ x, (4)

¬(¬x ⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x, (5)

¬x ⊕ (x ⊕ y) ≈ 1, (6)

x ⊕ (¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ z) ≈ 1, (7)

where 1 denotes the algebraic constant ¬0. Identity (5) is
called the Łukasiewicz axiom. We define

x ≤ y if and only if ¬x ⊕ y = 1

(x, y ∈ A).

As shown in Chajda and Kühr (2007), (A,≤) is a poset
with the least element 0 and the greatest element 1 which we
call the poset induced by A.

Example 2.2 The algebra A = (A,⊕,¬, 0) of type (2, 1, 0)
defined by A = {0, a, b, c, d, 1},

⊕ 0 a b c d 1
0 0 a b c d 1
a a d c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 1 1
1 1 1 1 1 1 1

and
x 0 a b c d 1

¬x 1 d c b a 0

is an NMV-algebra whose induced poset has the Hasse dia-
gram depicted in Fig. 1.

One can immediately see that the above poset is not a
lattice.Moreover,A is not anMV-algebra since the operation
⊕ is not associative:

(a ⊕ a) ⊕ b = d ⊕ b = d �= c = a ⊕ c = a ⊕ (a ⊕ b).

0

a b

c d

1

Fig. 1 Hasse diagram of the poset induced by an NMV-algebra

Definition 2.3 An implication NMV-algebra is a non-empty
groupoid A = (A,→) satisfying the identities

x → x ≈ y → y, (8)

x → 1 ≈ 1, (9)

1 → x ≈ x, (10)

(x → y) → y ≈ (y → x) → x, (11)

x → (y → x) ≈ 1, (12)

x → ((((x → y) → y) → z) → z) ≈ 1, (13)

where 1 denotes the algebraic constant x → x . We define

x ≤ y if and only if x → y = 1

(x, y ∈ A) and put

x � y := (x → y) → y

for all x, y ∈ A. An implication NMV-algebra with 0 is an
algebra A = (A,→, 0) of type (2, 0) satisfying identities
(8)–(13) as well as the identity

0 → x ≈ 1. (14)

We put

¬x := x → 0,

x 	 y := ¬(¬x � ¬y)

for all x, y ∈ A and call ¬ the negation.

Lemma 2.4 For an implication NMV-algebra (A,→), the
relation ≤ defined above is a partial order relation on A
with the greatest element 1.
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Proof Let a, b, c ∈ A. Then, a ≤ a according to (8). If a ≤ b
and b ≤ a, then

a = 1 → a = (b → a) → a = (a → b) → b

= 1 → b = b

according to (10) and (11). If a ≤ b and b ≤ c, then

a → c = a → (1 → c) = a → ((b → c) → c)

= a → (((1 → b) → c) → c)

= a → ((((a → b) → b) → c) → c) = 1

according to (10) and (13), i.e., a ≤ c. Finally, a ≤ 1 accord-
ing to (9). 	�

The partial order relation≤ on Awill be called the induced
order of (A,→).

Let (P,≤) be a poset with the smallest element p and the
greatest element q and f : P → P . Then, f is called

• an involution if f ( f (x)) = x for all x ∈ P ,
• antitone if x, y ∈ P and x ≤ y together imply f (y) ≤

f (x),
• switching if f (p) = q and f (q) = p.

Lemma 2.5 In every implication NMV-algebra (A,→, 0)
with 0 the negation is a switching involution on (A,≤).

Proof We have

¬0 ≈ 0 → 0 ≈ 1 according to (8),

¬1 ≈ 1 → 0 ≈ 0 according to (10),

¬(¬x) ≈ (x → 0) → 0 ≈ (0 → x) → x ≈ 1 → x ≈ x

according to (10), (11) and (14).

	�
Analogously, as it was done for MV-algebras in Cha-

jda et al. (2004a), we can introduce the binary operation
→ in NMV-algebras which can be interpreted as the logi-
cal connective implication within the corresponding logic.
The following theorem justifies the name implication NMV-
algebra introduced in Definition 2.3.

