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Abstract The work presented in this paper is motivated by
a complex multivariate engineering problem associated with
engine mapping experiments, which require efficient design
of experiments (DoE) strategies to minimise expensive test-
ing. The paper describes the development and evaluation of
a Permutation Genetic Algorithm (PermGA) to enable an
exploration-based sequential DoE strategy for complex real-
life engineering problems. A known PermGA was imple-
mented to generate uniform OLH DoEs, and substantially
extended to support generation ofmodel building–model val-
idation (MB–MV) sequences, by generating optimal infill
sets of test points as OLH DoEs that preserve good space-
filling and projection properties for themergedMB+MV test
plan. The algorithm was further extended to address issues
with non-orthogonal design spaces,which is a common prob-
lem in engineering applications. The effectiveness of the
PermGAalgorithm for theMB–MVOLHDoE sequencewas
evaluated through a theoretical benchmark problem based on
the Six-Hump-Camel-Back function, as well as the Gasoline
Direct Injection engine steady-state enginemapping problem
that motivated this research. The case studies show that the
algorithm is effective in delivering quasi-orthogonal space-
fillingDoEswith good properties even after severalMB–MV
iterations, while the improvement in model adequacy and
accuracy can be monitored by the engineering analyst. The
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practical importance of this work, demonstrated through the
engine case study, is that significant reduction in the effort
and cost of testing can be achieved.
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1 Introduction

The driving factor for the work presented in this paper stems
from an engineering problem associatedwith efficient engine
test planning for calibration development. The ever increas-
ing complexity of engine technologies towards improving
performance, fuel economy, and drivability while meeting
increasingly stringent emissions legislation has resulted in a
complex and time-consuming process of calibrating the con-
trollable engine parameters (e.g. fuel rail pressure and start
of injection). To address this challenge, model-based calibra-
tion strategies have been utilised (Roepke 2009; Kruse et al.
2010), commonly underpinned by statistical methodologies
for planning physical engine tests (on engine dynamome-
ters) and developing behavioural models for an engine based
on response surface methodology. Specifically, steady-state
engine mapping is based on statistical modelling of the
engine responses of interest using test data collected at fixed
speed/load operating points (Roepke 2009). The choice of
location of test points in the design space associated with the
actuators ranges at each engine operating point has a key role
in ensuring the adequacy and accuracy of engine response
models, as the basis for subsequent calibration optimisation
studies (Kruse et al. 2010). Design of Experiments strategies
have been adopted for engine test planning. In general, an
efficient DoE strategy aims to minimise the cost of testing
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whilemaximising the information content, such that response
surface models of specified approximation accuracy can be
developed (Bates et al. 2003).

The practical importance of choosing an efficient DoE
strategy is associated with the high cost of engine testing.
Given that modern engine calibration problems involve an
increasing number of calibration variables (often more than
10), conventional (factorial-based) DoE strategies are gen-
erally not feasible or economical. A further complication
of engine experiments is that the design space is often not
orthogonal with respect to one or more variables (i.e. lin-
ear or nonlinear constraints limit the actuator space in one
or more dimensions), which further limits the applicabil-
ity of classical DoEs. The DoE methods commonly used
for engine mapping experiments include D-Optimal and V-
Optimal DoEs and space-filling DoEs (Seabrook et al. 2003;
Grove et al. 2004; Sacks et al. 1989; McKay et al. 2000).
Space-fillingDoEs, in particular those basedonoptimalLatin
hypercubes (OLH), have been increasingly used for engine
model-based calibration problems, given that they enable
more flexible models to describe the engine behaviour over
a wider design space (e.g. ‘global’ models over the whole
engine speed-load space), with no prior knowledge required
regarding the type of model that would adequately repre-
sent the trends (Seabrook et al. 2005). The OLH DoEs have
the advantage that the number of test points can be set by
the analyst based on experience and resource limitations.
However, this raises the risk of test plans that generate an
insufficient amount of information due to under-sampling
with the implication that the required model accuracy is
not achieved. Conversely, if a larger OLH DoE test plan is
selected, this raises the possibility of over-sampling, wasting
time and energy by collecting more tests than needed.

