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Abstract
Microbial fuel cells (MFCs) performwastewater treatment and electricity production through the conversion of organic matter
using microorganisms. For practical applications, it has been suggested that greater efficiency can be achieved by arranging
multiple MFC units into physical stacks in a cascade with feedstock flowing sequentially between units. In this article, we
investigate the use of cooperative coevolution to physically explore and optimise (potentially) heterogeneous MFC designs in
a cascade, i.e. without simulation. Conductive structures are 3D-printed and inserted into the anodic chamber of each MFC
unit, augmenting a carbon fibre veil anode and affecting the hydrodynamics, including the feedstock volume and hydraulic
retention time, as well as providing unique habitats for microbial colonisation.We show that it is possible to use design mining
to identify new conductive inserts that increase both the cascade power output and power density.

Keywords 3D printing · Cascade stacks · Cooperative coevolution · microbial fuel cell · Shape optimisation

1 Introduction

Microbial fuel cells (MFCs) are energy transducers that con-
vert organic matter, including waste, directly into electricity
usingmicroorganisms. The available organicmatter inMFCs
varies, ranging from simple substances (e.g. acetate, glucose,
and butyrate) to complex substances (e.g. municipal wastew-
ater, brewerywastewater, and urine) (Pant et al. 2010; Zhanga
et al. 2011; Ieropoulos et al. 2012). In addition to the advan-
tages of direct energy conversion,MFCs are environmentally
friendly, recovering energy from waste.

Scale-up through the physical stacking and electrical con-
nection of multiple MFC units is essential for practical
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applications of the technology since the energy density of
an individual MFC unit is relatively low (Aelterman et al.
2006; Ieropoulos et al. 2008). For treating wastewater, stack-
ing MFC units in a cascade manner has been considered as a
potential replacement of the trickling filter treatment process
(Winfield et al. 2012). This type of process is very efficient
for small to medium sized volumes of wastewater treatment
where large areas of land are unavailable. Furthermore, it
does not require high power to run since aeration or mixing is
unnecessary. However, when connectingmultipleMFC units
electrically, issues such as cell reversal can be problematic
(Oh and Logan 2007; Ieropoulos et al. 2010a). Several fac-
tors, which include substrate depletion, immaturity of anode
biofilms, and inappropriate external electrical load, could
lead to cell reversal (Oh and Logan 2007; Ieropoulos et al.
2010a; Harnisch et al. 2009; An and Lee 2014). In order to
avoid cell reversal, several strategies have been suggested,
including the use of capacitors, power management sys-
tems, or building homogeneous anode biofilms (Zhang and
Angelidaki 2012; Papaharalabos et al. 2017; Sugnaux et al.
2017). For cascade systems, feedstock distribution within
cascades is particularly important since feedstock composi-
tion changes throughout the stack, which in essence changes
the internal resistance.

Design mining is the use of computational intelligence
techniques to iteratively search and model the attribute space
of physical objects evaluated directly through rapid proto-
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typing to meet given objectives. It enables the exploitation
of novel materials and processes without formal models or
complex simulation, whilst harnessing the creativity of both
computational and human designmethods. A sample-model-
search-sample loop creates an agile/flexible approach, i.e.
primarily test-driven, enabling a continuing process of pro-
totype design consideration and criteria refinement by both
producers and users. We have recently demonstrated the suc-
cess of the approach to discover new wind turbine designs
(Preen and Bull 2014, 2015, 2016, 2017). In this article, we
explore the application of design mining for MFC cascade
design.

A recent reviewof the evolution of physical systems can be
found in Preen and Bull (2017) and is therefore not covered
here. The remainder of this article is organised as follows.
We begin with a brief overview of MFC cascades and a
tuneable model that can be used to explore aspects of coop-
erative coevolution. Method and results are then presented
for simulations of MFC cascade coevolution. Subsequently,
we present results from a physical experiment used to opti-
mise designs of conductive structures that are 3D-printed
and inserted into each MFC unit in a cascade, augmenting
a carbon fibre veil anode and affecting the hydrodynamics,
including the feedstock volume and hydraulic retention time,
as well as providing unique habitats for microbial colonisa-
tion.