Theorem 2.6 LetA = (A,⊕,¬, 0) be anNMV-algebra and
define

x → y := ¬x ⊕ y

for all x, y ∈ A. Then, (A,→, 0) is an implication NMV-
algebra with 0 which we call the implication NMV-algebra
with 0 induced by A.

a b

c d

1

Fig. 2 Hasse diagram of the poset induced by an implication NMV-
algebra

Proof (8) follows from (2) and (6), (9) from (3), (10) from
(1), (2) and (4), (11) from (5), (12) from (1) and (6), (13)
from (7) and (14) from (1) and (3). 	�
Example 2.7 The implication NMV-algebra B := (A,→, 0)
with 0 induced by the NMV-algebra A from Example 2.2 is
given by the operation table

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 1 1 1
c b c d 1 d 1
d a d c c 1 1
1 0 a b c d 1

Since C := {a, b, c, d, 1} is a subuniverse of the implication
NMV-algebra (B,→), the groupoid (C,→) is an implica-
tionNMV-algebra, too. But there exists no x ∈ {a, b, c, d, 1}
such that (C,→, x) is an implication NMV-algebra with 0.
The Hasse diagram of the poset induced by (C,→) is visu-
alized in Fig. 2.

Theorem 2.8 Let A = (A,→, 0) be an implication NMV-
algebra with 0 and define a binary operation ⊕ on A by

x ⊕ y := ¬x → y

for all x, y ∈ A. Then, (A,⊕,¬, 0) is an NMV-algebra if
and only if A satisfies the identity

x → y ≈ ¬y → ¬x . (15)

Proof We have

x → y ≈ ¬(¬x) → y ≈ ¬x ⊕ y

according to Lemma 2.5. If (A,⊕,¬, 0) is an NMV-algebra,
then

x → y ≈ ¬x ⊕ y ≈ y ⊕ ¬x ≈ ¬y → ¬x
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according to (1). If, conversely,A satisfies identity (15), then

(1) x ⊕y ≈ ¬x → y ≈ ¬y → ¬(¬x) ≈ ¬y → x ≈ y⊕x
according to Lemma 2.5,

(2) x ⊕ 0 ≈ ¬x → 0 ≈ ¬(¬x) ≈ x according to
Lemma 2.5,

(3) x ⊕ 1 ≈ ¬x → 1 ≈ 1 according to (9),
(4) was proved just before,
(5) ¬(¬x ⊕ y) ⊕ y ≈ (x → y) → y ≈ (y → x) → x ≈

¬(¬y ⊕ x) ⊕ x according to (11),
(6) ¬x ⊕ (x ⊕ y) ≈ ¬x ⊕ (y ⊕ x) ≈ x → (¬y → x) ≈ 1

according to (1) and (12),
(7) x ⊕ (¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ z) ≈ ¬x → ((((¬x →

y) → y) → z) → z) ≈ 1 according to (13). 	�

Recall the following concept (see, e.g., Chajda and Länger
2011 or Ježek and Quackenbush 1990):

Definition 2.9 A directoid is a groupoid (A,�) satisfying the
identities

x � x ≈ x,

x � y ≈ y � x,

x � ((x � y) � z) ≈ (x � y) � z.

A directoid with 1 is an algebra (A,�, 1) of type (2, 0) such
that (A,�) is a directoid and the identity x�1 ≈ 1 is satisfied.

The concept of a directoid was introduced under the name
commutative directoid with 1 by Ježek and Quackenbush
(1990).

Definition 2.10 A poset (A,≤) is called directed if for any
x, y ∈ A we have U (x, y) �= ∅ where U (x, y) := {z ∈ A |
x, y ≤ z}.

For the following result, see, e.g., Chajda and Länger
(2011) or Ježek and Quackenbush (1990).

Proposition 2.11 If A = (A,�) is a directoid and we define
a binary relation ≤ on A by

x ≤ y if and only if x � y = y

(x, y ∈ A), then P(A) := (A,≤) is a directed poset satisfy-
ing x, y ≤ x � y. The partial order relation on A just defined
will be called the induced order of the directoid (A,�). Con-
versely, if P = (A,≤) is a directed poset and we define

x � y := max(x, y) if x and y are comparable and x � y

= y � x ∈ U (x, y) otherwise

(x, y ∈ A), then D(P) := (A,�) is a directoid. (In general,
D(P) is not uniquely determined byP.)We haveP(D(P)) = P
for every directed poset P.

In the following, if (A,≤) is a poset and B a subset of A,
then the restriction of ≤ to B will again be denoted by the
same symbol ≤.

Definition 2.12 A directoid with 1 and sectionally switching
involutions is an ordered quadruple (A,�, 1, ( fa; a ∈ A))

such that (A,�, 1) is a directoid with 1 and for every a ∈ A,
fa is a switching involution on ([a, 1],≤) where ≤ is the
induced order of (A,�).

