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Abstract Catastrophe bonds are financial instruments,
which enable to transfer the natural catastrophe risk to finan-
cial markets. This paper is a continuation of our earlier
research concerning catastrophe bondpricing.Weassume the
absence of arbitrage and neutral attitude of investors toward
catastrophe risk. The interest rate behavior is described by the
two-factor Vasicek model. To illustrate and analyze obtained
results, we conduct Monte Carlo simulations, using parame-
ters fitted for real data on natural catastrophes. Besides the
crisp cat bond pricing formulas, we obtain their fuzzy coun-
terparts, taking into account the uncertainty on the market.
Moreover, we propose an automated approach for decision
making in fuzzy environment with relevant examples pre-
senting this method.

Keywords Catastrophe bonds · Stochastic processes ·
Monte-Carlo simulations · Vasicek model · Automated
decision making · Fuzzy numbers

1 Introduction

Nowadays, natural catastrophes occur more frequently than
before. Additionally, they threaten densely populated areas
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[e.g., tsunami in Japan (2011)]. This results in high values of
damages. One can mention Hurricane Andrew (1992) with
losses estimated at USD 30 billion [see, e.g., Muermann
(2008)]. On the other hand, devastating floods are a signifi-
cant problem in Europe.

Natural catastrophes losses have a negative impact on
financial stability of insurers, e.g., after Hurricane Andrew
more than 60 insurance companies became insolvent [see,
e.g., Muermann (2008)]. This is caused not only by the huge
value of losses, but also the classical insurance mechanisms
[see, e.g., Borch (1974)] are not suitable for losses caused by
natural disasters. The classical insurance approach applied
to the construction of the insurer’s portfolio can lead directly
to bankruptcy of this enterprise [see, e.g., Ermoliev et al.
(2001); Romaniuk and Ermolieva (2005)].

One of the methods of solving the mentioned above
problems is application of other financial and insurance
mechanisms. Such instruments are, among others, catastro-
phe bonds [also called cat bonds, see, e.g., George (1999);
Nowak and Romaniuk (2009)]. They transfer risk connected
with natural catastrophe losses (i.e., the insurance risk) to
financial markets.

The number of papers dedicated to catastrophe bonds
pricing is relatively low. A significant problem is the incom-
pleteness of the financial market on which catastrophe
instruments are traded. In many papers, simplified models or
behavioral financemethods are used. In turn,many stochastic
approaches do not take into account the change of probability
measure in the martingale method or apply the utility func-
tion, which choice can be an additional problem in practice.
An interesting stochastic approach proposed by Vaugirard in
Vaugirard (2003) overcame the problem of the incomplete-
ness of the financial market. For more detailed references we
refer the reader to Nowak and Romaniuk (2013b).
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In this paper, we solve the catastrophe bond pricing prob-
lem under the assumption of absence of arbitrage on the
financial market. We derive and prove the cat bond valu-
ation expressions in crisp case. Then, assuming that some
parameters of the model cannot be precisely described, we
obtain fuzzy counterparts of the crisp pricing formulas and
we apply them to an automatizedmethod of decisionmaking.
We illustrate our theoretical results by numerical examples.
Our approach in this paper can be treated as an essential
extension of Vaugirard’s method. In analogous catastrophe
bond valuation formulas considered earlier [see Nowak et al.
(2012); Nowak and Romaniuk (2010b, 2013b)], one-factor
models of the spot interest rate rt were used. A new model
of rt proposed in this paper is the two-factor Vasicek model
(introduced by Hull and White) with a stochastic process
describing deviation of the current view on the long-term
level of rt from its average view. Additionally, in comparison
with the mentioned approaches, we introduce more detailed
formulas describing prices of cat bonds (see Theorem 2) for
arbitrary time moment t , on the basis of Dynkin’s Lemma.
For this purpose, we apply zero-coupon bond pricing for-
mulas from Munk (2011). However, the proof of Theorem 2
required considering the case of ar = aε (see Lemma 1, case
b), not considered in Munk (2011). Furthermore, contrary
to Nowak et al. (2012), Nowak and Romaniuk (2010b), we
conduct Monte Carlo simulations, applying real parameters
for rt and distributions of catastrophe losses. We also apply a
non-homogeneous Poisson process for quantity of catastro-
phe events. Asmentioned previously, apart from the standard
valuation formulas, we obtain their fuzzy counterparts, tak-
ing into account the uncertainty on themarket.We propose an
automated approach for decision making and present exam-
ples to illustrate it for a given set of market parameters.

As noted above, applying fuzzy set theory, we consider
different sources of uncertainty, not only the stochastic one.
In particular, we take into account that volatility parameters
and the correlation coefficient, used for description of rt ,
are determined by fluctuating financial market and often the
uncertainty does not have a stochastic character. Therefore,
we apply fuzzy counterparts of some market parameters. As
result, price obtained by us has the form of a fuzzy number,
which can be used for investment decision making. Similar
approach was applied in the case of options in Wu (2004)
and Nowak and Romaniuk (2010a, 2013c, 2014b), where
the Jacod-Grigelionis characteristic triplet [see, e.g., Nowak
(2002); Shiryaev (1999)] was additionally used.

The literature devoted to soft computing methods is very
rich. Books (Vasant et al. 2012; Vasant 2013a, 2014, 2015)
provide a wide overview of soft computing algorithms and
their applications. We mention only certain selected exam-
ples of the presented approaches, focusing on financial and
economic problems.Various optimizationmethods using soft
computing such as fuzzy logic, neural networks, genetic algo-

rithms, and the theory of chaos, in business, finance and
economics are discussed in Dostál (2012). An interesting
example presented in Dostál (2012) is application of the-
ory of chaos to simulation of market price of a share on the
stockmarket. In Beynon and Clatworthy (2013), the problem
of understanding the relationship between company stock
returns and earnings components is discussed. The authors
apply the classification and ranking belief simplex (CaRBS)
and a development of this data analysis technique, called
RCaRBS. In turn, the author of Gordini (2014) uses a genetic
algorithms approach for small enterprise default prediction
modeling. A widely applicable multi-variate decision sup-
port model for market trend analysis and prediction, based
on a time series transformation method in combination with
Bayesian logic and Bayesian network, is presented in Mršić
(2014). In Besbes et al. (2015), the authors propose a two-
phase mathematical approach, involving the application of a
stochastic programming model, to effective product-driven
supply chain design. In Vasant (2013b), a new and interest-
ing approach to the industrial production planning problems
is discussed. Finally, various generalized soft methods are
applied in many other scientific areas, see, e.g., Kowalski
et al. (2008), Kulczycki and Charytanowicz (2005, 2010).

Section 2 contains lists of symbols, expressions and oper-
ators used in the paper. In Sect. 3, we discuss basic notions
and mechanisms connected with catastrophe bonds. In Sect.
4, catastrophe bond pricing formulas are proved for the two-
factor Vasicek interest rate model and a necessary theoretical
base is presented. Section 5 is devoted to cat bond pricing
in fuzzy environment. In Sect. 6, we propose an automated
method of decision making with application of the fuzzy
valuation expressions. Section 7 is dedicated to algorithms
used in Monte Carlo simulations. These algorithms are then
applied in Sect. 8 during analysis of some numerical exam-
ples of cat bond pricing and automatized decision making.

2 List of symbols, expressions and operators

2.1 List of symbols and expressions in order of
appearance

(�,F , P) probability space (see Sect. 4),
P probability measure (see Sect. 4),
[0, T ′] time horizon (see Sect. 4),
T date ofmaturity and payoff of catastrophe bonds (seeDef-

inition 1, Definition 2),
Wt = (

W 1
t ,W 2

t , . . . ,Wn
t

)
t∈[0,T ′] standard, n-dimensional

Brownian motion (see Sect. 4),
(Ui )

∞
i=1 sequence of independent random variables (see
Sect. 4),

Ui value of losses during i th catastrophic event (see Sect. 4),
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(
Ñt

)

t∈[0,T ′]
compound Poisson process describing aggre-

gated catastrophic losses (see (1)),
(Nt )t∈[0,T ′] Poisson process describing number of

catastrophic events (see Sect. 4),
κ : [0, T ′] → R+ intensity function of Poisson process

(Nt )t∈[0,T ′] (see Sect. 4 and Sect. 7.1),
(Ft )t∈[0,T ′] filtration with respect to which stochastic

processes considered in the paper are adapted (see
Sect. 4),

F0
t , F1

t , t ∈ [0, T ′], auxiliary σ -fields (see Sect. 4),
σ (A) σ -field generated by a family A of sets or random

variables (see Sect. 4),
F σ -field of events for which probability P is defined (see

Sect. 4),
F0, FT ′ σ -fields from filtration (Ft )t∈[0,T ′] (see Sect. 4),(
�,F , (Ft )t∈[0,T ′] , P

)
filteredprobability space (seeSect.

4),
(Bt )t∈[0,T ′] banking account (see Sect. 4),
r risk-free spot interest rate, rt denotes the value of the risk-

free spot interest rate at moment t (see Sect. 4),
B (t, T ) price at time t of a zero-coupon bondwith thematu-

rity date T and the face value equal to 1 (see Sect. 4),
n number of levels of catastrophic losses (see Sect. 4),
K1, K2, . . . , Kn levels of catastrophic losses (see Sect. 4),
w1, w2, . . . , wn cat bonds payment decrease coefficients

(see Sect. 4),
τi : � → [0, T ′], 1 ≤ i ≤ n, sequence of stopping times

(see Sect. 4),
inf

t∈[0,T ′]
infimum with respect to t ∈ [

0, T ′] (see Sect. 4),

Fv catastrophe bond face value (see Sect. 4),
IBs(T, Fv) catastrophe bond with the face value Fv, the

date of maturity and payoff T , and a stepwise payoff
structure (see Definition 1),

νIBs (T,Fv) catastrophe bond IBs(T, Fv) payoff function (see
Sect. 4),

IA the indicator function of an event A, IA(ω) equals 1 if
ω ∈ A and 0 otherwise (see Sect. 4),

	i , i = 1, 2, . . . , n, cumulative distribution functions of τi
(see Sect. 4),

	 sum of cumulative distribution functions of τi , i =
1, 2, . . . , n (see Sect. 4),

K0 additional level of catastrophic losses (see Sect. 4),
IBp(T, Fv) catastrophe bond with the face value Fv, the

date of maturity and payoff T , and a piecewise linear
payoff structure (see Definition 2),

νIBp(T,Fv) catastrophe bond IBp(T, Fv) payoff function
(see Sect. 4),

Q probability measure equivalent to P (see Definition 3 and
formula (2)),

λ̄t = (
λ̄1t , λ̄2t , . . . , λ̄nt

)
n-dimensional market price of risk

process (see Sect. 4),

λ1, λ2, . . . , λn constants defining the market price of risk
process (see Sect. 4),

‖.‖ the Euclidean norm in Rn (see Sect. 4),∫ T ′
0 λ̄tdWt Itô integral of λ̄ with respect to W (see (2)),
∫ T ′
0

∥∥λ̄t
∥∥2 dt Lebesgue integral of

∥∥λ̄
∥∥2 (see (2)),

dQ
dP Radon–Nikodym derivative of Q with respect to P (see

(2)),
P-a.s. P-almost surely (see (2)),
EQ

(
.|F1

t

)
conditional expected value with respect to σ -

field F1
t and probability measure Q (see Sect. 4),

et , ft conditional expected values of νIBs (T,Fv) and
νIBp(T,Fv) with respect to σ -field F1

t and probability
measure Q (see Sect. 4),

(εt )t∈[0,T ′] process describing the deviation of the current
view on the long-term level of the interest rate r =
(rt )t∈[0,T ′] from the average view (see equations (3)),

ar , br , σr , aε, σε, ρ parameters of equations (3), describing
the risk-free spot interest rate,

x1t , x2t , t ∈ [0, T ′], state variables describing general form
of the spot interest rate process r under Q (see Sect. 4.2),