2 Background

2.1 Cascades of microbial fuel cells

MFCs convert the chemical energy of feedstock into electric-
ity through the metabolic activity of microorganisms. They
usually consist of two compartments, an anode and a cath-
ode, separated by an ion-permeable material. In the anode,
microorganisms oxidise organic matter (fuel) and release
CO2, electrons, andprotons.Electrons produced in the anode,
flow to the cathode via an external circuit as the result of elec-
trophilic attraction from the cathode electrode,whilst protons
migrate from the anode to the cathode through the separator
between the two compartments. The electrons and protons
subsequently combine with oxygen (final electron acceptor),
and this reduction reaction completes the circuit (Li et al.
2008; Chae et al. 2008). The quantity of electrons flowing
through the external circuit is the electricity being produced,
i.e. current.

For MFC scale-up in terms of power generation, two dis-
tinct approaches have been suggested. The first is to increase
the size of an individualMFC (Logan 2010). The second is to
build a multitude of relatively small MFCs connected elec-
trically (Ledezma et al. 2013; Ieropoulos et al. 2016). In the
case of the second approach, the output of an MFC system

is amplified by the number of MFC units employed, similar
to how batteries can be connected together. Scale-up is also
vital to treat certain volumes of wastewater. It is generally
accepted that continuous flow is more favourable for both
stable power generation and the treatment of large volumes
of wastewater.

In a cascade system, the original feedstock is supplied
to the first MFC unit positioned on the top of the cascade.
Its effluent flows to the unit immediately below; the efflu-
ent of the first MFC therefore becomes the substrate for the
downstream MFC. This is the same for third, fourth, etc.
The performance of each MFC, in terms of the amount of
substrate utilised, reproduction of anodic microorganisms or
by-products from substrate utilisation, can therefore have a
significant effect on otherMFCs, despite not being connected
hydraulically. For example, downstream MFCs are likely to
be fedwith a lower concentration of feedstock comparedwith
the MFCs upstream since some of the readily available sub-
strates are depleted before arrival. When single or multiple
units experience substrate depletion, the power output is con-
sequently reduced. In the long term, this can affect the anodic
biofilm, causing the units to permanently underperform.

Hence, providing sufficient quality feedstock to eachMFC
unit in a stack is essential. One solution is to supply high con-
centrations of feedstock to cascades, to ensure all of the units
have sufficient fuel. However, for maximum substrate util-
isation and therefore maximum waste treatment efficiency,
this may not be the best approach. Other operating parame-
ters such as the flow rate, which consequently determines the
hydraulic retention time (HRT), can be tuned to achieve both
efficient energy production and waste treatment. Given that
a cascade has only one source of feedstock flow, different
HRT for individual MFC units in the cascade can be formed
by changing the volume of each unit. Walter et al. (2016)
have recently shown that the power density of a cascade can
be increased by reducing the size of downstreamMFC units.

Many studies have investigated different design parame-
ters, including the distance between the anode and cathode,
and the surface area of both electrodes (Liu et al. 2006; Oh
and Logan 2006; Scott and Yu 2015). However, studies of
MFC reactor design optimisation embracing these param-
eters together are rare. This is particularly true for MFC
cascade systems. In this respect, additivemanufacturing tech-
nology, also known as 3D printing, can be a very useful tool
to test novelMFC architectures as well as electrodes and sep-
arators relatively quickly and easily (Ieropoulos et al. 2010b;
Calignano et al. 2015; You et al. 2017). The design optimi-
sation of individual MFC units will improve the individual
performance, which results in performance enhancements to
the whole system in terms of waste treatment efficiency and
level of power output. This can also save the cost ofmaterials,
building and system footprint.
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2.2 Parallelism

