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Abstract

The idea of knowledge aggregation contained in C-fuzzy decision tree nodes with OWA operators during the C-fuzzy random
forest decision-making process is presented in this paper. C-fuzzy random forest is a new kind of ensemble classifier which
consists of C-fuzzy decision trees. There are proposed three kinds of OWA operators for the given problem, called Local OWA,
global OWA for each tree in the forest and global OWA for the whole forest. Weights of OWA operators are optimized using
a genetic algorithm. In order to evaluate the created classifier, experiments were performed using ten datasets. The classifier
was checked in comparison with C4.5 rev. 8 decision tree and single C-fuzzy decision tree. The influence of randomness and
proposed OWA operators on the classification accuracy was tested.

Keywords C-fuzzy random forest - OWA operators - C-fuzzy decision tree

1 Introduction

In this paper we would like to present the method of using
OWA operators in C-fuzzy random forest classification pro-
cess. These operators aggregate the knowledge contained in
C-fuzzy decision tree nodes which are part of C-fuzzy ran-
dom forest. This kind of forest is a classification solution
which joins fuzzy random forest and C-fuzzy decision trees.
We have presented the idea of C-fuzzy random forest on
CISIM 2016 conference and described it in conference mate-
rials (Gadomer and Sosnowski 2016). Preliminary results
achieved on four datasets were also presented there. In this
paper we proposed the way of using OWA operator in our
classifier. We also improved the research methodology and
performed complete experiments on ten datasets. The main
purpose of this work was to expand the classifier created
before on OWA operators in order to achieve the flexible
ensemble classifier which can be applied to many different
datasets. Thanks to this flexibility, the classifier should allow
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to achieve results better than the other classifiers (or at least
comparable to them), which would make it a competitive
solution that could be chosen to deal with many classifica-
tion problems.

In the first part of this paper, three main solutions con-
nected with the created ensemble classifier are presented:
C-fuzzy decision trees (Sect. 1.1), fuzzy random forest
(Sect. 1.2) and OWA operators (Sect. 1.3). Then the details
of C-fuzzy random forest classifier are described in Sect. 2.
After that, the idea of knowledge aggregation contained in C-
fuzzy decision trees which are part of C-fuzzy random forest
with OWA operators is presented in Sect. 3. Three kinds of
OWA operators are also shown which we proposed and used
in our classifier. In Sect. 4 the experiments are described, and
in Sect. 5 results are discussed. The classification accuracy
using C-fuzzy random forest with OWA operators is com-
pared with C4.5 decision tree and C-fuzzy decision trees
working singly. The results of classification using different
OWA Operators are compared. Also, the strength of ran-
domness for the given problem is checked by comparing
results achieved using random node selection with the results
obtained without it.

1.1 C-fuzzy decision trees

The new class of decision trees, called C-fuzzy decision trees,
is proposed by Pedrycz and Sosnowski (2005). The motiva-
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tion to create this tree was to propose the classifier which is
able to deal with the main problems of traditional tree. The
fundamentals of decision trees are:

— The decision tree operates on a small (usually) set of
discrete attributes,

— To split the node, the single attribute which brings the
most information gain is chosen,

— In their traditional form, the decision tree is designed to
deal with discrete class problems—the continuous prob-
lems are handled by regression trees.

These fundamentals bring the following problems:

— To handle continuous values, it is necessary to perform
the discretization which can impact the overall perfor-
mance of the tree.

— Information brought by the nodes which were not
selected to split the node is kind of lost.

C-fuzzy decision tree was developed to deal with these
problems. The idea of this kind of tree was based on the
assumption of treating data as the collection of information
granules, which are almost the same as fuzzy clusters. The
proposed tree is spanned over these granules. C-fuzzy deci-
sion tree assumes grouping data in such granules, which are
characterized by low variability (which means the similar
objects get to the same cluster). These granules are the main
building blocks of the tree.

The first step in the tree’s construction process is group-
ing the data set into ¢ clusters in the way the similar objects
are placed in the same cluster. The prototype (centroid) of
each cluster is randomly selected first and then improved
iteratively. Then the diversity of the each cluster is computed
using the given heterogeneity criterion. The node which has
the greatest value of diversity (the most heterogenous) is
chosen to split from all of the tree’s nodes. Using fuzzy clus-
tering method, the selected node is divided into ¢ clusters.
For each of the nodes created that way, the diversity is com-
puted and again, the most heterogenous node in the whole
tree is selected to split The same process repeats until the
stop criterion is achieved. It can be easily noticed that each
node has 0 or ¢ children and the tree growth can be breadth
intensive or deep intensive.

In order to make this publication self-contained, we would
like to describe the tree’s construction process in a formal
way. Let’s do the following assumptions:

¢ is a number of clusters,

— N is a number of training instances,
—-i=1,2,...,c,
-k=12,...,N,

— U = [u;x] is a partition matrix,
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m is a fuzzification factor (usually m = 2),

djx is a distance function between the ith prototype and
the kth instance,

fi 1s the prototype of the cluster,

Z = {x(k),y(k)} is an input—output pair of data
instances,

-z = [x1(K)x2k ... x, () y ()T

Building clusters and grouping objects into them are based
on fuzzy clustering technique called fuzzy C-means tech-
nique (FCM) Bezdek (1981). The clusters are built through
a minimization of objective function Q, which assumes the
format:

c N
0= Y uid g

i=1 k=1

Partitions u;; and prototypes f; are updated during the
iterations of fuzzy C-means process according to the follow-
ing expressions:

1
i ()
N
f= D k=1 Uik Zk 3)
i = N m
D k=1 Uiy

To describe the node splitting criterion, let’s do the fol-
lowing assumptions:

- X; = {x(®)|u;(x(k)) > uj(x(k)) for all j # i}, where
J pertains to the nodes originating from the same parent,
denotes all elements of the data set which belong to the
given node in virtue of the highest membership grade,

- Y; = {yk)|x(k) € X;} collects the output coordinates
of the elements that have already been assigned to X,

- U; =[uj(x(D)u;(x(2)) ---u; (x(Y;))] is a vector of the
grades of membership of the elements in X,

- N =(X;,Y;,U;),

— m; is the representative of this node positioned in the
output space,

— Vi, isthe variability of the data in the output space existing
at the given node.