ξ0, ξi , ϕ̂i , ϑi , vi j , κ̂i j , �i j , i, j ∈ {1, 2}, constants
describing general form of the spot interest rate process
r under Q (see Sect. 4.2),

W̃ 1
t , W̃

2
t Q-Brownian motions (see Sect. 4.2),

a, b1, b2 functions describing the form of the price of a zero-
coupon bond (see Theorem 1 and formulas (5)-(7), (10)-
(12)),

λ constant describing the market price of risk in Lemma 1
and Theorem 2,

Bar , Baε , Bar+aε , C, D, E , G auxiliary functions introduced
to shorten formulas describing B (t, T ) in Lemma 1,

τ arbitrary element of the interval [0, T ] (see Lemma 1),
ϕ̂ constant given by formula ϕ̂ = arbr −λσr (see Lemma 1),
IBs (t), IBp (t) prices of the catastrophe bonds IBs (T, Fv),

IBp (T, Fv) at moment t ∈ [0, T ] (see Theorem 2),
EQ (.|Ft ) conditional expected value with respect to σ -field

Ft and probability measure Q (see (23)),
EQ

(
.|F1

0

)
conditional expected value with respect to σ -

field F0
t and probability measure Q (see the proof of

Theorem 2),
ν one of the functions νIBs (T,Fv), νIBp(T,Fv) (see the proof

of Theorem 2),
F0,1
t π -system described in the proof of Theorem 2,

A λ-system described in the proof of Theorem 2,

ct auxiliary function ct = exp
(
− ∫ T

t rudu
)
, t ∈ [0, T ],

considered in the proof of Theorem 2,
R the set of real numbers (see Sect. 5.1),
Ã an arbitrary fuzzy subset of R (see Sect. 5.1),
μ Ã membership function of a fuzzy set Ã (see Sect. 5.1),
Ãα , α ∈ [0, 1], denotesα-level set of a fuzzy set Ã (see Sect.

5.1),
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ãLα , ãUα , α ∈ [0, 1], lower and upper bounds of the α-level
set of a fuzzy number ã (see Sect. 5.1),

ã = (a1, a2, a3) a triangular fuzzy number (see Sect. 5.1),
F (R) the set of all fuzzy numbers (see Sect. 5.1),
f : R → R a function considered in Proposition 1,
f̃ : F (R) → F (R) fuzzy-valued function induced by f via

the extension principle (see Proposition 1),
σ̃r , σ̃ε, λ̃1, ρ̃ fuzzy counterparts of parameters σr , σε, λ1, ρ

(see Sect. 5.2),
r̃t , ε̃t , t ∈ [0, T ], fuzzy random variables corresponding to

rt , εt , t ∈ [0, T ] (see Sect. 5.2),
� the set of symbols � = {L ,U } (see Sect. 5.2),
Ai (τ ), i = 1, 2, 3, 4, auxiliary real-valued functions

defined on [0, T ] (see Sect. 5.2),
ã (τ ) auxiliary fuzzy number-valued function defined on

[0, T ] (see (24), (25)),
ϕ̃, σ̃1, σ̃2, σ̃3, ρ̃2 auxiliary fuzzy parameters equal to arbr �

λ̃1 ⊗ σ̃r , σ̃r ⊗ σ̃r , σ̃r ⊗ σ̃ε, σ̃ε ⊗ σ̃ε, ρ̃ ⊗ σ̃2, respectively
(see Sect. 5.2),

˜IBs (t), ˜IBp (t) prices of bonds IBs (T, Fv), IBp (T, Fv) at
moment t ∈ [0, T ] for fuzzy parameters (see Theorem
3),

γ̃ (τ, r̃ , ε̃) auxiliary function used in fuzzy pricing formulas
of cat bonds (see Theorem 3),

� an arbitrary element of � (see Theorem 3),
˜IB (t), t ∈ [0, T ], equal to ˜IBs (t) or ˜IBp (t), t ∈ [0, T ], (see

Sect. 5.3),
sup

0≤α≤1
supremum with respect to α satisfying the inequality

0 ≤ α ≤ 1 (see Sect. 5.3),

I( ˜IB(t)
)

α

(c) the indicator function of the set
( ˜IB (t)

)

α
, equal

to 1 if c ∈
( ˜IB (t)

)

α
and 0 otherwise (see Sect. 5.3),

g, h : [0, 1] → R functions of the form g(α) =
( ˜IB (t)

)L

α

and h(α) =
( ˜IB (t)

)U

α
(see Sect. 5.3),

sup supremum of a set (see Sect. 5.3),
β ˜IB(t)

(
ĉ
)
, δ ˜IB(t)

(
ĉ
)
auxiliary functions of a real argument ĉ

defined in Sect. 5.3,
B, A, H, R, S possible decisions of a financial analyst: Buy,

Accumulate, Hold, Reduce, Sell (see Sect. 6),
V set of possible decisions of a financial analyst (see

Sect. 6),
Ĉt current market price of the catastrophe bond (see

Sect. 6),
min two argument minimum function (see Sect. 6),
2V the set of subsets of V (see Sect. 6),
� : R2 → 2V advice choice function defined in Sect. 6,
[0, 1]R the space of [0, 1]-valued functions definedonR (see

Sect. 6),
[0, 1]V the space of [0, 1]-valued functions defined on V

(see Sect. 6),

�̃ : [0, 1]R × R → [0, 1]V extended advice choice func-
tion (see Sect. 6),

l̃ the membership function of �̃
( ˜IB (t) , Ĉt

)
defined by for-

mulas (39)–(43).
nS number of simulations (see Sect. 7)
a, b, c parameters used in the sinusoidal intensity function

(see (44))
α0 starting value of α (see Algorithm 1)
α1 limiting value of α (see Algorithm 1)
�α increment of α (see Algorithm 1)
n0 number of values of α approximating the fuzzy price (see

Sect. 7.2)
m number of fuzzy parameters in the interest ratemodel (see

Sect. 7.2)
ε tolerance used in approximation of the membership value

(see Sect. 7.3)
Ĉg
t initial value of the current price (see Algorithm 4)

Ĉh
t limiting value of the current price (see Algorithm 4)

�Ĉt increment of the current price (see Algorithm 4)
μLN location parameter of lognormal distribution (see Sect.

8.1.1)
σLN scale parameter of lognormal distribution (see Sect.

8.1.1)
QLN−NHPP(x) x th quantile of the process of losses for

NHPP and lognormal distribution (see Sect. 8.1.1)
�IBp(0) relative percentage change of the cat bond price

compared to the reference value (see Sect. 8.1.2)
�ρ relative percentage change of ρ compared to the refer-

ence value (see Sect. 8.1.2)
�a relative percentage change of a compared to the refer-

ence value (see Sect. 8.1.3)
�b relative percentage change of b compared to the refer-

ence value (see Sect. 8.1.4)
�σr relative percentage change of σr compared to the ref-

erence value (see Sect. 8.1.5)
�σε relative percentage change of σε compared to the ref-

erence value (see Sect. 8.1.5)
ξGPD, βGPD parameters of generalized Pareto distribution

(GPD) (see Sect. 8.1.6)
QLN−GPD(x) x th quantile of the process of losses for NHPP

and GPD (see Sect. 8.1.6)
�ξGPD relative percentage change of ξGPD compared to the

reference value (see Sect. 8.1.7)
�βGPD relative percentage change of βGPD compared to the

reference value (see Sect. 8.1.7)

2.2 List of operators in order of appearance

∪ union of sets (see Sect. 4),
∧ two-argument minimum function (see Sect. 4),
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∩ intersection of sets (see proof of Theorem 2),
⊕, �, ⊗, � operator of addition, subtraction, multiplica-
tion and division of fuzzy numbers (see Sect. 5.1),
� one of the operators: ⊕, �, ⊗, � (see Sect. 5.1),
◦ one of the operators: +, −, ∗, / of real numbers (see
Sect. 5.1),
⊕int ,�int ,⊗int or�int operator of addition, subtraction,
multiplication and division of closed intervals (see Sect.
5.1),
�int one of the operators: ⊕int , �int , ⊗int or �int (see
Sect. 5.1),
′ : � → � the operator defined by: L ′ = U andU ′ = L
(see Sect. 5.2),
AND logical conjunction (see Sect. 6).

3 Catastrophe bonds

Asingle catastrophic event, e.g., an earthquakeor a hurricane,
could result in damages worth of billions of dollars. There-
fore, such event could cause problemswith reserves formany
insurers or even bankruptcy of these enterprises [see Cum-
mins et al. (2002)]. However, daily fluctuations onworldwide
financial markets reach also tens of billions of dollars. Then,
new instruments were introduced, which could transfer risk
from insurancemarkets to financialmarkets [see, e.g.,Nowak
(1999)].

A catastrophe bond (Act-of-God bond, cat bond) is an
example of such instruments aimed at ”packaging” risks into
a form of tradable assets [see Cox et al. (2000); George
(1999); Nowak and Romaniuk (2009)]. The payment func-
tion of the cat bond depends on additional random variable
called triggering point, which is connected with occurrence
or other properties of specified type of natural catastrophe
(like the issuer’s actual losses—e.g., losses from flood, insur-
ance industry index, real parameters of catastrophe—e.g.,
magnitude of earthquake, etc.). If triggering point occurs,
then the structure of payments is changed. Other parame-
ters like region and time interval for catastrophic event are
described in detail for catastrophe bond. The payments for
cat bonds usually depend also on interest rates.

For example, the A-1 bond issued by USAA in 1997 was
connected with losses caused by hurricane on the east coast
of USA between July 15, 1997 and December 31, 1997. If
the value of losses had beenmore than $ 1 billion, the coupon
of the bond would have been lost.

4 Cat bond pricing

This section is devoted to catastrophe bonds pricing in the
crisp case, i.e., valuing the catastrophe instruments under
the assumption that all the model parameters are crisp. At

the beginning, we present selected elements of stochastic
analysis, describe the stochastic model of catastrophe losses
and introduce Brownian motion, which is used for descrip-
tion of the risk-free spot interest rate. We also define two
types of catastrophe bonds and specify assumptions con-
cerning the considered financial market. Subsequently, we
discuss the two-factor Vasicek model of the spot interest rate
and complete the zero-coupon bond valuation expression for
this interest rate model. Finally, we introduce and prove the
catastrophe bonds valuation formulas.

We introduce necessary notations and definitions. Let
(�,F , P) be a probability space. We assume that time hori-
zon has the form

[
0, T ′], where T

′
< ∞, and we fix a

moment T ∈ [
0, T ′]. Let Wt = (

W 1
t ,W 2

t , . . . ,Wn
t

)
t∈[0,T ′]

be standard, n-dimensional Brownian motion.
Let (Ui )

∞
i=1 be a sequence of independent random vari-

ables with the same distribution and finite second moment.
We treat Ui as the value of losses during i th catastrophic
event. To describe the aggregated catastrophe losses till
moment t , we will use the compound Poisson process given
by formula

Ñt =
Nt∑

i=1

Ui , t ∈ [
0, T ′] , (1)

where (Nt )t∈[0,T ′] is a Poisson process with a continuous

intensity function κ : [0, T ′] → R+.
The filtration (Ft )t∈[0,T ′] is defined by equalities

Ft = σ
(
F0
t ∪ F1

t

)
,F0

t = σ (Ws, s ≤ t) ,

F1
t = σ

(
Ñs, s ≤ t

)
, t ∈ [

0, T ′] .

Moreover, we assume that F = FT ′ ,

F0 = σ ({A ∈ F : P (A) = 0})

and that (Wt )t∈[0,T ′], (Nt )t∈[0,T ′] and (Ui )
∞
i=1 are indepen-

dent. Under the above assumptions, the filtered probability

space
(
�,F , (Ft )t∈[0,T ′] , P

)
satisfies the usual conditions.

