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Abstract Interval-valued fuzzy sets were introduced in
1970s as an extension of Zadeh’s fuzzy sets. For interval-
valued fuzzy events, (IV-events for short) IV-probability
theory has been developed. In this paper, we prove central
limit theorems for triangular arrays of IV-observables within
this theory. We prove the Lindeberg CLT and the Lyapunov
CLT, assuming that IV-observables are not necessary identi-
cally distributed. We also prove the Feller theorem for null
arrays of IV-observables. Furthermore, we present examples
of applications of the aforementioned theorems. In particu-
lar, we study the convergence in distribution of scaled sums
of identically distributed IV-observables.
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1 Introduction

The notion of a fuzzy set was introduced by L.A. Zadeh in
1965. The introduced notion of a fuzzy set is a powerful
tool for studying different branches of science (in particular
mathematics). It has been applied for introducing the fuzzy
analogue of many notions existing for crisp sets. Some of
these applications are due to Atanassov (1999, 2012), Couso
et al. (2014), Dubois et al. (2005), Grattan-Guiness (1975),
Tripathy andRay (2012) andmanyothers. Problems concern-
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ing convergence of series and sequences of fuzzy numbers
have been considered, i.a., by Tripathy and Das (2012), Tri-
pathy and Sarma (2012), and Tripathy et al. (2012).

The classical Kolmogorov’s theory of probability is a
commonly used mathematical model of randomness. It has
been described in nearly all textbooks on probability and
is well known both for scientists and practitioners deal-
ing with random phenomena. However, there exist other
approaches to model such phenomena proposed by mathe-
maticians, physicists and philosophers (see, e.g. the book of
Fine 1973). One of them, the Boolean algebraic probability
theory, was proposed for the case of quantum systems. This
approach is based on fundamental works of great mathemati-
cians: C. Carathéodory, G. Birkhoff, and J. von Neumann.
In their works (see, Birkhoff and von Neumann 1936 and
Carathéodory 1956), they considered states and observables
of a quantum system as counterparts of probability and ran-
dom variables in the Kolmogorov theory of probability. The
concepts of Carathéodory, Birkhoff, and von Neumann were
further developed by Gudder (1979), Pták and Pulmannová
(1989), Riečan and Neubrunn (1997), Varadarajan (1968),
where quantum logics were considered as orthomodular
posets.

In many practical applications, randomness is not the only
source of uncertainty. The second such source is impre-
cision nowadays usually modelled by Zadeh’s fuzzy sets.
When uncertain phenomena of interest are both random and
imprecise, the concept of a fuzzy random variable can be
applied. There exist many definitions of the fuzzy random
variable which have different interpretations (see, e.g. Kruse
and Meyer 1987; Kwakernaak 1978; Liu and Liu 2003; Puri
and Ralescu 1986; Couso et al. 2014). According to the first,
introduced by Kwakernaak (1978), the fuzzy random vari-
able can be interpreted as fuzzy perception of an original
crisp random variable. According to this interpretation, the
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fuzzy random variable is a (disjunctive) fuzzy set of classical
random variables and is described by a fuzzy set of classi-
cal probability distributions. This interpretation is nowadays
called epistemic and allows to generalize in a relatively easy
way the classical concepts of probability and mathemati-
cal statistics. Another definition was proposed by Puri and
Ralescu (1986). According to their definition, to describe
the fuzzy random variable σ -algebras of fuzzy sets are used.
Thus, it is a classical random variable with values belonging
to a set of functions. This interpretation of the fuzzy ran-
dom variable understood in the sense of Puri and Ralescu is
nowadays called ontic, and its theoretical foundations can be
regarded as the generalizations of theory of random sets. For
more information about different definitions and interpreta-
tions of fuzzy random variables, the reader is encouraged to
read an excellent textbook by Couso, Dubois and Sánchez
(2014), or the paper by Dubois and Prade (2012).

Fuzzy sets, according to Zadeh himself, were introduced
in order to provide a precise mathematical description (i.e.
to ‘precisiate’) of imprecise notions, described, e.g. using
human’s plain language. However, from a practical point of
viewnon-random imprecisionmayhavedifferent, sometimes
subtle, interpretations. Therefore, many different general-
izations of fuzzy sets have been proposed. One of such
generalizations, which nowadays has become quite popu-
lar, is the theory of IF-sets introduced by Atanassov (see
Atanassov 1999, 2012 and references therein) in the 1980s.
Another one is the theory of interval-valued fuzzy sets
(IVF-sets), introduced independently (in the same year!) by
four authors: Grattan-Guiness (1975), Jahn (1975), Sambuc
(1975), and Zadeh (1975). In this case, the generalization
of fuzzy sets consists in the considering the values of the
membership function as uncertain intervals (see, e.g. Zadeh
1975 and Türkşen 1986). The mutual relationship between
these two models has been studied by many authors who
have shown their formal equivalence (see, Deschrijver and
Kerre 2003 and Dubois et al. 2005). It is worth noticing that
IVF-sets are also equivalent to grey sets introduced by Deng
(1989) very popular in East Asia (see Deschrijver and Kerre
2003).

The majority of results about the fuzzy generalizations
of the probability have been related to the classical Kol-
mogorov’s definition of probability. However, fuzzy models
of quantum mechanics have also been studied recently. One
should mention the theories of F-quantum spaces and fuzzy
quantum logics (for details see Riečan and Neubrunn 1997
and references therein). The fuzzy quantum logic of all mea-
surable functions with values in the interval [0, 1] is an
example of MV-algebra, introduced by Chang (1958). Fun-
damentals and the most important theorems ofMV-algebraic
probability theory, including the central limit theorem, can
be found in Nowak and Hryniewicz (2015), Riečan (1999,
2000), Riečan and Mundici (2002), Riečan and Neubrunn

(1997). In the area of fuzzy sets, the MV-algebraic prob-
ability theory was also applied in the Atanassov’s IF-sets
setting. This application let Riečan (2007b) to develop the
probability theory for IF-events. Riečan (2007b) proved
the central limit theorem (CLT) for independent, identi-
cally distributed IF-observables and M-observables. Other
results of probability theories concerning IF-events can be
found, e.g. in Ciungu and Riečan (2010), Lendelová (2006),
Lendelová and Petrovičová (2006), Renčová (2010), Riečan
(2004, 2006a, b, 2007a). Generalized versions of central
limit theorems within the IF-probability theory and M-
probability theory for non-identically distributed observables
were proved in the recent paper by Nowak and Hryniewicz
(2016).