Genetic algorithms (Holland 1975) are population-based
search and optimisation techniques that are inherently par-
allel. For example, multiple offspring can be evaluated
simultaneously. The multi-population approach of cooper-
ative coevolutionary algorithms (Husbands and Mill 1991)
presents even more ways in which parallelism can be
used. For example, combinations of offspring from multiple
species populations can be evaluated simultaneously. Con-
sequently, there is a growing body of work using graphics
processing units to parallel process evolutionary algorithms,
thereby reducing the wall-clock time required to find suitable
solutions (Liu et al. 2015). Analogous to the use of graph-
ics processing units for parallel hardware processing, in this
articlewe usemultiple 3Dprinters andmultiple physical test-
ing equipment to perform parallel evaluation of new MFC
designs.

2.3 Adaptive population sizing

Most evolutionary algorithms fix the number of parents and
offspring throughout optimisation. However, adapting the
number of offspring with respect to evolutionary conver-
gence has long been suggested as a means to improve the
progress per fitness function evaluation (Hansen et al. 1995).
The underlying concept is to adjust the population size to
the smallest necessary to maintain sufficient search (genetic)
diversity, thereby conserving the number of fitness function
evaluations per generation. Recently, LaPort et al. (2015)
have shown that adapting the parental population size with
respect to mutation and fitness rates can optimise the search
diversity and thus improve fitness and convergence. See
Karafotias et al. (2015) for an overview of parameter control
in evolutionary algorithms, including the population size.

2.4 The NKCSmodel

Kauffman and Johnsen (1991) introduced the abstract NKCS
model to enable the study of various aspects of coevolution.
In their model, an individual is represented by a genome
of N (binary) genes, each of which depends epistatically
upon K other randomly chosen genes in its genome. Thus
increasing K , with respect to N , increases the epistatic link-
age, increasing the ruggedness of the fitness landscapes by
increasing the number of fitness peaks, which increases the
steepness of the sides of fitness peaks and decreases their
typical heights. Each gene is also said to depend upon C
randomly chosen traits in each of the other X species with
which it interacts, where there are S number of species in
total. The adaptive moves by one species may deform the fit-
ness landscape(s) of its partner(s). AlteringC , with respect to

N , changes howdramatically adaptivemoves by each species
deform the landscape(s) of its partner(s).

Themodel assumes all inter- and intragenome interactions
are so complex that it is appropriate to assign random values
to their effects on fitness. Therefore, for each of the possible
K + (X × C) interactions, a table of 2K+(X×C)+1 fitnesses
is created for each gene, with all entries in the range [0,1],
such that there is one fitness for each combination of traits.
The fitness contribution of each gene is found from its table;
these fitnesses are then summed and normalised by N to give
the selective fitness of the total genome for that species. Such
tables are created for each species (Bull 2016).

See example in Fig. 1; the reader is referred to Kauffman
(1993) for full details. This tuneable model has previously
been used to explore coevolutionary optimisation, for exam-
ple in the comparison of partnering strategies (Bull 1997).
We similarly use it here to systematically compare various
techniques for the design mining approach.

3 Simulations of MFC cascade coevolution

3.1 Methodology

In this article, 5 cascades composed of 4 MFCs are evalu-
ated in parallel, where each cascade is physically duplicated
and the average output is then used as fitness, i.e. there are
10 physical cascades. The fittest cascade is rerun in the sub-
sequent test cycle to ensure that new designs are compared
consistently. Thus, initially 5 different cascades are simul-
taneously evaluated to generate initial data, each composed
of S = 4 randomly created individuals. Thereafter, 4 new
cascade evaluations occur in parallel on each test cycle.

Initially, we use the NKCS model to simulate MFC cas-
cade coevolution and compare different evaluation strategies.
To simulate the cascade flow, it is assumed that the first
species is epistatically dependant only on the second species
(i.e. X = 1), whereas the second and third species are linked
to both neighbouring species (i.e. X = 2) and the fourth
species linked only to the third (i.e. X = 1). An individual
MFC is represented by N = 20 genes.