Theorem 2.13 Let A = (A,→) be an implication NMV-
algebra and for each a ∈ A define a mapping fa : [a, 1] →
[a, 1] by

fa(x) := x → a

for all x ∈ [a, 1]. Then, D1(A) := (A,�, 1, ( fa; a ∈ A))

where � denotes the binary operation on A introduced in
Definition 2.3 is a directoid with 1 and sectionally switching
involutions whose induced order coincides with the induced
order of (A,→).

Proof Let a, b, c ∈ A. Then,

a � a = (a → a)

→ a = 1 → a = a according to (8) and (10),

a � b = (a → b) → b = (b → a)

→ a = b � a according to (11),

a � ((a � b) � c) = (a → ((((a → b) → b)

→ c) → c)) →
→ ((((a → b) → b) → c) → c) = 1

→ ((((a → b) → b) → c) → c)

= (((a → b) → b) → c) → c

= (a � b) � c according to (10) and

(13),

a � 1 = (a → 1) → 1

= 1 according to (9),

a � b = b ⇒ a → b = a → (a � b)

= a → ((a → b) → b) =
= a → ((b → a) → a) = 1 according to (11) and (12),

a → b = 1 ⇒ a � b = (a → b) → b = 1

→ b = b according to (10).

If b ∈ [a, 1], then

fa(b) = b → a ≥ a according to (12),

fa( fa(b)) = (b → a) → a = (a → b) → b = 1 → b

= b according to (10) and (11),
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fa(a) = a → a = 1 according to (8),

fa(1) = 1 → a = a according to (10).

	�

For an implication NMV-algebra A = (A,→), D1(A) =
(A,�, 1, ( fa; a ∈ A)) will be called the induced directoid.

Example 2.14 For the implication NMV-algebra B from
Example 2.7, D1(B) = (A,�, 1, ( fa; a ∈ A)) is given by
the tables

� 0 a b c d 1
0 0 a b c d 1
a a a c c d 1
b b c b c d 1
c c c c c 1 1
d d d d 1 d 1
1 1 1 1 1 1 1

and

x 0 a b c d 1
f0(x) 1 d c b a 0
fa(x) 1 c d a
fb(x) 1 d c b
fc(x) 1 c
fd(x) 1 d
f1(x) 1

Theorem 2.15 LetD = (A,�, 1, ( fa; a ∈ A)) be a directoid
with 1 and sectionally switching involutions and define a
binary operation → on A by

x → y := fy(x � y)

for all x, y ∈ A. Then, I(D) := (A,→) is an implication
NMV-algebra.

Proof We have (x → y) → y ≈ fy( fy(x � y) � y) ≈
fy( fy(x � y)) ≈ x � y. Now the following identities are
satisfied:

(8) x → x ≈ fx (x � x) ≈ fx (x) ≈ 1 ≈ fy(y) ≈ fy(y �
y) ≈ y → y,
(9) x → 1 ≈ f1(x � 1) ≈ f1(1) ≈ 1,
(10) 1 → x ≈ fx (1 � x) ≈ fx (1) ≈ x ,
(11) (x → y) → y ≈ x � y ≈ y � x ≈ (y → x) → x ,
(12) x → (y → x) ≈ f fx (y�x)(x � fx (y � x)) ≈
f fx (y�x)( fx (y � x)) ≈ 1,
(13) x → ((((x → y) → y) → z) → z) ≈ f(x�y)�z(x �
((x � y) � z)) ≈ f(x�y)�z((x � y) � z) ≈ 1. 	�

For a directoid D = (A,�, 1, ( fa; a ∈ A)) with 1 and
sectionally switching involutions, I(D) = (A,→) will be
referred to as the induced implication NMV-algebra.

We show that the correspondence between induced direc-
toids and induced implication NMV-algebras is one to one.

Theorem 2.16 (i) LetA = (A,→) be an implicationNMV-
algebra. Then, I(D1(A)) = A.

(ii) LetD = (A,�, 1, ( fa; a ∈ A)) be a directoid with 1 and
sectionally switching involutions. Then, D1(I(D)) = D.

Proof (i) If D1(A) = (A,�, 1, ( fa; a ∈ A)), I(D1(A)) =
(A,→′) and a, b ∈ A, then

a →′ b = fb(a � b) = (a � b) → b

= ((a → b) → b) → b =
= (b → (a → b)) → (a → b) = 1 → (a → b)

= a → b

according to (10), (11) and (12).
(ii) If I(D) = (A,→), D1(I(D)) = (A,�′, 1′, (ga; a ∈ A))

and a, b ∈ A, then

a �′ b = (a → b) → b = fb( fb(a � b) � b)

= fb( fb(a � b)) = a � b,

1′ = a → a = fa(a � a) = fa(a) = 1,

b ∈ [a, 1] ⇒ ga(b) = b → a = fa(b � a) = fa(b).