In contrast to the probability theory of IF-sets, its coun-
terpart for the probability theory of IVF-sets is much less
developed. Some interesting results concerning the prob-
ability theory of IVF-sets have been published by Riečan
and Král’ (2010), Kuková (2011), and Samuelčík and Hollá
(2013). The aim of this paper is to fill the gap between
the well-developed theory of probability for IF-sets and the
theory of probability for IVF-sets. It is devoted to cen-
tral limit theorems within the IV-probability theory, i.e.
the probability theory for IV-events, which involves the
Łukasiewicz connectives between IVF-sets. Analysing the
limit behaviour of the row sums of triangular arrays of inde-
pendent IV-observables, we prove the Lindeberg CLT and
the Lyapunov CLT as well as the Feller theorem, which is a
converse of the Lindeberg CLT. We use a proving technique
based on MV-algebraic probability theory from Nowak and
Hryniewicz (2015). We additionally present three examples
of applications of our theorems for sequences and arrays of
IV-observables with convergent scaled sums or row sums.
The first example is general and concerns a sequence of
independent IV-observables with the same distributions. We
prove an appropriate theorem for such a sequence and we
apply it to the case corresponding to the classical deMoivre–
Laplace theorem. In the second and the third example, we
apply the Lindeberg CLT and the Lyapunov CLT. In the last
two examples, we use a special form of the IV-probability,
basing on a modified notion of the probability of IF-events,
considered by Szmidt and Kacprzyk (1999a), Szmidt and
Kacprzyk (1999b), Grzegorzewski and Mrówka (2002) and
generalized by Nowak (2003, 2004a, b).

Despite formal similarity between IF-sets and IVF-sets,
the semantics used for their interpretation is different. There-
fore, the results obtained in this paper may be useful for those
practitioners for whom the semantics of IVF-sets is better
understandable than the semantics of IF-sets. These results
may be used in the development of statistical methods for
IFV-sets which, as for now, are practically non-existent. In
the development of such methods, one can use approaches,
already developed for random fuzzy sets, and described in an
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overview paper by Gil and Hryniewicz (2009) or in a recent
paper by Blanco-Fernández et al. (2014).

The paper is organized as follows. In Sect. 2, we introduce
some elements of the theories of MV-algebras and MV-
probability. Section 3 contains our main results, including
the Lindeberg CLT, Lyapunov’s CLT, and the Feller theo-
rem for IV-observables. In Sect. 4, we analyse examples of
applications of the limit theorems proved in Sect. 3. The last
section is dedicated to conclusions.

2 Basic notions and facts concerning the
MV-algebraic probability theory

Let n ∈ N, where N is the set of all positive integers. We
denote by N[n] and B(Rn) the set {1, 2, . . . , n} and the σ -
algebra of Borel subsets of R

n , respectively.
Wewill use following theorem (seeBillingsley 1986, The-

orem 16.12) concerning the change of variable for integrals.
Let (X,X ) and (X ′,X ′) be measurable spaces. Let T :

X → X ′ be an X /X ′ measurable function, i.e. T−1
(
A′) ∈

X for each A′ ∈ X ′. For a measure μ on X we define a
measure μT−1 on X ′ given by

μT−1(A′) = μ(T−1(A′)), A′ ∈ X ′.

Theorem 1 Let f : X ′ → R be anX ′-measurable function.
If f is non-negative, then

∫

X
f (T x)μ(dx) =

∫

X ′
f (x ′)μT−1(dx ′). (1)

A function f (not necessarily non-negative) is integrablewith
respect to μT−1 if and only if f T is integrable with respect
to μ, in which case (1) and

∫

T−1(A′)
f (T x)μ(dx) =

∫

A′
f (x ′)μT−1(dx ′), (2)

where A′ ∈ X ′, hold. Moreover, for any non-negative f , the
identity (2) always holds.

MV-algebras are considered as non-commutative ge-
neralizations of Boolean algebras. The fundamentals of the
theory of MV-algebras were discussed, e.g. by Cignoli et al.
(2000) and Mundici (1986). We present only selected ele-
ments of the theory of MV-algebras and the MV-algebraic
probability theory from Riečan and Mundici (2002) and
Nowak and Hryniewicz (2015) with minor modifications.

Definition 1 An algebra (M, 0, 1,¬,⊕,�), where M is a
non-empty set, the operation ⊕ is associative and commuta-
tive with 0 as the neutral element,

¬0 = 1,¬1 = 0,

and for arbitrary x, y ∈ M

x ⊕ 1 = 1,

y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ ¬y),

x � y = ¬(¬x ⊕ ¬y),

is called an MV-algebra.
In anMV-algebra (M, 0, 1,¬,⊕,�) the relation≤ given by
the condition

x ≤ y ⇔ x � ¬y = 0, x, y ∈ M,

defines a partial order.
The distributive lattice (M,∨,∧)with least element 0 and

greatest element 1, where

x ∨ y = ¬(¬x ⊕ y) ⊕ y

and

x ∧ y = ¬(¬x ∨ ¬y),

for x, y ∈ M , is called the underlying lattice of M .

Definition 2 We call an MV-algebra M σ - complete (com-
plete) if every sequence (non-empty family, respectively) of
elements of M has the supremum in M .

We will use the following notations.
Let {An}∞n=1 be a sequence of subsets of a set X . Then

An ↗ A iff A1 ⊆ A2 ⊆ . . . and
⋃∞

n An = A.

For a sequence {xn}∞n=1 of real numbers,

xn ↗ x iff x1 ≤ x2 ≤ . . . and x = sup
i

xi .

Additionally, for a sequence {bn}∞n=1 of elements of an MV-
algebra M

bn ↗ b iff b1 ≤ b2 ≤ . . . and b = sup
i

bi

with respect to the underlying order of M .
Within the MV-algebraic probability theory the notions

of state and observable were introduced, by abstracting the
properties of probability measure and classical random vari-
able.

Definition 3 Let M be a σ -complete MV-algebra. A state
on M is a function m : M → [0, 1] fulfilling the following
conditions for arbitrary a, b, c ∈ M and {an}∞n=1 ⊂ M :

(1) m(1) = 1;
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(2) if b � c = 0, then m(b ⊕ c) = m(b) + m(c);
(3) if an ↗ a, then m(an) ↗ m(a).