Let (Bt )t∈[0,T ′] denote the banking account, satisfying the
standard equation

dBt = rt Btdt, B0 = 1,

where r is the risk-free spot interest rate. We will denote by
the symbol B (t, T ) the price at the time t of a zero-coupon
bond with the maturity date T ≤ T ′ and with the face value
equal to 1 .
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We attempt to introduce definitions of two types of
catastrophe bonds with different payoff structures. Let

0 < K1 < · · · < Kn, n ≥ 1,

be levels of catastrophic losses and let

w1, w2, . . . , wn ≥ 0, n ≥ 1

be sequences of constants such that

n∑

i=1

wi ≤ 1.

The constants wi will be called payment decrease coeffi-
cients.

In this section, we denote by ∧ the two-argument mini-
mum function.

Let τi : � → [
0, T ′] , 1 ≤ i ≤ n be a sequence of

stopping times defined by the formula

τi (ω) = inf
t∈[0,T ′]

{
Ñt (ω) > Ki

}
∧ T ′, 1 ≤ i ≤ n.

Definition 1 By the symbol IBs(T, Fv), we denote
catastrophe bond with the face value Fv, the date of maturity
and payoff T , satisfying the following conditions:

(a) If the catastrophe does not occur in the period [0, T ]
(i.e., τ1 > T ), the bondholder is paid the face value Fv.

(b) If τn ≤ T , the bondholder receives Fv(1 − ∑n
i=1 wi ).

(c) If τk−1 ≤ T < τk, 1 < k ≤ n, the bondholder receives
the face value minus the sum of write-down coefficients
in percentage Fv(1 − ∑k−1

i=1 wi ).

Clearly, the catastrophe bond IBs(T, Fv) payoff function
νIBs (T,Fv) can be written in the form:

νIBs (T,Fv) = Fv

(

1 −
n∑

i=1

wi IÑT >Ki

)

,

where I is the indicator function.
In the reminder of this section, we will use the following

function of the variable T :

	(T ) =
n∑

i=1

wi	i (T ) ,

where 	i are cumulative distribution functions of τi .
To define the second type of cat bond, we introduce an

additional constant K0, such that 0 ≤ K0 < K1.

Definition 2 By the symbol IBp (T, Fv),wedenote catastro-
phe bond with the face value Fv, the date of maturity and
payoff T and the payoff function of the form

νIBp(T,Fv) =Fv

⎛

⎝1 −
n−1∑

j=0

ÑT ∧ K j+1 − ÑT ∧ K j

K j+1 − K j
w j+1

⎞

⎠ .

The payoff function of the cat bond IBp (T, Fv) is a piece-
wise linear function of losses ÑT . If the catastrophe causing
significant level of losses does not occur (i.e., ÑT < K0), the
bondholder receives the payoff equal to its face value Fv.
In case when the aggregated losses are not less then Kn , the
bondholder receives the payoff equal to Fv

(
1 − ∑n

i=1 wi
)
.

If K j ≤ ÑT ≤ K j+1 for j = 0, 1, . . . , n, the bondholder is
paid

Fv

⎛

⎝1 −
∑

0≤i< j

wi+1 − ÑT ∧ K j+1 − ÑT ∧ K j

K j+1 − K j
w j+1

⎞

⎠

and when ÑT increases in the interval [K j , K j+1] the pay-
off decreases linearly from value Fv

(
1 − ∑

0≤i< j wi+1

)
to

value Fv
(
1 − ∑

0≤i≤ j wi+1

)
.

Definition 3 The family {B (t, T ), t ≤ T ≤ T ′} is called
arbitrage-free family of zero-couponbondpriceswith respect
to r , if the following conditions hold:

(a) B (T, T ) = 1 for each T ∈ [
0, T ′] .

(b) There exists a probability measure Q, equivalent to P ,
such that for each T ∈ [

0, T ′], the process of the dis-
counted price of the zero-coupon bond

B (t, T ) /Bt , t ∈ [0, T ] ,

is a martingale with respect to Q.

Let λ̄t = (
λ̄1t , λ̄2t , . . . , λ̄nt

)
be the n-dimensional market

price of risk process. In our model, we assume that λ̄1t =
λ1, λ̄2t = λ2, . . . , λ̄nt = λn are constants. The following
Radon–Nikodym derivative defines a probability measure Q
equivalent to P:

dQ

dP
= exp

(

−
∫ T ′

0
λ̄tdWt − 1

2

∫ T ′

0

∥∥λ̄t
∥∥2 dt

)

,P − a.s.

(2)

where ‖.‖ is the Euclidean norm in R
n .

The family of zero-coupon bond prices B(t, T ), where
0 ≤ t ≤ T ≤ T ′ is arbitrage free with respect to r for Q
defined by (2).
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In what follows we assume that investors are neutral
toward the natural catastrophe risk. Additionally, we intro-
duce the following notations:

et = EQ
(
νIBs (T,Fv)|F1

t

)
and

ft = EQ
(
νIBp(T,Fv)|F1

t

)
, t ∈ [0, T ].

From the independence of the payoff function from W
[compare Nowak et al. (2012) and Nowak and Romaniuk
(2010b)], it follows that

e0 = Fv {1 − 	(T )}

and

f0 = EPνIBp(T,Fv).

4.1 The two-factor Vasicek model

We now introduce the pricing formulas for the catastrophe
bonds under the assumption of the two-factor Vasicek model
of the spot interest rate. In the mentioned model, the inter-
est rate is described by the system of stochastic differential
equations, which in the form proposed by Hull and White
[compare Hull and White (1994)] is given by

drt = (arbr + εt − arrt ) dt + σrdW
1
t ;

dεt = −aεεtdt + σερdW
1
t + σε

√
1 − ρ2dW 2

t . (3)

The process (εt )t∈[0,T ′] represents the deviation of the cur-
rent view on the long-term level of the interest rate (rt )t∈[0,T ′]
from the average view. The parameter ρ ∈ [−1, 1] is the
correlation coefficient between changes in the interest rate
and changes in the process ε. We assume that all the para-
meters (except the correlation coefficient ρ) in the above
equations are positive. The proposed model belongs to the
class of Gaussian models.

4.2 Cat bonds valuations formulas

In catastrophe bond pricing formulas, we will apply the
zero-coupon bond valuation expression from Munk (2011).
However, since the author of the mentioned book did not
take into account the case of ar = aε, we will use the follow-
ing Theorem 1 (Theorem 8.1 adapted to the two-factor affine
interest ratemodels) fromMunk (2011) to complete the zero-
coupon bond pricing expression. The complete expression of
B(t, T ) will be presented in Lemma 1.

Let us assume that the spot interest rate process r under
Q has the form

rt = ξ0 + ξ1x1t + ξ2x2t , t ∈ [
0, T ′] ,

for the dynamics of the vector of state variables given by

dxit =
(

ϕ̂i −
2∑

j=1
κ̂i j x j t

)

dt+
2∑

j=1
�i j

√

ϑ j +
2∑

k=1
v jk xktdW̃

j
t ,

i = 1, 2,

where ξ0, ξi , ϕ̂i , ϑi , vi j , κ̂i j , �i j , i, j ∈ {1, 2}, are constants
and W̃ 1

t and W̃ 2
t are independent Q-Brownian motions. We

additionally assume that

ϑ j +
2∑

k=1
v jk xkt ≥ 0, j = 1, 2

for all possible values of the vector of state variables.

Theorem 1 In an admissible affine model, the price of a
zero-coupon bond has the exponential-affine form

B (t, T )= exp {−a (T − t)−b1 (T−t) x1t − b2 (T−t) x2t } ,

t ∈ [0, T ] ,

where the deterministic functions a, b1, b2 satisfy the system
of ordinary differential equations

b′
i (τ )=−

2∑

j=1
κ̂ j i b j (τ ) − 1

2

2∑

k=1
vki

(
2∑

j=1
� jkb j (τ )

)2

+ ξi ,

i = 1, 2,

a′ (τ )=
2∑

j=1
ϕ̂ j b j (τ )− 1

2

2∑

k=1
ϑk

(
2∑

j=1
� jkb j (τ )

)2

+ ξ0,

τ > 0,

with the initial conditions a (0) = 0, b (0) = 0.

Functions a, b1, b2 in the above theorem are auxiliary and
they are used for description of the price of a zero-coupon
bond.

In the following lemma, we assume that

λ̄t =
(

λ,− ρ
√
1 − ρ2

λ

)

for a constantλ (compare the proof of Theorem2). To shorten
formula describing B (t, T ), we introduce additional auxil-
iary functions: Bar , Baε , Bar+aε , C, D, E , G.
Lemma 1 Let the risk-free spot interest rate be described by
the two-factor Vasicek model. Then, the zero-coupon bond
pricing formula has the following affine-exponential form:

B (t, T )=exp (−a (T−t)−b1 (T−t) rt − b2 (T − t) εt ) ,

t ∈ [0, T ] , (4)
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where for τ ∈ [0, T ]:

(a) in the case of ar �= aε

a (τ ) = ϕ̂

ar

(
τ − Bar (τ )

)

− 1

2a2r

(
σ 2
r − 2ρσrσε

ar − aε

+ σ 2
ε

(ar − aε)
2

)

×
(
τ − Bar (τ ) − ar

2
B2
ar (τ )

)

− σ 2
ε

2a2ε (ar − aε)
2

(
τ − Baε (τ ) − aε

2
B2
aε

(τ )
)

+
(

σ 2
ε

ar−aε
− ρσrσε

)

araε (ar − aε)

× (
τ − Bar (τ ) − Baε (τ ) + Bar+aε (τ )

)
, (5)

b1 (τ ) = Bar (τ ) , (6)

b2 (τ ) = 1

ar − aε

(Baε (τ ) − Bar (τ )
)
, (7)

Bar (u)= 1

ar

(
1 − e−ar u

)
, Baε (u)= 1

aε

(
1 − e−aεu

)

(8)

and

Bar+aε (u) = 1

ar + aε

(
1 − e−(ar+aε)u

)
; (9)

(b) in the case of ar = aε

a (τ ) = ϕ̂

a2r
C (arτ) + 1

8a5r

(
σ 2

ε D (arτ)

+ ρarσrσεE (arτ) + a2r σ
2
r G (arτ)

)
, (10)

b1 (τ ) = Bar (τ ) , (11)

b2 (τ ) = 1

a2r

(
1 − e−ar τ − arτe

−ar τ
)
, (12)

Bar (u) = 1

ar

(
1 − e−ar u

)
,

C (u) = e−u + u − 1, (13)

D (u) =
(
2u2 + 6u + 5

)
e−2u

− 8 (u + 2) e−u − 4u + 11, (14)

E (u) = 2 (2u + 3) e−2u − 8 (u + 3) e−u − 2 (4u − 9)

(15)

and

G (u) = 2
(
e−2u − 4e−u − 2u + 3

)
; (16)

and ϕ̂ = arbr − λσr in both cases.

Proof For the considered two-factor Vasicek model, the
system of the ordinary differential equations formulated in
Theorem 1 has the form

b′
1 (τ ) = −arb1 (τ ) + 1 (17)

b′
2 (τ ) = b1 (τ ) − aεb2 (τ ) (18)

a′ (τ ) = ϕ̂b1 (τ ) − 1

2
σ 2
r b

2
1 (τ ) − 1

2
σ 2

ε b
2
2 (τ )

− σrσερb1 (τ ) b2 (τ ) , τ > 0, (19)

with the initial conditions a (0) = 0, b (0) = 0. The equation
(17) has the solution

b1 (τ ) = 1

ar

(
1 − e−ar τ

) = Bar (τ ) .

The solution of (18) in the case ofar �= aε has the form (7).
Moreover, the solution of (19) with b1 and b2 of the form (6)
and (7), respectively, is given by (5). The zero-coupon bond
pricing formula obtained this way was presented and proved
in Munk (2011).