The new individuals produced for each test cycle are gen-
erated as follows. In the standard (1+4) algorithm, each
species is evaluated sequentially by creating 4 offspring from
the single fittest individual in the species and partnering each
with the fittest individuals in the other species; see Algo-
rithm 1. In (1+1)×S, each of the S = 4 species produces a
single offspring from the fittest member in parallel and each
are partnered with the fittest individuals in the other species;
see Algorithm 2. In (1+4)-off, each species produces 4 off-
spring from the fittest member of that species in parallel and
are partnered together for evaluation, i.e. 4× S offspring are
created and tested in parallel; see Algorithm 3.
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N = 3 K = 1 C = 1 S = 2 X = 1

n1 n2

n3

1 0

1

Species s1

n1 n2

n3

1 1

0

Species s2

Species s1 gene n1
s1n1 s1n3 s2n1 fitness

0 0 0 0.57
0 0 1 0.12
0 1 0 0.09
0 1 1 0.16
1 0 0 0.44
1 0 1 0.66
1 1 0 0.33
1 1 1 0.44

Species s1 gene n2
s1n2 s1n1 s2n3 fitness

0 0 0 0.11
0 0 1 0.32
0 1 0 0.68
0 1 1 0.30
1 0 0 0.19
1 0 1 0.77
1 1 0 0.21
1 1 1 0.23

Species s1 gene n3
s1n3 s1n2 s2n3 fitness

0 0 0 0.75
0 0 1 0.42
0 1 0 0.25
0 1 1 0.28
1 0 0 0.13
1 0 1 0.58
1 1 0 0.66
1 1 1 0.91

Fig. 1 The NKCS model: each gene is connected to K randomly cho-
sen local genes (solid lines) and to C randomly chosen genes in each
of the X other species (dashed lines). A random fitness is assigned to
each possible set of combinations of genes. The fitness of each gene

is summed and normalised by N to give the fitness of the genome. An
example NKCS model is shown above and example fitness tables are
provided for species s1, where the s1 genome fitness is 0.416 when
s1 = [101] and s2 = [110]

Algorithm 1: Coevolutionary algorithm (1 + 4)

1 create and evaluate initial random designs;
2 while evaluation budget not exhausted do
3 for each species do
4 create 4 offspring using genetic operators;
5 partner with the fittest member in each other species;
6 evaluate the 4 cascades;
7 update the fittest design in each species
8 end
9 end

Algorithm 2: Coevolutionary algorithm (1 + 1) × 4

1 create and evaluate initial random designs;
2 while evaluation budget not exhausted do
3 for each species do
4 create 1 offspring using genetic operators;
5 end
6 partner with the fittest member in each other species;
7 evaluate the 4 cascades;
8 update the fittest design in each species
9 end

Given the small initial population size, the sameevaluation
strategies are compared with versions where the population
size of each species increases to a maximum of 50. That is,
each algorithm runs as before, however tournament selec-
tion is used for parental selection (and replacement after the
population reaches the maximum.) The tournament sizes are

Algorithm 3: Coevolutionary algorithm (1 + 4)-off

1 create and evaluate initial random designs;
2 while evaluation budget not exhausted do
3 for each species do
4 create 4 offspring using genetic operators;
5 end
6 partner with offspring in each other species;
7 evaluate the 4 cascades;
8 update the fittest design in each species
9 end

set to 80% of the current population size. In all algorithms,
the per allele mutation probability is 5%, with a crossover
probability of 0%. All results presented are an average of
100 experiments consisting of 10 coevolutionary runs on 10
randomly generated NKCS functions.

3.2 Results

The performance of the different evaluation strategies are
shown for 4different K andC values inFig. 2, each represent-
ing a different point in the range of inter- and intra-population
dependence. The performance of the same strategies with an
expanding population size are shown in Fig. 3.