We call a state m faithful if m(x) �= 0 for each nonzero
element x of M .

Apart from the defined above notion of state, its additive
counterpart, for which σ -additivity is not assumed, is also
considered in the literature (see Nowak andHryniewicz 2015
for more details).

Definition 4 Apair (M,m) consisting of aσ - completeMV-
algebra M and a faithful state m on M is called a probability
MV-algebra.

It was proved that every probability MV-algebra is com-
plete (see Mundici 2011, Theorem 13.8).

Definition 5 Let M be a σ -complete MV-algebra. An n-
dimensional observable of M is a function x : B(Rn) → M
fulfilling the following conditions:

(1) x(Rn) = 1;
(2) x(A) � x(B) = 0 and x(A ∪ B) = x(A) ⊕ x(B) for

arbitrary A, B ∈ B(Rn) such that A ∩ B = ∅;
(3) for arbitrary A, A1, A2, . . . ∈ B(Rn)

if An ↗ A, then x(An) ↗ x(A).

Theorem 2 Let M be a σ -complete MV-algebra, x :
B(Rn) → M be an n-dimensional observable, and m be
a state on M. Then the function mx : B(Rn) → [0, 1] given
by

mx (A) = (m ◦ x)(A) = m(x(A)), A ∈ B(Rn),

is a probability measure on B(Rn).

For the proof of Theorem 2 we refer the reader to Nowak
and Hryniewicz (2015).

Definition 6 Let (M,m) be a probability MV-algebra. An
observable x : B(R) → M of M is said to be integrable in
(M,m) if the expectation E(x) = ∫

R
tmx (dt) exists. We say

that x is square-integrable in (M,m) if
∫
R
t2mx (dt) exists.

If x is square-integrable in (M,m), then its variance exists
and is given by

D
2(x) =

∫

R

t2mx (dt) − (E(x))2

=
∫

R

(t − E(x))2mx (dt).

We denote by L1
m (L2

m) the space of observables x :
B(R) → M integrable (square-integrable, respectively) in
(M,m). More generally, we write x ∈ L p

m for p ≥ 1 if∫
R

|t |pmx (dt) < ∞.

Definition 7 Let (M,m)be aprobabilityMV-algebra.Obser-
vables x1, x2,…,xn of M are said to be independent (with
respect to m) if there exists an n-dimensional observable
h : B(Rn) → M such that for all C1,C2,…,Cn ∈ B(R)

m(h(C1 × C2 × · · · × Cn))

= m(x1(C1)) · m(x2(C2)) · . . . · m(xn(Cn))

= mx1(C1) · mx2(C2) · . . . · mxn (Cn).

Remark 1 Assume that x1, x2, . . . , xn : B(R) → M are
independent observables in a probabilityMV-algebra (M,m)

and h : B(Rn) → M is their joint observable. Then for any
Borel measurable function g : R

n → R

g(x1, x2, . . . , xn) = h ◦ g−1

is an observable.

We fix a sequence {kn}n∈N of positive integers such
that limn→∞ kn = ∞ and a sequence of probability MV-
algebras {(M(n),m(n))}n∈N. For each n ∈ N and arbitrary
observable x : B(R) → M(n) belonging to L2

m(n)
we denote

by E(n)(x) the expected value of x and by D
2
(n)(x) the

variance of x with respect to m(n). Furthermore, for each
x : B(R) → M(n) belonging to L2

m(n)
and ε, s > 0 we use

the symbol lxn (ε, s) to denote the R-valued function of the
form

lxn (ε, s) = E(n)

((
x − E(n)(x)

)2
I|x−E(n)(x)|>εs

)
.

Definition 8 Let us assume that for each n ∈ N {xn1, xn2,
. . . , xnkn } is a sequence of independent (with respect tom(n))
observables of theMV-algebraM(n).Wecall {xnj }n∈N, j∈N[kn]
a triangular array of independent observables (TA for short).

Definition 9 Let {xnj }n∈N, j∈N[kn ] be a TA such that for each
n ∈ N

xnj ∈ L2
m(n)

, j ∈ N[kn], s2n =
kn∑

j=1

D
2
(n)(xnj ) ∈ (0,∞).

(3)

Then {xnj }n∈N, j∈N[kn] is said to satisfy the Lindeberg condi-
tion if for arbitrary ε > 0

Ln(ε) = 1

s2n

kn∑

j=1

l
xnj
n (ε, sn) → 0, as n → ∞. (4)

Definition 10 A TA {xnj }n∈N, j∈N[kn] fulfilling (3) is said to
satisfy the Lyapunov condition if there exists δ > 0 such that
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1

s2+δ
n

kn∑

j=1

E(n)

(
|xnj − E(n)(xnj )|2+δ

)
→ 0, as n → ∞.

(5)

Definition 11 Let
{(
M(n),m(n)

)}
n∈N be a sequence of prob-

ability MV-algebras. A sequence of observables
{
xn : B(R)

→ M(n)

}
n∈N is convergent in distribution to a function

F : R → [0, 1] if

lim
n→∞m(n)(xn((−∞, t))) = F(t)

for each t ∈ R. If
{
xn : B(R) → M(n)

}
n∈N is convergent

in distribution to the cumulative distribution function of the
standard normal distribution Φ, then we write
xn → N (0, 1) in distribution, as n → ∞.

We recall generalized versions of MV-algebraic central
limit theorems and the Feller theorem proved in Nowak and
Hryniewicz (2015).

Theorem 3 (Lindeberg CLT) Let us assume that a TA
{xnj }n∈N, j∈N[kn ] satisfies (3) and the Lindeberg condition (4).
Then

1

sn

⎛

⎝
kn∑

j=1

xnj −
kn∑

j=1

E(n)(xnj )

⎞

⎠→ N (0, 1)

in distribution, as n → ∞.

Theorem 4 (Lyapunov CLT) Let us assume that a TA
{xnj }n∈N, j∈N[kn ] satisfies (3) and Lyapunov’s condition (5).
Then

1

sn

⎛

⎝
kn∑

j=1

xnj −
kn∑

j=1

E(n)(xnj )

⎞

⎠→ N (0, 1)

in distribution, as n → ∞.