Recent research work in fields dealing with similar testing
cost issues (e.g. electronics, chemistry, and aerodynam-
ics) has focused on the development of sequential DoE
approaches that iteratively augment an initial DoE with fur-
ther test points until the desired model quality is reached
(Crombecq et al. 2011; Geest et al. 1999; Provost et al.
1999). This strategy can facilitate a higher testing efficiency
compared to the fixed size tests commonly used in practice,
and has the advantage that it can flexibly adapt to mod-
elling complexity requirements of different engine responses.
In general, sequential DoEs can be divided into two main
categories:

1. Optimal sequential design: For this type of sequential
DoE, the model type and its parameters are known in
advance (e.g. polynomial). This allows the algorithms
to use the behaviour of the set model type to guide the
sampling points into the right direction within the design
space; e.g. the D-optimal designs minimise the covari-
ance of the model parameters estimates (Draguljić et al.

2012). The main issue with these DoEs is that if the
assumed model type is not suitable for the response, the
DoE plan is not efficient and the enhancement in model
accuracy through collecting more data is not guaranteed.

2. Evolutionary sequential design: Given that the type of
model may not be known in advance for many engineer-
ing problems, and therefore a nonparametric model is
required, justifies the need for a generic sequential DoE
that makes no assumptions about themodel type, number
of sample points or system behaviour. Such DoEs use the
information from previous iterations to decide where to
select the next test point (Crombecq et al. 2009). These
evolutionary sequential DoEs can be further classified
into:

(i) Exploitation-based sequential designmethods (Geest
et al. 1999; Forrester et al. 2008): Exploitation-based
DoEs use an error measure from the previous steps
to guide the sampling points to the interesting parts
of design space, e.g. areas with discontinuous sys-
tem behaviour or areas containing optima. The main
problem with exploitation-based DoEs is the ten-
dency to over-focus on specific areas, which could
leave some part of design space under-sampled.

(ii) Exploration-based sequential design methods
(Provost et al. 1999; Crombecq and Dhaene 2010;
Crombecq et al. 2009, 2011): Exploration-based
sequential DoEs give equal importance to all regions
of design space and aim to fill it up as evenly as pos-
sible at each sequence. In this method, the location
of the test points from the previous iteration is used
as feedback for sampling new test points, ensuring
that not too many or too few samples are collected
from the same regions of design space. These DoEs
are not specifically linked with any response models
and aim to distribute the points evenly through the
design space.

Considering the fact that the engine calibration is a complex
nonlinear multivariate engineering problem with high level
of uncertainty associated with the behaviour of responses,
an optimal sequential DoE will not always be a useful DoE
option given that knowledge or specification of the model
type is required in advance. Additionally, an exploitation-
based sequential DoE may result in early dismissal of
potential calibration solutions given that some parts of the
high dimensional design space could be left unexplored.

The approach proposed by the authors (Kianifar et al.
2013, 2014) is to use an exploration-based sequential DoE
strategy based on optimal space-filling designs (OLHDoEs),
deployed as a model building–model validation (MB–MV)
DoE sequence (Narayanan et al. 2007). A key feature of
the approach is that each DoE (i.e. both MB and MV) in
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the sequence is an OLH DoE, however, the merged MB–
MV DoE, while it is optimised for space fillingness, it does
not strictly follow the Latin hypercube rule, being instead
made up of interlaced levels in the individual OLH DoEs.
This addresses the limitation of the approach proposed by
Narayanan et al. (2007) which requires the number of MV
iterations and the number of tests in each MV design to
be known a priori. It also addresses the limitations of other
sequential DoE strategies used in engine mapping problems
based on Sobol Sequences (Lam 2008), which are not adap-
tive with respect to ‘learning’ from previous stages and the
selection of new test points is quasi-random from any subset
of design space where the discrepancy is low.