The results show that during the early stages of evolution
there is little difference between the algorithms. For example,
Table 1 shows that there is no significant difference after
400 evaluations when K and C are greater than 2. However,
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Fig. 2 Simulations of cascade coevolution. Results are an average of 100 experiments consisting of 10 coevolutionary runs of 10 random NKCS
functions

after 2000 evaluations, evaluating all offspring together is
significantly greater for all values of K and C , showing that
this approach is able to search a wider design space while
following increases in the fitness gradient. Expanding the
population size appears to provide no performance increase
to the algorithms; see Table 2, which shows that there are no
significant differences.

Since the physical testing of MFCs is a time consuming
process, there is only a small evaluation budget available
and therefore there appears to be no benefit from the addi-
tional exploration by evaluating all offspring simultaneously.
Consequently, in the rest of this article the coevolutionary
algorithm (1+ 1) × 4 is used as this fits more naturally with
the parallel evaluationperformedwith the physical test equip-
ment and, although not statistically significant, the mean
fitness values were greater for small numbers of evaluations.

4 Physical MFC cascade coevolution

4.1 Methodology

For this study, 12 cascades in a pair (1 pair as a reference)
were run and each cascade consisted of 4 MFC units. For

each MFC unit, a ceramic cylinder (inner diameter: 17 mm,
thickness: 3 mm, height: 50 mm; EM80P; Anderman Indus-
trial Ceramics Ltd., UK) was placed in a cylindrical plastic
container, acting as the electrode separator. A carbon fibre
veil (carbon loading: 20 g/m2; Plastic Reinforcement Fab-
rics Ltd., UK) anode with size of 270 cm2 (width: 30 cm,
length: 9 cm) was wrapped around the ceramic separator
and a hot-pressed activated carbon cathode electrode with a
total surface area of 20 cm2 (width: 4 cm, length: 5 cm) was
placed inside the separator. Without a 3D-printed insert, this
container held 44 mL volume of anolyte. Figure 4 shows
one MFC reactor assembled with an outer anodic cham-
ber and inner air-cathode compartment configuration. Each
MFC unit was placed 15 cm apart in cascade manner. The
experimental setup and a cascade schematic are shown in
Fig. 5.

Cylindrical anode insertswere fabricatedwith a 3Dprinter
(Replicator 2; MakerBot Industries LLC, USA) using a con-
ductive polylactic acid (PLA) based filament (Proto-pasta;
ProtoPlant Inc., USA) at 0.3 mm resolution. The conductive
filament is a compound of PLA, a dispersant, and conductive
carbon black. Themeasured volume resistivity of 3D-printed
conductive parts perpendicular to layers was 44 �·cm. See
You et al. (2017) for further information on commercially
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Fig. 3 Simulations of cascade coevolution with expanding population sizes. Results are an average of 100 experiments consisting of 10 coevolu-
tionary runs of 10 random NKCS functions

Table 1 Simulation best fitnesses after 400 and 2000 evaluations (aver-
ages of 100)

(1 + 4) (1 + 1) × 4 (1 + 4)-off

After 400 evaluations

K2C2 2.6593 2.6890 2.6805

K2C8 2.6224 2.6245 2.6163

K6C2 2.6714 2.6706 2.6510

K6C8 2.6012 2.6091 2.5735

After 2000 evaluations

K2C2 2.7190 2.7399 2.7772

K2C8 2.6916 2.6938 2.7407

K6C2 2.7331 2.7318 2.7598

K6C8 2.6684 2.6812 2.7013

The mean is highlighted in boldface where it is significantly different
from the (1+4) algorithm using a Mann–Whitney U test at the 95%
confidence interval

available 3D-printed filaments for MFC anodes and mem-
branes. This conductive PLA based filament was chosen to
provide conductive inner structure as well as to create differ-
ent volumes, inner shapes, and hydrodynamics in each MFC
unit’s anodic chamber.