In the case of equal coefficients ar , aε, the solution of (18)
has the form (12). We substitute formulas (11) and (12) into
equation (19). Then, we use the equality

a (τ ) =
∫ τ

0
a′ (u) du

to obtain the solution of (19). Applying standard integral
operations for right side of (19), we receive the form of a (τ )

described by (10) with functions C,D, E,G given by (13)-
(16) and, finally, the zero-coupon bond pricing formula of
the form (4). ��
Theorem 2 Let IBs (t) and IBp (t) be prices of the catastro-
phe bonds IBs (T, Fv) and IBp (T, Fv) at moment t ∈
[0, T ] for the risk-free spot interest rate described by the
two-factor Vasicek model. Then

IBs (t) = exp (−a (T − t) − b1 (T − t) rt

− b2 (T − t) εt ) · et (20)

and

IBp (t) = exp (−a (T − t) − b1 (T − t) rt

− b2 (T − t) εt ) · ft , (21)

123



Catastrophe bond pricing for the two-factor Vasicek interest... 2583

where functions a, b1, b2 are described by formulas (5)–(7)
in the case of ar �= aε and by (10)–(12) for ar = aε.

Proof We assume that the market price of risk connected
with the deviation of the current view on the long-term level
of rt is equal to zero. Then, if λ1 = λ is a fixed constant, λ2
satisfies the following equation:

σερλ + σε

√
1 − ρ2λ2 = 0.

Therefore, λ2 = − ρ√
1−ρ2

λ. After change of measure

according to the formula (2), the Eq. (3) has the form:

drt = (
ϕ̂ + εt − arrt

)
dt + σrdW̃

1
t ;

dεt = −aεεtdt + σερdW̃
1
t + σε

√
1 − ρ2dW̃ 2

t ,

where W̃ 1
t and W̃ 2

t are independent Q-Brownian motions.
Clearly, for each t ∈ [0, T ]

B (t, T ) = EQ
(
exp

(
−
∫ T

t
rudu

)
|F0

t

)

and, therefore, from Lemma 1, it follows that

EQ
(
exp

(
−
∫ T

t
rudu

)
|F0

t

)

= exp (−a(T − t) − b1(T − t)rt − b2(T − t)εt ) , (22)

where a, b1, b2 are described by formulas (5)–(7) in the case
of ar �= aε and by (10)–(12) for ar = aε. Moreover, for each
t ∈ [0, T ]

EQ
(
exp

(
−
∫ T

t
rsds

)
ν|Ft

)

= EQ
(
exp

(
−
∫ T

t
rsds

)
|F0

t

)
EQ

(
ν|F1

t

)
(23)

for ν = νIBs (T,Fv) or νIBp(T,Fv). The above formula follows
from Dynkin’s Lemma applied to the π -system

F0,1
t = {A ∩ B : A ∈ F0

t and B ∈ F1
t }

and the λ-system A ⊃ F0,1
t of the form

A = {A ∈ Ft : EQ(ctν IA)

= EQ(EQ
(
ct |F0

t

)
EQ

(
ν|F1

t

)
IA)},

where ct = exp
(
− ∫ T

t rudu
)
. For more details, we refer the

reader to the one-factor affine interest rate case considered in
Nowak and Romaniuk (2013a). Applying the equality (22)
to formula (23), we obtain (20) and (21). ��

5 Fuzzy approach to catastrophe bonds pricing

In this section, we present and prove the catastrophe bonds
pricing formulas, assuming that some model parameters
are not precisely known and they are described by fuzzy
numbers. We recall basic elements of fuzzy number the-
ory and fuzzy arithmetic. Using Zadeh’s extension principle,
we prove fuzzy counterparts of catastrophe bonds valuation
expressions introduced in the previous section. Additionally,
we derive analytical formulas for α-level sets of the cat bonds
prices. Finally, we discuss amethod of computation of values
of their membership functions.

5.1 Basic notions and facts

Nowwe recall some basic notions and facts concerning fuzzy
numbers and fuzzy and interval arithmetic.

Let Ã be a fuzzy subset of the set of real numbers R. We
denote byμ Ã its membership functionμ Ã : R → [0, 1], and
by Ãα = {x : μ Ã (x) ≥ α} the α-level set of Ã, where Ã0 is
the closure of the set {x : μ Ã (x) > 0}. Ã is called normal if
there exists x ∈ R such that μ Ã(x).

For a fuzzy number ã [see, e.g., Nowak and Romaniuk
(2014b)], the α-level sets ãα , α ∈ [0, 1], of ã are closed
intervals. We denote them by ãα = [

ãLα , ãUα
]
.

Let � be a binary operator ⊕, �, ⊗ or � between fuzzy
numbers ã and b̃, corresponding to the related binary operator
◦ between real numbers: +, −,× or / via the extension prin-
ciple. Let �int be a binary operator ⊕int , �int , ⊗int or �int

between two closed intervals [a, b] and [c, d], defined by

[a, b] �int [c, d]={z ∈ R : z= x ◦ y, x ∈[a, b], y∈[c, d]},

where ◦ is the corresponding to �int operator between real
numbers +,−,× or / (if the interval [c, d] does not contain
zero in the last case).

Let ã, b̃ be fuzzy numbers. Then, ã � b̃ is also a fuzzy
number and the following equalities hold:

(ã ⊕ b̃)α = ãα ⊕int b̃α =
[
ãLα + b̃Lα , ãUα + b̃Uα

]
,

(ã � b̃)α = ãα �int b̃α =
[
ãLα − b̃Uα , ãUα − b̃Lα

]
,

(ã ⊗ b̃)α = ãα ⊗int b̃α

=
[
min

{
ãLα b̃

L
α , ãLα b̃

U
α , ãUα b̃Lα , ãUα b̃Uα

}
,

max
{
ãLα b̃

L
α , ãLα b̃

U
α , ãUα b̃Lα , ãUα b̃Uα

}]
,

(ã � b̃)α = ãα �int b̃α

=
[
min

{
ãLα /b̃Lα , ãLα /b̃Uα , ãUα /b̃Lα , ãUα /b̃Uα

}
,

max
{
ãLα /b̃Lα , ãLα /b̃Uα , ãUα /b̃Lα , ãUα /b̃Uα

}]
,
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if α-level set b̃α does not contain zero for all α ∈ [0, 1] in
the case of �.

A triangular fuzzy number ã = (a1, a2, a3) is a fuzzy
number with the membership function of the form

μã (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−a1
a2−a1

if a1 ≤ x ≤ a2
x−a3
a2−a3

if a2 ≤ x ≤ a3

0 otherwise.

We denote by F (R) the set of all fuzzy numbers. In the
further part of this section, we will use the following propo-
sition, proved in Wu (2004).

Proposition 1 Let f : R → R be a function such that for
each r ∈ R {x : f (x) = r} is a compact set. Then, f induces
a fuzzy-valued function f̃ : F (R) → F (R) via the extension
principle and for each �̃ ∈ F (R) the α-level set of f̃ (�̃) has
the form f̃ (�̃)α = { f (x) : x ∈ �̃α}.

We will also use fuzzy random variables. For their defin-
ition, we refer the reader to Puri and Ralescu (1986).

5.2 Pricing formulas

In practice, some parameters of the financial market (e.g.,
the market price of risk, the correlation coefficient or the
volatility parameters) are not precisely known.Many authors
noticed that the uncertainty of themarket parameters does not
have a stochastic character [see, e.g., Wu (2004)]. Since the
parameters are determined by the market which fluctuates
from time to time, it is unreasonable to choose their fixed
values, obtained from historical data, for later use in pric-
ing formulas. Therefore, to estimate values of the mentioned
parameters one can use knowledge of experts, regarding
the market price of risk, the correlation coefficient, and the
volatility parameters as fuzzy numbers. One can ask experts
for forecasts of the parameters values, transfer them into tri-
angular fuzzy numbers, and then use them for estimation of
the parameter.

In the remainder of this section, we assume that the above-
mentioned parameters are fuzzy numbers of the triangular
form. In particular, we introduce fuzzy numbers σ̃r , σ̃ε, λ̃1,
ρ̃ and fuzzy random variables r̃t , ε̃t , t ∈ [0, T ] , in place of
their real counterparts σr , σε, λ1, ρ and rt , εt , t ∈ [0, T ]. We
assume that σ̃r and σ̃ε are non-negative fuzzy numbers, i.e.,
their membership functions are equal to 0 for all negative
arguments.

We denote by � the set of symbols � = {L ,U } and
introduce the operator ′ : � → � by: L ′ = U and U ′ = L .

In the following theorem, we will prove the fuzzy valua-
tion formulas for the two-factor Vasicek interest rate model.
Simultaneously, we will correct a simplified version of these
formulas from Nowak and Romaniuk (2014a), where only
fuzzy volatility parameters were assumed.

To shorten notation, we introduce the following auxiliary
real-valued functions defined on [0, T ]:

A1 (τ ) = τ − Bar (τ ) ;
A2 (τ ) = τ − Bar (τ ) − ar

2
B2
ar (τ ) ;

A3 (τ ) = τ − Baε (τ ) − aε

2
B2
aε

(τ ) ;
A4 (τ ) = τ − Bar (τ ) − Baε (τ ) + Bar+aε (τ ) .

Moreover, we consider an auxiliary fuzzy number-valued
function ã (τ ) defined in the case of ar �= aε by formula

ã (τ ) = A1 (τ )

ar
⊗ ϕ̃

� A2 (τ )

2a2r
⊗
(

σ̃1 � 2

ar −aε

⊗ ρ̃2 ⊕ 1

(ar −aε)
2 ⊗ σ̃3

)

� A3 (τ )

2a2ε (ar − aε)
2 ⊗ σ̃3 ⊕ A4 (τ )

araε (ar − aε)

⊗
(

1

ar − aε

⊗ σ̃3 � ρ̃2

)
(24)

and in the case of ar = aε by formula

ã (τ ) = C (arτ)

a2r
⊗ ϕ̃ + 1

8a5r
⊗ (σ̃3 ⊗ D(arτ)

⊕ arE(arτ) ⊗ ρ̃2 ⊕ a2r G(arτ) ⊗ σ̃1

)
(25)

for auxiliary fuzzy parameters

ϕ̃ = arbr � λ̃1 ⊗ σ̃r , σ̃1 = σ̃r ⊗ σ̃r , σ̃2 = σ̃r ⊗ σ̃ε,

σ̃3 = σ̃ε ⊗ σ̃ε, ρ̃2 = ρ̃ ⊗ σ̃2.