The variability V; is computed according to the following
expression:

>

(x(k),y(k))eX;xY,;

i (x (k) (y (k) — m;)? 4)
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In this notation, m; is computed the following way:

o Z(x(k),y(k))EX,-xY,- ui(x(k))y (k)
=
D).y kX xy; Wi (x (k)

&)

After the construction process is complete, the tree can
be used in classification mode. The classifying object starts
from the root of the tree. First, the membership degrees of this
object to the children nodes are computed. Each degree is the
number of the [0, 1] range, and all of these degrees sum to 1.
The object is getting to the node which corresponds with the
highest of the computed membership values. This operation
repeats as long as object achieves the node which doesn’t
have any children. The result of the classification process is
the class assigned to the node where the object gets to. The
same process is repeated for each of the objects which have
to be classified.

1.2 Fuzzy random forests

The solution with joins fuzzy trees and random forests was
first presented by Bonissone et al. (2008b) and then widely
described by Bonissone et al. (2008a, 2010). The informa-
tion about constructing this classifier, learning process and
data classification is similar in all of these publications—they
differ only in details. The most extensively fuzzy random
forest issue was presented by Bonissone et al. (2010) which
achieved the biggest popularity from these three papers.
The mentioned solution was based on fuzzy decision trees
(Janikow 1998) and random forests (Breiman 2001). The
assumptions of fuzzy random forest were to combine:

— The robustness of ensemble classifiers,

— The power of the randomness to decrease the correlation
between the trees and increase the diversity of them,

— The flexibility of fuzzy logic for dealing with imperfect
data.

The forest construction process is similar to Forest—RI,
described by Breiman (2001). When the forest is constructed,
for each tree algorithm begins its working from the root of
the tree. A random set of attributes, which has the same size
for each node, is chosen. Using all of the objects from the
training set, the information gain is computed for each of
these attributes. The attribute with the greatest information
gain is chosen to node split. After this operation the attribute
is removed from the set of available attributes to divide the
next nodes. Then, for all following tree nodes, the operation
is repeated using the same training set and the new ran-
dom attribute set with the given size (attributes used before
are excluded). For each object of the training set, the given
object’s membership degree to the given node is computed
when the node is dividing. For each node, before the division,

the membership degree is equal to 1. After the division, each
object can belong to one or to the greater number of created
leaves. If this object belongs to only one leaf, its membership
degree is equal to 1, for the other leaves it is equal to 0. If
the object belongs to more than one leaf, the membership
degree can be different for different leaves—it can take val-
ues between 0 and 1 and it sums to 1 in the set of all children
of the given node. If the value of the attribute chosen to per-
form the division is missing, the object is assigned to each
split node with the same membership degree, which depends
on to the number of the nodes.

All leaves in the tree are constructed according to the
described algorithm. Then the same process is repeated
for each tree, but with different, randomly selected set of
attributes. It makes every tree in the forest different than oth-
ers.

Authors improved the fuzzy random forest classifier in
their later works. For example, in one of their publications
(Cadenas et al. 2012) they focused on using this classifier
with imperfect data. They presented that fuzzy random for-
est can deal with missing, crisp, probabilistic uncertainty and
imprecise values. In one of their earlier papers (Garrido et al.
2010), authors proposed a classification and regression tech-
nique which handle heterogenous and imperfect information.
They created a model described by Gaussian mixture to deal
with this issue. The fuzzy random forest was the other idea
of handling imperfect data, which shows the advantages and
strength of this classifier.

1.3 OWA operators

OWA operators were created by R. R. Yager and presented in
one of his papers (Yager 1988). The motivation for creating
that structure was the lack of fuzzy operator between t-norm
and co-t-norm. The t-norm operator expresses pure “anding,”
and the co-t-norm operator expresses pure “oring.” The OWA
operators’ objective was to create the operator which would
be placed between these two extreme ones, adjusting their
degree in the aggregation.
Let’s do the following assumptions:

n is the size of the collection,

- W =[Wy, Wa, ..., W,]is the vector of weights, where:
- Wi €[0, 1],
- X Wi=1,
- A =lay,ar,...,a,]—collection of objects, a; € [0, 1],
- B = [b1,by,...,b,]—vector A sorted in descending
order.

According to these assumptions, OWA operator can be
defined as:
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n
F(ai,a,...,a,) =) Wb, 6)
i=1

For any vector B and for any weights W which fulfill the
given assumptions it is true that:

0<FB) <1 @)

This operator has many usages in different areas, and it
is still developed. As an example, (Yager and Alajlan 2014)
authors propose the OWA operator with the capability to per-
form aggregations in a discrete set of possible outcomes or
an interval of possible outcome. They also provide the OWA
operator with the ability to perform aggregations in situations
where the arguments being aggregated have an associated
uncertainty, probability of occurrence. In the other paper
(Mesiar et al. 2015), authors discuss three generalizations
of OWA operators like GOWA, IOWA and OMA. They also
propose new types of generalizations. The next paper (Ala-
jlan et al. 2013) treats about using OWA operator for the
classification of hyperspectral images. The example of using
OWA for a web selection process is presented by Yager et al.
(2011). In the last example (Yager and Beliakov 2010), the
ways OWA operators can be used for regression problems
are described. There are much many works treating about
different OWA usages and modifications. These few exam-
ples show how widely this operator is used.

