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Abstract
In this paper, we propose two new nonparametric resampling methods for the simulation of bootstrap-like samples of fuzzy
numbers. The generated secondary samples are based on an input set (i.e., a primary sample) consisting of left–right fuzzy
numbers. The proposed approaches utilize random simulations in a way which, to some extent, resembles a bootstrap.
However, contrary to the classical bootstrap approach, the proposed methods are based on alpha-cuts of fuzzy numbers,
which are generated in a new nonparametric way. Therefore, these procedures give us an opportunity to create ”not exactly
the same as previous” fuzzy numbers and also lead to greater diversity of the obtained output. Moreover, we check whether
the introduced methods can be successfully applied in two statistical tests about the mean value of a population of fuzzy
numbers.

Keywords Fuzzy numbers · Alpha-cuts · Resampling method · Bootstrap · Generation of fuzzy numbers · Simulations

1 Introduction

Nowadays, computer-aided simulations constitute an impor-
tant tool for solving practical problems in many areas, like,
physics, mathematics, biology, chemistry. However, in order
to simulate a model of a real process that has a random
component, we need algorithms, which generate random
variables in a specified way. Two important approaches
should, in particular, be mentioned: the Monte Carlo meth-
ods and resampling algorithms. In the first case, a sample of
iid (independent, identically distributed) random variables is
used to solve the given problem, which is too complex for
analytical evaluation (see, e.g., Robert and Casella (2004) for
additional details and further discussion). In the second case,
an initial sample of observed values is reused to create a sec-
ondary sample in order to, e.g., calculate the standard error of
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some complicated test statistics (see, e.g., Efron (1982) for an
introduction and various examples). Resampling techniques,
commonly known as bootstrap methods, are especially use-
ful in inferential problems of mathematical statistics. They
are used for estimation of probability distributions of sample
statistics when analytical methods are either too complex or
unavailable.

The same applies to the problems in which we have to
deal with complex phenomena that are characterized not only
by randomness, but also by fuzzy imprecision, as well. In
such cases, for the description of the considered models we
may use the concept of a fuzzy random variable that may be
regarded as an imprecise (fuzzy) counterpart of a well known
crisp (e.g., real) random variable.

Simulation methods for fuzzy random variables strongly
depend upon their interpretation. There exist several mathe-
matical models of fuzzy random variables. For their descrip-
tion, the reader is advised to read pertaining literature, such
as, e.g., a very good monograph by Couso et al. (2014) or
overview papers (Gil and Hryniewicz 2009; Gil et al. 2006a).
The most popular interpretation of fuzzy random variables,
known as “epistemic”, is based on the model proposed in
the papers by Kwakernaak (1978, 1979). In this model, a
fuzzy random variable describes imprecise (fuzzy) percep-
tion of an unobserved crisp randomvariable. The “epistemic”
model of fuzzy randomvariables has been applied for solving
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many real-life problems using computer-aided simulations.
Its applications were described in numerous papers. For
example, the authors of this paper used it to solve prob-
lems from such different areas as: pricing of financial and
insurance instruments (Nowak and Romaniuk 2013, 2017),
estimation of the maintenance costs of a water distribution
system (Romaniuk 2016, 2018) or Bayesian statistical deci-
sions in reliability (Hryniewicz et al. 2015). The simulations
which were considered in these papers, usually consisted in
the generation of random hidden crisp origins, and respec-
tive membership functions (e.g., in the form of triangles with
edges of random length). Successful applications of sim-
ulation methods in the case of “epistemic” fuzzy random
variables can be explained using the results by Hryniewicz
(2015), who noticed that fuzzy random variables, defined
according to the definition by Kwakernaak, can be described
in a fully probabilisticway using infinitely dimensional prob-
ability distributions.

The second popular definition of a fuzzy random vari-
able was proposed in the seminal paper by Puri and Ralescu
(1986). This definition is based on the notion of set-valued
mapping and random sets, and its interpretation is called
“ontic.” Simulation of “ontic” fuzzy random variables is
much more difficult than in the case of “epistemic” ones.
The main reason for this is the nonexistence of the con-
cept of a probability distribution that describes fuzzy random
“ontic” observations.Wemaydefine classical probability dis-
tribution only for certain sample characteristics, such as, the
sample mean, but not for fuzzy observations. Moreover, for
“ontic” random fuzzy variables popular measures of vari-
ability (such as variance) do not exist, and other measures
should be used instead. All these interpretational problems
make simulation processes of fuzzy random variables hav-
ing “ontic” interpretation much more difficult. For example,
Colubi et al. (2002) considered simulationmethods for differ-
ent types of both one- and multidimensional fuzzy variables
in this setting. They used these methods for the analysis of
asymptotic behavior of a fuzzy arithmetic mean, expressed
in terms of the strong law of large numbers, and of the law of
iterated logarithm. The process of simulation itself was thor-
oughly examined in the paper by González-Rodríguez et al.
(2009). They proposed two different approaches, based on
the concept of support functions. The first one is related to
simulations of Hilbert space-valued random elements with
a projection on the cone of all fuzzy sets. The second one
imitates the representation of elements of a separable Hilbert
space for an orthonormal basis directly on the space of fuzzy
sets. Both of these approacheswere compared, and their com-
parison showed that the second method is more adequate for
modeling realistic situations.

The lack of a natural probability distribution of “ontic”
fuzzy random variables makes resampling (bootstrap) meth-
ods a valuable alternative toMonte Carlo simulation. Indeed,

bootstrap methods have been successfully used in statistical
tests about the expected value of a fuzzy random variable
(see, e.g., Gil et al. 2006b; González-Rodríguez et al. 2006;
Montenegro et al. 2004), and in other types of statistical tests
in fuzzy environment (see, e.g., Ramos-Guajardo et al. 2010;
Ramos-Guajardo and Lubiano 2012). In the aforementioned
papers, bootstrap samples enable the authors of the consid-
ered statistical tests to estimate a nominal significance level
of a test via an empirical percentage of rejections of a true
null hypothesis. In this approach, a bootstrap-based estimator
serves as an empirical benchmark for the considered statis-
tical test. Another bootstrap method, namely the weighted
bootstrap, was used by Hung (2006) in the construction of
the minimum inaccuracy fuzzy estimator, the calculation of
its standard error, and the construction of appropriate confi-
dence intervals.

A classical bootstrap approach has one disadvantage,
appearing when the original fuzzy sample is small. In such a
case, a bootstrap sample consists of few distinct values. This
could be considered as an obstacle when this sample has to
be used in modeling of complex phenomena, described, e.g.,
by complex functions of fuzzy random variables. Therefore,
a modification of this method, with the aim of increasing
the diversity of simulated results, seems to be needed. This
is the main goal of this paper, in which we propose a new
approach for the simulation of quasi-bootstrap populations of
fuzzy random variables. Our approach is applicable to both
“epistemic” and “ontic” fuzzy random variables.

Our idea to simulate more diverse fuzzy random pop-
ulations is implemented in this paper in the form of two
new nonparametric resampling methods for the so-called
left–right fuzzy numbers (LFRNs). The proposed approach
consists of two steps. In the first step, we use classical
resampling methods in which a primary sample of fuzzy
observations is reused by us in order to randomly generate the
secondary sample. In the second step, wemake some random
perturbations of membership functions of fuzzy elements
of the secondary sample. Therefore, our algorithms gener-
ate fuzzy numbers that may differ from the fuzzy numbers
included in the original primary sample. Our new methods
of resampling may be considered as a kind of bootstrap-like
generationmethods. The fuzzy numbers generated in the sec-
ondary samplemay be thus “not exactly the same”, but rather
“similar” (in somemathematical sense) to the values from the
primary sample. Therefore, they have greater diversity, when
compared to the secondary samples simply resampled from
primary samples, but still possess the same main statistical
characteristics.

In order to measure the aforementioned similarity and the
diversity of a new secondary sample, we compare the gener-
ated sample and the input set using four types of measures
of similarity and two types of triangular fuzzy numbers. The
applicability of the strong law of large numbers and the law
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of iterated algorithm as indicators of convergence of the gen-
erated samples is also checked. Of course, LRFNs generated
using proposed methods should have some practical value
and should be applicable in solving the real-life problems.
Therefore, we discuss an application of the introduced meth-
ods in two bootstrapped versions of statistical tests about the
mean of a population of fuzzy numbers. An empirical p-
value of these tests serves as a benchmark in the performed
comparisons.

The paper is organized as follows. In Sect. 2, basic defi-
nitions of fuzzy sets and random fuzzy variables have been
recalled. Moreover, we have presented the descriptions of
statistical tests used for testing the hypotheses about the
expected value. Next, in Sect. 3, we describe the proposed
algorithms for the generation of bootstrap-like secondary
samples. Then, in Sect. 4 we describe the results of the
experimental verification of the properties of the proposed
procedures. The application of the proposed new bootstrap
procedures in statistical testing has been presented in Sect. 5.
The paper is concluded in its last section.

2 Mathematical preliminaries

2.1 Fuzzy numbers and random fuzzy numbers

Let us present basic definitions and notation, concerning the
simulation of fuzzy random variables, which will be used in
this paper. Additional details can be found in, e.g., Gil and
Hryniewicz (2009) and Gil et al. (2006a).

Definition 1 A fuzzy number ã is a fuzzy subset of R for
which μã is a normal, upper-semicontinuous, fuzzy convex
function with a compact support.