Theorem 5 (Feller) Let {xnj }n∈N, j∈N[kn ] be a TA satisfying
(3) and such that for each ε > 0

max
1≤ j≤kn

(m(n))xnj ((−∞,−εsn) ∪ (εsn,∞)) → 0,

as n → ∞. If

1

sn

⎛

⎝
kn∑

j=1

xnj −
kn∑

j=1

E(n)(xnj )

⎞

⎠→ N (0, 1)

in distribution, as n → ∞, then the Lindeberg condition (4)
holds.

3 IV-probability

3.1 Basic definitions and theorems

Definition 12 Let (Ω,S) be a measurable space. By an
interval-valued event (for short IV-event) we mean any pair
A = (μA, νA) of S-measurable, [0, 1]-valued functions
such that μA ≤ νA. We denote by V(Ω,S) the set of
all IV-events and we introduce the following operations on
V(Ω,S). For A = (μA, νA), B = (μB, νB) ∈ V(Ω,S),
{An}n∈N = {(μAn , νAn

)}
n∈N ⊂ V(Ω,S):

A ⊕ B = (μA ⊕ μB, νA ⊕ νB)

= ((μA + μB) ∧ 1, (νA + νB) ∧ 1);
A � B = (μA � μB, νA � νB)

= ((μA + μB − 1) ∨ 0, (νA + νB − 1) ∨ 0)

and we write An ↗ A ⇔ μAn ↗ μA, νAn ↗ νA.
Moreover, we consider the product

A · B = (μAμB, νAνB).

V(Ω,S) is ordered as follows:

A ≤ B ⇔ μA ≤ μB, νA ≤ νB .

The following theorem from Kuková (2011) states that
V(Ω,S) can be embedded to an MV-algebra.

Theorem 6 Let

G = {A = (μA, νA);μA, νA : Ω → R}

and the summation be defined by the formula

A + B = (μA + μB, νA + νB) for A, B ∈ G.

Let the partial order on G be defined by

A ≤ B ⇔ μA ≤ μB ∧ νA ≤ νB for A, B ∈ G.

Let − denote the inverse operation to +, 0� = (0Ω, 0Ω) be
the neutral element of+, and 1� = (1Ω, 1Ω). LetM(Ω,S)

be an interval in G, M(Ω,S) = [0�, 1�], with the opera-
tions

A ⊕ B = ((μA + μB) ∧ 1, (νA + νB) ∧ 1);
A � B = ((μA + μB − 1) ∨ 0, (νA + νB − 1) ∨ 0).

Then the system

(M(Ω,S),⊕,�,≤, 0�, 1�)

is an MV-algebra and V(Ω,S) ⊂ M(Ω,S).
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We recall the notions of state, probability and observ-
able for IV-events from Kuková (2011), Samuelčík and
Hollá (2013), which we call IV-state, IV-probability and IV-
observable, respectively, in this paper.

Definition 13 An IV-state on V(Ω,S) is a map m :
V(Ω,S) → [0, 1] satisfying the following conditions for
all A, B ∈ V(Ω,S) and {An}∞n=1 ⊂ V(Ω,S):

(1) m(1�) = 1, m(0�) = 0;
(2) A � B = 0� ⇒ m(A ⊕ B) = m(A) + m(B);
(3) if An ↗ A, then m(An) ↗ m(A).

Let J be the family of all closed subintervals of [0, 1].
Definition 14 An IV-probability is a mapping P : V(Ω,S)

→ J satisfying the following conditions for all A, B ∈
V(Ω,S) and {An}∞n=1 ⊂ V(Ω,S):

(1) P(1�) = [1, 1], P(0�) = [0, 0];
(2) A � B = 0� ⇒ P(A ⊕ B) = P(A) + P(B);
(3) if An ↗ A, then P(An) ↗ P(A).

An IV-probability space is a pair (V(Ω,S),P), where P

is an IV-probability on V(Ω,S). We will use the notation
P(A)=[P�(A),P	(A)] for each A ∈ V(Ω,S).

It is easy to verify that if P : V(Ω,S) → J is an IV-
probability, then the mappings P� and P	 are IV-states on
V(Ω,S).

In Sect. 4, we will use the following lemma.

Lemma 1 Let P̂ be a probability measure defined on a mea-
surable space (Ω,S). Then PP̂ : V(Ω,S) → J of the
form:

PP̂ ((μ, ν)) =
[∫

Ω

μd P̂,

∫

Ω

νd P̂

]
, (μ, ν) ∈ V(Ω,S),

(6)

is an IV-probability.

Proof It is obvious that PP̂ satisfies condition (1). Let A �
B = 0� for A, B ∈ V(Ω,S). Then for arbitrary ω ∈ Ω

μA(ω) + μB(ω) ≤ 1 and νA(ω) + νB(ω) ≤ 1.

Therefore,

PP̂ (A ⊕ B)

=
[∫

Ω

[(μA + μB) ∧ 1] d P̂,

∫

Ω

[(νA + νB) ∧ 1] d P̂

]

=
[∫

Ω

(μA + μB)d P̂,

∫

Ω

(νA + νB)d P̂

]

=
[∫

Ω

μAd P̂,

∫

Ω

νAd P̂

]
+
[∫

Ω

μBd P̂,

∫

Ω

νBd P̂

]

= PP̂ (A) + PP̂ (B).

Thus, condition (2) is satisfied.
Let A ∈ V(Ω,S), {An}∞n=1 ⊂ V(Ω,S) and An ↗ A. Then

PP̂ (An) =
[∫

Ω

μAnd P̂,

∫

Ω

νAnd P̂

]

↗
[∫

Ω

μAd P̂,

∫

Ω

νAd P̂

]
= P(A)

by the Dominated Convergence Theorem. Therefore, condi-
tion (3) is also fulfilled. ��

The IV-probabilityPP̂ ((μ, ν)) is a modification of the prob-
ability of IF-events, which was considered by Szmidt and
Kacprzyk (1999a, b), Grzegorzewski and Mrówka (2002)
and generalized by Nowak (2003, 2004a, b).

Definition 15 An IV-observable is a mapping x : B(R) →
V(Ω,S) satisfying the following conditions:

(1) x(R) = 1�, x(∅) = 0�;
(2) whenever A, B ∈ B(R) and A ∩ B = ∅, then

x(A) � x(B) = 0� and x(A ∪ B) = x(A) ⊕ x(B);

(3) for all A, A1, A2, . . . ∈ B(R)

if An ↗ A, then x(An) ↗ x(A).