Theorem 3 Assume that ˜IBs (t) and ˜IBp (t) are prices of
bonds IBs (T, Fv) and IBp (T, Fv) at moment t ∈ [0, T ] for
the interest rate described by the two-factor Vasicek model
and fuzzy parameters σ̃r , σ̃ε, λ̃1 and ρ̃. Let for arbitrary
r̃ , ε̃ ∈ F (R) and τ ∈ [0, T ]

γ̃ (τ, r̃ , ε̃) = −1 ⊗ (ã (τ ) ⊕ b1 (τ ) ⊗ r̃ ⊕ b2 (τ ) ⊗ ε̃) ,

where functions b1 (τ ), b2 (τ ) , ã (τ ) are described by for-
mulas (6), (7), (24) for ar �= aε and by (11), (12), (25) for
ar = aε. Then

˜IBs (t) = exp (γ̃ (T − t, r̃t , ε̃t )) ⊗ et (26)

and

˜IBp (t) = exp (γ̃ (T − t, r̃t , ε̃t )) ⊗ ft , t ∈ [0, T ]. (27)

Moreover, for α ∈ [0, 1] and t ∈ [0, T ], the following
equalities hold:
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( ˜IBs (t)
)

α
=
[
exp

(
γ̃ (T − t, r̃t , ε̃t )

L
α

)
et ,

exp
(
γ̃ (T − t, r̃t , ε̃t )

U
α

)
et
]
, (28)

( ˜IBp (t)
)

α
=
[
exp

(
γ̃ (T − t, r̃t , ε̃t )

L
α

)
ft ,

exp
(
γ̃ (T − t, r̃t , ε̃t )

U
α

)
ft
]
. (29)

In the above formulas, for � ∈ �,

γ̃ (τ, r̃ , ε̃)�α = −ã (τ )�
′

α − (b1 (τ ) ⊗int r̃α)�
′

− (b2 (τ ) ⊗int ε̃α)�
′
, (30)

ã (τ )�α = A1 (τ )

ar
ϕ̃�

α − A2 (τ )

2a2r

(
(σ̃1)

�′
α − 2

ar − aε

(ρ̃2)
�
α

+ 1

(ar − aε)
2 (σ̃3)

�′
α

)
− A3 (τ )

2a2ε (ar − aε)
2 (σ̃3)

�′
α

+ A4 (τ )

araε (ar − aε)

(
1

ar − aε

(σ̃3)
�
α − (ρ̃2)

�′
α

)
,

(31)

for ar > aε,

ã (τ )�α = C (arτ)

a2r
ϕ̃�

α + 1

8a5r

(
D (arτ) (σ̃3)

�′
α

+ arE (arτ) (ρ̃2)
�′
α + a2r G (arτ) (σ̃1)

�′
α

)
, (32)

for ar = aε and

ã (τ )�α = A1 (τ )

ar
ϕ̃�

α − A2 (τ )

2a2r

(
(σ̃1)

�′
α − 2

ar − aε

(ρ̃2)
�′
α

+ 1

(ar − aε)
2 (σ̃3)

�′
α

)
− A3 (τ )

2a2ε (ar − aε)
2 (σ̃3)

�′
α

+ A4 (τ )

araε (ar − aε)

(
1

ar − aε

(σ̃3)
�
α − (ρ̃2)

�
α

)
,

(33)

for ar < aε, where

ϕ̃α =
[
arbr −

((
λ̃1

)

α
⊗int (σ̃r )α

)U
,

arbr −
((

λ̃1

)

α
⊗int (σ̃r )α

)L]
, (34)

(ρ̃2)α =
[
(ρ̃α ⊗int (σ̃2)α)L , (ρ̃α ⊗int (σ̃2)α)U

]
, (35)

(σ̃1)α =
[(

(σ̃r )
L
α

)2
,
(
(σ̃r )

U
α

)2]
, (36)

(σ̃2)α =
[
(σ̃r )

L
α (σ̃ε)

L
α , (σ̃r )

U
α (σ̃ε)

U
α

]
(37)

and

(σ̃3)α =
[(

(σ̃ε)
L
α

)2
,
(
(σ̃ε)

U
α

)2]
. (38)

Proof We replace crisp parameters by their fuzzy counter-
parts and arithmetic operators +,−, . by ⊕, �, ⊗ in (20)
and (21). We obtain formulas (26) and (27). Let α ∈ [0, 1]
and τ ∈ [0, T ]. Function exp (x) satisfies the assumptions of
Proposition 1 and is increasing. Therefore,

(
eγ̃ (τ,r̃ ,ε̃)

)

α
=
[
eγ̃ (τ,r̃ ,ε̃)Lα , eγ̃ (τ,r̃ ,ε̃)Uα

]
,

i.e., (28) and (29) are satisfied. It is easy to verify the equality
(30).

Moreover,

(
λ̃⊗σ̃

)

α
=
[((

λ̃1

)

α
⊗int (σ̃r )α

)L
,
((

λ̃1

)

α
⊗int (σ̃r )α

)U]
,

and, therefore, (34) holds. Since σ̃r and σ̃ε are non-negative,
(36)–(38) are satisfied. The equalities (31)–(33) follow from
the inequalities

A1(τ ), A2(τ ), A3(τ ), A4(τ ), C(arτ) ≥ 0

and

D (arτ) , E (arτ) ,G (arτ) ≤ 0

for τ ∈ [0, T ]. ��

5.3 Computational methods

Apart from the forms of α-level sets of the catastrophe bond
price, it is necessary to compute the value of its membership
function μ ˜IB(t) (c) for arbitrary c. We fix a time moment

t ∈ [0, T ]. Let ˜IB (t) = ˜IBs (t) or ˜IBp (t).
The equality

μ ˜IB(t) (c) = sup
0≤α≤1

α I( ˜IB(t)
)

α

(c)

describes the membership function of ˜IB (t).
We will use the above formula for computation of the

membership function μ ˜IB(t), applying the method proposed
for pricing European options in Wu (2004). From the pric-
ing formulas (see Theorem 3), it follows that the functions

g, h : [0, 1] → R, where g(α) =
( ˜IB (t)

)L

α
and h(α) =

( ˜IB (t)
)U

α
, are continuous. Moreover, g is increasing, h is

decreasing and ˜IB (t) is a normal fuzzy number. The value of
μ ˜IB(t) (c) can be obtained by solving the optimization prob-
lem:
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(OP1) max α

subject to g(α) ≤ c ≤ h(α)

0 ≤ α ≤ 1.

Problem (OP1) can be rewritten to the form:

(OP2) max α

subject to g(α) ≤ c
h(α) ≥ c
0 ≤ α ≤ 1.

To solve (OP2), it suffices to consider the following three
cases:

(i) If g(1) ≤ c ≤ h(1), then μ ˜IB(t) (c) = 1.
(ii) If c < g(1), then one can solve the following relaxed

optimization problem:

(OP3) max α

subject to g(α) ≤ c
0 ≤ α ≤ 1.

(iii) If c > h(1), then one can solve the following relaxed
optimization problem:

(OP4) max α

subject to h(α) ≥ c
0 ≤ α ≤ 1.

Problems (OP3) and (OP4) can be solved using bisection
search [see Wu (2004)].

In the further part of the paper, we will use the following
functions of ĉ:

β ˜IB(t)

(
ĉ
) = sup

{
μ ˜IB(t) (c) : c ≤ ĉ

}

and

δ ˜IB(t)

(
ĉ
) = sup

{
μ ˜IB(t) (c) : c ≥ ĉ

}
.

One can check that

β ˜IB(t)

(
ĉ
) =

{
μ ˜IB(t)

(
ĉ
)

for
( ˜IB (t)

)L

0
≤ ĉ ≤

( ˜IB (t)
)L

1
;

1 otherwise

and

δ ˜IB(t)

(
ĉ
) =

{
μ ˜IB(t)

(
ĉ
)

for
( ˜IB (t)

)U

1
≤ ĉ ≤

( ˜IB (t)
)U

0
;

1 otherwise.

6 Automatized method of decision making

The obtained catastrophe bond pricing formulas can be used
for investment decision making. We apply an approach sim-
ilar to the one used in Piasecki (2014) in another context. We
obtain a fuzzy set of possible decisions. A decision maker
can choose one of the decisions from its α-level set for a
sufficiently high value of α.

Let t ∈ [0, T ]. For a givenα (e.g.,α = 0.9), theα-level set
of ˜IB (t) can be treated by a financial analyst as the interval
of the cat bond prices. The financial analyst can choose any
value from this interval as the catastrophe bond price with
an acceptable membership degree. Such an interval can be a
very useful tool for investment decision making.

In particular, apart from a straightforward analysis of α-
level sets of ˜IB (t), the financial analyst can consider the
following set of possible decisions:

– Buy (denoted by B), if the price of the catastrophe bond
is significantly undervalued;

– Accumulate (denoted by A), if the cat bond is underval-
ued;

– Hold (denoted byH), if the catastrophe-linked instrument
is fairly valued;

– Reduce (denoted by R), if the cat bond is overvalued;
– Sell (denoted by S), if the price of the catastrophe bond
is significantly overvalued.

We denote by V the set of the possible decisions

V = {B,A,H,R,S}

and by Ĉt the current market price of the catastrophe bond.
Let IB (t) = IBs (t) or IB (t) = IBp (t), t ∈ [0, T ] .

The advice choice function � : R2 → 2V is defined as
follows:

B∈�
(
IB (t) , Ĉt

)
⇔ Ĉt < IB (t)

⇔
(
Ĉt ≤ IB (t)

)
AND ¬

(
Ĉt ≥ IB (t)

)
;

A∈�
(
IB (t) , Ĉt

)
⇔ Ĉt ≤ IB (t) ;

H∈�
(
IB (t) , Ĉt

)
⇔ Ĉt = IB (t)

⇔
(
Ĉt ≤ IB (t)

)
AND

(
Ĉt ≥ IB (t)

)
;

R∈�
(
IB (t) , Ĉt

)
⇔ Ĉt ≥ IB (t) ;

S∈�
(
IB (t) , Ĉt

)
⇔ Ĉt > IB (t)

⇔
(
Ĉt ≥ IB (t)

)
AND ¬

(
Ĉt ≤ IB (t)

)
,
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where the symbol AND denotes logical conjunction.
Then, by applying the Zadeh extension principle, we

obtain the extended advice choice function

�̃ : [0, 1]R × R → [0, 1]V .

The membership function l̃ of �̃
( ˜IB (t) , Ĉt

)
is defined

by formulas:

l̃ (B) = min
{
sup

{
μ ˜IB(t) (c) : c ≥ Ĉt

}
,

1 − sup
{
μ ˜IB(t) (c) : c ≤ Ĉt

}}

= min
{
δ ˜IB(t)

(
Ĉt

)
, 1 − β ˜IB(t)

(
Ĉt

)}
; (39)

l̃ (A) = sup
{
μ ˜IB(t) (c) : c ≥ Ĉt

}
= δ ˜IB(t)

(
Ĉt

)
; (40)

l̃ (H) = min
{
sup

{
μ ˜IB(t) (c) : c ≥ Ĉt

}
,

sup
{
μ ˜IB(t) (c) : c ≤ Ĉt

}}

= min
{
δ ˜IB(t)

(
Ĉt

)
, β ˜IB(t)

(
Ĉt

)}
; (41)

l̃ (R) = sup
{
μ ˜IB(t) (c) : c ≤ Ĉt

}
= β ˜IB(t)

(
Ĉt

)
; (42)

l̃ (S) = min
{
sup

{
μ ˜IB(t) (c) : c ≤ Ĉt

}
,

1 − sup
{
μ ˜IB(t) (c) : c ≥ Ĉt

}}

= min
{
β ˜IB(t)

(
Ĉt

)
, 1 − δ ˜IB(t)

(
Ĉt

)}
. (43)

The financial analyst can choose one of the decisions from

the α-level set �̃
( ˜IB (t) , Ĉt

)

α
for a sufficiently high value

of α.

7 Algorithms used in simulations

We start from general remarks concerning algorithms which
are used in catastrophe bond pricing (see Sect. 7.1 for the
crisp case and Sect. 7.2 for the fuzzy case) and in automa-
tized method of decision making (see Sect. 7.3). Then, these
algorithms are applied to obtain numerical results in some
exemplary cases considered in Sect. 8.

7.1 Cat bond pricing—crisp case

To find the price of the cat bond in the crisp case, we apply
Monte Carlo simulations to the results obtained in Theorem
2.

From (20) and (21), it is seen that numerical complex-
ity of the considered model and the related pricing formula

depends on two factors: the expected value of the payoff func-
tion et or ft and the discounting factor related to adopted in
this paper two-factor Vasicekmodel. In the following,Monte
Carlo approach is applied to approximate et or ft . The error
of such estimation measured by standard deviation is propor-
tional to 1/

√
nS , where nS is the number of simulations. But

during analysis of the computational complexity, the form (1)
of the process Ñt should be also taken into account, because
the numerical efficiency of simulation of the single trajectory
of Ñt depends on both types of the Poisson process Nt and
the random distribution of Ui .

We assume that non-homogeneous Poisson process
(NHPP) is applied formodeling quantity of losses and that the
value of single loss is modeled by lognormal distribution or
Pareto distribution. These distributions are commonly used
in modeling of risk events in insurance [see, e.g., Chernobai
et al. (2006)]. The parameters of the applied distributions
were fitted in Chernobai et al. (2006) for real data describ-
ing natural catastrophic events in the United States provided
by the ISO’s (Insurance Service Office Inc.) Property Claim
Services (PCS). The sinusoidal intensity function for NHPP
given by the formula

κ(t) = a + b2π sin (2π(t − c)) (44)

results in a better calibration than simpler homogeneousPois-
son process as discussed in Chernobai et al. (2006).