Then, Ã(0) is the closure of the set {x : μ Ã (x) > 0}.
A fuzzy number ã is a fuzzy subset ofR for which μã is a

normal, upper-semicontinuous, fuzzy convex function with
a compact support. Then, for each α ∈ [0, 1], the α-level set
ã(α) is a closed interval of the form ã(α) = [aL(α), aR(α)],
where aL(α), aR(α) ∈ R and aL(α) ≤ aR(α).

A left–right fuzzy number (which is further abbreviated
as LRFN) is a fuzzy number with the membership function
of the form

μã (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L
(
x−a
b−a

)
if x ∈ [a, b]

1 if x ∈ [b, c]
R

(
d−x
d−c

)
if x ∈ [c, d]

0 otherwise

,

where L, R : [0, 1] → [0, 1] are non-decreasing functions
such that L(0) = R(0) = 0 and L(1) = R(1) = 1. Some
examples of LRFNs are shown in Fig. 1.

0.5

1

Fig. 1 Examples of LRFNs

0.5

1

Fig. 2 Examples of triangular fuzzy numbers

A triangular fuzzy number ã, denoted further by[
aL , aC , aR

]
, is an LRFN with the membership function of

the form

μã (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−aL

aC−aL
if x ∈ [

aL , aC
]

aR−x
aR−aC

if x ∈ [
aC , aR

]

0 otherwise

,

where aL is the left end of its support, aC—its core, and
aR—the right end of its support. Some examples of triangular
fuzzy numbers are shown in Fig. 2.

Fuzzy random variables are generalizations of ordi-
nary (crisp) random variables. Historically, the first widely
accepted definition of the fuzzy random variable was pro-
posed by Kwakernaak (1978, 1979). Below, we present this
definition in the version elaborated by Kruse and Meyer
(1987).

Definition 2 (See Kruse and Meyer 1987) Let (�,A, P) be
a probability space, where � is the set of all possible out-
comes of the random experiment, A is a σ -field of subsets
of � (the set of all possible events of interest), and P is
a probability measure associated with (�,A). A mapping
X : � → Fc(R), where Fc(R) is the space of all fuzzy
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numbers, is called a fuzzy random variable if it satisfies the
following properties:

(i) {Xα(ω) : α ∈ [0, 1]}, where Xα(ω) = (X (ω))α is a set
representation of X (ω) for all ω ∈ �;

(ii) for each α ∈ [0, 1] bothX L
α : � → R andXU

α : � → R,
with X L

α (ω) = inf Xα(ω) and XU
α (ω) = supXα(ω),

are usual real-valued random variables associated with
(�,A, P).

The fuzzy random variable defined according to Defi-
nition 2 has a seemingly natural interpretation. It may be
considered as a fuzzy perception of an unknown true real-
valued randomvariable associatedwith a random experiment
and referred to as ‘the original’ of the considered fuzzy
random variable. This interpretation is called “epistemic”
and allows to process fuzzy data, interpreted as realizations
of fuzzy “epistemic” random variables, in relatively easy
way. For example, “epistemic” interpretation of fuzzy ran-
dom variable allows us to simulate fuzzy random data in a
relatively direct way, i.e., without making many additional
assumptions.

Another, and from the mathematical point of view more
general, definition was proposed by Puri and Ralescu (1986).

Definition 3 (See Puri and Ralescu 1986). Given a probabil-
ity space (�,A, P), a mapping X : � → Fc(R) is said
to be a fuzzy random variable (also referred to as random
fuzzy set) if for each α ∈ [0, 1] the set-valued mapping
Xα : � → Kc(R), whereKc(R) is the class of the non-empty
compact intervals and Xα(ω) = (X(ω))α for all ω ∈ �, is
a compact convex random set (that is, a Borel-measurable
mapping with respect to the Borel σ -field generated by the
topology associated with the Hausdorff metric on Kc(R)).

The fuzzy random variable defined by Definition 3 may
be used for the analysis of random events (random data) that
are intrinsically fuzzy. This interpretation is called “ontic”
and may be used to process random data presented in the
form of fuzzy random sets. Such fuzzy data exist in practice
(see, e.g., the book by Viertl (2011) for examples), but their
analysis is much more difficult. Because of these difficulties,
there exist problems with the simulation of fuzzy random
“ontic” data.

2.2 Measures of similarity

Tocompare someproperties of two fuzzynumbers, like shape
or location of their membership functions, one can use var-
ious measures of similarity. In this paper, we apply three
classical measures: the supremum, the l1 metric, the Haus-
dorff metric for fuzzy sets (see, e.g., Zwick et al. (1987) for
additional details), and a more complex distance measure,

which was introduced by Tran and Duckstein (2002). Then,
all of these measures will be used to compare the LRFNs
generated using the methods proposed in Sect. 3 with the
fuzzy numbers taken from an initial (primary) sample.

If ã and b̃ are fuzzy sets, then the supremum similarity
measure, introduced in Nowakowska (1977), is defined for
their membership functions μã(x) and μb̃(x), as

m∞
(
ã, b̃

)
= sup

x

∣
∣μã(x) − μb̃(x)

∣
∣ .

In the case of the l1 metric, proposed in Kaufman (1975),
an appropriate measure is given by

ml1

(
ã, b̃

)
=

∫ ∞

−∞
∣
∣μã(x) − μb̃(x)

∣
∣ dx .

There are various ways to extend the Hausdorff distance
to a metric for fuzzy sets (see, e.g., Zwick et al. 1987). In this
paper, we will use this distance in the version proposed by
Ralescu and Ralescu (1984), and defined as

mH

(
ã, b̃

)
=

∫ 1

0
max

{
|aL(α)−bL(α)|, |aR(α) − bR(α)|

}
dα.

The fourth distance measure considered in this paper was
introduced by Tran and Duckstein (2002), and it is given by
the following formula

mTD

(
ã, b̃

)
=

∫ 1

0

((
aL(α)+aR(α)

2
− bL(α)+bR(α)

2

)2

+ 1

3

((
aL(α) − aR(α)

2

)2

+
(
bL(α) − bR(α)

2

)2))

×w(α)dα
/

∫ 1

0
w(α)dα, (1)

wherew(α) is a certain weighting function. In this paper, we
assume that w(α) = 1, so each α-cut in the measure (1) has
the same significance (see Tran and Duckstein (2002) for
other possible types of the weighting function and further
discussion).

Of course, many other types of measures of similarity
between two fuzzy sets have been proposed, and some of
them are widely used. But, in the following, we will focus
our attention only on the previously mentioned four mea-
sures of similarity. Three of them (namely m∞,ml1 ,mH )
represent very “classical” and “standard” approaches. They
have strict relationships with mathematical measures of sim-
ilarity, which are known and used for crisp values (i.e., real
numbers), or with geometrical measures applied to points in
space. Therefore, they are precisely and intuitively under-
stood and easy to implement. Characteristics of many other
measures are directly compared to the properties of these
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three ones. Obviously, these measures have some disadvan-
tages, too. For example, the measure m∞ takes into account
only the supremum of the difference between the member-
ship functions of two fuzzy sets. Therefore, even two “very
similar” (in a broad sense of this word) fuzzy sets can signif-
icantly differ, if this measure is applied.

We also consider the fourth measure, denoted by mTD.
According to its proposers (Tran and Duckstein 2002), this
measure is specifically tailored for the LRFNs, which are our
main objects of interest in this paper. Moreover, in Tran and
Duckstein (2002), the authors enumerated many advantages
of thismeasure, such as straightforward computation, facility
of interpretation for decision makers, robustness, flexibility,
and transitivity (see alsoZhu andLee 1992).After some com-
parisons, Tran andDuckstein conclude inTran andDuckstein
(2002) that this measure is at least as reasonable as other
existing ones. From our point of view, the application ofmTD

in this paper seems to be a “one step further” (i.e., beyond

“very classical” approaches) in comparison with the usage
of the three previously mentioned measures.

In Sect. 4, we apply these four measures to the check of
similarity and diversity of triangular fuzzy numbers, gener-
ated using the methods introduced in Sect. 3 and using the
classical bootstrap approach. Of course, other types of mea-
sures can be also utilized for this purpose. However, quite
surprisingly, the obtained results seem to behave in a very
stable way without unexpected differences, regardless of the
measure used. Therefore, it seems to us that application of
other measures of similarity should lead to more or less the
same overall results.

2.3 Tests of the fuzzymean value

There are many types of statistical tests for an expected
value of a fuzzy random variable (see, e.g., Gil et al. 2006b;
González-Rodríguez et al. 2006; Körner 2000; Montenegro
et al. 2004). We focus on only two of them, which will be
used in Sect. 5 as examples of application of the introduced
nonparametric simulation methods.

The first considered test is an asymptotic test introduced
in Körner (2000). Let us assume that ã is an LRFN with a
core, which is given by a single value. Then, we have

ma = aL(1) = aR(1), la = ma − aL(0), ra = aR(0) − ma .

The d2 distance between two LRFNs ã and b̃ is defined as

d22

(
ã, b̃

)
= |ma − mb|2 + R2 |ra − rb|2 + L2 |la − lb|2

+ 2 (ma − mb) (R1 (ra − rb) − L1 (la − lb)) ,

where

L2 = 1

2

∫ 1

0

∣
∣
∣L(−1)(α)

∣
∣
∣
2
dα, L1 = 1

2

∫ 1

0
L(−1)(α)dα.

The values of R1 and R2 are defined analogously (see Körner
2000).