1.4 Other approaches

In previous paragraphs we presented theoretical aspects of
issues directly connected with our work which is a subject
of this paper. However, there are many other approaches
which were designed in order to face the problem of data
classification. In the original fuzzy random forest authors
used Janikow’s fuzzy trees (Janikow 1998) and in our for-
est, we used C-fuzzy decision trees (Pedrycz and Sosnowski
2005), but there also many other kind of fuzzy decision trees
which could be used to construct the ensemble classifier.
For example, in Lertworaprachaya et al. (2014) authors pro-
posed the concept of interval-valued fuzzy decision trees.
They noticed that during fuzzy decision tree construction pro-
cess the uncertainty associated with their membership values
is not considered. The main idea of this kind of trees is to rep-
resent fuzzy membership values as intervals in order to model
the uncertainty and construct the tree using look-ahead-based
fuzzy decision tree induction method. The forest also can be
created in a different ways. For example, instead of creat-
ing the fuzzy random forest the way presented in Bonissone
et al. (2010), the naive random forest can be created in order
to increase diversity of the trees.

Although we concentrate on the scope of fuzzy clustering,
fuzzy trees and random forests, there are also many others
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data classification tools which can deal the same problem
in a different way. One of the most popular classifiers is a
neural network (Jain and Allen 1995), which bases on iter-
ative modifications of neurons’ weights during the training
process. Radial basis neural network (Daqi et al. 2005) is
the classifier which bases on neural network. Logistic model
tree (Landwehr et al. 2005) adapts an idea of tree induction
methods and linear models for classification problem. Sup-
port vector machine—SVM (Vapnik 1995) classifier maps
the space of the input data into high-dimensional space of
features and constructs a hyperplane which divides all of
the object classes. Those classifiers are just examples which
present the diversity of the solutions which can be used in
order to deal with classification problems. In this work we
decided to face these problems using C-fuzzy random forest
approach, but it is worth to notice just the one of possible
ways of resolving them.

2 C-fuzzy random forest
2.1 Notation

In order to present our classifier in a formal way, we also
used the following notations [based on works performed by
Bonissone et al. (2010) and Pedrycz and Sosnowski (2005)]:

— ¢ 1s the number of clusters,

— T is the number of trees in the C-FRF ensemble,

— t is the particular tree,

— N; is the number of nodes in the tree ¢,

— n is a particular leaf reached in a tree,

— E is a training set,

— e is a data instance,

— [ is the number of classes,

— i is a particular class,

— C_FRFisamatrix withsize (T x MAXy,) with MAX y, =
max {Ny, No, ..., N;}, where each element of the matrix
is a vector of size I containing the support for every
class provided by every activated leaf n on each tree ¢;
this matrix represents C-fuzzy forest or C-fuzzy random
forest,

- w = [wy, wa, ..., w.] are weight’s of the OWA operator

- W = [w;, wy, ..., w.]is matrix of the OWA operators
of the forest,

- Wi = [wq, w, ..., w.] is matrix of the OWA operators
of the ¢ tree,

- W, =[w, wy, ..., w.]is matrix of the OWA operators

of the n node,

- M = [Jj_, M; is the of subsets of training objects
belonging to the children of the given node (each element
of the matrix corresponds with single node’s child),



Knowledge aggregation in decision-making process with C-fuzzy random forest using OWA operators 3745

- U =[Uy,Us,...,Ug]is the tree’s partition matrix of
the training objects,

— Ui =[uy,ua, ..., uc] are memberships of the ith object
to the ¢ cluster,

— B ={By, By, ..., By} are the unsplit nodes,

- V =[V, Va,..., V] is the variability vector.

2.2 The idea of C-fuzzy random forest classifier

C-fuzzy random forest is the new kind of classifier which we
created and we would like to present in this section. Then,
in Sect. 1.3, we described the idea of using OWA operators
in C-fuzzy random forest classifier. The possibility of using
OWA, thanks to the additional flexibility which allows for
adjusting the classifier to the given problem in much better
way, should bring the classifier to the new level. We expect
that using OWA should improve the classification accuracy
in many cases.

The idea of this classifier was inspired by two classifiers
described before: fuzzy random forest and C-fuzzy decision
tree. It assumes creating the ensemble of the C-fuzzy deci-
sion trees which works similarly to fuzzy random forest.
The fuzzy random forest uses the strength of randomness to
improve the classification accuracy. C-fuzzy decision tree is
constructed randomly by definition as its clusters’ centroids
(the partition matrix) are selected randomly at the beginning
of the construction algorithm. These two classifiers combined
together are expected to give the promising results.

The randomness in C-fuzzy random forest is ensured by
the following aspects:

— Random note to split selection—taken from the Random
Forests:

— The full randomness—selecting the random node to
split instead of the most heterogenous,

— The limited randomness—selecting the set of nodes
with the highest diversity, then randomly selecting
one of them to perform the division. The size of the
set is given and the same for each split,

— Random creation of partition matrix—taken from the C-
fuzzy decision trees:

— At first, the centroid (prototype) of the each cluster
selection is fully random. The objects which belong
to the parent node are divided into clusters grouped
around these centroids using the shortest distance cri-
terion. Then the prototypes and the partition matrix
are being corrected as long as they achieved the stop
criterion,

— Each tree in the forest, created the way described
above, can be selected from the set of created trees.
To create the single tree which will be chosen to the

forest, the set of trees can be build. Each tree from
such set is tested, and the best of these trees (the one
which achieved the best classification accuracy for
the training set) is being chosen as the part of forest.
The size of the set is given and the same for each tree
in the forest.