	�
Next we investigate when the sections of an implication

NMV-algebra are NMV-algebras again.

Theorem 2.17 Let A = (A,→) be an implication NMV-
algebra, (A,�, 1, ( fb; b ∈ A)) its induced directoid, a ∈ A,
assume

x → y = fa(y) → fa(x) (16)

for all x, y ∈ [a, 1] and put

x ⊕a y := fa(x) → y,

¬a x := fa(x)

for all x, y ∈ [a, 1]. Then, ([a, 1],⊕a,¬a, a) is an NMV-
algebra.

Proof Although some of the following calculations were
already done in previous parts of the paper, these calcula-
tions were not done in connection with the operations ⊕a

and ¬a . Hence, for the reader’s convenience, we present the
detailed calculations. Let b, c, d ∈ [a, 1]. Then,

b ⊕a c = fa(b) → c ≥ c ≥ a according to (12),

¬ab = fa(b) ≥ a,

¬ab ⊕a c = fa( fa(b)) → c = b → c,

b ⊕a c = fa(b) → c = ¬ab → c,

(1) b⊕a c = fa(b) → c = fa(c) → fa( fa(b)) = fa(c) →
b = c ⊕a b,
(2) b ⊕a a = fa(b) → a = fa(a) → fa( fa(b)) = 1 →
b = b according to (10),
(3) b ⊕a 1 = fa(b) → 1 = 1 according to (9),
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(4) ¬a(¬ab) = fa( fa(b)) = b,
(5) ¬a(¬ab ⊕a c) ⊕a c = (b → c) → c = (c → b) →
b = ¬a(¬ac ⊕a b) ⊕a b according to (11),
(6) ¬ab ⊕a (b ⊕a c) = fa( fa(b)) → ( fa(b) → c) = b →
( fa(c) → fa( fa(b))) = b → ( fa(c) → b) = 1 according
to (12),
(7) b ⊕a (¬a(¬a(¬a(b ⊕a c) ⊕a c) ⊕a d) ⊕a d) = ¬ab →
((((¬ab → c) → c) → d) → d) = 1 according to (13).

	�
Let us note that, contrary to Theorem 2.17, in Theo-

rem 2.15 we do not assume condition (16).
Unfortunately, condition (16) need not be satisfied even in

an implication NMV-algebra induced by an NMV-algebra.
It is worth noticing that this disadvantage disappears if
so-called weakMV-algebras are considered instead of NMV-
algebras. These weak MV-algebras were introduced and
studied by the Halaš and Plojhar (2008).

Example 2.18 Consider the implicationNMV-algebra (C,→)

from Example 2.7. It is easy to see that the element b satisfies
condition (16). Hence, especially, we have

c ⊕b d = (c → b) → d = d → d = 1 = c → c

= (d → b) → c = d ⊕b c.

Contrary to this, the element a from Examples 2.7 and 2.14
does not satisfy condition (16), namely

c → d = d �= c = d → c = fa(d) → fa(c).

This is in accordance with the observation

c ⊕a d = (c → a) → d = c → d = d �= c = d → c

= (d → a) → c = d ⊕a c.

If, however, the involution fa would be given by

fa(a) = 1, fa(c) = d, fa(d) = c, fa(1) = a,

then (16) would be satisfied also for the element a and
hence every interval [x, 1] for x ∈ {a, b, c, d, 1} could be
organized into an NMV-algebra which in fact would be an
MV-algebra.

3 Congruence properties of implication
NMV-algebras

The congruence properties of the variety of NMV-algebras
were investigated in Chajda and Kühr (2007) and Chajda
and Länger (2017). Since implication NMV-algebras form

a variety, too, it is natural to ask what congruence prop-
erties are satisfied by this variety. One can hardly expect
that the variety of implication NMV-algebras satisfies the
same congruence properties as the variety of NMV-algebras
because in the latter the existence of a zero element plays
a fundamental role. On the other hand, we will show that
the variety of implication NMV-algebras satisfies similar
congruence properties as the varieties of orthoimplication
algebras (Abbott 1976), implication MV-algebras (Chajda
et al. 2004a) or orthomodular implication algebras (Chajda
et al. 2001, 2004b).