Generating OLH designs as individual designs or as a
subset of larger designs to have an exploration-based optimi-
sation strategy is a complex optimisation problem since the
aim is to preserve the whole system space fillingness within
subsequent sequences of OLH designs. It is not practical
to build an optimal Latin hypercube (OLH) design through
enumeration, since considering all possible combinations of
variables is expensive and time-consuming. For example, for
a simple problem of 10 sample points and 5 variables, there
are 6×1032 possible combinations. If each solution takes one
nanosecond (1 × 10−9 s) to evaluate, the whole evaluation
process would take approximately 2×1016 years (Fuerle and
Sienz 2011), which is clearly impractical. Different global
optimisation algorithms have been proposed in the literature
for generating OLH designs, such as column wise–pairwise,
simulated annealing, and Permutation Genetic Algorithm
(PermGA) (Bates et al. 2003, 2004; Liefvendahl and Stocki
2006; Audze and Eglais 1977).

Genetic optimisation algorithm is a population-based
stochastic search method inspired from genes behaviour,
and it is one of the most robust random search meth-
ods due to the element of directed search (Shukla and
Deb 2007). GA has been broadly used as an alternative to
the classical optimisation algorithms for solving complex
engineering optimisation problems (Bertram 2014; Dhin-
gra et al. 2014; Deb et al. 2014). PermGA is working
based on the same principles as the standard GA algo-
rithm, however, the PermGA’s optimisation operators (e.g.
crossover and mutation) are modified to work with permuted
numbers to solve discrete optimisation problems, as dis-
cussed by Bates (Bates et al. 2003). However, to support
the proposed exploration-based sequential DoE strategy, the
PermGAalgorithmneeds to be further developed, and its per-
formance the evaluated in relation to the type of engineering
problems that have motivated this work—which is the aim
of the work presented in this paper.

The paper first outlines the statistical requirements needed
to design an efficient exploration-based sequential DoE strat-
egy, and then describes in detail the proposed MB–MV DoE
approach, including the choice space-filling metrics. The

implementation of the proposed DoE strategy using a mod-
ified PermGA algorithm for generalised infill OLH DoEs
is presented next, illustrated with simple theoretical exam-
ples. The proposed approach of PermGA-exploration-based
sequential OLH DoE is then validated theoretically through
application to on a mathematical test-case, and empirically
through application to an industrial problem of steady-state
mapping of a gasoline direct injection (GDI) engine. The
paper ends with a discussion of the results and opportunities
for further work.

2 Problem definition

Applying a sequential exploration-based DoE strategy has
the potential to improve the testing methodology by achiev-
ing the model target accuracy through less data points,
particularly when the testing process is time-consuming
and expensive. However, efficiency of a sequential space-
filling DoE strategy is highly dependent on the quality of
the design augmentation technique to fulfil several statistical
requirements. Accordingly, to design an efficient space-
filling augmentation strategy there is a need to consider four
important criteria:

(i) Non-collapsingness: A non-collapsing design [i.e. with
good projective properties (Van Dam et al. 2007)] guar-
antees that no two sample points project onto each other
along any of the axes when the K -dimensional sam-
ple points are projected into the (K − 1)-dimensional
space. In other words, in a non-collapsing design each
sample point has a unique value along any of the axes
(Van Dam et al. 2007). In effect, the projection crite-
rion ensures that every parameter is represented over its
domain, even if the response is only dominated by a few
of the parameters.

(ii) Granularity: Granularity is an important requirement
for sequential designs (Crombecq et al. 2011). Gran-
ularity indicates the proficiency of the DoE strategy
to augment the initial experimental design by small
batches of additional test points. Accordingly, a fine-
grained sequential strategy is flexible regarding the total
size of DoE samples, despite the number of design vari-
ables and levels, which consequently results in avoiding
over- or under-sampling (Hartmann and Nelles 2013;
Klein et al. 2013).

(iii) Space fillingness: This is the fundamental principle for
an exploration-based sequential DoE technique, which
requires to distribute the sample points (i.e. collect infor-
mation) evenly within the design space regardless of
the problem dimension and sample size (Van Dam et al.
2007; Ye et al. 2000; Joseph and Hung 2008; Morris
and Mitchell 1995; Johnson et al. 1990).
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(iv) Orthogonality: This criterion ensures that there is no
correlation between any combination of input parame-
ters (Tang 1993; Owen 1992), thus ensuring that the
experimental design is a good representative of the
real variability (Khan 2011). Taking into the consider-
ation that only a few existing experimental designs are
orthogonal (e.g. factorial designs) most of the existing
space-filling strategies attempt to reasonably satisfy the
orthogonality criterion.