Definition 16 If x1, x2, . . . , xn : B(R) → V(Ω,S) are IV-
observables, then their joint IV-observable is the map h :
B(Rn) → V(Ω,S) satisfying the following conditions:

(1) h(Rn) = 1�, h(∅) = 0�;
(2) whenever A, B ∈ B(Rn) and A ∩ B = ∅, then

h(A) � h(B) = 0�, h(A ∪ B) = h(A) ⊕ h(B);

(3) for all A, A1, A2, . . . ∈ B(Rn)

if An ↗ A, then h(An) ↗ h(A);
(4) for all C1,C2, . . . ,Cn ∈ B(R)

h(C1 × C2 × · · · × Cn)

= x1(C1) · x2(C2) · . . . · xn(Cn).

The following theorems and proposition from Kuková
(2011) (see Theorem 2) and Samuelčík and Hollá (2013)
(see Proposition 1 and Theorem 1), concern properties of the
notions defined above.
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Theorem 7 Let p̄ : M(Ω,S) → [0, 1] be defined by the
formula

p̄(A) = p̄(μA, νA) = p(μA, 1) − p(0, 1 − νA),

where p : V(Ω,S) → [0, 1] is an IV-state on V(Ω,S).
Then

1. for arbitrary A ∈ V(Ω,S) p̄(A) = p(A),

2. p̄ is a state onM(Ω,S).

Proposition 1 If x : B(R) → V(Ω,S) is an IV-observable
and p : V(Ω,S) → [0, 1] is an IV-state, then the mapping
px = p ◦ x : B(R) → [0, 1] defined by the formula

px (A) = p(x(A))

is a probability measure.

Theorem 8 For any IV-observables

x1, x2, . . . , xn : B(R) → V(Ω,S)

there exists their joint IV-observable

h : B(Rn) → V(Ω,S).

The following remarks will be very useful in the further
part of the paper.

Remark 2 Since V(Ω,S) ⊂ M(Ω,S), any IV-observable
x : B(R) → V(Ω,S) is an observable in the sense of the
MV-algebraic probability theory. Furthermore,

P�
x = P� ◦ x,P	

x= P	 ◦ x : B(R) → [0, 1]

are probability measures.

Remark 3 Let x1, x2, . . . , xn : B(R) → V(Ω,S) be IV-
observables. Let g : R

n → R be aBorelmeasurable function
and let h : B(Rn) → V(Ω,S) be the joint observable of
x1, x2, . . . , xn . Then

g(x1, x2, . . . , xn) = h ◦ g−1

is an IV-observable.

Definition 17 IV-observables

x1, x2, . . . , xn : B(R) → V(Ω,S)

are independent (with respect to P) if there exists an n-
dimensional IV-observable h : B(Rn) → V(Ω,S) such that
for all C1,C2, . . . ,Cn ∈ B(R)

P�(h(C1 × C2 × · · · × Cn)) = P�
x1(C1) · P�

x2(C2)

· . . . · P�
xn (Cn),

P	(h(C1 × C2 × · · · × Cn)) = P	
x1(C1) · P	

x2(C2)

· . . . · P	
xn (Cn).

Definition 18 Let P : V(Ω,S) → J be an IV-probability
and x : B(R) → V(Ω,S) be an IV-observable. Then x is
said to be integrable if the expectations

E
�(x) =

∫

R

tP�
x (dt), E

	(x) =
∫

R

tP	
x (dt)

exist. We say that x is square-integrable if
∫
R
t2P�

x (dt) and∫
R
t2P	

x (dt) exist. If x is square-integrable, then the vari-
ances of x also exist and are described by the equalities

D
�,2(x) =

∫

R

t2P�
x (dt) − (E�(x))2

=
∫

R

(t − E
�(x))2P�

x (dt),

D
	,2(x) =

∫

R

t2P	
x (dt) − (E	(x))2

=
∫

R

(t − E
	(x))2P	

x (dt).

We write x ∈ L p1,p2
P for p1, p2 ≥ 1 if

∫
R

|t |p1P�
x (dt) < ∞

and
∫
R

|t |p2P	
x (dt) < ∞. Finally, we use the notation x ∈

L p
P instead of x ∈ L p,p

P for p ≥ 1.

The following lemma concerns the form of the expected
value of a Borel function of an IV-observable.

Lemma 2 LetP : V(Ω,S) → J be an IV-probability, ϕ be
anR-valued Borel function, which domain is the whole set of
real numbers R, x : B(R) → V(Ω,S) be an IV-observable
and y = ϕ(x) = x ◦ ϕ−1. Then E

�(y) exists if and only
if
∫
R

|ϕ(t)|P�
x (dt) < ∞ and then E

�(y) = ∫
R

ϕ(t)P�
x (dt).

Moreover, the analogous assertion holds for E
	(y) and the

corresponding probability measure P	
x .

Proof We use Theorem 1 for

(X,X ) = (X ′,X ′) = (R,B(R)), T = ϕ and f (t) = t.

Then μ = P
�
x is a probability measure. Moreover, by

straightforward computations one can verify the equality
μT−1 = P

�

ϕ(x) = P
�
y, which ends the proof. One can prove

analogously the assertion for E
	(y). ��

3.2 Central limit theorems

We denote by {kn}n∈N a fixed sequence of positive integers
and assume that limn→∞ kn = ∞.
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Let
{(V (Ω(n),S(n)

)
,P(n)

)}
n∈N be a sequence of IV-

probability spaces. For each n ∈ N and an observable
x : B(R) → V(Ω(n),S(n)), we use the symbols E

�

(n)(x),

E
	

(n)(x) to denote the expected values of x and the symbols

D
2,�
(n)(x), D

2,	
(n)(x) to denote the variances of x with respect to

P
�

(n) and P
	

(n), respectively.
For n ∈ N, constants ε, s > 0, and an arbitrary IV-

observable x : B(R) → V(Ω(n),S(n)) belonging to L2
P(n)

we consider the following R-valued functions:

lxn,�(ε, s) = E
�

(n)

((
x − E

�

(n)(x)
)2

I|x−E
�
(n)

(x)|>εs

)
,

lxn,	(ε, s) = E
	

(n)

((
x − E

	

(n)(x)
)2

I|x−E
	
(n)

(x)|>εs

)
.