Recall that an algebra A = (A, F) is called

• congruence permutable if �◦� = �◦� for all �,� ∈
ConA,

• congruence distributive if (� ∨ �) ∧ � = (� ∧ �) ∨
(� ∧ �) for all �,�,� ∈ ConA,

• arithmetical if it is both congruence permutable and con-
gruence distributive,

• congruence regular if a ∈ A,�,� ∈ ConA and [a]� =
[a]� together imply � = �,

• 3-permutable if � ◦ � ◦ � = � ◦ � ◦ � for all �,� ∈
ConA.

An algebra A with an equationally definable constant 1 is
called

• permutable at 1 (or subtractive) if [1](� ◦ �) = [1](� ◦
�) for all �,� ∈ ConA,

• weakly regular if �,� ∈ ConA and [1]� = [1]�
together imply � = �.

A variety (with 1 in its similarity type) is said to have the cor-
responding property if every of itsmembers has this property.

From Chajda et al. (2012), we take the following well-
known facts:

Let V be a variety. Then, the following hold:

• V is congruence permutable if and only if there exists a
ternary term t in V satisfying the identities t(x, x, y) ≈
t(y, x, x) ≈ y (Theorem 3.1.8),

• If there exists a ternary term t in V satisfying the identi-
ties t(x, x, y) ≈ t(x, y, x) ≈ t(y, x, x) ≈ x , then V is
congruence distributive (Corollary 3.2.4),

• V is congruence regular if and only if there exist a posi-
tive integer n and ternary terms t1, . . . , tn in V such that
t1(x, y, z) = · · · = tn(x, y, z) = z is equivalent to x = y
(Theorem 6.1.3),

• V is 3-permutable if and only if there exist ternary
terms t1, t2 of V satisfying the identities t1(x, z, z) ≈ x ,
t1(x, x, z) = t2(x, z, z) and t2(x, x, z) ≈ z (Theo-
rem 3.1.18).
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A variety V with an equationally definable constant 1 is

• permutable at 1 if and only if there exists a binary term t
in V satisfying the identities t(x, x) ≈ 1 and t(x, 1) ≈ x
(Theorem 6.6.11),

• weakly regular if and only if there exist a positive integer
n and binary terms t1, . . . , tn in V such that t1(x, y) =
· · · = tn(x, y) = 1 is equivalent to x = y (Theo-
rem 6.4.3).

We are now able to prove

Lemma 3.1 (i) The variety of groupoids (A,→) satisfying
identities (8), (10) and (11) is 3-permutable and weakly
regular.

(ii) The variety of groupoids (A,→) satisfying identities (8)
and (10) is permutable at 1.

Proof (i) If

t1(x, y, z) := (z → y) → x,

t2(x, y, z) := (x → y) → z,

then

t1(x, z, z) ≈ (z → z) → x ≈ 1 → x

≈ x according to (8) and (10),

t1(x, x, z) ≈ (z → x) → x ≈ (x → z) → z

≈ t2(x, z, z) according to (11) and

t2(x, x, z) ≈ (x → x) → z ≈ 1 → z

≈ z according to (8) and (10).

If

t1(x, y) := x → y,

t2(x, y) := y → x,

then

t1(x, x) ≈ x → x ≈ 1 according to (8),

t2(x, x) ≈ x → x ≈ 1 according to (8),

t1(x, y) = t2(x, y) = 1 ⇒ x = 1 → x = (y → x)

→ x = (x → y) → y = 1 → y = y

according to (10) and (11).

(ii) If

t(x, y) := y → x,

then

t(x, x) ≈ x → x ≈ 1 according to (8),

t(x, 1) ≈ 1 → x ≈ x according to (10).

	�
Since implicationNMV-algebras satisfy (8), (10) and (11),

we obtain

Theorem 3.2 The variety of implication NMV-algebras is
3-permutable, permutable at 1 and weakly regular.

In the case of implication NMV-algebras with 0 and anti-
tone negation, we obtain a stronger result.

Theorem 3.3 The variety of implication NMV-algebras (A,

→, 0) with 0 satisfying the identity

((((x → y) → y) → 0) → (x → 0)) → (x → 0)

≈ x → 0 (17)

is arithmetical and congruence regular.