In this research, a model building–model validation (MB–
MV) sequential DoE strategy is proposed to efficiently fulfil
the four statistical requirements discussed above.

3 Model building–model validation DoE
framework

3.1 MB–MV DoE strategy

The strategy adopted in this research uses optimal Latin
hypercube (OLH) space-fillingDoEs (Fuerle andSienz 2011;
Bates et al. 2003; Liefvendahl and Stocki 2006) as the basis
for both model building (MB) and model validation (MV)
DoEs. Within the proposed algorithm, additional infill test
points (generated as OLH DoE) are iteratively added to an
initialmodel buildingOLHDoE, until the requiredmodelling
accuracy is achieved. At each iteration, the additional infill
points generated are treated as an external validation set, used
to evaluate the model quality. If modelling accuracy is not
satisfactory, the MB and MV OLH DoEs are merged into a
new model building set and a further MV set is collected for
the next iteration.

The proposed strategy provides a good fit with the prac-
tical requirements of engineering problems such as the
steady-state engine testing problem. By using the MB–MV
strategy, a smaller MBOLHDoE experiment can be planned
(e.g. m = 50 test points), followed by a validation (MV)
DoE experiment (e.g. v = 15 test points). The MV is also an
OLH but the optimality criterion is to minimise the space-
filling metric across the union of the MB and MV sets
(m + v = 65 test points). Engine response models are fitted
based on the MB DoE data, typically, using non-parametric
or semi-parametric models [such as Kriging or Radial Basis
Functions (RBF)], and the quality of the models is evaluated
via the prediction error (e.g. using the root mean squared
error, RMSE) for the validation set, i.e. theMVDoE test data
(Narayanan et al. 2007). If the model accuracy requirements
are not met, a further validation DoE test (MV2) is planned
with v2 test points, using the same principle of a OLH MV
DoE in which the space-filling metric is minimised across
the combined MB + MV + MV2 set. A new model is fit-
ted using the MB + MV set, and validated against the MV2

Fig. 1 MB–MV strategy flowchart

set. This process is repeated iteratively until the model accu-
racy requirement is met. The flowchart of the approach is
illustrated in Fig. 1.

The computational challenge is to develop an efficient
algorithm to support the implementation of the proposed
MB–MV strategy, while satisfying the four requirements
to have an efficient sequential DoE strategy (i.e. non-
collapsingness, granularity, space fillingness, and orthogo-
nality).

3.2 MB–MV DoE implementation

The proposed MB–MV DoE strategy uses the Latin hyper-
cube (LH) principle. A LH design is generated by gridding
the design space of each parameter into N (i.e. sample size)
equidistant levels, and selecting only one test point on each
level. Therefore, a LH design ensures that all levels of each
parameter are represented over its range by maintaining non-
collapsingness (Sacks et al. 1989). A LH design can be
defined as:

L =

⎛
⎜⎜⎜⎝

x11 x21 . . . xK1
x12 x22 . . . xK2
...

...
...

...

x1N x2N . . . xKN

⎞
⎟⎟⎟⎠

L is a LH designwhere K denotes the number of dimensions.
In this matrix, each row represents a design point while each
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column shows the design points in one dimension. LH-based
DoEs are popular space-filling DoE techniques due to their
unique ability to generate non-collapsing designs, which is
essential in ensuring uniformity of space exploration in all
dimensions (Van Dam et al. 2007).

Unlike the other sequential DoE strategies based on OLH
designs, such as the sequential nested Latin hypercube DoE
method (Crombecq et al. 2011), the MB–MV design is fine-
grained. In this design, the number of additional MV points
at each sequence is arbitrary, e.g. small batches of OLH test
points, whereas the nested LH design doubles the number of
test points at each iteration.

To maintain a LH design with good space-filling proper-
ties, the optimal Latin hypercube (OLH) DoEs are generated
byminimising a chosen metric for space filling or uniformity
metric. The distribution of the test points for an OLH design
is regarded as a discrete optimisation problem (Bates et al.
2004).

The main challenges with this optimisation problem are:

(i) Formulation of the optimisation objective function to
maintain space fillingness.

(ii) Development of an effective algorithm for the discrete
optimisation problem.