It is easy to notice that the split selection idea is inspired
by the method used in fuzzy random forest. We designed our
way of splitting which corresponds with the kind of the tree
(C-fuzzy decision tree) which we used in the ensemble. In
the fuzzy random forest, to split the node there was chosen
the random attribute. The choice of the node to split was
determined by the tree growth strategy. In the C-fuzzy ran-
dom forest there is no attribute chosen, because the C-fuzzy
decision tree works another way. For each split all of the
attributes are considered together, which is the assumption
and the strength of this kind of tree. The choice concerns
the node which has to be split. Some nodes will not be split
at all, when the stop criterion is achieved. The same idea is
adapted to two kind of trees with the different constructing
algorithms. Each C-fuzzy decision tree in the forest can be
drastically different or almost the same, depends on the num-
ber of clusters and the stop criterion. What is more, as the
prototypes of each cluster are selected randomly and then
corrected iteratively, some trees can work better than others.
The diversity of the trees created that way also depends on
the number of iterations of the correction process. To achieve
the best results, it is possible to build many trees and choose
only the best of them to the forest. The diversity of these trees
in the forest can be set by changing the number of iterations
and the size of the set from which the best tree is chosen. All
of these parameters affect the degree of randomness in the
ensemble, which can be adjusted by changing them. It allows
to construct the classifier the best way according to the given
problem with a great flexibility.

The simplified process of C-fuzzy random forest creation
is presented in Fig. 1.

2.3 C-fuzzy random forest learning

The C-fuzzy random forest learning process works with the
similar assumptions that the process of fuzzy random forest
learning, proposed by Bonissone et al. (2010). The differ-
ences are about the following aspects:

— The kind of trees used in the forest: C-fuzzy decision
trees instead of Janikow’s fuzzy trees,

— The way of random selection of the node to split,

— The fact of using OWA operators (see Sect. 3).

The C-fuzzy random forest without using OWA operators
is build according to Algorithm 1.
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Start creating forest
using dataset E

Y

Prepare weights for OWA operators
(depend on OWA variant, this step
can be performed earlier)

Are all of the trees
T created?

Take a random sample of |E|
examples to create the tree

Finish forest creation

Create partition
matrix U using
examples E

S —

Y

Finish
creating
tree

Is stop criterion
satisfied?

Divide the samples belonging to
the splitted node into its children

-

Make a random selection of nodes
from the set of unsplitted nodes B

-

Compute the variability matrix V

(Choose the node with maximum

variability to split nodes

Fig.1 The simplified process of C-fuzzy random forest creation

Algorithm 1 C-fuzzy random forest learning

1: procedure C- FRFLEARNING
2:  for 1toTdo

3: 1. Take a random sample of | E| examples with replacement
from the dataset E
4: 2. Apply Algorithm 2 to the subset of examples obtained in

the previous step to construct C-fuzzy decision tree
5:  end for
6: end procedure

C-fuzzy decision trees in C-fuzzy random forest without
using OWA operators is build according to Algorithm 2.
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Algorithm 2 C-fuzzy decision tree learning

1: procedure C- FDTLEARNING
2: 1. Start with the examples in E
2. Create the partition matrix U randomly
3. Perform FCM
while Stop criterion is not satisfied do
4. Divide the samples belonging to the split node into its chil-
dren

AN

7 5. Make a random selection of nodes from the set of unsplit
nodes B

8: 6. Compute the variability matrix V

9: 7. Choose the node with maximum variability to split nodes

10: 8. Perform FCM

11:  end while
12: end procedure

2.4 C-fuzzy random forest classification

The constructed C-fuzzy random forest can be used in classi-
fication process. The strategy used in our classifier assumes
making decision by forest after the making decisions by
each tree. There is also another decision-making strategy
described by Bonissone et al. (2010) which assumes making
the single decision by the forest without the individual deci-
sion of the trees, but we didn’t use this strategy in our solution.
In the variant without OWA operators it is performed as it is
presented in Algorithm 3. It can be described by the follow-
ing equation, based on the one presented by Bonissone et al.
(2010):

D_FRF(t,i, C_FRF)
N,

> C_FRF,,;

n=1

1 ifi=arg max
= Jej=12,01

0  otherwise

Algorithm 3 C-fuzzy random forest classification

1: procedure C- FRECLASSIFICATION
2:  DecisionOfTrees

3:  DecisionOfForest

4: end procedure

5: procedure DECISIONOFTREES

6: fort=1toTdo

7 1. Run the example e to obtain the tree’s partition matrix U;
8: 2. Choose the class ¢ where ¢ = arg nllgx
ii=1,2,...,1

D_FRF;;c_FRF

9:  end for

10: end procedure

11: procedure DECISIONOFFOREST

12:  Assign to class according to the simple majority vote of trees
decisions

13: end procedure
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3 Aggregating the knowledge contained in
trees in decision making with OWA
operators

The decision about belonging the object to the given node
is based on membership degrees. It means that each object
belongs to all of possible nodes with the different degrees.
Sometimes it belongs to the given node with much higher
degree than to the other nodes, but there are often situations
the memberships are similar. In such situations low differ-
ences decide about the node where the object gets in. It can
be supposed that the knowledge stored by the tree (or by the
forest—all trees) could also have an influence on the deci-
sion, especially in the described situations. For this reason
OWA operators were used for the classification and decision-
making process.

The OWA operators were used in the three different ways:

— Local OWA—computed for each node of the each tree in
the forest,
— Global OWA:

— Global OWA for each tree in the forest—computed
once for each tree in the forest,

— Global OWA for the whole forest—computed once
for the whole forest.

All of these ways are described in the following para-
graphs. For all of them there was decided to use OWA
operators to weigh the choice of the memberships during
the node selection process. Instead of selecting the max-
imum membership, the result of the multiplication of the
membership as the weight was chosen. As it can be eas-
ily noticed, for all equal weights the choice is not modified
at all. The weights’ influence grows with the increasing
differences between different memberships’ weights. The
way of computing weights is described in the following
paragraphs.