Table 2 Simulation best fitnesseswith expanding population sizes after
400 and 2000 evaluations (averages of 100)

50P− (1+4) 50P− (1+1)×4 50P− (1+4)-off

After 400 evaluations

K2C2 2.6717 2.6840 2.6890

K2C8 2.6264 2.6385 2.6173

K6C2 2.6642 2.6724 2.6558

K6C8 2.6084 2.6097 2.5762

After 2000 evaluations

K2C2 2.7359 2.7361 2.7857

K2C8 2.7042 2.7102 2.7482

K6C2 2.7391 2.7336 2.7672

K6C8 2.6802 2.6746 2.7051

The mean is highlighted in boldface where it is significantly different
from the fixed population size version using a Mann–WhitneyU test at
the 95% confidence interval

The total height of each insert was fixed at 40 mm in order
to fit inside the MFC container. Each insert was divided into
4 sections of 10 mm height. Each section was encoded by 3
genes that represent the inner radius, diameter of holes, and
distance between holes. Therefore, there are 12 genes in total.
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Activated carbon (cathode)

Gas diffusion layer (cathode)

Ceramic cylinder (separator)

Anode

Feedstock flow

Fig. 4 MFC unit assembly

1

2

3

4

Fig. 5 Experimental setup. 12 cascades of 4 MFC units (left) and cascade schematic (right). Numbers show each MFC unit position within a stack
and arrows indicate direction of feedstock flow. Five unique cascade designs and a control are evaluated in parallel, each duplicated for averaging

The outer radius of each section was fixed to 19.5 mm, i.e.
the inner radius of the container. The minimum inner radius
of each section was 14.5 mm and the maximum 17.5 mm.
This was necessary to enable sufficient space for the ceramic
separator, cathode, and carbon veil anode, and to ensure
that a minimum sufficient amount of structural material was
deposited for subsequent z-layers. Circular holes were cre-
ated along the y-axis. Hole diameters were permitted from
0 to 3 mm, and distance between holes from 1 to 4 mm.
Thus, each insert design is encoded as 12 integers (genes) in
the range [0, 3], each allele representing 1 mm increments
between the permissible ranges. For example, if the first 3
genes are [0, 1, 1], the bottom section has an inner radius of
14.5mm (14.5+0); hole diameters of 1mm (0+1); and hole
spacing of 2 mm (1+1). There are approximately 20,000
possible morphologies in each cascade position; see exam-
ple in Fig. 6. Offspring are created by copying and mutating
2 genes from the fittest individual in each species/position. A

mutation event randomly increments or decrements the gene
by 1 (mm).

The MFCs were inoculated with sewage sludge (Wessex
Water Services Ltd., UK) and fed with synthetic wastewater
(Winfield et al. 2012) with 10 mM of acetate as a sole car-
bon source. Feedstock solution was provided continuously at
14mL/h to the firstMFCunits of the cascades, and effluent of
the first units overflowed to the ones below. The MFCs were
hydraulically disconnected. Initially 2K� external resistors
were connected to all MFCs, then the value of resistance
changed to 1K� for the first and second MFC units of a cas-
cade. Power output of theMFCswasmonitored continuously
in volts (V) using a multi-channel Agilent 34972A DAQ unit
(Agilent Technologies Inc., USA) every 5 min. For chemical
oxygendemand (COD)analysis, effluent of 2mLvolumewas
taken from each MFC unit and filter-sterilised with 0.45µm
syringe filters (Millex; Millipore UK Ltd., UK) prior to anal-
ysis. COD was determined using the potassium dichromate
oxidation method (COD MR test vials; Camlab Ltd., UK)
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Fig. 6 Example anodic chamber insert with 4 sections each of 10 mm
height. Each section may vary the inner radius, diameter of holes, and
hole spacing. Genome: [1, 1, 0, 1, 1, 2, 0, 2, 1, 0, 1, 0]. Each insert has
a 2 mm thick base with a 6-mm-diameter hole in the bottom so that it
lies flat in the centre of the MFC container, and includes rectangular
spaces of 8 mm width for inlet (bottom half) and outlet (opposite side,
top half). 50 min fabrication time

and analysed with a photometer (Lovibond MD 200; The
Tintometer Ltd., UK). The experiment was carried out in a
temperature controlled environment at 22 ± 2 ◦C.