For this type of distance, we have the following corollary,
which was proved in Körner (2000):

Corollary 1 Let X1, X2, . . . , Xn be a sample of LRFNs. Then

nd22
(
X̄ ,E X

) −−−→
n→∞ λ1ξ

2
1 + λ2ξ

2
2 + λ3ξ

2
3 ,

where ξ1, ξ2, ξ3 are independent N (0, 1)-distributed random
variables and λ1, λ2, λ3 are the eigenvalues of the matrix

⎛

⎝
CmXmX − L1ClXmX + R1CrXmX L2ClXmX − L1CmXmX R1CmXmX + R2CrXmX

ClXmX − L1ClX lX + R1CrXlX L2ClX lX − L1ClXmX R1ClXmX + R2CrXlX
CrXmX − L1CrXlX + R1CrXrX L2CrXlX − L1CrXmX R1CrXmX + R2CrXrX

⎞

⎠ ,

where Czy = E(z−E z)E(y−E y) for z, y ∈ {mX , lX , rX }.
Moreover, an asymptotic test of the hypothesis

H0 : E X = Ṽ against H1 : E X �= Ṽ

is formulated as follows: reject H0, if

nd22

(
X̄ , Ṽ

)
> ω2

1−p,

where w2
q is the q-th quantile of an ω2 distribution with

respect to the eigenvalues λ1, λ2, λ3.

The above-mentioned ω2 distribution has a rather complex
structure, which is known only for some special cases (see
Körner 2000).

The second considered test was developed in González-
Rodríguez et al. (2006) and Montenegro et al. (2004). It is
based on a metric introduced in Bertoluzza et al. (1995),
which was generalized in Körner and Näther (2002). The
Dϕ
W metric for two LRFNs ã, b̃ is defined as

Dϕ
W

(
ã, b̃

)
=

√
∫ 1

0
d2w

(
ã(α), b̃(α)

)
dϕ(α), (2)

where

d2w
(
ã(α), b̃(α)

)
=

∫ 1

0

(
fã (α, λ) − fb̃ (α, λ)

)2 dW (λ)
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with fã (α, λ) = λaR(α) − (1− λ)aL(α), and W , ϕ are two
weighting normalized measures (see Bertoluzza et al. (1995)
for some examples of W , ϕ and further details).

Then, we have the following corollary, which was estab-
lished in González-Rodríguez et al. (2006):

Corollary 2 Let X1, X2, . . . , Xn be a sample of LRFNs. In
testing, the null hypothesis

H0 : EX = Ṽ

at the nominal significance level p, H0 should be rejected, if

Dϕ
W

(
X̄ , Ṽ

)2

Ŝ2
> z1−p,

where zq is the q-th empirical quantile of the bootstrap dis-
tribution, which is given by

Dϕ
W

(
X̄∗, X̄

)2

Ŝ2∗

and with

X̄∗ = 1

n

n∑

i=1

X∗
i , Ŝ

2∗ = 1

n − 1

n∑

i=1

Dϕ
W

(
X∗
i , X̄

∗)2 ,

where X∗
1, X

∗
2, . . . , X

∗
n is a bootstrap sample obtained from

the initial sample X1, X2, . . . , Xn.

We will use both these tests in the experimental analysis of
the practical applicability of our simulation procedures.

3 Generation of the secondary (bootstrap)
sample

LetA = {ã1, . . . , ãm} be a primary sample of LRFNs. These
values are treated as an input set for the methods proposed
further on in this paper. We assume that we do not have
(and, moreover, we do not need) any additional information
about a source (or a model) of the fuzzy numbers belong-
ing to A. Note, however, that in many cases, which are
known from literature, such additional information is often
assumed (see, e.g., Colubi et al. 2002; Hryniewicz 2015;
Hryniewicz et al. 2015; Nowak and Romaniuk 2013, 2017;
Romaniuk 2016 for various approaches to the problem of
fuzzy numbersmodeling). Therefore, only a strictly nonpara-
metric way should be used to build a secondary (bootstrap)
sample B = {b̃1, . . . , b̃n} of LRFNs, which should be, in
some way, “similar” to the fuzzy numbers from A.

Let ã j (α) =
[
aLj (α), aR

j (α)
]
be an α-cut of ã j for some

α ∈ [0, 1]. For simplicity, we assume that there are k + 1

Algorithm 1: Initialization procedure
Input: A primary sample A = {ã1, . . . , ãm}, the number of

possible α-cuts k + 1.
Output: Sets of the cores and spreads for A.
Find a set of values of the cores C(1) = {a1(1), . . . , am(1)} and
order it increasingly;
for i ← k − 1 to 0 do

for j ← 1 to m do
Find an incremental left spread
sLj (αi ) = aLj (αi+1) − aLj (αi );
Find an incremental right spread
sRj (αi ) = aR

j (αi ) − aR
j (αi+1);

Append sLj (αi ) to the set SL (αi ) and sRj (αi ) to the set

SR(αi );
end
Order the sets SL (αi ) and SR(αi ) increasingly;

end

possible values of α, so we have α ∈ {α0, α1, . . . , αk}, where
α0 = 0 < α1 < · · · < αk = 1. We also assume that aLj (1) =
aR
j (1) = a j (1) for each ã j . However, this requirement can

be easily relaxed in a simulation procedure presented further.
During the first step of an initialization procedure (a setup

of simulation, see Algorithm 1), a set of cores C(1) is found,
based on A. Hence, we have

C(1) = {a1(1), . . . , am(1)} .

For simplicity of notation, we assume that the set C(1) is
already ordered, i.e., a1(1) ≤ a2(1) ≤ · · · ≤ ak(1).

During the second step of the initialization procedure, sets
of incremental spreads for all possibleα-cuts are constructed.
Let

sLj (αi ) = aLj (αi+1) − aLj (αi ) (3)

be the difference between left ends of α-cuts for αi+1 and αi ,
for the given fuzzy number ã j . We call such a difference an
incremental left spread for the level i . In the same manner,
we have

sRj (αi ) = aR
j (αi ) − aR

j (αi+1), (4)

which is the difference between the right ends of α-cuts for
αi and αi+1, for the given fuzzy number ã j . It will be called
an incremental right spread for the level i . Then, the sets of
left and right incremental spreads, given by

SL(αi ) =
{
sL1 (αi ), . . . , s

L
m(αi )

}
,

SR(αi ) =
{
sR1 (αi ), . . . , s

R
m (αi )

}
(5)

for αk−1, αk−2, . . . , α0 can be found. It should be noted that
the construction of (5) has to be made from the highest value
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Fig. 3 Primary sample A in Example 1

of α to the lowest one (i.e., from the core of a fuzzy number
to its support).We also assume, in the samemanner as for the
set of cores C(1), that each of the sets (5) is already ordered,
so that

0 ≤ sL1 (αi ) ≤ · · · ≤ sLm(αi ), 0 ≤ sR1 (αi ) ≤ · · · ≤ sRm (αi )

for all αi .
Let us illustrate this initialization procedure with a numer-

ical toy-example.

Example 1 Suppose that our primary sample consists of
only three triangular fuzzy numbers [0, 1, 3], [1, 2.5, 5] and
[1, 3.5, 5] (see Fig. 3). Because these numbers are strictly
triangular, in the following we consider only two different α-
levels: α1 = 1 (cores) and α0 = 0 (supports). For these data
the set of cores is C(1) = {1, 2.5, 3.5}. The ordered sets of
incremental left and right spreads are SL(α0) = {1, 1.5, 2.5}
and SR(α0) = {1.5, 2, 2.5}, respectively.

Now, the secondary sample B, which consists of n fuzzy
numbers, can be generated. In order to do this, we use one of
two methods, based on two kinds of distributions.

3.1 The d-method based on a discrete distribution
d(x)

Let us start from the description of a generation procedure in
case of the d-method, based on a discrete probability distribu-
tion d(x). In the proposed procedure, two steps are necessary
to construct a fuzzy number b̃ j ∈ B, where j = 1, . . . , n (see
also Algorithm 2).

Firstly, the value of a core b j (1) is found, using a uni-
form discrete distribution for the values from the set C(1).
It means that the generated value b j (1) = C is a random
element, taken from the set C(1), according to the probabil-
ity distribution d(x). In this paper, we assume that d(x) is

Algorithm2:Secondary sample generation for thed(x)-
method
Input: Sets of the cores and the incremental spreads for A, the

number of LRFNs in a secondary sample n, the number of
possible α-cuts k + 1.

Output: A secondary sample B generated using the discrete
distribution d(x).

for j ← 1 to n do
Randomly draw a value of a core b j (1) from the set C(1),
using the discrete uniform distribution for m elements;
for i ← k − 1 to 0 do

Randomly draw a value of a left incremental spread
SL (αi ) from the set SL (αi ), using the discrete uniform
distribution for m elements;
Find the left end of the αi -cut
bLj (αi ) = bLj (αi+1) − SL (αi );
Randomly draw a value of a right incremental spread
SR(αi ) from the set SR(αi ), using the discrete uniform
distribution for m elements;
Find the right end of the αi -cut
bRj (αi ) = bRj (αi+1) + SR(αi );

end
Construct b̃ j from the obtained α-cuts and append it to B;

end

uniform on C(1), i.e.,

Pr (C = al(1)) = d(al(1)) = 1

m
,

where l = 1, . . . ,m. Therefore, we randomly (and uni-
formly) pick up a single value from the set C(1) and treat
it as the core of the new, constructed LRFN b̃ j .