Proof Identity (17) can be rewritten in the form ¬(x � y) �
¬x ≈ ¬x which is equivalent to the fact that the negation is
antitone. If we define x 	 y := ¬(¬x �¬y) for all x, y ∈ A,
then the De Morgan laws hold and � and 	 have similar
properties as lattice operations do have. If

t(x, y, z) := ((x → y) → z) 	 ((z → y) → x),

then

t(x, x, z) ≈ ((x → x) → z) 	 ((z → x) → x)

≈ (1 → z) 	 (z � x) ≈ z 	 (z � x) ≈ z

according to (8) and (10),

t(z, x, x) ≈ ((z → x) → x) 	 ((x → x) → z)

≈ (z � x) 	 (1 → z) ≈ (z � x) 	 z ≈ z

according to (8) and (10).

If

t(x, y, z) := ((x � y) 	 (y � z)) 	 (z � x),

then

t(x, x, y) ≈ ((x � x) 	 (x � y)) 	 (y � x)

≈ x 	 (y � x) ≈ x,

t(x, y, x) ≈ ((x � y) 	 (y � x)) 	 (x � x)

≈ (x � y) 	 x ≈ x,

t(y, x, x) ≈ ((y � x) 	 (x � x)) 	 (x � y)

≈ x 	 (x � y) ≈ x .
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If

v := (x → y) 	 (y → x),

t1(x, y, z) := v 	 z,

t2(x, y, z) := v → z,

then

t1(x, x, z) ≈ ((x → x) 	 (x → x)) 	 z ≈ (1 	 1) 	 z

≈ z according to

(8),

t2(x, x, z) ≈ ((x → x) 	 (x → x)) → z ≈ (1 	 1) → z

≈ 1 → z ≈ z

according to (8) and (10),

t1(x, y, z) = t2(x, y, z) = z ⇒ x → y, y → x

≥ v = v � (v 	 z) = v � z

= (v → z) → z = z → z = 1

according to (8) and hence x

→ y = y → x

= 1whence x = y.

	�

4 Sheffer stroke NMV-algebras

A binary operation called Sheffer stroke was introduced by
Sheffer (1913) in order to have the single operation on a
Boolean algebra which generates the clone of all Boolean
operations. It has an important application in chip technol-
ogy since it enables to have all the diods on the chip forming
processor in a computer in a uniformmanner. This is simpler
and cheaper than to produce different diods for disjunction,
conjunction and negation. Sheffer operations were also intro-
duced in other algebras which form an algebraic semantic
of non-classical logics such as orthomodular lattices, ortho-
lattices (Chajda 2005) or basic algebras (Oner and Senturk
2017). However, all of these algebras have a lattice structure
which is not the case for NMV-algebras. Contrary to this, we
are able to define a Sheffer operation also for NMV-algebras
and their implication reducts.

Definition 4.1 A strong Sheffer stroke NMV-algebra is an
algebra (A, |, 1) of type (2, 0) satisfying the identities

x |y ≈ y|x,

x |0 ≈ 1,

(x |1)|1 ≈ x,

((x |1)|y)|y ≈ ((y|1)|x)|x,

(x |1)|((x |y)|1) ≈ 1,

x |(((((x |y)|y)|z)|z)|1) ≈ 1,

where 0 denotes the algebraic constant 1|1. The operation |
will be called the strong Sheffer stroke.

We justify the name strong Sheffer stroke NMV-algebra,
respectively, strong Sheffer stroke by the following result.

Theorem 4.2 LetA = (A,⊕,¬, 0) be anNMV-algebra and
put

x |y := ¬x ⊕ ¬y

for all x, y ∈ A. Then, S(A) := (A, |, 1) is a strong Sheffer
stroke NMV-algebra.

Proof The following identities are satisfied:

1|1 ≈ ¬1 ⊕ ¬1 ≈ 0,

x |y ≈ ¬x ⊕ ¬y ≈ ¬y ⊕ ¬x ≈ y|x,

x |0 ≈ ¬x ⊕ ¬0 ≈ 1,

x |1 ≈ ¬x ⊕ ¬1 ≈ ¬x,

((x |1)|1 ≈ ¬(¬x) ≈ x,

((x |1)|y)|y ≈ ¬(¬¬x ⊕ ¬y) ⊕ ¬y

≈ ¬(¬¬y ⊕ ¬x) ⊕ ¬x ≈ ((y|1)|x)|x,

(x |1)|((x |y)|1) ≈ ¬¬x ⊕ ¬¬(¬x ⊕ ¬y)

≈ ¬¬x ⊕ (¬x ⊕ ¬y) ≈ 1,

x |(((((x |y)|y)|z)|z)|1) ≈ ¬x ⊕ ¬¬(¬(¬(¬(¬x ⊕ ¬y)

⊕¬y) ⊕ ¬z) ⊕ ¬z) ≈ 1.