3.1 Obtaining OWA operators weights using genetic
algorithm

The basic problem connected with OWA operator is choos-
ing the weights properly. The choice of weights should fit to
the area where the operator is used. There are at least a few
methods of obtaining OWA operators’ weights. An exam-
ple method of using the training data to pick the weights
is described by Filev and Yager (1994). However, accord-
ing to our research, the best suitable method of obtaining
OWA operators’ weights for our objectives appeared to be a
genetic algorithm. This method is accurate and flexible—
it allows for adjusting algorithm parameters according to

the given problem and to the circumstances. By modifying
these parameters, the compromise between the computation
time and the quality of the results can be achieved. In our
research we decided to choose algorithm parameters the way
to achieve best possible results for the price of computation
time. To achieve such parameters, we used optimization pro-
cess to recognize the border values—we were modifying the
parameters as long as the further changes were not improv-
ing the results in a significant degree any longer. We used the
same set of parameters for each dataset; however, they can
be also selected for each set differently. It is possible that for
specific datasets choosing different parameters could allow
to achieve a bit shorter computation time with comparable
results. In the datasets we used we haven’t noticed significant
benefits of optimizing parameters between them.

Optimal weights of OWA operator for the n node and ¢
cluster are computed by maximizing the function:

c M
F(an) = Z Z UijWncj (8)

j=1i=1

The function is computed for each OWA operator’s
weights in the node. Its maximization is performed by a
genetic algorithm. Let’s do the following assumptions:

r is the crossover probability,

— s is the mutation probability

— p € [0, 1] is randomly generated number which decides
about crossover,

— g € [0, 1] is randomly generated number which decides
about mutation,

— k is randomly generated crossover point,

— i is the number of epoches.

Crossover operates on the randomly chosen pair of vectors
of weights. For such pair there is randomly generated the
number p € [0, 1]. If p < r, the split point k is chosen
randomly. At this point k the vectors of weights are crossed
and they are both normalized to 1. Mutation works on a single
weights. For each weight in each vector there is randomly
generated the number g € [0, 1]. If ¢ < s, the weight / €
[0, 1] is generated randomly. It replaces the mutated weight
and the whole vector of weights is normalized to 1. If the
fitness function after doing these operations is higher than
before them, new objects replaces the old ones. This process
is repeated for i epoches.

The partition matrix is passed to the algorithm, the seed
of random weights is being sawn, and the algorithm starts.
After it finishes, it returns the weights’ set which was corre-
sponding with the maximum function’s value.

@ Springer



3748

t. Gadomer, Z. A. Sosnowski

3.2 Local OWA

The first approach assumpts using OWA in each node of the
tree where any decision is made. As it was described in a
previous paragraph, when the object is classified, a series of
decision about assigning the object to one of the nodes is
being made. The concept of local OWA assumes that every
single decision is weighted by the OWA operator.

In order to meet this assumption to each node, there is
assigned the set of OWA operators. The size of this set equals
to the number of the node’s children. For each of the children
there is computed the different OWA operator. The size of
the operator also equals to the number of the node’s children.
It is caused by the fact that it is impossible to assign the
one proper set of weights for all memberships. In the most
common situation one membership is much greater than the
others—the only way to include this fact in the OWA operator
is creating the different OWA operator for each membership.

3.2.1 Learning

In local OWA approach weights of the OWA operators are
computed during the tree expansion process. For the given
node the computations take place after finding children of
this node. The information about membership degrees of the
each object from the training set to this node’s children is
given and stored. This information is used to compute the
OWA operators weights. To compute the weights of the OWA
operator corresponding with the given child, there are used
training objects which have the highest membership degree
corresponding with this node.

The C-fuzzy random forest using local OWA operators is
created using Algorithm 4.

Algorithm 4 C-fuzzy random forest with local OWA learning

1: procedure C- FRFLOCALOW ALEARNING
2:  for 1toTdo

3: 1. Take a random sample of |E| examples with replacement
from the dataset £
4: 2. Apply Algorithm 5 to the subset of examples obtained in

the previous step to construct C-fuzzy decision tree
5:  end for
6: end procedure

Each tree in C-fuzzy random forest using local OWA oper-
ators is created using Algorithm 5.

3.2.2 Classification
After all of the trees in the forest are constructed and all of
the OWA operator’s weights in each tree are computed, the

forest can be used in the classification process. During this
process, instead of choosing the maximum membership:
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Algorithm 5 C-fuzzy decision tree with local OWA learning
1: procedure C- FDTLOCALOW ALEARNING

2: 1. Start with the examples in E

3: 2. Create the partition matrix U randomly

4: 3. Perform FCM

5:  while Stop criterion is not satisfied do

6: 4. Divide the samples belonging to the split node into its chil-
dren

7 5. Make a random selection of nodes from the set of unsplit
nodes B

8: 6. Compute the variability matrix V

9: 7. Choose the node with maximum variability to split nodes

10: 8. Perform FCM

11:  end while

12:  fori=1to N, do

13: 9. Compute Local OWA operator for ith node
14:  end for

15: end procedure

Unax = Uij 9)

max
i€l,2,...IM|.jel,2,...c

there is chosen a maximum result of the multiplication of the
membership degree and the corresponding weight get from
the OWA operator for the n node:

s =arg max JUij (10)

i€l,2,...|M|,jel.2,...c

Umnax = max

Ui x Wy 11
iel,2,.. M, jel 2 e 5 (1D

After the classification, the decision is made by the forest
using majority vote. The classification is performed accord-
ing to Algorithm 6.