At the beginning of eachweek, allMFCswere runwithout
3D-printed inserts for 2 days. Power outputs during this time
were used to normalise the stack outputs once inserts were
added. 3D-printed inserts generated using Algorithm 2 were
subsequently added into the MFC anodic compartments in
order to create different inner volumes and structures. MFCs
were run for an additional 2 days with inserts, and the aver-
age power output of the cascade units during this period was
used as fitness values. In the event of a tie, the design pro-
ducing the highest power density became the winner. The
experiment was run for 10 generations, with initial inserts
generated randomly.

4.2 Results

After 10 generations the average power of an MFC unit in
the fittest cascade had increased from 53.8 to 77.8µW (a
44.6% increase) with an average MFC unit power density
increase from 1.95 to 2.93µW/mL (a 50.3% increase; volu-
metric power densitywas normalised by the anolyte volume.)
The individualMFC unit power values from generation 0 and
9 are shown in Fig. 7 and the designs are shown in Fig. 8.

In comparison with the standard MFC cascade, i.e. with-
out any 3D-printed inserts, the evolved cascade produced
∼20%more power and double the power density. Treatment
efficiency measured in COD values was over 90% for both
the fittest (93.2%) and standard (94%) MFC cascades. This
is higher than the generation 0 cascades, which was 86.6%.
This demonstrates that system efficiency, in terms of both
power generating performance and treatment efficiency, can
be improved through design optimisation. When the inserts’
MFC cascade position was inverted, i.e. the insert in the first
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Fig. 7 Power produced by each MFC unit in generation 0 (pattern)
versus generation 9 (solid)

(a) Generation 0.

(b) Generation 9.

Fig. 8 Fittest evolved anodic chamber insert designs. From left to right,
first position in the cascade to the last

position becoming the insert in the fourth, insert in the second
position becoming the insert in the third, and vice-versa, a
reduction in cascade power of 12.5%was observed, showing
that evolution has exploited characteristics specific to the cas-
cade flow. In addition, the same insert designs from the tenth
generation were fabricated using standard (non-conductive)
PLA and a reduction in power of 10.4% was seen, showing
that the conductivity of the inserts had a positive effect on
the MFC power generation by augmenting the carbon veil
anode electrode. The results are summarised in Table 3.

Overall, the total anolyte volume in the cascade remained
unchanged from the first generation at 110 mL. However, the
volume of anolyte was redistributed to the other MFC units
from the third position where the insert increased in volume;
i.e. all other inserts decreased in volume. The surface area of
all insert designs increased and consequently the total stack
surface area increased by 6.45 cm2. A larger surface area is a
desirable aspect for the MFC anode since it provides a larger
space for electrochemically active bacteria attachment (You
et al. 2014). Although the conductive PLA inserts used in this
study were not used simply for expanding the size of anodes,
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Table 3 Physical MFC cascade coevolution results

Average power
per unit (µW)

Average power
density per unit
(µW/mL)

Stack treatment
efficiency (%)

Gen 0 53.8 1.95 86.6

Gen 9 inverted 68.1 2.48 95.6

Gen 9 PLA 69.7 2.49 88.6

Gen 9 77.8 2.93 93.2

No inserts 61.6 1.40 94.0

it seems clear that the larger surface area of the conductive
inserts contributed to the MFC power production. However,
due to the relatively low conductivity of the filament mate-
rial, it would be unlikely to replace the carbon fibre veil anode
(You et al. 2017). 3D printing structures that serve as both
anodes and chassis will be an interesting avenue to explore
in future work, in terms of additive layer manufacturing for
scale-up.