	�
Of course, our main goal is to prove that the strong Sheffer

stroke acts on NMV-algebras in an analogous way as the
Sheffer stroke does onBoolean algebras, i.e., every operation
of an NMV-algebra can be expressed by means of the strong
Sheffer operation and the constant 1.

Theorem 4.3 Let S = (A, |, 1) be a strong Sheffer stroke
NMV-algebra and put

x ⊕ y := (x |1)|(y|1),
¬x := x |1,
0 := 1|1

for all x, y ∈ A. Then, A(S) := (A,⊕,¬, 0) is an NMV-
algebra.

Proof The following identities are satisfied:

¬0 ≈ (1|1)|1 ≈ 1,

¬x ⊕ y ≈ ((x |1)|1)|(y|1) ≈ x |(y|1),

(1) x ⊕ y ≈ (x |1)|(y|1) ≈ (y|1)|(x |1) ≈ y ⊕ x ,
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(2) x ⊕ 0 ≈ (x |1)|(0|1) ≈ (x |1)|(1|0) ≈ (x |1)|1 ≈ x ,
(3) x ⊕ 1 ≈ (x |1)|(1|1) ≈ (x |1)|0 ≈ 1,
(4) ¬(¬x) ≈ (x |1)|1 ≈ x ,
(5) ¬(¬x ⊕ y) ⊕ y ≈ (x |(y|1))|(y|1) ≈ (((x |1)|1)|(y|1))|
(y|1) ≈ (((y|1)|1)|(x |1))|(x |1) ≈ (y|(x |1))|(x |1) ≈
¬(¬y ⊕ x) ⊕ x ,
(6) ¬x ⊕ (x ⊕ y) ≈ ((x |1)|1)|(((x |1)|(y|1))|1) ≈ 1,
(7) x ⊕ (¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ z) ≈ (x |1)
|((((((((((((x |1)|(y|1))|1)|1)|(y|1))|1)|1)|(z|1))|1)|1)|
(z|1))|1) ≈ (x |1)|((((((x |1)|(y|1))|(y|1))|(z|1))|(z|1))|1)
≈ 1. 	�

We are now able to prove that the correspondence just
considered is one to one.

Theorem 4.4 The above-mentioned correspondence is one
to one.

Proof If A = (A,⊕,¬, 0) is an NMV-algebra, S(A) =
(A, |, 1) and A(S(A)) = (A,⊕1, ¬1, 01), then the identi-
ties

x ⊕1 y ≈ (x |1)|(y|1) ≈ ¬(¬x ⊕ ¬1) ⊕ ¬(¬y ⊕ ¬1)

≈ x ⊕ y,

¬1x ≈ x |1 ≈ ¬x ⊕ ¬1 ≈ ¬x,

01 ≈ 1|1 ≈ ¬1 ⊕ ¬1 ≈ ¬(¬0) ⊕ ¬(¬0) ≈ 0 ⊕ 0 ≈ 0

are satisfied and hence A(S(A)) = A.
If S = (A, |, 1) is a strong Sheffer stroke NMV-algebra,
A(S) = (A,⊕,¬, 0) and S(A(S)) = (A, |1, 11), then the
identities

x |1y ≈ ¬x ⊕ ¬y ≈ ((x |1)|1)|((y|1)|1) ≈ x |y,

11 ≈ ¬0 ≈ 0|1 ≈ 1|0 ≈ 1

are satisfied and hence S(A(S)) = S. 	�
Wecontinue our investigations by considering implication

NMV-algebras. Surprisingly, a Sheffer stroke can be intro-
duced also in this case, but some of the axioms must be
modified.

Definition 4.5 A weak Sheffer stroke NMV-algebra is an
algebra (A, |, 1) of type (2, 0) satisfying the identities

(x |1)|1 ≈ x,

x |(x |1) ≈ 1,

x |(1|1) ≈ 1,

1|x ≈ x |1,
((x |1)|y)|y ≈ ((y|1)|x)|x,

(x |1)|((y|x)|1) ≈ 1,

x |(((((x |y)|y)|z)|z)|1) ≈ 1,

(1|1)|x ≈ 1.

The operation | will be called the weak Sheffer stroke.