Lemma 2 implies that lxn,� and lxn,	 are well-defined.

Definition 19 Let for each n ∈ N {xnj } j∈N[kn] be a sequence
of independent (with respect to P(n)) IV-observables of
V(Ω(n),S(n)). Then {xnj }n∈N, j∈N[kn] is called a triangular
array of independent IV-observables (TVI for short).

Definition 20 Let {xnj }n∈N, j∈N[kn] be a TVI satisfying the
following conditions for each n ∈ N

xnj ∈ L2
P(n)

, j ∈ N[kn], (7)

s2,�n =
kn∑

j=1

D
2,�
(n)(xnj ), s2,	n =

kn∑

j=1

D
2,	
(n)(xnj ) ∈ (0,∞).

(8)

Then {xnj }n∈N, j∈N[kn ] is said to satisfy the Lindeberg condi-
tion if for each ε > 0

Ln(ε) = L�
n(ε) + L	

n(ε) → 0, as n → ∞, (9)

where

L�
n(ε) = 1

s2,�n

kn∑

j=1

l
xnj
n,�

(
ε, s�

n

)
,

L	
n(ε) = 1

s2,	n

kn∑

j=1

l
xnj
n,	

(
ε, s	

n

)
,

s�
n =

√
s2,�n and s	

n =
√
s2,	n .

Definition 21 Let {xnj }n∈N, j∈N[kn] be a TVI fulfilling (7)–
(8). Then the array {xnj }n∈N, j∈N[kn ] is said to satisfy the
Lyapunov condition if there exist positive constants δ1 and
δ2 such that

1

s2+δ1,�
n

kn∑

j=1

E
�

(n)

(
|xnj − E

�

(n)(xnj )|2+δ1
)

+ 1

s2+δ2,	
n

kn∑

j=1

E
	

(n)

(
|xnj − E

	

(n)(xnj )|2+δ2
)

→ 0,

as n → ∞, (10)

where s2+δ1,�
n =

(
s�
n

)2+δ1
and s2+δ2,	

n =
(
s	
n

)2+δ2
.

The next two theorems are IV-probabilistic versions of
central limit theorems.

Theorem 9 (Lindeberg CLT) Let {xnj }n∈N, j∈N[kn] be a TVI
satisfying (7)–(8)aswell as theLindeberg condition (9). Then
for t ∈ R

P
�

(n)

(∑kn
j=1 xnj −∑kn

j=1 E
�

(n)(xnj )

s�
n

((−∞, t))

)

→ Φ(t), as n → ∞, (11)

P
	

(n)

(∑kn
j=1 xnj −∑kn

j=1 E
	

(n)(xnj )

s	
n

((−∞, t))

)

→ Φ(t), as n → ∞. (12)

Proof We consider the sequence of MV-algebras
M(Ω(n),S(n)) with states P̄�

(n), n ∈ N. From Theorem 7, it

follows that for arbitrary n ∈ N one can find a state P̄�

(n) :
M(Ω(n),S(n)) → [0, 1] such that P̄�

(n)|V(Ω(n),S(n)) = P
�

(n).
Since

V(Ω(n),S(n)) ⊂ M(Ω(n),S(n)),

the array {xnj }n∈N, j∈N[kn] is a TA of MV-algebras{M(Ω(n),S(n))
}
n∈N. For arbitrary n ∈ N, j ∈ N[kn]

(P̄
�

(n))xnj and (P
�

(n))xnj coincide. Consequently, for arbitrary

n ∈ N expected values E
�

(n)(xnj ), j ∈ N[kn], variances
D
2,�
(n)(xnj ), j ∈ N[kn] as well as L�

n(ε), L
	
n(ε) coincide with

their MV-algebraic counterparts for the state P̄�

(n). Thus, the
Lindeberg condition (9) implies itsMV-algebraic counterpart
(4) for {xnj } j∈N[kn],n∈N, since the array fulfils (3).

Let {Z �
n}n∈N be the sequence of V(Ω(n),S(n))-valued

observables given by the formula:

Z �
n =

∑kn
j=1 xnj −∑kn

j=1 E
�

(n)(xnj )

s�
n

, n ∈ N. (13)

Clearly, for each n ∈ N and t ∈ R

P̄
�

(n)

(
Z �
n((−∞, t))

) = P
�

(n)

(
Z �
n((−∞, t))

)
.

By Theorem 3,

P̄
�

(n)

(
Z �
n((−∞, t))

)→ Φ(t), as n → ∞
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for t ∈ R and therefore the convergence (11) holds. The
convergence (12) we obtain analogously. ��
Theorem 10 (Lyapunov CLT) Let {xnj }n∈N, j∈N[kn] be a TVI
satisfying (7)–(8) and Lyapunov’s condition (10). Then for
each t ∈ R (11)–(12) hold.

Proof As we noticed previously, {xnj }n∈N, j∈N[kn] is a TA of

the MV-algebras {M(Ω(n),S(n))}n∈N with states P̄�

(n), n =
1, 2, . . . For any positive integer n expected valuesE

�

(n)(xnj ),

j ∈ N[kn], and variancesD
2,�
(n)(xnj ), j ∈ N[kn], coincidewith

their MV-algebraic counterparts for the state P̄�

(n). Thus, the
TA {xnj }n∈N, j∈N[kn] of MV-algebras M(Ω(n),S(n)) fulfils
(3) and the Lyapunov condition (10) implies its counterpart
(5) for this array, considered with states P̄

�

(n). Therefore,
Theorem 4 implies

P̄
�

(n)

(
Z �
n((−∞, t))

)→ Φ(t), as n → ∞

for arbitrary t ∈ R, where {Z �
n}n∈N is the sequence of

V(Ω(n),S(n))-valued observables given by formula (13). The
same reasoning as in the last part of the previous proof jus-
tifies (11). Analogously, we obtain (12). ��
The following theorem is an IV-probabilistic version of the
Feller theorem.

Theorem 11 (Feller) Let {xnj }n∈N, j∈N[kn] be a TVI satisfy-
ing (7)–(8) and such that for each ε > 0

lim
n→∞ max

1≤ j≤kn

(
P

�

(n)

)

xnj

(
E
(
εs�

n

)) = 0, (14)

lim
n→∞ max

1≤ j≤kn

(
P

	

(n)

)

xnj

(
E
(
εs	

n

)) = 0, (15)

where

E(a) = (−∞,−a) ∪ (a,∞)

for a > 0. Let us additionally assume that for t ∈ R the con-
vergences (11) and (12) hold. Then the Lindeberg condition
(9) is fulfilled.