Because of the cyclic form (44) of κ(t), thinning method
[see, e.g., Law (2007)] is applied during simulations. Rejec-
tion step in this approach results in some loss of the samples
generated from the relevant homogeneous Poisson process.
For the most straightforward upper bound of (44) given by
a + b2π , the average acceptance rate for the interval [0, T ]
is equal to

aT − 2b sin (π (2c − T )) sin (πT )

(a + b2π)T
.

Algorithms for generation of variables from lognormal
or Pareto distribution are numerically very fast, like e.g.,
Marsaglia-Tsang ziggurat algorithm for embedded normal
distribution [see Marsaglia and Tsang (2000) for details]. In
the case of Pareto distribution, the direct method of inver-
sion of cdf is used. Therefore, to obtain one random variable
from the target distribution, only one output from PRNG is
sufficient.

Of course other types of NHPP than the formula (44) or
other loss distributions could be easily incorporated into the
simulation approach. If more complex pdf is necessary, then
even Markov Chain Monte Carlo method should be applied.

The whole procedure for finding estimator for et or ft
constitutes the following algorithm:
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Algorithm 1

Input Parameters of: NHPP process, distribution of
losses, model of payment; number of simulations nS .

Step 1 Sample trajectory of the process Ñt based on
times of the losses generated according to κ(t) and
values of the losses given by iid sample U1, U2, . . .

generated from the distribution of losses.
Step 2 Calculate the relevant payoff function νIBs(T,Fv)

or νIBp(T,Fv) using the output from the step 1.
Step 3 Store the evaluated value of payoff.
Step 4 Return to the step 1, unless the necessary num-

ber of simulations nS is acquired.
Step 5 Calculate the average value of the payoff based

on the values stored during the step 3.
Output Monte Carlo estimator of the expected value

of the payoff function et or ft.

In this paper, we assume that the model of interest rates is
described by the two-factor Vasicek model. In the following,
the parameters for this model fitted in Puhle (2008) are used.
Easily seen, two-factor model may be better calibrated to the
real-life data than in simpler one-factor approach. Because in
Theorem2, the analytical formof the discount factor is given,
then the relevant cat bond price could be directly evaluated
without the necessity of subsequent simulations after using
Algorithm 1. The price IBs (t) or IBp (t) is straightforward
multiplication of the previously estimated expected value of
payoffs and the relevant discount factor.

The whole procedure is very fast. We use Intel Core 2
Quad (2.5 GHz) with 4GB RAM, VS Studio 2013 Express
compiler, GSL library for random number generation and
Mersenne Twister as primary PRNG. Even without sophis-
ticated optimization (like multithreading), finding cat bond
price estimator based on sampling 1000000 trajectories takes
less than 10 seconds.

7.2 Cat bond pricing—fuzzy case

Nowwe focus on the cat bond pricing in the fuzzy case. In the
following, especially in Sect. 8.2, only triangular fuzzy num-
bers are considered, but the introduced numerical approach
may be also used for other types of LR numbers.

As it is seen from (28) and (29), similarly to the crisp
case, the complexity of the consideredmodel and the relevant
pricing formulas depends on the (crisp) expected value et
or ft , and the α-level set related to the discounting factor.
The estimator of et and ft could be directly found using the
Algorithm 1, regardless of the considered value α.

To approximate the fuzzy cat bond price, we fix the value
of α and then find the relevant interval [g(α), h(α)] =

[( ˜IB (t)
)L

α
,
( ˜IB (t)

)U

α

]
using formulas (28) or (29) depend-

ing on the applied payment function. If α is gradually set
to subsequent values, starting from some initial value α0 ∈
[0, 1] up to upper bound α1 (where α1 ∈ [α0, 1]) with given
increment�α > 0, then the obtained intervals putting on one
another form the final output—approximation of the fuzzy
cat bond price. It leads us to the following approach:

Algorithm 2

Input Parameters of: NHPP process, distribution of
losses, model of payment, two-factor Vasicek model;
number of simulations nS ; α-level values: α0, α1, Δα.

Step 1 Using Algorithm 1, estimate the expected value
of the payoff function et or ft.

Step 2 Set (crisp) values of the parameters ar, aε, br, r0, ε0.
Step 3 Fix α = α0.
Step 4 For the fixed α, find the α-level sets of the fuzzy

numbers σ̃r, σ̃ε, λ̃1, ρ̃.
Step 5 Based on the crisp parameters from the step 2,

the α-level sets obtained in the step 4 and the value
of the estimator found during the step 1, calculate
the interval of the cat bond price [g(α), h(α)] using
(28) or (29), respectively.

Step 6 Store the obtained data (i.e. the α-level set) in
order to approximate the output (i.e. the fuzzy cat
bond price).

Step 7 Set α = α + Δα.
Step 8 Return to the step 4, unless α > α1.
Output The approximated fuzzy cat bond price formed

by intervals stored during the step 6.

Apart from theMonte Carlo simulations necessary during
the step 1, the computational complexity of the considered
fuzzy model directly depends only on method of approxima-
tion of the final fuzzy cat bond price. The analytical formulas
for endpoints of the α-level sets of prices are given by Theo-
rem 3. Therefore, for n0 possible values of α approximating
the fuzzy output, only 2n0m endpoints for α-level sets of
the parameters should be used (where m is number of fuzzy
parameters in the model). The above procedure is very fast.
Without the first step, using the same platform as in Sect. 7.1,
approximation of the fuzzy price for n0 = 100 takes 0.054 s.

It should be noted that availability of the fuzzy analytical
formulas provided by Theorem 3 is important advantage of
the pricing method proposed in this paper. Otherwise, set of
even n02m possible endpoints for α-level sets of the parame-
ters should be considered to find fuzzy output.

7.3 Evaluation of the membership values

In this section, we consider the approaches to evaluate mem-
bership valueα for the currentmarket price of the cat bond Ĉt
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which is also useful for automatized decision making intro-
duced in Sect. 6.

As explained in Sect. 5.3, special optimization procedure
based on bisection search is used to evaluate membership
value α for the given current market price of the cat bond Ĉt ,

i.e., is used to find μ ˜IB(t)

(
Ĉt

)
solving the problem (OP2)

[see also Wu (2004) for detailed description of the relevant
algorithm]. In this approach, only the currently used α varies
from step to step of the algorithm, so Monte Carlo estimator
of et or ft has to be found via Algorithm 1 only once at
the beginning of the whole procedure. For the same platform
as in Sect. 7.1, evaluation of the membership value for the
given Ĉt with tolerance ε = 0.00000001 takes less than 0.01
seconds.

The evaluated membership value could be also used as a
source of investment decisions, i.e., to obtain membership
functions for the extended advice choice function �̃ intro-
duced in Sect. 6.

To calculate the membership functions for various pos-
sible decisions from the set V for the fixed current market
price Ĉt , it is sufficient to evaluate values β ˜IB(t)

(
Ĉt

)
and

δ ˜IB(t)

(
Ĉt

)
used in the formulas (39)–(43). Then, we have

the following procedure:

Algorithm 3

Input Parameters of: NHPP process, distribution of
losses, model of payment, two-factor Vasicek model;
number of simulations nS ; tolerance ε; current mar-
ket price Ĉt.

Step 1 Find g(1) and h(1) using Algorithm 2 for the
fixed single value α0 = 1. Store the estimators of et

or ft evaluated in the step 1 of Algorithm 2.
Step 2 Check:

1. if g(1) ≤ Ĉt ≤ h(1), then go to the step 3,
2. if Ĉt < g(1), then go to the step 4,
3. if h(1) < Ĉt, then go to the step 5.

Step 3 Return β ˜IB(t)

(
Ĉt

)
= δ ˜IB(t)

(
Ĉt

)
= 1.

Step 4 1. Find β ˜IB(t)

(
Ĉt

)
= μ ˜IB(t)

(
Ĉt

)
using solu-

tion method for the problem (OP2).
2. Return β ˜IB(t)

(
Ĉt

)
and δ ˜IB(t)

(
Ĉt

)
= 1.

Step 5 1. Find δ ˜IB(t)

(
Ĉt

)
= μ ˜IB(t)

(
Ĉt

)
using solu-

tion method for the problem (OP2).
2. Return δ ˜IB(t)

(
Ĉt

)
and β ˜IB(t)

(
Ĉt

)
= 1.

Output Values β ˜IB(t)

(
Ĉt

)
and δ ˜IB(t)

(
Ĉt

)
for the fixed

Ĉt which are used to calculate the membership func-
tions l̃ (B) , l̃ (A) , l̃ (H) , l̃ (R) , l̃ (S).

Easily seen, even for various Ĉt it is necessary to use
Monte Carlo simulations to evaluate et or ft only once and
then this estimator could be reused. Therefore, the complex-
ity of the main part of Algorithm 3 (apart from the step 1)
depends only on the method to solve the problem (OP2), i.e.,
the bisection search.

To find approximation of the whole membership function
for the extended advice choice function �̃ for various α or
only for the single fixed value of α, the approach similar to
Algorithm 3 could be adopted for the whole range of current

prices. As mentioned previously, β ˜IB(t)

(
Ĉt

)
and δ ˜IB(t)

(
Ĉt

)

should be found for [Ĉg
t , Ĉh

t ] starting from some initial value
Ĉg
t < g(0) and stopping with Ĉh

t > h(0) with fixed incre-
mentation�Ĉt > 0. Then, we have the following procedure:

Algorithm 4

Input Parameters of: NHPP process, distribution of
losses, model of payment, two-factor Vasicek model;
number of simulations nS ; tolerance ε; market prices
Ĉg

t , Ĉh
t , ΔĈt.

Step 1 Find g(1) and h(1) using Algorithm 2 for the
fixed single value α0 = 1. Store the estimators of et

or ft evaluated in the step 1 of Algorithm 2.
Step 2 Set Ĉt = Ĉg

t .
Step 3 Go to the step 2 of Algorithm 3.
Step 4 Evaluate membership functions for the recom-

mendations based on the output of Algorithm 3.
Step 5 Set Ĉt = Ĉt + ΔĈt.
Step 6 Return to the step 3, unless Ĉt > Ĉh

t .
Output Values β ˜IB(t)

(
Ĉt

)
and δ ˜IB(t)

(
Ĉt

)
used to

calculate the membership functions l̃ for the set of
the possible decisions V for the whole interval of
prices [Ĉg

t , Ĉh
t ].

Once again, the most numerically complex part (i.e.,
Monte Carlo simulations in the step 1) is invoked only once,
regardless of the number of points evaluated in the interval[
Ĉg
t , Ĉh

t

]
. For each of this point, the bisection solution in

Algorithm 3 is applied only once. Using the same platform
as in Sect. 7.1 and for n0 = 100, the whole procedure (apart
from finding estimators for et or ft ) takes 0.26 s.

8 Numerical examples and analysis

Based on algorithms introduced in Sect. 7, some numeri-
cal examples of cat bond pricing (in both the crisp and the
fuzzy environments, see Sects. 8.1 and 8.2, respectively)
and automatized decision taking (in the fuzzy case, see Sec-
tion 8.3) are considered. In each experiment, we conduct
nS = 1000000 simulations.
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Table 1 Dependency between
the cat bond price IBp(0) and
parameter ρ of the two-factor
Vasicek model in Example I.2

ρ 0.1 0.2 0.3

�ρ −83.3333 −66.6667 −50

IBp(0) 0.83047950255 0.830480638919 0.8304817753

�IBp(0) −0.00068416 −0.000547329 −0.000410497

ρ 0.4 0.5 0.6

�ρ −33.3333 −16.6667 0

IBp(0) 0.83048291166 0.83048404803 0.83048518440

�IBp(0) −0.000273665 −0.000136832 0

ρ 0.7 0.8 0.9

�ρ 16.6667 33.3333 50

IBp(0) 0.83048632078 0.83048745715 0.83048859353

�IBp(0) 0.000136833 0.000273665 0.000410498

The relative percentage change of the cat bond price (�IBp(0)) and the relative percentage change of ρ

(�ρ) are compared to the reference cat bond price and ρ from Example I.1

8.1 Cat bond pricing—crisp case

Algorithm 1 from Sect. 7.1 with formulas from Theorem 2
is used to evaluate the cat bond price in the crisp case.