3.2.1 Optimisation objective function

Several uniformity metrics for OLH DoEs have been descri-
bed in literature. Table 1 gives an overview of the frequently
employed optimality criteria to generate an OLH design with
a good space-filling property.

Of the optimality criteria shown in Table 1, both Maximin
(Van Dam et al. 2007; Ye et al. 2000; Joseph and Hung 2008;
Morris and Mitchell 1995; Johnson et al. 1990) (i.e. max-
imising the minimum distance between every two samples)
and Audze and Eglais (1977) functions have been proven to
maintain a good inter-site distance. Maximin criteria tend to

Table 1 Summary of common space-filling criteria

Optimality criterion Formula

Manhattan (Van Dam et al.
2007; Ye et al. 2000)

minxi,xj∈N
∑K

k=1 |xki − xkj |

Maximin (Van Dam et al.
2007; Ye et al. 2000;
Joseph and Hung 2008;
Morris and Mitchell 1995;
Johnson et al. 1990)

minxi,xj∈N
√∑K

k=1 |xki − xkj |2

Audze–Eglais (AELH)
(Audze and Eglais 1977)

∑
xi,xj∈N

√∑K
k=1 |xki − xkj |2

∅p (Morris and Mitchell
1995)

(∑
xi,xj∈N

√∑K
k=1 |xki − xkj |2

p
)1/p

generate more sample points around the corners, especially
for high dimensional problems (Draguljić et al. 2012). Con-
sequently, this strategy might not preserve good space-filling
properties at the centre of the design space, particularly for a
small sample size (N ). Draguljić et al. (2012) discussed that
the Audze–Eglais criterion performs better for high dimen-
sional problems (K ).

The requirements for the MB–MV DoE strategy are to (i)
generate OLH MB DoEs with good space-filling properties;
(ii) generate an infill set of validation points as an OLH DoE
that would project good space-filling properties in conjunc-
tion with the initial DoE; and (iii) the algorithm must also
be robust to generate an infill set of validation points within
non-orthogonal variables design spaces.

On this basis, the uniformity metric chosen for the OLH
DoEs is theAudze–Eglais Latin hypercube (AELH) potential
energy concept, given its superior robustness in dealing with
variable dimensionality and sample size (Bates et al. 2004).
The AELH function considers the test points as mass units
where each mass unit exerts repulsive force to the other units
until it reaches the equilibrium position (i.e. minimum poten-
tial energy). In this function the magnitude of the repulsive
forces is inversely proportional to the square of the distance
between the mass units (i.e. points) in the system. Thus, the
AELH objective function can be presented as follows (Bates
et al. 2003, 2004):

U =
N∑
i=1

N∑
j=i+1

1

L2
i j

(1)

U is the potential energy, N denotes the total number of DoE
points, and Li j is the distance between any two points i and
j , i �= j . Minimising the potential energy ensures a uniform
distribution of the sample points within the design space.

To generate an optimal sequence of DoEs according to the
MB–MV principle, it is proposed that the space-filling cri-
teria is maintained throughout the MB–MV sequence. What
thismeans is thatMBandMVDoEs are generated as anOLH,
but the optimality criterion for theMVDoE is defined in rela-
tion to the space-filling metric for the overall DoE sequence
(i.e. including all MB and MV DoE test points). The joint
DoE created by the union of the MB DoE (based on N lev-
els) and MV DoE (based on M levels) test points will not
strictly fulfil the LH principle as it is based on N + M inter-
laced and, in general, unevenly distributed levels. Therefore,
for the optimal augmentation of the DoE, i.e. by generating
optimal ‘infill’ points for the MV set, the same uniformity
metric (i.e. the AELH function) is used. The main challenge
for this step is to modify the AELH objective function to take
into account the position of the MB points already fixed in
the design space. This means that the fitness function should
include both the M new test points and the existing N test
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points from the MB OLH DoE. The fitness function is mod-
ified accordingly, shown in Eq. (2).

U =
⎛
⎝

M∑
i=1

M∑
j=i+1

1

L2
i j

+
M∑
i=1

N∑
n=1

1

L2
in

⎞
⎠ (2)

U is the potential energy, Li j is the distance between any
two points i and j , (i �= j) in the MV OLH DoE, and Lin is
the distance between each new point i and the exiting points
n. The outcome of the MB–MV design step will be an OLH
design with an optimal uniform distribution of points across
the design space, with the new MV points optimally filling
the under-sampled areas in the original design.