Similarly as before, the weak Sheffer strokeNMV-algebra
can be derived by means of an implication NMV-algebra as
follows.

Theorem 4.6 Let A = (A,→, 0) be an implication NMV-
algebra with 0 and put

x |y := x → ¬y

for all x, y ∈ A. Then, W(A) := (A, |, 1) is a weak Sheffer
stroke NMV-algebra.

Proof The following identities are satisfied:

x |1 ≈ x → ¬1 ≈ x → 0 ≈ ¬x,

(x |1)|1 ≈ ¬(¬x) ≈ x,

x |(x |1) ≈ x → ¬(¬x) ≈ x → x ≈ 1,

x |(1|1) ≈ x → ¬(¬1) ≈ x → 1 ≈ 1,

1|x ≈ 1 → ¬x ≈ ¬x ≈ x → 0

≈ x → ¬1 ≈ x |1,
((x |1)|y)|y ≈ (¬x → ¬y) → ¬y

≈ (¬y → ¬x) → ¬x ≈ ((y|1)|x)|x,

(x |1)|((y|x)|1) ≈ ¬x → ¬(¬(y → ¬x))

≈ ¬x → (y → ¬x) ≈ 1,

x |(((((x |y)|y)|z)|z)|1) ≈ x → ¬(¬((((x → ¬y) → ¬y)

→ ¬z) → ¬z))

≈ x → ((((x → ¬y) → ¬y) → ¬z) → ¬z) ≈ 1,

(1|1)|x ≈ (1 → ¬1) → ¬x ≈ ¬1 → ¬x ≈ 0 → ¬x ≈ 1.

	�
Analogously, as it was the case for the strong Sheffer

stroke, theweak Sheffer operation generates the fundamental
operations of an implication NMV-algebra with 0.

Theorem 4.7 Let S = (A, |, 1) be a weak Sheffer stroke
NMV-algebra and put

x → y := x |(y|1),
0 := 1|1

for all x, y ∈ A. Then, I1(S) := (A,→, 0) is an implication
NMV-algebra with 0.

Proof The following identities are satisfied:

(8) x → x ≈ x |(x |1) ≈ 1 ≈ y|(y|1) ≈ y → y,
(9) x → 1 ≈ x |(1|1) ≈ 1,
(10) 1 → x ≈ 1|(1|x) ≈ (x |1)|1 ≈ x ,
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(11) (x → y) → y ≈ (x |(y|1))|(y|1) ≈ (((x |1)|1)|
(y|1))|(y|1) ≈ (((y|1)|1)|(x |1))|(x |1) ≈ (y|(x |1))|(x |1)
≈ (y → x) → x ,
(12) x → (y → x) ≈ x |((y|(x |1))|1) ≈ ((x |1)|
1)|((y|(x |1))|1) ≈ 1,
(13) x → ((((x → y) → y) → z) → z) ≈
x |(((((x |(y|1))|(y|1))|(z|1))|(z|1))|1) ≈ 1,
(14) 0 → x ≈ (1|1)|(x |1) ≈ 1. 	�

Again we can prove that the correspondence described by
the last two theorems is one to one.

Theorem 4.8 The above-mentioned correspondence is one
to one.

Proof IfA = (A,→, 0) is an implicationNMV-algebrawith
0,W(A) = (A, |, 1) and I1(W(A)) = (A,→1, 01), then the
identities

x →1 y ≈ x |(y|1) ≈ x → ¬(y → ¬1)

≈ x → ¬(y → 0) ≈ x → ¬(¬y) ≈ x → y,

01 ≈ 1|1 ≈ 1 → ¬1 ≈ 1 → 0 ≈ ¬1 ≈ 0

are satisfied and hence I1(W(A)) = A.
If S = (A, |, 1) is a weak Sheffer stroke NMV-algebra,
I1(S) = (A,→, 0) and W(I1(S)) = (A, |1, 11), then the
identities

x |1y ≈ x → ¬y ≈ x |((y|((1|1)|1))|1) ≈ x |((y|1)|1) ≈ x |y,

11 ≈ ¬0 ≈ 0|(0|1) ≈ 1

are satisfied and hence W(I1(S)) = S. 	�
Let us note, finally, that the weak Sheffer stroke not

only determines the operation → of the induced implica-
tion NMV-algebra with 0, but in fact also the induced poset
as well as the induced directoid since we have x ≤ y
if and only if x |(y|1) = 1 and, moreover, the identity
x � y ≈ (x |(y|1))|(y|1) is satisfied.
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