Algorithm 6 C-fuzzy random forest with local OWA classi-

fication
1: procedure C- FRFLOCALOW ACLASSIFICATION
2:  DecisionOfTrees
DecisionOfForest
: end procedure
: procedure DECISIONOFTREES
for 1 to T do
1. Run the example e to obtain the tree’s partition matrix U;
2. Choose the leaf with the highest membership multiplied by
Local OWA operator
9:  end for
10: end procedure
11: procedure DECISIONOFFOREST
12:  Assign to class according to the simple majority vote of trees
decisions
13: end procedure

A A

3.3 Global OWA

The local OWA concept was about using the oriented weight
aggregation for each node of the tree. The global OWA
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concentrates on using OWA operators in the process of the
decision making by the tree or by the whole forest. As in the
C-fuzzy decision trees each object can belong to more than
one node with the different degrees, using different weights
can result with the different final decisions.

3.3.1 Global OWA for each tree in the forest

The first variant of the global OWA approach is using the
OWA operators in the decision making for each tree sepa-
rately.

Learning The forest is constructed and learned in the way
presented before. After the tree construction process is com-
pleted for each tree the set of weights is computed separately.
To compute them the same rules are used as described in local
OWA method. Training objects are grouped into ¢ clusters
(they are chosen by the maximum membership degree to the
given cluster). These groups of objects are used to computed
the ¢ sets of OWA operators’ weights.

Optimal weights of OWA operator for the ¢ tree and the ¢
cluster are computed by maximizing the function:

c |E|

F(W,) =YY UijW,, (12)

j=li=l

The C-fuzzy random forest using global OWA operators
for each tree in the forest is created using Algorithm 7.

Algorithm 7 C-fuzzy random forest with global OWA for
each tree learning

1: procedure C- FRFGLOBALTREEOW ALEARNING
2:  for 1toTdo

3: 1. Take a random sample of |E| examples with replacement
from the dataset £
4: 2. Apply Algorithm 8 to the subset of examples obtained in

the previous step to construct C-fuzzy decision tree
5:  end for
6: end procedure

Algorithm 8 C-fuzzy decision tree with global OWA for each
tree learning
1: procedure C- FDTGLOBALTREEOW ALEARNING

2: 1. Start with the examples in E

3: 2. Create the partition matrix U randomly

4: 3. Perform FCM

5:  while Stop criterion is not satisfied do

6: 4. Divide the samples belonging to the split node into its chil-
dren

7: 5. Make a random selection of nodes from the set of unsplit
nodes B

8: 6. Compute the variability matrix V

9: 7. Choose the node with maximum variability to split nodes

10: 8. Perform FCM

11:  end while
12: 9. Compute Global OWA operator for the given tree
13: end procedure

there is being chosen the maximum result of the multiplica-
tion of the membership degree and the corresponding weight
get from the tree’s t OWA operator:

= max jU;j 14
s argjeli,).(..,c] Y 14
U, = Uii x W;_. 15

Imax ]EII‘[};X,L i X Igj ( )

The classification is performed according to Algorithm 9.

Algorithm 9 C-fuzzy random forest with global OWA for
each tree classification
1: procedure C- FRFGLOBALTREEOW ACLASSIFICATION
2:  DecisionOfTrees
DecisionOfForest
: end procedure
: procedure DECISIONOFTREES
for 1 to T do
1. Run the example e to obtain the tree’s partition matrix U;
2. Choose the leaf with the highest membership multiplied by
Global OWA for the given tree operator
9:  end for
10: end procedure
11: procedure DECISIONOFFOREST
12:  Assign to class according to the simple majority vote of trees
decisions
13: end procedure

A

Each tree in C-fuzzy random forest using local OWA oper-
ators is created using Algorithm 8.

Classification After the forest is constructed and OWA oper-
ators are prepared, the decision-making process can be
performed. In this process, for each testing object, instead
of choosing the maximum membership degree to one of the
nodes, as it would be done in majority vote:

U,' = max U," (13)

M jel,2,ne

3.3.2 Global OWA for the whole forest

The second type of the global OWA is using the OWA oper-
ators in the decision making for all of the trees of the forest
together.

Learning The forest is constructed and learned in the way
presented before. When all of the trees are constructed, the
one set of OWA operator’s weights is computed. It is per-
formed using all of the objects from the training set divided
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into ¢ subsets without dividing them into trees. The object’s
division criterion is analogous to the previously described
global OWA for each tree method.

Optimal weights of OWA operator for the ¢ cluster are
computed by maximizing the function:

T |E|

FW)y =) ) ) UyWy (16)

j=11=1 i=1

where U, is the ¢ tree’s partition matrix of the training objects.
The C-fuzzy random forest using global OWA operators
for the whole forest is created using Algorithm 10.

Algorithm 10 C-fuzzy random forest with global OWA for
the whole forest learning

1: procedure C- FRFGLOBALOW ALEARNING

2:  for1toT do

3: 1. Take a random sample of |E| examples with replacement
from the dataset £

4: 2. Apply Algorithm 11 to the subset of examples obtained in
the previous step to construct C-fuzzy decision tree

5:  end for

6: 3. Compute Global OWA operator for the whole forest

7: end procedure

Each tree in C-fuzzy random forest using local OWA oper-
ators is created using Algorithm 11.

Algorithm 11 C-fuzzy decision tree with global OWA for
the whole forest learning

1: procedure C- FDTGLOBALOW ALEARNING
2: 1. Start with the examples in E
2. Create the partition matrix U randomly
3. Perform FCM
while Stop criterion is not satisfied do
4. Divide the samples belonging to the split node into its chil-
dren
5. Make a random selection of nodes from the set of unsplit
nodes B

AN A

~

8: 6. Compute the variability matrix V
9: 7. Choose the node with maximum variability to split nodes
10: 8. Perform FCM

11:  end while
12: end procedure

Classification When the OWA operator is ready, the decision-
making process can be performed according to the rules
described for the global OWA for each tree method. For each
testing object, instead of choosing the maximum membership
degree to one of the nodes, as it would be done in majority
vote:

Up = max U (17)

M jel,2,ne
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there is being chosen the maximum result of the multiplica-
tion of the membership degree and the corresponding weight
get from the forest’s OWA operator:

s=arg max jU; (18)
jel,2,...c ’
Uilnax = jEIII,lZa,)E.,C Ulj X WS! (19)

The classification is performed according to Algorithm
12.