Secondly, consecutive α-cuts of the given b̃ j are found,
starting from its core and ending at its support. Thus, we
proceed from b̃ j (αk−1) down to b̃ j (0). For each αi , the value
of the left end of the α-cut of b̃ j is found, using

bLj (αi ) = bLj (αi+1) − SL(αi ), (6)

where SL(αi ) is an independently drawn random value from
the set SL(αi ). Once again, the uniform discrete distribution
d(x) is used, for which

Pr
(
SL(αi ) = sLl (αi )

)
= d(sLl (αi )) = 1

m
,

where l = 1, . . . ,m. In the same manner, the right end of
each α-cut of b̃ j is constructed, using

bRj (αi ) = bRj (αi+1) + SR(αi ), (7)

where SR(αi ) is independently drawn from the set SR(αi ),
using the same uniform discrete distribution d(x). Formulas
(6) and (7) mean that the new left (or right, respectively) end
of αi -cut is constructed, based on subtracting (or adding)
a random element from the set SL(αi ) (or SR(αi )) from
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(to) the previously generated left (right) end of the αi+1-cut.
Therefore, this new fuzzy number b̃ j is approximated using
intervals for the consecutive values of α (from 1 at the top to
0 at the bottom).

In some sense, the fuzzy number b̃ j , obtained in this way,
is similar to the LRFNs from the primary sampleA. The core
of b̃ j is one of the “true” cores from C(1), and its spreads
are drawn from the “true” spreads belonging to SL(αi ) or
SR(αi ). It is easily seen that we have

EC = 1

m

m∑

l=1

al(1) = ā(1),

ESL(αi ) = 1

m

m∑

l=1

sLl (αi ) = s̄ L(αi ),

ESR(αi ) = s̄ R(αi ),

so the expected values of the core and the spreads of b̃ j are
precisely equal to the respective means for LRFNs from A.
In the same way,

VarC = 1

m

m∑

l=1

(al(1) − ā(1))2 = s2a(1),

Var SL(αi ) = s2sL (αi )
,

Var SR(αi ) = s2sR(αi )
,

meaning that b̃ j exactly “imitates” the statistical behavior
of the samples from A, without the necessity of introducing
any additional knowledge about the model, which (perhaps)
generates the primary sample.

Now, let us continue our example by showing how the
secondarybootstrap-like sample is constructed.Wewill show
the construction of only one element of this sample. The
remaining elements are constructed in the same way.

Example 1 (Continued) The core of a new element of the sec-
ondary sample B is, in this example, randomly chosen (with
equal probabilities 1/3) from the set {1, 2.5, 3.5}, and let
this chosen value be equal to bL1 (1) = bR1 (1) = 1. Then, we
take randomly (also with equal probabilities 1/3) the left and
right incremental spreads on the remaining α-level. Suppose,
that for α = 0 we have chosen SL1 (0) = 1.5, SR

1 (0) = 2.5.
Thus, the respective α-cuts of the new element b̃1 of the sec-
ondary sample, calculated according to (6)–(7), are defined
by the following limits: bL1 (1) = bR1 (1) = 1, bL1 (0) =
−0.5, bR1 (0) = 3.5 (see Fig. 4). It appears that ã1 is “the
most similar” to b̃1. Then, using the measures considered in

Sect. 2.2, we get m∞
(
ã1, b̃1

)
= 0.333333,ml1

(
ã1, b̃1

)
=

0.5,mH

(
ã1, b̃1

)
= 0.25,mTD

(
ã1, b̃1

)
= 0.694444.
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Fig. 4 Primary sample A in Example 1 (dashed lines) and the new
element b̃1 ∈ B (solid line) generated using the d-method in Example
1

3.2 Thew-method based on amixed discrete
uniform distributionw(x)

We can be also interested in an additional level of “freedom”
when creating the secondary sample B. It is easy to see that
if b̃ j is generated using the method described in Sect. 3.1
(i.e., using the uniform discrete distribution d(x)), its core is
exactly equal to one of the values from C(1). Also its spreads
are given by the respective values from the sets SL(αi ) or
SR(αi ).

Yet, in some cases, creation of a more diversified sample
B can be useful. Due to such diversification, the values from
B could be “closer” to the (unknown) hidden model, than
the samples from A, especially if the number of elements in
A is strictly limited. Consider, for example, the case when
there are only two fuzzy numbers in A, described by only
two α-cuts. The random numbers b̃ j , generated using the
method described in Sect. 3.1, have no more than two pos-
sible values of a core and four possible left / right ends of
its support. Moreover, if a more classical resampling method
is taken into account (like the ”classical” bootstrap), then
these two elements fromA are repeated infinitely often dur-
ing the construction of the LRFNs from B. Thus, no new
“knowledge” about other possible outcomes, which could be
possibly “produced” by the unknownmodel, can be obtained.

Of course, notwithstanding the introduction of the diver-
sification, the secondary sample B should be still enough
“similar” to the primary set A. If such a requirement is not
fulfilled, then our knowledge resulting from B can be mis-
leading, and our suppositions about the original source (i.e.,
the model of A) can be incorrect. But no strict prior knowl-
edge about the model for the primary sample was previously
assumed in this paper. Therefore, the proposed generation
method should be strictly nonparametric, without any addi-
tional and more detailed assumptions.
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In statistics, if we do not want to introduce any prior
knowledge, we have to use the so-called non-informative
probability distributions. A commonly used model of such a
distribution is a uniformdensity for an interval [c, d], denoted
further by U ([c, d]). We will use this density in the con-
struction of the probability distribution used for generation
purposes.

3.2.1 Thew(x) distribution, and its properties

Let

x1 < x2 < · · · < xm (8)

be a strictly increasing sequence of m values, without their
repetitions. We propose a density w(x), which is the com-
position of a discrete random distribution, and a continuous
probability density, given by the following formula

w(x) = 1

2m
δx (x1) + 1

m
w1,2(x) + 1

m
w2,3(x) + · · ·

+ 1

m
wm−1,m(x) + 1

2m
δx (xm), (9)

where

wl−1,l(x) = 1

xl − xl−1
1(x ∈ [xl−1, xl ]), (10)

and δx (.) is the Dirac measure. If X ∼ w(x), where w(x)
is given by (9), then X = x1 or X = xm is taken with
an atomic probability 1

2m . Hence, the first value x1 or the
last one xm from the sequence (8) is selected with equal
probabilities. Otherwise, one of the intervals [xl−1, xl ], for
l = 1, . . . ,m − 1, is designated with atomic probability
1
m . When such a single interval is selected, we have X ∼
wl−1,l(x), so the output x is generated using the uniform
density U ([xl−1, xl ]), which is described by (10).

Therefore, w(x) can be seen as a certain generalization
of the discrete distribution, discussed in Sect. 3.1. The pdf
w(x) also generates values from the same interval [x1, xm],
but they are more diversified—apart from the values directly
equal to the ones from the sequence (8), all x ∈ [x1, xm] can
now be obtained.

Statistical characterizations of the density w(x) are sum-
marized in the following lemma:

Lemma 1 Let X ∼ w(x), where w(x) is a pdf described by
(9) and (10). Then

EX = 1

m

m∑

i=1

xi = x̄,

and

Var X = 1

m

(
5

6
x21 + 1

3
x1x2 + 2

3
x22 + 1

3
x2x3 + · · ·

+1

3
xm−1xm + 5

6
x2m

)

− (x̄)2 = s2w.

Proof From (9) and (10), we have

EX = 1

2m
x1 + 1

2m
xm + 1

m

m−1∑

i=1

xi + xi+1

2

and

Var X = 1

2m
x21 + 1

2m
x2m

+ 1

m

m−1∑

i=1

x2i + xi xi+1 + x2i+1

3
− (x̄)2 ,

which concludes the proof. 
�
FromLemma1we see that if X ∼ w(x), then the expected

value of X is precisely equal to itsmean x̄ . But the variance s2w
of X is not equal to the classical estimator, i.e., the standard
sample variance s2. The difference between the variances
s2w and s2 can be important for the intended diversity of the
LRFNs in the second sample B. We have

s2w − s2 = 1

m
(

−1

6
x21 − 1

6
x2m + 1

3
x1x2 + 1

2

m−1∑

i=2

xi (xi+1 − xi )

)

,

which leads to the following remark:

Remark 1 If m → ∞ and xi > 0, then s2w − s2 ≥ 0. There-
fore, the variability (measured by variance) of X ∼ w(x) is
not lesser than the variability of X ∼ d(x), if only the size
of a sample is large enough, and all xi > 0.

3.2.2 Generation procedure

Now, to generate a fuzzy number b̃ j ∈ B, if j = 1, . . . , n,
instead of the discrete distribution d(x), the previously intro-
duced densityw(x) is used (see also Algorithm 3). However,
an overall procedure of the construction of b̃ j is similar to
the previous case, which is described in Sect. 3.1.

During the first step, the value of a core b j (1) = C is
drawn, using the distribution w(x), based on the elements
from the set C(1), so C ∼ w(x), where x ∈ C(1). Next,
consecutive α-cuts of the given b̃ j are calculated, starting
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Algorithm 3: Secondary sample generation using the
w(x)-method
Input: Sets of the cores and the incremental spreads for A, the

number of LRFNs in a secondary sample n, the number of
possible α-cuts k + 1.

Output: A secondary sample B generated using the distribution
w(x).

for j ← 1 to n do
Randomly draw a value of a core b j (1) from the set C(1),
using the density (9) for m elements;
for i ← k − 1 to 0 do

Randomly draw a value of a left incremental spread
SL (αi ) from the set SL (αi ), using the density (9) for m
elements;
Find the left end of the αi -cut
bLj (αi ) = bLj (αi+1) − SL (αi );
Randomly draw a value of a right incremental spread
SR(αi ) from the set SR(αi ), using the density (9) for m
elements;
Find the right end of the αi -cut
bRj (αi ) = bRj (αi+1) + SR(αi );

end
Construct b̃ j from the obtained α-cuts and append it to B;

end

from the value αk−1 and ending at α0 = 0. For each αi , a
value of the left end of b̃ j (αi ) is equal to (6), where SL(αi ) is
an independently drawn random value from the set SL(αi ),
using the distribution w(x) for the set SL(αi ). In the same
way, the right end of b̃ j (αi ) is given by (7), where SR(αi ) is
independently drawn from the set SR(αi ), using the respec-
tive distribution w(x) for this set.