Proof Since for any n ∈ N, j ∈ N[kn] (P̄
�

(n))xnj and

(P
�

(n))xnj coincide, the equalities

lim
n→∞ max

1≤ j≤kn

(
P̄

�

(n)

)

xnj

(
E
(
εs�

n

)) = 0, (16)

lim
n→∞ max

1≤ j≤kn

(
P̄

	

(n)

)

xnj

(
E
(
εs	

n

)) = 0 (17)

follows from (14) and (15). The TA {xnj }n∈N, j∈N[kn] of MV-

algebras M(Ω(n),S(n)), considered with states P̄
�

(n) and

P̄
	

(n), satisfies (3) and therefore Theorem 5 implies that for

each ε > 0 L
�
n(ε) → 0, L	

n(ε) → 0, as n → ∞. Thus,
Ln(ε) = L

�
n(ε) + L

	
n(ε) → 0, as n → ∞, which finishes

the proof. ��

4 Applications

In this section, we present and analyse three examples of
arrays and sequences of IV-observables with convergent
scaled sums or row sums. Thefirst example is preceded by the
central limit theorem for independent, identically distributed
IV-observables with proof. In the second and third example,
the considered observables are not identically distributed and
therefore Theorem 12 cannot be applied for them. To prove
the convergence in distribution of the considered scaled row
sums to standard normal distribution, we use Theorem 9 and
Theorem 10.

4.1 Convergence of independent IV-observables with
the same distributions

Let us consider a sequence of independent IV-observables
with the same distribution.

Theorem 12 Let (V(Ω,S),P) be an IV-probability space.
Let us assume that {x j : B(R) → V(Ω,S)} j∈N is a sequence
of independent IV-observableswith the same distribution and
variances

(σ �)2 = D
2,�(x), (σ 	)2 = D

2,	(x)

with respect toP� andP	, respectively, where 0 < σ�, σ 	 <

∞. Let e� = E
�(x1) and e	 = E

	(x1). Then for t ∈ R

P�

(∑n
j=1 x j − ne�

σ �
√
n

((−∞, t))

)

→ Φ(t), as n → ∞,

(18)

P	

(∑n
j=1 x j − ne	

σ 	
√
n

((−∞, t))

)

→ Φ(t), as n → ∞.

(19)

Proof Let {(V(Ω(n),S(n)),P(n))}n∈N be the constant sequ-
ence of IV-probability spaces, where Ω(n) = Ω , S(n) = S
for arbitrary n ∈ N. Let for each n ∈ N kn = n and xnj =
x j , j ∈ N[n]. Then {xnj }n∈N, j∈N[kn] is a TVI with respect
to the aforementioned constant sequence of IV-probability
spaces. Moreover, {xnj }n∈N, j∈N[kn] satisfies conditions (7)
and (8), where
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s2,�n = n(σ �)2, s2,	n = n(σ 	)2.

Furthermore, for each n ∈ N and j ∈ N[n]

l
xnj
n,�

(
ε, s�

n

) = E
�
(
(x1 − e�)2 I|x1−e�|>εσ�

√
n

)
,

l
xnj
n,	

(
ε, s	

n

) = E
	
(
(x1 − e	)2 I|x1−e	|>εσ	

√
n

)
.

Clearly,

∫

R

(t − e�)2 I|t−e�|>εσ�
√
nP

�
x (dt)

≤
∫

R

(t − e�)2P�
x (dt) = (σ �)2 < ∞.

Therefore,

E
�
(
(x1 − e�)2 I|x1−e�|>εσ�

√
n

)

=
∫

R

(t − e�)2 I|t−e�|>εσ�
√
nP

�
x (dt)

by Lemma 2. Applying the Dominated Convergence Theo-
rem, we obtain the convergence

E
�
(
(x1 − e�)2 I|x1−e�|>εσ�

√
n

)

=
∫

R

(t − e�)2 I|t−e�|>εσ�
√
nP

�
x (dt) → 0, as n → ∞.

Thus,

L�
n(ε) = 1

s2,�n

kn∑

j=1

l
xnj
n,�

(
ε, s�

n

)

= 1

n(σ �)2
nE

�
((
x1 − e�

)2
I|x1−e�|>εσ�

√
n

)

= 1

(σ �)2
E

�
((
x1 − e�

)2
I|x1−e�|>εσ�

√
n

)
→ 0,

as n → ∞ and similarly

L	
n(ε) = 1

(σ 	)2
E

�
((
x1 − e	

)2
I|x1−e	|>εσ	

√
n

)
→ 0,

as n → ∞. Consequently, {xnj }n∈N, j∈N[kn] satisfies the
Lindeberg condition (9). Therefore, Theorem 9 implies the
convergences (18) and (19). ��

Let V(Ω,S) be defined as follows:

Ω = {ω1, ω2, . . . , ωK }, S =2Ω, K ∈ N.

Let for each k ∈ N [K ] πk = (μk, νk) ∈ V(Ω,S) has the
form:

μk(ωi ) = νk(ωi ) =
{
1 if i = k,
0 otherwise.

We assume that the IV-probability P : V(Ω,S) → J has
the form P = PP̂ , where P̂ is the probability defined on

(Ω,S) by the conditions: P̂({ωk}) = pk > 0, k ∈ N [K ],∑K
k=1 pk = 1.
The following example corresponds to the case considered

in the de Moivre–Laplace CLT.
Let K = 2. Let for arbitrary A ∈ B(R) observable x j :

B(R) → V(Ω,S), j ∈ N, be uniquely defined by the
conditions

x j (A) =
⎧
⎨

⎩

0� i f A ∩ {0, 1} = ∅,

π1 i f A ∩ {0, 1} = {0},
π2 i f A ∩ {0, 1} = {1}.

We assume that the IV-observables {x j } j∈N are independent.
Then for j ∈ N

e� = E
�(x j ) = e	 = E

	(x j ) = p2

and

D
2,�(x j ) = D

2,	(x j ) = p1 p2 > 0, σ � = σ 	 = √
p1 p2.