We assume that the face value of the bond in each exper-
iment is set to 1 (one monetary unit assumption) and that
the payment function is described by Definition 2. Then, the
(crisp) cat bond price IBp(0) is given by (21).

8.1.1 Example I.1

As mentioned previously, model of the process of the losses
and model of the interest rates are fitted to the real-life data.
Then, the parameters of the intensity function (44) are equal
to a = 30.8750, b = 1.6840 and c = 0.3396 [see Chernobai
et al. (2006)]. The parameters of the lognormal distribution
are set to μLN = 17.3570 and σLN = 1.7643 [see Chernobai
et al. (2006)]. The two-factor Vasicek model is described by
the data for term structure of interest rates and ar = 0.2591,
br = 0.0205, σr = 0.0073, aε = 0.8274, σε = 0.0219,
ρ = 0.6, r0 = 0.025, ε0 = 0 [see Puhle (2008)].

We set n = 2 and w1 = 0.25, w2 = 0.5. The rel-
evant levels of losses (also called triggering points) are
connected with surpassing the limits given by quantiles of
the cumulated value of losses described by theNHPP process
(number of losses) and lognormal distribution (value of
each loss). Such x th quantile is denoted by QLN−NHPP(x).
Similar approach was considered in Nowak and Romaniuk
(2013b). We assume that K0 = QLN−NHPP(0.5), K1 =
QLN−NHPP(0.75) and K2 = QLN−NHPP(0.95). Then, IBp(0)
is estimated as 0.830485.

In the following, this cat bond price is treated as the refer-
ence value for subsequent comparisons. In the next examples,
we change values of one or more parameters of the model
to verify if these alternations have significant impact on the
calculated cat bond prices.

0.0 0.2 0.4 0.6 0.8

0.830476

0.830478

0.830480

0.830482

0.830484

0.830486

0.830488

Price

ρ

Fig. 1 Cat bond price IBp(0) as the function of parameter ρ of the
two-factor Vasicek model in Example I.2

8.1.2 Example I.2

We analyze the relation between the cat bond price and the
value ρ for two-factor Vasicek model, i.e., we find the prices
for ρ ∈ [0.1, 0.9]. The other parameters are the same as
in Example I.1. Then, only the correlation coefficient for
interest rate model is changing. Therefore, we could analyze
the situation, e.g., if this parameter is mismatched during
the estimation or it will vary in near future compared to the
historical data. The outcomes could be also compared with
the fuzzification of ρ considered in Sect. 8.2, which reflects
other sources of uncertainty.

The exact cat bond prices IBp(0) are given in the third row
of Table 1. In the fourth row, the relative percentage change of
the actual cat bond price�IBp(0) compared to the reference
value fromExample I.1 is calculated. The relative percentage
change �ρ of the actual ρ compared to the reference value
ρ = 0.6 is given in the second row. As it is seen from Fig. 1,
the price as the function of ρ is increasing and linear, but the
variability of the prices is almost negligible (�IBp(0) is less
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25 30 35 40
a

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Price

Fig. 2 Cat bond price IBp(0) as the function of parameter a of the
intensity function (44) in Example I.3

Table 2 Dependency between the cat bond price IBp(0) and parameter
a of the intensity function (44) in Example I.3

a 23 25 27

�a −25.5061 −19.02832 −12.5506

IBp(0) 0.885489 0.871923 0.859292

�IBp(0) 6.62312 4.98961 3.4687

a 29 31 33

�a −6.07287 0.404858 −12.5506

IBp(0) 0.844881 0.829 6.88259

�IBp(0) 1.73344 −0.178811 −2.26723

a 35 37 39

�a 13.3603 19.8381 26.3158

IBp(0) 0.792807 0.776544 0.758266

�IBp(0) −4.53687 −6.49512 −8.696

The relative percentage change of the cat bond price (�IBp(0)) and the
relative percentage change of a (�a) are compared to the reference cat
bond price and a from Example I.1

than 0.0007% even for ρ = 0.1). It should be noted that such
numerical analysis is useful and straightforward, because the
function of the price depends on ρ in rather complex way.

8.1.3 Example I.3

We analyze the relation between the cat bond price and the
value a for the intensity function (44), i.e., we find the prices
for the wide interval a ∈ [23, 40]. Then, the overall intensity
of the number of losses is lesser or higher than in the case
of a fitted to the historical data in Chernobai et al. (2006).
Once again, such difference may be caused, e.g., by estima-
tion error or historical data irrelevant for the future. The cat
bond price as the function of a is decreasing and almost lin-
ear (see Fig. 2 and the third row of Table 2 for some exact
values). But in this case the relative percentage changes of
price are noticeable (decrease up to almost 9 % for the rela-
tive growth of awhich is equal to about 26%). Because of the
applied intensity function (44), the overall increase of IBp(0)

0.5 1.0 1.5 2.0 2.5
b

0.78

0.80

0.82

0.84

0.86

0.88

Price

Fig. 3 Cat bond price IBp(0) as the function of parameter b of the
intensity function (44) in Example I.4

Table 3 Dependency between the cat bond price IBp(0) and parameter
b of the intensity function (44) in Example I.4

b 0.6 0.8 1.0

�b −64.3705 −52.4941 −40.6176

IBp(0) 0.878078 0.870247 0.860773

�IBp(0) 5.73075 4.7878 3.64703

b 1.2 1.4 1.6 1.8

�b −28.7411 −16.8646 −4.98812 6.88836

IBp(0) 0.851743 0.843282 0.834273 0.823894

�IBp(0) 2.55971 1.54091 0.456119 −0.793633

b 2.0 2.2 2.4 2.6

�b 18.7648 30.6413 42.5178 54.3943

IBp(0) 0.811987 0.802064 0.790229 0.779456

�IBp(0) −2.22737 −3.42222 −4.84729 −6.14448

The relative percentage change of the cat bond price (�IBp(0)) and the
relative percentage change of b (�b) are compared to the reference cat
bond price and b from Example I.1

is expected, but the detailed nature of such phenomena has
to be numerically determined.

8.1.4 Example I.4

We analyze the relation between the cat bond price and the
value b in the intensity function (44), so we find the prices
for the wide interval b ∈ [0.5, 2.6]. Then, the intensity of
number of losses given by the cyclic part in (44) fluctuates
less ormore than in the case of historical data fromChernobai
et al. (2006), so the number of catastrophes is almost on the
same level constantly ormore significantly varies fromperiod
to period.

The cat bond price as the function of b is decreasing and
almost linear (see Fig. 3; Table 3) and the relative percent-
age changes are noticeable, but also lower compared to the
previous example (about 6 % decrease of the price if b is
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increased more than 50 % compared to the reference values
from Example I.1). As in the case considered in Sect. 8.1.3,
the exact behavior of this function in such setting could be
directly analyzed using simulations.

8.1.5 Example I.5

We analyze the relation among the cat bond price and the
volatilities σr and σε in the interest rate model, so we find
the prices for σr ∈ [0.001, 0.015] and σε ∈ [0.005, 0.04].
The behavior of these parameters is also considered in the
fuzzy case in Sect. 8.2. The other parameters are the same as
in Example I.1. Therefore, the volatilities vary compared to
the historical data from Puhle (2008).

The cuts of the graph (see Fig. 4) for both volatilities
(i.e., if one of them is set as constant) seem to be hyperbolic
functions. The estimated values of the cat bond prices for
σε = 0.0219 and σr = 0.0073 are given in Tables 4 and
5, respectively. They are also compared there with the ref-
erence value from Sect. 8.1.1. For the applied intervals, the

0.005

0.010

0.015

_r
0.01

0.02

0.03

0.04

_

0.83048

0.83050

0.83052
Price

σ

σ

Fig. 4 Cat bond price IBp(0) as the function of parameters σε and σr
of the two-factor Vasicek model in Example I.5

Table 4 Dependency between the cat bond price IBp(0) and parameter
σr of the two-factor Vasicek model, if σε = 0.0219, in Example I.5

σr 0.001 0.003 0.005 0.007

�σr −86.3014 −58.9041 −31.5068 −4.10959

IBp(0) 0.830473 0.830476 0.83048 0.830484

�IBp(0) −0.001408 −0.001072 −0.0006265 −0.0000707

σr 0.009 0.011 0.013 0.015

�σr 23.2877 50.6849 78.0822 105.479

IBp(0) 0.83049 0.830496 0.830504 0.830512

�IBp(0) 0.000595 0.0013718 0.0022585 0.0032554

The relative percentage change of the cat bond price (�IBp(0)) and the
relative percentage change of σr (�σr ) are compared to the reference
cat bond price and σr from Example I.1

Table 5 Dependency between the cat bond price IBp(0) and parameter
σε of the two-factor Vasicek model, if σr = 0.0073, in Example I.5

σε 0.005 0.01 0.015 0.02

�σε −77.1689 −54.3379 −31.5068 −8.6758

IBp(0) 0.830475 0.830477 0.83048 0.830484

�IBp(0) −0.001249 −0.0009564 −0.0005936 −0.000161

σε 0.025 0.03 0.035 0.04

�σε 14.1553 36.9863 59.8174 82.6484

IBp(0) 0.830488 0.830493 0.830498 0.830504

�IBp(0) 0.0003424 0.0009155 0.001559 0.002272

The relative percentage change of the cat bond price (�IBp(0)) and the
relative percentage change of σε (�σε) are compared to the reference
cat bond price and σε from Example I.1

relative changes of prices are comparable in scale for both
the volatilities.

8.1.6 Example I.6

We apply generalized Pareto distribution (GPD) instead of
lognormal distribution for the value of the single loss. The
parameters of the GPD are set to ξGPD = 0.8090, βGPD =
5.340 × 107 (see Chernobai et al. (2006)), so they are esti-
mated in the same manner and from the same real-life data
as in the previous cases. To enable comparisons, we apply
approach similar to Example I.1, so the two-factor Vasicek
model is described by the same parameters and we also set
n = 2 and w1 = 0.25, w2 = 0.5. But the relevant trigger-
ing points are given as quantiles of the cumulated value of
losses described by the NHPP process and GPD, instead of
lognormal distribution. Then, such x th quantile is denoted
by QGPD−NHPP(x). As mentioned previously, we assume
that K0 = QGPD−NHPP(0.5), K1 = QGPD−NHPP(0.75) and
K2 = QGPD−NHPP(0.95).

In this setting, based on Monte Carlo simulations, the cat
bond price is estimated as 0.822337, so the relative percent-
age change (compared to the reference value from Example
I.1) is equal to −0.9811134458 %. Then in this case, the
change of the distribution of the single loss (but with prop-
erly estimated parameters) is less significant than, e.g., shift
in the parameters discussed in Example I.3.

8.1.7 Example I.7

Similar to the previous cases, the relation among the cat bond
price and the parameters ξGPD, βGPD of the distribution of
the single loss (given by GPD) is analyzed, so the prices for
ξGPD ∈ [0.5, 1.1] and βGPD ∈ [5.2 × 107, 5.45 × 107] are
found. The other parameters are the same as in Example I.6.
Then once again, the parameters of the distribution of the
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Fig. 5 Cat bond price IBp(0) as the function of parameters ξGPD and
βGPD of generalized Pareto distribution of losses in Example I.7

Table 6 Dependency between the cat bond price IBp(0) and parameter
ξGPD of generalized Pareto distribution of losses, if βGPD = 5.2× 107,
in Example I.7

ξGPD 0.5 0.6 0.7

�ξGPD −38.1953 −25.83441 −13.4734

IBp(0) 0.605838 0.695066 0.777041

�IBp(0) −26.3273 −15.4767 −5.5082

ξGPD 0.8 0.9 1.0 1.1

�ξGPD −1.11248 11.2485 23.6094 35.9703

IBp(0) 0.845437 0.893784 0.928917 0.949674

�IBp(0) 2.80907 8.68829 12.9606 15.4848

The relative percentage change of the cat bond price (�IBp(0)) and
the relative percentage change of ξGPD (�ξGPD) are compared to the
reference cat bond price and ξGPD from Example I.6

single loss are changed compared to the parameters fitted to
the historical data.