The decrease in volume of the insert in the first posi-
tion was a result of increases in the diameter of the holes
in the bottom half of the design, resulting in an increase in
anolyte volume from 25.8 to 26.6 mL. The total surface area
of the insert increased by 1.2 cm2 and its power production
increased by 38.45µW.

TheMFC unit in the second position decreased in volume
as a result of increases in the diameter of the holes and an
increase to the inner radius of the middle sections, resulting
in an increase in anolyte volume from 27.4 to 28.2 mL. The
bottom and top sections of the insert remained unchanged
after 10 generations. The total surface area of the second
insert increased by 1.16 cm2, however the amount of power
produced remained unchanged.

The most significant changes were observed in the third
position in the cascade where the offspring in this species
produced a greater average MFC cascade power in 4 of the
10 evolved generations. The third insert increased in over-
all volume causing a reduction in the anolyte volume from
28.6 to 25.5 mL. The volume of the bottom 3 sections of the
insert increased by 40% through a smaller inner radius and
a reduction in the number of holes, whereas the volume of
the top quarter section decreased by 18% through a larger
inner radius causing a larger anolyte volume at the top near
the unit outlet. The third section from the bottom of the first
and third inserts experienced identical changes, shrinking
the inner radius to its minimum (that is, filling as far inwards
towards the carbon veil anode as permitted) and with holes
of 2 mm diameter separated by 2 mm of filament resulting in
a larger surface area. The total surface area of the third insert
increased by 2.15 cm2 and the power increased by 64µW.

Similar to the first position in the stack, the insert in the
last position experienced a decrease in volume as a result of
increases in the diameter of the holes in the bottom half of the

Fig. 9 End species fittest evolved anodic chamber insert design

design, with a resulting increase in anolyte volume from 28.2
to 29.9 mL. The total surface area increased by 1.94 cm2.
However, the power remained essentially unchanged, pro-
ducing a small decrease of 6µW. Therefore, 5 additional
generations were performed using Algorithm 1 solely on the
last species, i.e. the first 3 MFC units were fixed to the fittest
designs from generation 9. This resulted in a further increase
of 18% in the cascade power output. The final evolved insert
design further reduced in volume as a consequence of addi-
tional holes to the upper half, resulting in a further increase
in anolyte volume to 30.9 mL, showing a continued trend
towards increasing the amount of feedstock in the end posi-
tion; the design is shown in Fig. 9.

5 Conclusions

The use of cascade configurations and 3D-printed com-
ponents have recently been identified as significant ways
through which MFCs can be enhanced (Walter et al. 2016;
Papaharalabos et al. 2015). The design and optimisation of
the anode electrode have been highlighted as having a cru-
cial affect on performance and scalability since it is central to
biocatalysis through bacterial adhesion and electron transfer.

By repeatedly creating and testing physical designs as sug-
gested by computational intelligence, it may be possible to
discover and exploit previously unknown or insufficiently
understood physical interactions. In this article, we have pro-
vided proof-of-concept that such an approach can be used
to design conductive structures that augment the existing
anodes in MFC units forming a cascade system. The struc-
tures were inserted into the anodic chamber facilitating the
testing of new designs to explore the biocompatibility, con-
ductivity, stability, surface area, and hydrodynamics. The
total cascade performance in terms of power output and
power density iteratively increased. Cooperative coevolution
enables the designs in each unit to evolve towards the opti-
mum characteristics specific to the cascade position whereby
the total cascade performance is optimised.
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Designmining provides a general and flexible approach to
the optimisation ofMFCs. Futureworkwill therefore include
the use of new 3D printers and materials, such as those with
a higher conductivity and the ability to control microsurfaces
and create microporous objects. Multi-material printers will
enable the production of monolithicMFCs enabling the opti-
misation of entire fuel cells within a cascade system.
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