Algorithm 12 C-fuzzy random forest with global OWA for

the whole forest classification

1: procedure C- FRFGLOBALOW ACLASSIFICATION
2:  DecisionOfTrees

3:  DecisionOfForest

4: end procedure

5: procedure DECISIONOFTREES
6: for 1toTdo
7
8

1. Run the example e to obtain the tree’s partition matrix U;
2. Choose the leaf with the highest membership multiplied by
Global OWA for the whole forest operator
9:  end for
10: end procedure
11: procedure DECISIONOFFOREST
12: Assign to class according to the simple majority vote of trees
decisions
13: end procedure

3.4 Example of using OWA operators during
classification process

To make the usage of OWA operators more clear, let’s take a
look at the example. Consider the forest where for each tree
¢ = 4. When the object i is being classified in the tree #, the
vector of memberships of the i object to clusters U; is being
obtained. Assume that the vector U; is

U; =10.2,0.1,0.4,0.3]

Let’s get the matrix of the OWA operators W, which can
be taken from:

— anode where the object i belongs (for Local OWA),
— atree t (for global OWA for each tree),
— a forest (for global OWA for the whole forest).

Assume that matrix of the OWA operators W is

0.38,0.22,0.15,0.25
0.19,0.32,0.26, 0.23
0.08,0.17,0.29, 0.46
0.13,0.25,0.21,0.41
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Table 1 Datasets with their most important characteristics

Dataset Number of instances Number of attributes Number of classes Attribute types
(without class)

Hepatitis 155 19 2 Categorical, integer, real

Dermatology 366 33 2 Categorical, integer

Semeion Handwritten Digit 1593 256 2 Integer

Diabetic retinopathy 1151 20 2 Integer, real

Pima Indians diabetes 768 8 2 Integer, real

Balance scale 625 4 3 Categorical

Indian liver patient 583 10 2 Integer, real

MUSK (Version 1) 476 168 2 Integer

QSAR biodegradation 1055 41 2 Integer, real

Climate model simulation crashes 540 18 2 Real

Obtain the index corresponding with the greatest value of
vector U;. It is the index of value 0,4: counting from one this
index is 3.

Obtain the vector of weights w from the matrix W from
the given index 3. This vector is

w = [0.08, 0.17, 0.29, 0.46]

Obtain the vector Uy,; by multiplying corresponding val-
ues of vector U; and w

Upi =10,2x0.08,0.1 x0.17,0.4 x 0.29, 0.3 x 0.46]
= [0.016,0.017,0.116, 0.138]

The greatest value of vector U,,; is at index 4, so tree
chooses value corresponding with 4th cluster as the tree’s
decision. Notice that that choice is different as it would be if
weights wouldn’t have been taken into account. After obtain-
ing decision of all of the trees, forest makes his decision by
majority vote.

4 Experiments description

In order to check a quality of created solution, several
experiments were performed. In this section the research
methodology is described.

The experiments were performed on ten datasets from UCI
machine learning repository (Lichman 2013). These datasets
with their most important characteristics are presented in
Table 1. In our research we used relatively balanced datasets
which allowed classifier to have enough training and testing
data for each decision class to be learned and evaluated prop-
erly. In this work we were not trying to deal with the problem
of unbalanced data in the datasets.

The objective of the research is to check how the each
aspect of created classifier influences the classification accu-

racy. As it is shown, there are tested all proposed usages of
OWA operators and the usage of randomness in the forest.
Also how the classification accuracy changes with the differ-
ent number of clusters is checked. Results are presented in
Sect. 5.

Each experiment was performed using fivefold cross-
validation. Four of five parts were used to train the classifier,
one to test. This operation was repeated five times; each time
the other part was out of bag. Then the classification accu-
racy of all five out of bag parts was averaged. To perform the
fivefold cross-validation, each dataset was randomly divided
into five parts, having equal size (or as close to the equal
as it is possible). In the each of these parts there were the
same proportions of objects representing each decision class
as in the whole dataset (or as close to the same as possible).
There were no situations when in some of parts there were
no objects representing some of decision classes. This pro-
portional and random division was saved and used for each
experiment.

For each dataset, experiments using the following classi-
fier configuration were performed:

— C-fuzzy forest without OWA,

— C-fuzzy forest using local OWA,

— C-fuzzy forest using global OWA,

— C-fuzzy forest using global tree OWA,

— C-fuzzy random forest without OWA,

— C-fuzzy random forest using local OWA,

— C-fuzzy random forest using global OWA,

— C-fuzzy random forest using global tree OWA.

Each forest was consisting of 50 trees. We obtained the
optimal number of trees during the optimization process.
According to our experiments, 50 trees were enough to
achieve stable and reliable results. The further increase in the
number of trees was not improving the classification accuracy