Thus, by Theorem 12, for t ∈ R

P�

(∑n
j=1 x j − np2√

np1 p2
((−∞, t))

)

→ Φ(t), as n → ∞,

P	

(∑n
j=1 x j − np2√

np1 p2
((−∞, t))

)

→ Φ(t), as n → ∞.

4.2 Application of the Lindeberg CLT

Let (V(Ω,S),P) be the IV-probability space defined in the
previous subsection for K = 3 and p1 = p3. Let for each
n ∈ N xnj = x j , kn = n and for arbitrary A ∈ B(R)

the observable x j : B(R) → V(Ω,S), j = 1, 2, 3, . . . , is
uniquely defined by the following conditions:

x j (A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0� i f A ∩ Γ j = ∅,

π1 i f A ∩ Γ j =
{
−
√
1 + 1

2 j

}
,

π2 i f A ∩ Γ j = {0} ,

π3 i f A ∩ Γ j =
{√

1 + 1
2 j

}
,
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where

Γ j =
{

−
√

1 + 1

2 j
, 0,

√

1 + 1

2 j

}

.

We assume that {x j } j∈N are independent. Then for each j ∈
N

E
�

(n)(x j ) = E
	

(n)(x j ) = 0

and

D
2,�
(n)(x j ) = D

2,	
(n)(x j ) = 2p1

(
1 + 1

2 j

)
.

Thus,

s2,�n = s2,	n = 2p1

(
n + 1 − 1

2n

)
→ ∞, as n → ∞.

For a fixed ε > 0 and sufficiently large n

l
xnj
n,�

(
ε, s�

n

) = l
xnj
n,	

(
ε, s	

n

)

= E
�

(n)

((
x j − E

�

(n)(x j )
)2

I|x j−E
�
(n)

(x j )|>εs�n

)
= 0

as well as

L�
n(ε) = 1

s2,�n

kn∑

j=1

l
xnj
n,�

(
ε, s�

n

)

= L	
n(ε) = 1

s2,	n

kn∑

j=1

l
xnj
n,	

(
ε, s	

n

) = 0,

since the supports of the probability measures (P
�

(n))x j and

(P
	

(n))x j are bounded. Consequently,

Ln(ε) = 2L�
n(ε) → 0, as n → ∞.

Therefore, the convergences

P
�

(n)

(∑kn
j=1 xnj

s�
n

((−∞, t))

)

= P�

(∑n
j=1 x j

s�
n

((−∞, t))

)

→ Φ(t), as n → ∞,

P
	

(n)

(∑kn
j=1 xnj

s	
n

((−∞, t))

)

= P	

(∑n
j=1 x j

s	
n

((−∞, t))

)

→ Φ(t), as n → ∞

for each t ∈ R follow from Theorem 9.

4.3 Application of the Lyapunov CLT

We consider the V (Ω,S) specified in the previous example
for K = 3.

For arbitrary n ∈ N, we denote by P̂n the probability
defined on (Ω,S) by the equalities:

P̂n({ω1}) = P̂n({ω3}) = 1 − 4−n

2
, P̂n({ω2}) = 4−n

and byP(n) the IV-probabilityP(n) : V(Ω,S) → J of the
form P(n) = PP̂n

.
For each n ∈ N, we assume that kn = n and for A ∈ B(R)

the IV-observable xnj : B(R) → V(Ω,S), j ∈ N[n], is
defined by the formula

xnj (A) =

⎧
⎪⎪⎨

⎪⎪⎩

0� i f A ∩ {−1, 0, 1} = ∅,

π1 i f A ∩ {−1, 0, 1} = {−1},
π2 i f A ∩ {−1, 0, 1} = {0},
π3 i f A ∩ {−1, 0, 1} = {1}.

We additionally assume that {xnj } j∈N[n] are independent for
each positive integer n.

Fix n ∈ N and δ > 0. For arbitrary j ∈ N[n]

E
�

(n)(xnj ) = E
	

(n)(xnj ) = 0,

E
�

(n)

(
|xnj |2+δ

)
= E

	

(n)

(
|xnj |2+δ

)
= 1 − 4−n,

D
2,�
(n)(xnj ) = D

2,	
(n)(xnj ) = E

�

(n)((xnj )
2)

= E
	

(n)((xnj )
2) = 1 − 4−n .

Therefore,

s�
n = s	

n =
√
n(1 − 4−n)

and

∑kn

j=1
E

�

(n)

(
|xnj − E

�

(n)(xnj )|2+δ
)

s2+δ,�
n

+
∑kn

j=1
E

	

(n)

(
|xnj − E

	

(n)(xnj )|2+δ
)

s2+δ,	
n

= 2n
(
1 − 4−n

)

n1+ δ
2 (1 − 4−n)1+ δ

2

= 2

n
δ
2 (1 − 4−n)

δ
2

→ 0,

as n → ∞.

Therefore, by Theorem 10,

P
�

(n)

(∑kn
j=1 xnj

s�
n

((−∞, t))

)

→ Φ(t), as n → ∞,
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P
	

(n)

(∑kn
j=1 xnj

s	
n

((−∞, t))

)

→ Φ(t), as n → ∞

for t ∈ R.

5 Conclusions

In this paper, we proved the Lindeberg CLT, the Lya-
punov CLT, and the Feller theorem for IV-events. The
results obtained in the IV-probabilistic case correspond to
the classical limit theorems for independent but not necessary
identically distributed random variables. We also presented
examples of applications of the aforementioned limit theo-
rems for scaled sums of IV-observables. Our future possible
considerations will concern further development of the prob-
ability theory for IV-events. In our opinion, the theorems
proved in this paper can be important tools for future statis-
tical applications.
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Türkşen IB (1986) Interval valued fuzzy sets based on normal forms.
Fuzzy Sets Syst 20:191–210

Varadarajan VC (1968) Geom Q Mech. van Nostrand, Princeton, New
Jersey

Zadeh LA (1975) The concept of a linguistic variable and its application
to approximate reasoning, part I. Inf Sci 8:199–249

123


	On central limit theorems for IV-events
	Abstract
	1 Introduction
	2 Basic notions and facts concerning the MV-algebraic probability theory
	3 IV-probability
	3.1 Basic definitions and theorems
	3.2 Central limit theorems

	4 Applications
	4.1 Convergence of independent IV-observables with the same distributions
	4.2 Application of the Lindeberg CLT
	4.3 Application of the Lyapunov CLT

	5 Conclusions
	References