Let us continue our example using the method of gen-
eration, described in this subsection. We will show the
construction of only one element of this sample. The remain-
ing elements are constructed in the same way.

Example 1 (Continued) Let us start from the generation of
the core of a new fuzzy number b̃1. According to the density
function w(x) defined by (9), there are four possibilities for
choosing this value: take 1 with probability 1/6, take a ran-
domly chosen (using the uniform distribution) number from
the interval [1, 2.5] with probability 1/3, take a randomly
chosen number from the interval [2.5, 3.5] with probability
1/3, take 3.5 with probability 1/6 (see also Fig. 5). Sup-
pose that the second option has been chosen, and a new
core has been set to b1(1) = 1.75. Now, consider the left
and right spreads for α = 0. For choosing the value of the
left incremental spread there are also 4 possibilities: take 1
with probability 1/6, take a randomly chosen number from
the interval [1, 1.5] with probability 1/3, take a randomly
chosen number from the interval [1.5, 2.5] with probabil-
ity 1/3, take 2.5 with probability 1/6. Suppose that the first
option has been chosen, and a new left incremental spread
has been set to SL1 (0) = 1. Similarly, for choosing the
value of the right incremental spread there are 4 possibili-

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.1

0.2

0.3

0.4

0.5
w x

Fig. 5 A plot of the density w(x) for the set C(1) in Example 1

ties: take 1.5 with probability 1/6, take a randomly chosen
number from the interval [1.5, 2] with probability 1/3, take
a randomly chosen number from the interval [2, 2.5] with
probability 1/3, take 2.5 with probability 1/6. Suppose that
the third option has been chosen, and a new right incremental
spread has been set to SR

1 (0) = 2.1. Finally, the new gen-
erated element of the secondary sample is the fuzzy number
defined by its core b1(1) = 1.75, and its α-cut is defined
by the respective limits bL1 (0) = 0.75, bR1 (0) = 3.85 (see
Fig. 6). This new element b̃1 seems to be similar to both ã1
and ã2. But, using the considered measures, we can com-
pare the pairs ã1, b̃1 and ã2, b̃1, and try to decide, which
of the fuzzy numbers from the initial sample is more sim-

ilar to b̃1. We get m∞
(
ã1, b̃1

)
= 0.75,ml1

(
ã1, b̃1

)
=

1.3625,mH

(
ã1, b̃1

)
= 0.8,mTD

(
ã1, b̃1

)
= 1.11778 and

m∞
(
ã2, b̃1

)
= 0.5,ml1

(
ã2, b̃1

)
= 1.29375,mH

(
ã2, b̃1

)

= 0.95,mTD

(
ã2, b̃1

)
= 1.23722. Then, if we choose the

supremum or the TD measure, we conclude that the fuzzy
numbers ã1, b̃1 are the most similar. If, instead, we use ml1
ormH , the triangular fuzzy numbers ã2, b̃1 are the most sim-
ilar.

4 Properties of bootstrap-like secondary
samples

After the introduction of both methods, we can numeri-
cally compare secondary samples, which are generated using
these methods. Moreover, we also apply a classical bootstrap
in order to verify whether there are any significant differ-
ences between this widely used simulation method (see, e.g.,
González-Rodríguez et al. (2006), Hung (2006), Montene-
gro et al. (2004) and Ramos-Guajardo and Lubiano (2012)
for a more detailed discussion) and the algorithms proposed
in this paper.
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Fig. 6 Primary sample A in Example 1 (dashed lines) and the new
element b̃1 (solid line) generated using w-method in Example 1

Let us start from a certain population Pn0 , which consists
ofn0 LRFNs. From this population,we randomly drawm ele-
ments. Let these elements constitute a primary sample Am .
Afterwards, using the fuzzy numbers from this primary sam-
ple, threemethods (i.e., the classical bootstrap, the d-method,
and thew-method) are used to generate the secondary sample
Bn , which consists of n elements.

In our numerical experiments, different settings are used:
a moderate population P100 (for which n0 = 100) together
with a small primary sample A5 (where m = 5) and a mod-
erate secondary sample B100 (where n = 100), and a bigger
population P200 with a moderate primary sampleA100 and a
rather big secondary sample B200. This allows us to compare
outcomes for the classical bootstrap, the d-method, and the
w-method, for the cases when preliminary information about
a model (which is available only via the analysis of the pri-
mary sample) is very sparse (in the case of A5) or relatively
abundant (for A100).

For simplicity, only triangular fuzzy numbers will be con-
sidered, i.e., only two α-cuts (where α0 = 0 and α1 = 1)
are used to construct the whole LRFN. Actually, such simple
types of fuzzy numbers are frequently used by practitioners.
However, both the d-method and thew-method can be easily
used to generate the second sample, even if more α-cuts are
considered.

In the following numerical experiments, two types of tri-
angular numbers are considered as amodel for the population
Pn0 . The first one (which is further referred to as the “type
A number”) is a fuzzy number with an expected symmetri-
cal spread, where the center is random and has the standard
normal distribution N (0, 1), and the semiwidths of the sup-
port are given as independent Chi-square variables with one
degree of freedom. A similar LRFN is discussed in a detailed
way in Colubi et al. (2002). The second kind (the “type B
number”) of a fuzzy number has a strictly non-symmetrical
shape. In this case, the center points are described by the
gamma distribution with the shape parameter 1 and the scale

parameter 2, and the semiwidths of the support being drawn
from independent exponential distributions with parameter 1
(for the left spread) or 2 (for the right spread).

We are interested in the analysis of mutual relations
between the primary and secondary samples for the different
generation procedures and the mentioned types of LRFNs.
Therefore, properties of both the primary sample and the gen-
erated, secondary set, are statistically summarized using the
sample mean versus the population mean, which are calcu-
lated for the support and the center of fuzzy numbers. From
the statistical point of view, also variability of the simulated
fuzzy numbers is very important. Thus, the standard devia-
tion is also found for the support and the center of LRFN in
the case of the second (i.e., generated) sample.

Moreover, the simulated fuzzy numbers should give us
some additional “insight” into the model, which is (gener-
ally) completely unknown and “hidden” in the data from the
primary sample. In an ideal situation, LRFNs from the sec-
ond sample should be (in someway) “similar” to the numbers
from the primary sample, but, simultaneously, not exactly
“the same” as the elements from Am , and also “very close”
to the population. Therefore, values of some measures (see
Sect. 2) are evaluated for each possible pair of fuzzy num-
bers. These pairs consist of one “old” LRFN (i.e., from A),
and one “new”, generated fuzzy number (i.e., an element
from B). The obtained measure values are also summarized
using common tools, like minimum, maximum, mean, and
standard deviation. Afterwards, we can conjecture whether
some generation method produces fuzzy numbers which are
“the same as”, “similar” or only “close” (and to what extent)
to the LRFNs from the primary sample.

4.1 Small primary sample, type A fuzzy number

Based on the small sample A5 of the type A of triangular
fuzzy numbers, threemoderate secondary samplesB100 were
generated, using the classical bootstrap, the d-method, and
the w-method. Then, the means for the core X̄∗

C (see Fig. 7),
the left end of the support X̄∗

L (see Fig. 8), and the right end
X̄∗
R (see Fig. 9) for each of the simulated samples were cal-

culated. From now on, the results obtained with the bootstrap
are marked by circles in the graphs, with the d-method—by
diamonds, and with the w-method—by squares. Horizontal
bold lines correspond to the means of the primary sampleA
for the core X̄A

C , the left end of the support X̄A
L and the right

end X̄A
R , and axes of respective graphs start exactly in the

means for the population (for the core X̄C , for the left end of
the support X̄ L and for the right end X̄ R).

As it is seen, each of the simulation methods behaves gen-
erally well. In each case, after generation of 30—40 fuzzy
numbers, the mean of the secondary sample X̄∗ approaches
the respective mean of the primary set X̄A. Moreover, appli-

123



5894 M. Romaniuk, O. Hryniewicz

20 40 60 80 100
n

1.0

0.5

Fig. 7 Small primary sample, type A fuzzy number: the means of the
core as functions of the secondary sample size n (the bootstrap—circles,
the d-method—diamonds, the w-method—squares)
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Fig. 8 Small primary sample, type A fuzzy number: the means of the
left end of the support as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)
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Fig. 9 Small primary sample, type A fuzzy number: the means of the
right end of the support as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)

cations of the d-method or the w-method seem to have some
advantages, when they are compared to the classical boot-
strap. For example, the means for these two approaches are,
in general, closer to X̄A (i.e., the mean of A5), than in the
case of the bootstrap. The respective graphs are also much
smoother. Surprisingly, though, in the case of the w-method,
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1.4

Fig. 10 Small primary sample, type A fuzzy number: the standard
deviations of the core as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)
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Fig. 11 Small primary sample, type A fuzzy number: the standard
deviations of the left end of the support as functions of the secondary
sample size n (the bootstrap—circles, the d-method—diamonds, the
w-method—squares)

the respective mean is also closer to “the real” result—the
mean of our unknown model, i.e., the population P100.