@ Springer



3752 t. Gadomer, Z. A. Sosnowski
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Table3 Average tree Number of clusters > 3 5 8 13 2 3 5 8 13
structure—Semeion
Handwritten Digit C-fuzzy forest C-fuzzy random forest
Average number of clusters 362 341 312 343 457 369 346 308 331 508
Average tree width 68 88 110 150 179 72 91 112 145 197
Average tree height 13 9 7 6 6 13 10 6 6 7
Table4 Average tree Number of clusters 2 3 5 8 13 2 3 5 8 13

structure—Pima Indians

Diabetes C-fuzzy forest C-fuzzy random forest
Average number of clusters 204 113 124 128 162 205 116 122 131 160
Average tree width 37 30 61 69 115 38 31 56 72 118
Average tree height 11 7 5 4 3 11 7 5 3 4
Table 5 Computation times—Hepatitis
Number of clusters 2 3 5 8 13 2 3 5 8 13
C-fuzzy forest C-fuzzy random forest
Learning times
00:58:42  01:20:28  01:21:22  01:31:29  05:19:59 00:59:06  01:10:13  01:17:25 01:28:56  05:16:34
Classification times
Without OWA 00:00:20  00:00:31  00:01:08 00:01:44  00:02:54 00:00:20  00:00:27  00:00:56  00:01:43  00:02:58
With local OWA 00:00:20  00:00:31  00:01:06  00:01:35  00:02:42  00:00:20  00:00:27  00:00:55 00:01:35  00:02:49
With global OWA 00:01:45  00:03:06 00:06:57 00:10:17  00:15:42 00:01:47  00:02:44 00:05:38  00:09:54  00:15:53
With global tree OWA  00:01:48  00:03:13  00:07:03  00:10:35 00:16:19  00:01:51 00:02:49 00:05:48 00:10:13  00:16:32

For each dataset the results achieved with aggregating
using one of the variants of OWA operators were better or the
same that without using OWA operators. There was no vari-
ant of proposed OWA operators which always worked better
that others. It allows to conclude that using OWA operators
can increase the classification accuracy. However, the variant
of used OWA operators should be chosen according to the
given problem.

Most of the described percentage differences between two
compared results translates into at least a few objects in the
dataset. It means described improvements of the results are
important or at least noticeable.

For the most of tested datasets tree structure changes for
the different number of clusters were similar. The more clus-
ters had the tree, the wider and shorter it was. The changes
of the average number of nodes according to the number
of clusters depend on the dataset. All of the tree structure
changes were similar for the C-fuzzy forest and C-fuzzy ran-
dom forest for each dataset. The example changes of average
trees structures according to the number of clusters are pre-
sented in Table 3 for Semeion Handwritten Digit dataset and
in Table 4 for Pima Indians Diabetes dataset.

The experiment duration was different for each dataset,
and it mainly depended on the number of instances and the

number of attributes of the dataset. The example computa-
tion times are presented for Hepatitis dataset in Table 5 (the
shortest time of all tested datasets) and for MUSK (version 1)
dataset in Table 6 (the longest time of all tested datasets). All
times are shown in hh:mm:ss format. As it is presented, forest
learning and classification times significantly increases with
the increasing number of clusters. Learning times usually
take between a few minutes for a small number of clusters and
a few hours for a large number of clusters. Such a long learn-
ing time is caused by the fact of using genetic algorithm for
each tree node in order to compute OWA operators’ weights.
For the larger number of clusters there are more weights to
optimize, which causes longer times in comparison with the
lower number of clusters. Classification times usually differs
from below second to over a dozen of minutes. (For some
datasets it is longer, for example for Semeion Handwritten
Digit dataset.) Usually classification times for global OWA
and global tree OWA variants are much longer than with-
out OWA or with local OWA. It is caused by the necessity
of performing computations of weights in global OWA vari-
ants, which is much more time-consuming than that for local
OWA.
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Table 6 Computation times—MUSK (version 1)

Number of clusters 2 3 5 8 13 2 3 5 8 13
C-fuzzy forest C-fuzzy random forest
Learning times
00:10:31  00:10:08 00:12:59 00:18:35 00:22:44 00:10:36  00:10:09 00:12:59 00:17:49  00:22:24
Classification times
Without OWA 00:00:01  00:00:01  00:00:02 00:00:04 00:00:07 00:00:01 00:00:01 00:00:02 00:00:04 00:00:07
With local OWA 00:00:01  00:00:01  00:00:02 00:00:04 00:00:07 00:00:01 00:00:01 00:00:02 00:00:04 00:00:07
With global OWA 00:00:21  00:00:31  00:00:53  00:01:29  00:02:22  00:00:21  00:00:31 00:00:53  00:01:31  00:02:18
With global tree OWA  00:00:24  00:00:36  00:01:03  00:01:49  00:03:03  00:00:24  00:00:37 00:01:04 00:01:51  00:02:58

6 Summary and conclusions

The idea of aggregating the knowledge contained in C-fuzzy
decision tree nodes with OWA operators during the C-fuzzy
random forest decision-making process was described in the
previous paragraphs. Different ways of knowledge aggrega-
tion using OWA operators were presented in this ensemble
classifier: local OWA, global OWA for each tree in the forest
and global OWA for the whole forest. The created solution
was tested on ten datasets. Results were compared with C4.5
rev. 8 decision tree and single C-fuzzy decision tree. The
results achieved with each variant of aggregating using OWA
operators were compared with another ones (and with the
accuracies achieved without using any variant of weighted
aggregation). The influence of the randomness on the classi-
fication accuracy was also tested.

Achieved results show that using OWA operators can
increase the classification quality for some kind of prob-
lems and datasets. In most cases C-fuzzy forest and C-fuzzy
random forest classifier give better results than C4.5 rev. 8
decision tree and single C-fuzzy decision tree classifiers. It
also appears that using randomness in the created ensemble
classifier can increase the classification accuracy.

Performed experiments showed that created ensemble
classifier can be competitive in comparison with the other
classifiers. One of the main advantages of this classifier is the
flexibility. There are many parameters which can be adjusted
to fit the given problem in the best possible way. In order to
configure the classifier to deal with the given dataset as well
as it is possible, the parameters of the C-fuzzy decision trees,
the forest cardinality and the strength of the randomness and
the OWA variant, together with the parameters of genetic
algorithm which allows to obtain OWA operators weights,
can be modified. Although it takes some time to optimize
all of the parameters, this flexibility causes that the created
classifier stands out from the concurrent ones.
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