As it could be seen (see Fig. 5), the cuts of the graph seem
to be hyperbolic (if βGPD is constant, the exact values are
given in the third row of Table 6 for βGPD = 5.2 × 107) or
almost linear (if ξGPD is constant, see Table 7 for ξGPD = 0.8)
in the given intervals of values. The relative percentage
changes of prices (compared to the reference value from
Example I.6) for both parameters are considerable higher
than in all the previous examples (more than 26 % relative
reduction of the price if ξGPD is decreased about 38 %).
Because of the mentioned hyperbolic shape of function
for the fixed βGPD, the possible estimation error or future
changes of ξGPD may lead to significant undervaluation of
the cat bond price.

8.2 Cat bond pricing—fuzzy case

As noted in Sect. 6, also the fuzzy case of the cat bond prices
may be interested for analysts and policyholders because of
uncertainty caused by future behavior of the financialmarket.

Table 7 Dependency between the cat bond price IBp(0) and parameter
βGPD of generalized Pareto distribution of losses, if ξGPD = 0.8, in
Example I.7

βGPD 5.2 5.25 5.3

�βGPD −2.62172 −1.68539 −0.749064

IBp(0) 0.845437 0.834712 0.823409

�IBp(0) 2.80907 1.50486 0.13036

βGPD 5.35 5.4 5.45

�βGPD 0.187266 1.1236 2.05993

IBp(0) 0.813202 0.802817 0.791686

�IBp(0) −1.11086 −2.37372 −3.7273

The relative percentage change of the cat bond price (�IBp(0)) and
the relative percentage change of βGPD (�βGPD) are compared to the
reference cat bond price and βGPD from Example I.6

Therefore, the influence of some fuzzy parameters of the
interest ratemodel on the price ismore deeply analyzed using
Algorithm 2 introduced in Sect. 7.2.

The overall parameters of themodel of losses are the same
as in Example I.1—i.e., we assume NHPP of quantity of
catastrophic events, and the value of each loss is modeled
by lognormal distribution. The applied two-factor Vasicek
model arises from parameters considered also in Sect. 8.1.1,
and other assumptions about the cat bond are the same as in
that setting.

The applied parameters are based on historical data, but
because of the uncertainty related to future behavior, the
experts’ opinions should be incorporated into estimation of
the prices [see, e.g., Nowak and Romaniuk (2014c)].

We focus on three important variables of the interest rate
model, namely volatilities σr , σε and the correlation coeffi-
cient ρ. They are important part of the model but they could
be also wrongly estimated. In the following, only triangu-
lar fuzzy numbers are considered, but the similar numerical
approach may be also used for other types of LR numbers.

8.2.1 Example II.1

For the parameters σr , σε, ρ we use triangular fuzzy numbers
related to the historical values from Puhle (2008). Then, we
have

σ̃r = [0.0071, 0.0073, 0.0075],
σ̃ε = [0.02, 0.0219, 0.024], ρ̃ = [0.4, 0.6, 0.8]. (45)

Monte Carlo simulations (see Sect. 7.2) lead to evaluation of
the fuzzy cat bondprice (seeFig. 6)which is almost triangular
and symmetric in its shape.

The analyst may be also interested in the behavior of fuzzy
numbers. For example, instead of previously used σ̃r , other
symmetric triangular fuzzy values of σ̃r may be used. It is
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Fig. 6 Fuzzy cat bond price for the triangular fuzzy parameters
σ̃r , σ̃ε, ρ̃ given by (45) in Example II.1
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Fig. 7 Fuzzy cat bond price for the triangular fuzzy parameters σ̃ε, ρ̃

given by (45) and various σ̃r ([0.0071, 0.0073, 0.0075] dashed line,
[0.0061, 0.0073, 0.0085] solid line, [0.0051, 0.0073, 0.0095] dotted
line) in Example II.1

seen from Fig. 7 that for σ̃r with wider supports, the fuzzy
cat bond prices are still LR numbers but with wider supports
alike.

8.2.2 Example II.2

Other parameters are also risky factors in the interest rate
model, like σε. Additionally, experts’ opinions may lead
to the triangular fuzzy numbers which are not symmet-
rical. Therefore, using our numerical approach, example
of the fuzzy cat bond price is evaluated for asymmetri-
cal, right-skewed σ̃ε = [0.0119, 0.0219, 0.0419] and σ̃r =
[0.0071, 0.0073, 0.0075], ρ̃ = [0.4, 0.6, 0.8] (see Fig. 8).
Then, the fuzzy cat bond price is almost symmetrical but
clearly LR, not a triangular, number.

Analysis similar to Example II.1 may be also conducted.
The fuzzy cat bond prices evaluated for various asymmetrical
values of σ̃ε are illustrated in Fig. 9. Once again, for wider
support of σ̃ε, the output fuzzy price has also wider support.

0.8295 0.8300 0.8305 0.8310 0.8315
Price
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0.6

0.8

1.0

α

Fig. 8 Fuzzy cat bond price for the triangular fuzzy parameters σ̃r , ρ̃

given by (45) and σ̃ε = [0.0119, 0.0219, 0.0419] in Example II.2
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Fig. 9 Fuzzy cat bond price for the triangular fuzzy parameters σ̃r , ρ̃

given by (45) and various σ̃ε ([0.0119, 0.0219, 0.0419] dashed line,
[0.0019, 0.0219, 0.0619] solid line, [0.0009, 0.0219, 0.0819] dotted
line) in Example II.2

8.2.3 Example II.3

For the fixed σ̃r = [0.0063, 0.0073, 0.0083] and σ̃ε =
[0.0119, 0.0219, 0.0419], the cat bond prices for various
types of triangular values ρ̃ are estimated. In the consid-
ered setting, the type of triangular number ρ̃ (see Fig. 10)
has rather moderate effect on the output and both symmetric
or asymmetric values of ρ̃ lead to similar cat bond prices.

8.3 Evaluation of the membership function

Now, we focus on numerical approaches considered in Sect.
7.3. In Sect. 8.3.1, bisection search is used to evaluate mem-
bership value α for the given current market price of the cat
bond Ĉt . Then, Algorithm 3 is applied in Sect. 8.3.2 to obtain
membership functions for the extended advice choice func-
tion for the fixed actual cat bond price (i.e., if this current
market price with the obtained fuzzy value is compared).
Finally, Algorithm 4 is used in Sect. 8.3.3 to find the relevant
membership functions for �̃ for the whole interval of prices.
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Fig. 10 Fuzzy cat bond price for the triangular fuzzy parameters σ̃r =
[0.0063, 0.0073, 0.0083], σ̃ε = [0.0119, 0.0219, 0.0419] and various
ρ̃ ([0.3, 0.5, 0.7] dashed line, [0.3, 0.5, 0.9] solid line, [0.1, 0.7, 0.9]
dotted line) in Example II.3

Table 8 Membership value α evaluated using bisection search for the
various current market prices of the cat bond Ĉ0 in Example III.1 if
fuzzy parameters from Example II.1 are used

Price Ĉ0 Evaluated α

0.83 0

0.83038 0.224609375

0.8304 0.371826171875

0.83045 0.74029541015625

0.8305 0.89080810546875

0.83055 0.5235595703125

8.3.1 Example III.1

As explained in Sect. 7.3, special optimization procedure
based on bisection search is used to find membership value
α for the fixed current market price of the cat bond Ĉt , i.e.,

to find μ ˜IB(t)

(
Ĉt

)
solving the problem (OP2). We apply

parameters from Sect. 8.2.1 to calculate α for various Ĉt .
Some exemplary results for the fixed t = 0 are given in
Table 8.

8.3.2 Example III.2

Using Algorithm 3, it is possible to evaluate the membership
value α for the extended advice choice function �̃ introduced
in Sect. 6 for the single fixed current market cat bond price. In
Table 9, there are values ofα found for various currentmarket
prices Ĉ0 and possible decisions (to buy/to accumulate/to
hold/to reduce/to sell) from the set V . Once again parameters
from Sect. 8.2.1 are used to approximate the fuzzy cat bond
price.

Table 9 Membership values of possible decisions (to buy—B, to
accumulate—A, to hold—H, to reduce—R, to sell—S) evaluated for
various current market prices Ĉ0 in Example III.2 if fuzzy parameters
from Example II.1 are used

Price Ĉ0 B A H R S

0.83 1 1 0 0 0

0.8303 0.77539 1 0.22461 0.22461 0

0.8304 0.62817 1 0.37183 0.37183 0

0.83045 0.25971 1 0.7403 0.7403 0

0.8305 0 0.89081 0.89081 1 0

0.83055 0 0.5236 0.5236 1 0.4764

0.8304 0.8305 0.8306 0.8307
Price

0.2

0.4

0.6

0.8

1.0
α

Fig. 11 Membership function of the decisions to buy (dotted line)/to
accumulate (dashed line) for various current market prices Ĉ0 in Exam-
ple III.3

8.3.3 Example III.3

The whole shape of membership function for each decision
from the set V could be also estimated and plotted using
Algorithm 4. Applying the parameters from Sect. 8.2.1, the
relevant membership functions for the decisions to buy/to
accumulate and to hold/to reduce are illustrated in Figs. 11
and 12, respectively.

Additionally, the financial analyst could take relevant
decision based on possible recommendations for the fixed
value α of the membership function. The example of such
approach is presented in Fig. 13, where α = 0.95 is used.
Therefore, knowing the current market price Ĉt , the analyst
could take his decision based on similar sets.

If g(α) =
( ˜IB (t)

)L

α
and h(α) =

( ˜IB (t)
)U

α
are strictly

monotonic functions (as in the previously considered exam-
ples), then the simplified approach could be used instead of
Algorithm 4. In such case, Algorithm 2 gives the approxi-
mation of the fuzzy cat bond price which then leads to the
output similar to the one summarized in Fig. 13.
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Fig. 12 Membership function of the decisions to hold (dotted line)/to
reduce (dashed line) for various current market prices Ĉ0 in Example
III.3

Λ̃ ˜IB (t) , Ĉt 0.95 =

{B,A} if Ĉ0 ∈ [0, 0.830356255478261]
{A} if Ĉ0 ∈ [0.830356255478261,

0.830478412039228]
{A,H,R} if Ĉ0 ∈ [0.830478412039228,

0.830491966726847]
{R} if Ĉ0 ∈ [0.830491966726847,

0.830614900458159]
{R,S} if Ĉ0 ∈ [0.830614900458159,+∞)

( )

Fig. 13 Decisions (to buy—B, to accumulate—A, to hold—H, to
reduce—R, to sell—S) given by the α-level set of the extended advice
choice function for α = 0.95 related to intervals of the current market
prices Ĉ0 in Example III.3

9 Conclusions

The increasing number of natural catastrophes leads to severe
problems with stability of insurance industries. Therefore,
new financial and insurance instruments are required, such
as the catastrophe bonds.

In this paper, we extend our earlier results concerning cat
bond pricing. As the model of spot interest rate, we apply
the two-factor Vasicek model. We analyze the influence of
various parameters on the cat bond price applying Monte
Carlo methods.

Moreover, taking into account the uncertainty on the mar-
ket,wederive fuzzy counterparts of the crisp pricing formulas
and present an automated approach for decision making in
fuzzy environment with illustrative examples.
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