Apart from the comparison of the means, variability of the
generatedLRFNs should be also considered.Hence, standard
deviations for the core (see Fig. 10), the left end of the support
(see Fig. 11) and its right end (see Fig. 12) are plotted. These
graphs are marked in the same way as the previous ones. In
each of these cases, the standard deviation of the secondary
sample is the lowest when the w-method is used.

Now, we compare the three secondary samples, which are
generated using the considered simulation procedures, but
with the help of the measures, which were recalled in Sect. 2.
Let us assume that l(ãi , b̃ j ) is a value of some measure of
similarity l(., .) between LRFNs ãi ∈ A and b̃ j ∈ B. Then,
the following notation is used

MinMin = min
j

{min
i

l(ãi , b̃ j )},
MinMax = min

j
{max

i
l(ãi , b̃ j )},
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Fig. 12 Small primary sample, typeA fuzzy number: the standard devi-
ations of the right end of the support as functions of the secondary
sample size n (the bootstrap—circles, the d-method—diamonds, the
w-method—squares)

MaxMin = max
j

{min
i

l(ãi , b̃ j )},
MaxMax = max

j
{max

i
l(ãi , b̃ j )},

MeanMin = 1

n

n∑

j=1

min
i

l(ãi , b̃ j ),

MeanMax = 1

n

n∑

j=1

max
i

l(ãi , b̃ j ),

StDevMin = 1

n

n∑

j=1

(

min
i

l(ãi , b̃ j ) − MeanMin

)2

,

StDevMax = 1

n

n∑

j=1

(

min
i

l(ãi , b̃ j ) − MeanMax

)2

.

The respective measures of similarity are summarized in
Table 1 (whenB100 is simulatedusing thebootstrap approach),
Table 2 (in the case of the d-method) and Table 3 (for
the w-method). Of course, the bootstrap only repeats fuzzy
numbers, which are already present in the primary sample.
Therefore, MinMin and MinMax values for the measures
ml1 , m∞ and mH are strictly equal to zero. But in the case
of d-method, even the values of these measures are more
diversified, so we have StDevMin > 0. The same applies
for the w-method. Therefore, these two methods produce
LRFNs, which are more diversified (and “not exactly the
same” in some way, too) than the numbers from A5. How-
ever, the generated LRFNs are also “similar” (in the sense
of the applied measures of similarity) to the fuzzy num-
bers from the primary sample, because the obtained MinMin
and MeanMin values are very close to zero. It seems that
using the w-method is more promising than the d-method,
because MinMax,MaxMax, and MeanMax values are gen-
erally lesser for this first approach, and MeanMin values are
very similar. Hence, even LRFNs, which are “maximally”

Table 1 Small primary sample, type A fuzzy number: values of mea-
sures for the bootstrap

ml1 m∞ mTD mH

MinMin 0 0 0.000736245 0

MaxMin 0 0 1.53948 0

MeanMin 0 0 0.019812 0

StDevMin 0 0 0.154899 0

MinMax 3.5179 1 4.99107 3.58809

MaxMax 3.5179 1 11.012 3.73185

MeanMax 3.5179 1 10.9518 3.73042

StDevMax 0 0 0.599078 0.0143039

Table 2 Small primary sample, type A fuzzy number: values of mea-
sures for the d-method

ml1 m∞ mTD mH

MinMin 0 0 0.000736245 0

MaxMin 2.62947 0.801501 2.13371 2.0113

MeanMin 0.0980749 0.210644 0.0417063 0.0697916

StDevMin 0.271452 0.219908 0.211372 0.204192

MinMax 4.12642 1 17.5908 5.74315

MaxMax 4.41593 1 21.6322 5.74315

MeanMax 4.22721 1 19.0016 5.74315

StDevMax 0.137404 0 1.9228 0

distant from the fuzzy numbers from the primary sample, are
“closer” in the case of the w-method than for the d-method.

Let us analyze the observed similarity in another way.
In order to do this, an additional independent sample T200,
which consists of 200 fuzzy numbers of type A, was gener-
ated. Then, three secondary sets B200 are sampled based on
A5, using the bootstrap, the d-method, and the w-method.
We find an LRFN from each of B200, which is the nearest
to some fuzzy number from T200 in the sense of one of the
measures ml1 ,m∞,mTD,mH , i.e., a value

MinMin = min
j

{min
i

l(t̃i , b̃ j )},

where t̃i ∈ T200 and b̃ j ∈ B200, is calculated. The obtained
minimal values of these measures for respective pairs of
LRFNs are given in Table 4, and for each of the measure
its minimum appears in boldface. As it is seen, if the w-
method is used, then the generated fuzzy number is the most
similar to some element from T200. In some way, this new
independent sample T200 gives an additional insight into the
“true model”, because it is a supplementary sample from the
unknown source, which models our LRFNs. Therefore, the
w-method produces fuzzy numbers, which are the nearest
to this model in the considered case. Note, that because the
bootstrap only repeats elements from the primary sample,
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Table 3 Small primary sample,
type A fuzzy number: values of
measures for the w-method

ml1 m∞ mTD mH

MinMin 0.0100468 0.211763 0.000652598 0.0100467

MaxMin 1.02656 0.955989 0.415887 0.97555

MeanMin 0.0880436 0.223415 0.022968 0.0770365

StDevMin 0.166473 0.0737455 0.0723465 0.143194

MinMax 4.07298 1 14.4999 3.85217

MaxMax 4.07298 1 19.3633 5.74315

MeanMax 4.07298 1 16.7118 4.84823

StDevMax 0 0 2.26648 0.804912

Table 4 Small primary sample,
type A fuzzy number: minimal
measure values for the
comparisons with the
independent sample T200

ml1 m∞ mTD mH

Bootstrap 0.0415538 0.310524 0.00157894 0.0262274

d-method 0.0186548 0.0918212 0.000502853 0.0156908

w-method 0.00643799 0.0626196 0.000242158 0.00595363

then for this method the obtained values of the measures are
even 6–7 times bigger than for the best match.

4.2 Small primary sample, type B fuzzy number

Now we analyze the three considered simulation procedures
for the case when the small primary sample A5 consists of
the strictly non-symmetrical triangular fuzzy numbers (i.e.,
the previously mentioned LRFNs of “type B”). The graphs
of the means (for the core—see Fig. 13, for the left end of the
support—see Fig. 14, for the right end of the support—see
Fig. 15) are very similar to the case, which was described in
Sect. 4.1. Once again, these means for the d-method and the
w-method are, in general, closer to the respective means of
the primary sample, than in the case of the bootstrap. Their
graphs are also very smooth. Moreover, the plots of the stan-
dard deviations behave reasonably well (for the core—see
Fig. 16, for the left end of the support—see Fig. 17, for the
right end of the support—see Fig. 18). The obtained values
are the lowest when the w-method is used.

Also the characteristics of the similarity measures, which
were introduced in Sect. 4.1, can be found in this case (see
Tables 5, 6, 7 for the respective summaries for the different
simulation approaches). In general, the conclusions are sim-
ilar as in the case of type A fuzzy numbers, i.e., the bootstrap
only repeats LRFNs from the primary sample, and the d-
method and thew-method produce amore diversified output,
which is still similar (in the sense of the considered mea-
sures) to the values from A5. But the decision as to whether
the d-method or the w-method is better suited, when the
“maximum” distance criterion is taken into account, is not so
straightforward now. As it is seen, MinMax values are lower
for the d-method, but MaxMax and MeanMax are lower in
the case of the w-method.
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Fig. 13 Small primary sample, type B fuzzy number: the means of the
core as functions of the secondary sample size n (the bootstrap—circles,
the d-method—diamonds, the w-method—squares)
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Fig. 14 Small primary sample, type B fuzzy number: the means of the
left end of the support as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)

And once again, we analyze the supplementary, indepen-
dent sample T200 of LRFNs of type B. The fuzzy numbers
from the set T200 are compared with three samples B200,
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Fig. 15 Small primary sample, type B fuzzy number: the means of the
right end of the support as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)
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Fig. 16 Small primary sample, type B fuzzy number: the standard devi-
ations of the core as functions of the secondary sample size n (the
bootstrap—circles, the d-method—diamonds, thew-method—squares)
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Fig. 17 Small primary sample, type B fuzzy number: the standard
deviations of the left end of the support as functions of the secondary
sample size n (the bootstrap—circles, the d-method—diamonds, the
w-method—squares)

which were generated using the classical bootstrap and the
twomethods introduced in this paper. As in Sect. 4.1, LRFNs
from T200 and each of the sets B200 are compared in order to
find pairs of fuzzy numbers, which are the most similar. The
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Fig. 18 Small primary sample, type B fuzzy number: the standard devi-
ations of the right end of the support as functions of the secondary
sample size n (the bootstrap—circles, the d-method—diamonds, the
w-method—squares)

Table 5 Small primary sample, type B fuzzy number: values of mea-
sures for the bootstrap

ml1 m∞ mTD mH

MinMin 0 0 0.0324768 0

MaxMin 0 0 0.417745 0

MeanMin 0 0 0.0391855 0

StDevMin 0 0 0.0429783 0

MinMax 3.40761 1 46.4003 6.82781

MaxMax 5.52281 1 53.2759 8.27309

MeanMax 5.41894 1 53.1464 8.22917

StDevMax 0.452897 0 0.740394 0.201653

Table 6 Small primary sample, type B fuzzy number: values of mea-
sures for the d-method

ml1 m∞ mTD mH

MinMin 0 0 0.0324768 0

MaxMin 0.364996 0.0654479 1.8041 0.184694

MeanMin 0.0217277 0.00916271 0.122545 0.017279

StDevMin 0.0616384 0.0227096 0.182615 0.0449755

MinMax 5.52281 1 55.9515 8.45778

MaxMax 7.54289 1 65.602 8.7359

MeanMax 7.41111 1 61.854 8.68305

StDevMax 0.367233 0 3.03121 0.109105

obtainedminimal values ofmeasures can be found in Table 8.
Also in this case, the w-method generates fuzzy numbers,
which are the most similar to some element from the set
T200, apart from the measure m∞, for which the d-method
gives the best result. The classical bootstrap gives values,
which are even 2–3 times bigger than the best matches.
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Table 7 Small primary sample, type B fuzzy number: values of mea-
sures for the w-method

ml1 m∞ mTD mH

MinMin 0.0481819 0.0333 0.0625318 0.0275902

MaxMin 0.725874 0.494869 0.804754 0.40568

MeanMin 0.0652436 0.0415227 0.124169 0.0388207

StDevMin 0.0866392 0.0499653 0.143116 0.0592306

MinMax 5.60831 1 58.8443 8.59327

MaxMax 7.46832 1 63.1713 8.7359

MeanMax 7.35736 1 61.6798 8.69881

StDevMax 0.439196 0 2.00388 0.0625592

Table 8 Small primary sample, type B fuzzy number: minimalmeasure
values for the comparison with the independent sample T200

ml1 m∞ mTD mH

Bootstrap 0.0649436 0.202817 0.0260107 0.0371561

d-method 0.0587924 0.0782876 0.0109019 0.0305752

w-method 0.051629 0.098061 0.00938974 0.0302706

4.3 Moderate primary sample

In practical situations, apart from small statistical samples,
which consist of only few values, larger samples are also
used. Therefore, we also analyze the behavior of a moderate
primary sample, for which m = 100 (i.e., A100), and the
corresponding simulated secondary sample B200, which is
rather a big one, especially when compared to the previous
examples (now we have n = 200). As it turns out, general
conclusions for both type A and type B of LRFNs are very
similar to the outcomes for the small sample, which were
summarized in Sects. 4.1 and 4.2. Hence, we omit a more
detailed discussion, in order to present another, but, in some
way, supplementary approach.

Up till now, we have analyzed the speed of convergence
of the mean of the secondary sample X̄∗ to the “true” (but, in
general, unknown)mean of the population X̄ . And, in our rea-
soning, three “focal points” (a core, a left and a right end of a
support) have been taken into account. In Colubi et al. (2002)
the authors consider an application of LIL (the law of iterated
logarithm) as a tool for a convergence diagnosis for the sim-
ulated fuzzy numbers. Therefore, we will also analyze the
behavior of distance between

√
n/

√
2n log log n X̄∗ and X̄

as a function of the secondary sample size n. To keep consis-
tency with our previous analysis, the three mentioned “focal
points” will be still in the center of our attention. Hence, the
distance for the core

√
n√

2n log log n
|X̄∗

C − X̄ |, (11)
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Fig. 19 Moderate primary sample, type A fuzzy number: LIL distances
for the core as functions of the secondary sample size n (the bootstrap—
circles, the d-method—diamonds, the w-method—squares)
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Fig. 20 Moderate primary sample, type A fuzzy number: LIL distances
for the left end of the support as functions of the secondary sample size
n (the bootstrap—circles, the d-method—diamonds, the w-method—
squares)

and similarly defined measures for the left and right ends
of a support, will be further used, instead of the supremum
distance, which is considered in Colubi et al. (2002).

Because the secondary sample B200 is rather big, the con-
vergence speed for (11) and the rest of similar measures, as
functions of n, is now more visible. We restrict our analysis
only to type A fuzzy numbers, but the obtained conclusions
are also similar for type B. The calculated distances as func-
tions of the secondary sample size are plotted in Figs. 19 (the
core), 20 (the left end of the support) and 21 (the right end of
the support). As it is seen, the bootstrap approach is the worst
one, especially for larger values of n, because the obtained
distances are, in general, bigger for this simulation method.
Both the d-method and the w-method produce the relatively
well behaving output.
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Fig. 21 Moderate primary sample, type A fuzzy number: LIL distances
for the right end of the support as functions of the secondary sample size
n (the bootstrap—circles, the d-method—diamonds, the w-method—
squares)

5 New bootstrap-like sample as a tool in
statistical tests

Apart from the statistical properties of the simulated LRFNs,
the possibility of applying the proposed methods in practical
statistical cases was also investigated. Two types of tests for
the expected value of the fuzzy numberswere considered (see
Sect. 2.3 for additional details and notation) as a respective
example.

The first one is a bootstrapped version of the test pro-
posed in Körner (2000) (see Corollary 1). From now on, it
will be called the K test (from its author’s name) for the
expected value. The second test is the procedure developed
in González-Rodríguez et al. (2006) and Montenegro et al.
(2004) (see Corollary 2). It will be called the GRMCG-test
for the expected value (also based on the authors’ names).
In this case, we apply the standard uniform density as the
weight normalized measure ϕ in Dϕ

W (ã, b̃) metric (2) (see
Bertoluzza et al. (1995) and Montenegro et al. (2004) for
additional details and other approaches).

As an initial sample in each of these tests, three types of
triangular fuzzy numbers are simulated. Types A and B are
described here in Sect. 4. Type C, which was considered in
Körner (2000), is a fuzzy number, inwhich the randomcenter
has the standard normal distribution N (0, 1), and the spreads
of the support are independently drawn from the standard
uniform distribution U ([0, 1]).

For each of these types of fuzzy numbers, three different
simulation procedures (the classical bootstrap, the d-method
and the w-method) are used to generate an input random
sample for the test. The number of elements n in such
a sample is varied, so that both small and medium sam-
ple sizes are considered, i.e., we set n = 5, 10, 30, 100.
Also, a few values of the number of bootstrap replications
r (namely r = 100, 200, 1000) are used to generate the

respective bootstrapped distribution of the test statistics. In
this way, we investigate the possible influence of this param-
eter. In each of these experiments, the whole resampling
procedure is iterated 100,000 times (see, e.g., Gil et al.
(2006b),González-Rodríguez et al. (2006),Montenegro et al.
(2004) and Ramos-Guajardo and Lubiano (2012) for addi-
tional details of a similar approach).

Based on the respective statistics, in each of the tests of the
expected value, an empirical percentage of rejections p̂ at the
nominal significance level p = 0.05 for the true null hypoth-
esis is then computed. This estimated value is widely used as
a benchmarking tool for the bootstrapped version of the sta-
tistical tests (see, e.g., Gil et al. 2006b; González-Rodríguez
et al. 2006; Montenegro et al. 2004; Ramos-Guajardo et al.
2010; Ramos-Guajardo and Lubiano 2012). The three con-
sidered simulation procedures can then be directly compared.

In general, the simulated values of p̂ for all of the
approaches are very close to one another, and the overall
properties are very similar. In particular, the empirical per-
centages of rejections converge to one another for larger
values of n and r (like n = 100 and r = 1000). How-
ever, there are also some significant differences. In order to
emphasize them, for each experiment the value of p̂, which
is the nearest to the true value of the significance level p, is
given in boldface.

Let us start from the K test of the expected value. As it
is seen for the fuzzy numbers of type A (see Table 9), type
B (see Table 10) and type C (see Table 11), a comparison
of the simulation approaches seems to be quite simple. In
each of these cases, the d-method leads to p̂, which is the
nearest to the assumed significance level p, apart from a few
exceptions. For all of these exceptions, the classical bootstrap
approach gives the most “true” answer. But even in these
cases, the differences between the empirical percentages of
rejections for the d-method and the classical bootstrap are not
very significant (about 0.001–0.002). And these differences
favor the d-method especially for smaller values of n and r .
Altogether, the classical bootstrap occupies the second place
with respect to the measure of proximity between p̂ and p.

For the GRMCG-test, the analysis of differences between
p̂ and p is not so straightforward. In the case of type A of
fuzzy numbers (see Table 12), p̂ seems to be the nearest to
the true significance level for the w-method, when a smaller
number, like n = 5, 10, of the elements in the initial sample
is taken into account, or for the d-method—for larger values
n = 30, 100. Especially for the small samples, the classical
bootstrap approach gives the worst answers and the differ-
ences between the bootstrap and one of the other approaches
are quite important (about 0.008–0.01).

However, when type B fuzzy numbers are analyzed (see
Table 13), the picture is not quite clear. Firstly, for n = 5, 10,
the estimated percentages of rejections favor the classical
bootstrap approach, because the other approaches give bigger
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Table 9 Simulated values of p̂ for the K test, type A of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.16024 0.10113 0.07006 0.06263

d-method 0.14617 0.09448 0.067571 0.06127

w-method 0.1668 0.10129 0.07117 0.06283

r 200

Bootstrap 0.15438 0.09583 0.06558 0.05714

d-method 0.1378 0.08804 0.06363 0.05636

w-method 0.16153 0.09723 0.06464 0.0571

r 1000

Bootstrap 0.14834 0.08961 0.06109 0.05449

d-method 0.13435 0.08354 0.05954 0.05195

w-method 0.15875 0.09133 0.06169 0.0541

Table 10 Simulated values of p̂ for the K test, type B of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.22788 0.15132 0.09559 0.07145

d-method 0.22117 0.15006 0.09534 0.07049

w-method 0.23952 0.1579 0.09693 0.07106

r 200

Bootstrap 0.22278 0.14885 0.0923 0.06783

d-method 0.2184 0.14639 0.09096 0.06748

w-method 0.23506 0.15312 0.09303 0.0686

r 1000

Bootstrap 0.21723 0.14492 0.08758 0.06296

d-method 0.2153 0.14143 0.08865 0.06188

w-method 0.23495 0.14697 0.08841 0.06429

Table 11 Simulated values of p̂ for the K test, type C of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.17526 0.10734 0.0729 0.0643

d-method 0.16805 0.10808 0.07281 0.06385

w-method 0.18535 0.11309 0.07356 0.06466

r 200

Bootstrap 0.16682 0.09992 0.06944 0.05768

d-method 0.16205 0.10241 0.06901 0.05714

w-method 0.18389 0.10714 0.06958 0.05945

r 1000

Bootstrap 0.1615 0.09987 0.06424 0.055

d-method 0.15917 0.09716 0.06578 0.05404

w-method 0.17689 0.10472 0.06509 0.05627

Table 12 Simulated values of p̂ for the GRMCG-test, typeA of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.03375 0.04906 0.0562 0.05892

d-method 0.04047 0.05229 0.05618 0.05827

w-method 0.0422 0.04994 0.05747 0.05981

r 200

Bootstrap 0.02988 0.04449 0.05184 0.05395

d-method 0.03659 0.04611 0.05224 0.05331

w-method 0.03869 0.04621 0.05132 0.05405

r 1000

Bootstrap 0.02748 0.03862 0.04817 0.05064

d-method 0.03412 0.04158 0.04862 0.04952

w-method 0.03524 0.04234 0.04844 0.0514

Table 13 Simulated values of p̂ for the GRMCG-test, type B of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.08495 0.08385 0.06892 0.06107

d-method 0.09687 0.0857 0.06792 0.06094

w-method 0.0986 0.08808 0.06904 0.06037

r 200

Bootstrap 0.07903 0.08167 0.0635 0.05769

d-method 0.093 0.08148 0.06348 0.05743

w-method 0.09391 0.08245 0.06545 0.05754

r 1000

Bootstrap 0.07574 0.07701 0.06077 0.05299

d-method 0.08984 0.07804 0.06129 0.05176

w-method 0.09241 0.07787 0.06038 0.05383

values of p̂. In these cases, the differences between the classi-
cal bootstrap and other simulation methods are quite distinct
(even equal to 0.012–0.015). Secondly, for n = 30, 100, the
outputs are more accurate if the d-method or the w-method
are used. Then, the differences among various simulated p̂
are quite small (about 0.001–0.002).

In the case of type C fuzzy numbers (see Table 14), it
seems that the d-method or the w-method produce the most
accurate estimators of p̂. This can be seen especially for the
smaller samples (n = 5, 10), when the classical bootstrap
approach gives an estimator of the rejection rate, which is
by about 0.004 smaller than for the other methods. For the
largest sample (n = 100), the d-method is favored, but once
again, the differences among the simulated values of p̂ are
quite small.

Taking into account thewhole analysis, it is not possible to
point out the undoubtedly best simulation procedure, which
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Table 14 Simulated values of p̂ for the GRMCG-test, type C of LRFNs

n 5 10 30 100

r 100

Bootstrap 0.03593 0.05029 0.05763 0.05949

d-method 0.03923 0.05274 0.05812 0.05941

w-method 0.03936 0.05256 0.05744 0.06028

r 200

Bootstrap 0.03141 0.04413 0.05423 0.05346

d-method 0.03491 0.04529 0.05355 0.05321

w-method 0.0356 0.04599 0.05282 0.05517

r 1000

Bootstrap 0.02805 0.04163 0.0489 0.04992

d-method 0.03221 0.04089 0.05046 0.05001

w-method 0.03155 0.04306 0.04887 0.052

gives the most accurate values of p̂. However, application of
the d-method or the w-method looks promising, especially
for smaller initial samples.

6 Conclusions

In this paper, we propose two simulation algorithms for
the generation of sets, consisting of LRFNs, namely the d-
method and thew-method.Bothof these algorithms are based
on the resampling paradigm and utilize the primary sample of
fuzzy numbers in order to randomly generate the secondary
bootstrap-like sample. This generation is based on α-cuts
of LRFNs and a strictly nonparametric approach, without
necessity of making additional assumptions about the source
(or the model) of the primary sample.

Our contribution in this article is fourfold. Firstly, two
new numerical algorithms for the simulation of samples of
the LRFNs are considered. These algorithms, similarly as
the classical bootstrap methods, utilize a primary (initial)
sample of random fuzzy numbers in order to generate sec-
ondary (bootstrap) fuzzy random samples. But, contrary to
the classical bootstrap, these simulated secondary sets consist
of values, which are “not exactly the same” as in the ini-
tial sample. In the first method, the modified direct method
(called the d-method and described by a discrete probabil-
ity distribution d(x)), information about the α-cuts of the
LRFNs from the primary set is used. In the second method
(called the w-method), a mixed discrete uniform probabil-
ity distribution w(x) is used for generation purposes. In this
approach, the information about the α-cuts of the observa-
tions from the primary sample is modified in a certain way,
using a non-informative uniform distribution. Both of the
proposed methods are used to generate the sets of LRFNs,

whose diversity is in a certain sense greater than the diver-
sity of observations from the primary sample. However, this
greater diversity has been achieved without incorporation of
any additional and specific assumptions about the general
probability model for the initial population. Hence, both of
these approaches are strictly nonparametric ones.

Secondly, the outputs for these two methods are analyzed,
using the most important statistical measures. For both small
and moderate primary samples, and two types of triangu-
lar fuzzy numbers, we check if the generated secondary
(bootstrap-like) samples imitate well the statistical behav-
ior of the initial population. In order to do this, the mean
and the standard deviation are calculated, and applicability
of the strong law of large numbers and of the law of iter-
ated logarithm have been confirmed. We also compare the
simulated secondary samples for the two proposed meth-
ods with the output of the classical bootstrap approach. It
seems that the application of d(x) and w(x) distributions in
bootstrapping is very promising, because the generated tri-
angular numbers “mimic” the values from the initial sample
very well. Moreover, if the previously mentioned statisti-
cal measures are taken into account, these generated values
sometimes behave even better than in the case of the classical
bootstrap approach applied to the same primary samples.

Thirdly, for the same sizes of samples, and two types of
triangular fuzzy numbers, we check whether the simulated
values are “close enough” to the fuzzy numbers from the ini-
tial set. The level of this proximity is measured using four
types of measures (the supremum measure, the l1 metric,
the Hausdorff distance extended to the metric, and the mea-
sure proposed by Tran and Duckstein in Tran and Duckstein
(2002)).Once again, the obtained results have been compared
with the outcomes for the classical bootstrap approach. The
analysis performed confirms the proposition that fuzzy num-
bers, generated using d(x) and w(x) distributions are very
close to observations from the primary sample. Therefore,
the two simulation procedures, introduced in this paper, can
be used to form the secondary (bootstrap-like) sample, which
is “similar”, but also, in some way, different, in comparison
with the initial set of observations.

And finally, we check whether these two new simulation
algorithms can be successfully applied for solving someprac-
tical statistical problems. As an example, we have applied the
d-method and the w-method in two statistical tests about the
mean value of a population of fuzzy numbers. In these two
tests, the outputs for both small and moderate primary sam-
ples have been analyzed for three types of triangular fuzzy
numbers. As previously, we have compared three simulation
procedures (the classical bootstrap and two methods intro-
duced by us). In all considered cases, the difference between
the nominal significance level of the test and the empirical
percentage of rejections of the true null hypothesis is used as
a benchmark. Once again, the algorithms introduced in this
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paper show their promising potential, because the difference
mentioned is usually lower for the proposed bootstrap-like
procedures, based on the d(x) orw(x) distributions, than for
the classical bootstrap of fuzzy random variables.

The proposed methods have, in comparison with the
classical bootstrap, one disadvantage, appearing when con-
sidered fuzzy numbers have their “natural” limits (e.g., when
their supports must contain only nonnegative numbers). In
such a case, it may happen that some of the generated ele-
ments of the secondary (bootstrap-like) samplemaynot fulfill
such requirements. In such a case, one can introduce certain
modifications of the proposed method (e.g., a simple curtail-
ment) in order to eliminate such “unnatural” observations.
However, the consequences of such modifications are yet
not known and require consideration in the future research.

It should be noted that fuzzy sets introduced by Zadeh are
still the most popular tool used for modeling non-random
uncertainty (imprecision). There exist many extensions of
fuzzy sets which can also be used for this purpose. For
example, interval-valued fuzzy sets (IVFS), introduced inde-
pendently by four different authors in 1975—see Nowak and
Hryniewicz (2018) for references, can be used in situations,
when the membership function of a fuzzy set cannot be
precisely defined. Another very popular extension, widely
known under the name of intuitionistic fuzzy sets (IFS),
was introduced in Atanassov (1986) and can be used when
we describe imprecision in terms of membership and non-
membership functions. Many of these different methods are
interrelated or even formally equivalent (see, e.g., Deschri-
jver and Kerre 2003). Probabilistic models for IVFS and
IFS variables have been already proposed in the literature.
However, statistical methods for the analysis of such impre-
cise data practically do not exist. Notable exceptions (Akbari
and Arefi 2013; Hesamian and Akbari 2017) are devoted to
the analysis of IFS random data. Complex description of
IVFS and IFS data makes inferential statistical procedures
for these types of data extremely difficult. Therefore, simu-
lationmethods, considered in this paper, after somenecessary
modifications, could be applied in the statistical analysis of
such data.
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