Equations (1) and (2) are capable of generating the OLH
test points within a symmetric design space in each of the
dimensions. Formany engineering problems the design space
might be severely constrained in relation to some design
variables (i.e. asymmetric design space). This could impair
the ability of the search algorithm to generate enough valid
points for the MB, or any of the subsequent MVs, and affect
the space-filling quality of the generated design (Fuerle and
Sienz 2011).

A variety of constraint-handling methods for evolution-
ary algorithms have been proposed, as summarised by
Michalewicz and Schoenauer (1996), and Mezura-Montes
andCoelloCoello (2011). The commonly used strategies are:

1. Repair strategy, The idea of this strategy is that an infeasi-
ble individual is repaired to a feasible individual (Liepins
and Vose 1990).

2. Sudden Death strategy, in which an infeasible individual
is removed immediately from the population (Schwefel
1993).

3. Penalty functions, the basic idea of this strategy is to refine
the fitness functions by extending the objective function
with a penalty term. Penalty functions are the most com-
monly used approaches for evolutionary algorithm, in
particular for handling inequality constraints (Barbosa
et al. 2015).

In this work, the latter strategy was adopted by implement-
ing the sequential unconstrained minimization technique
(SUMT) to generate OLH designs with constrained design
spaces (Byrne 2012). This technique is based on adding an
increasing penalty function to the objective function to avoid
unnecessary computational costs by generating test points
that are not feasible or do not have a physical meaning.
Accordingly, the objective function in Eq. (2) was modified
as shown in Eq. (3).

U =
⎛
⎝

⎡
⎣

M∑
i=1

M∑
j=i+1

1

L2
i j

+ct×P(x)

⎤
⎦+

[
M∑
i=1

N∑
n=1

1

L2
in

]⎞
⎠ (3)

P(x) = 1

2

M∑
i=1

G∑
j=1

(max{0, g j (xi )})2 (4)

In Eq. (3), ct denotes the monotonically increasing penalty
parameter: ct+1 = η × ct where η > 1. Therefore,
the penalty parameter is increasing iteratively during the
PermGA process until all the infeasible points are directed
into the feasible area. Also, P(x) is a function of the inequal-
ity design constraints (g j (x) < 0, where j = 1, . . . ,G), as
given in Eq. (4). Noteworthy, all the G constraints in Eq. (4)
are scaled, to ensure that the penalty term generated by each
constraint is of the same magnitude.

3.2.2 PermGA optimisation algorithm

The distribution of the test points for an OLH design can
be regarded as a discrete optimisation problem (Bates et al.
2004). Table 2 summarises some examples of the optimality
criteria and optimisation algorithms employed to develop an
OLH design.

It has been argued in the literature that PermGA can be
more efficient for higher dimensional OLH DoE problems
due to a convergence rate corresponding to the varying num-
ber of variables (Bates et al. 2004; Liefvendahl and Stocki
2006). In other words, PermGA can generate better distrib-
uted points for high dimensional DoEs while reducing the
computational costs.

Therefore, a PermGAalgorithmwasdeveloped and imple-
mented in this paper to generate the MB–MV designs.
Another reason to select the PermGA is that it is a population-
based stochastic optimiser; thus, it is expected that the
algorithm generates a number of random permuted popu-
lations for each dimension with no particular correlation
among the generated points. So, it is expected that the final
DoE generated by PermGA preserves good orthogonality
properties.

Table 2 Examples of the introduced optimisation techniques in litera-
ture to construct an OLH design

Reference Optimisation algorithm

Audze and Eglais (1977) Coordinates exchange algorithm

Morris and Mitchell (1995) Simulated annealing

Ye et al. (2000) Column-wise–pairwise

Bates et al. (2003) PermGA

Bates et al. (2004) PermGA/Simulated annealing

Liefvendahl and Stocki
(2006)

PermGA/Column-wise–pairwise

Van Dam et al. (2007) Branch-and-bound algorithm
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I. PermGA Development
The pseudocode for the PermGA algorithm implemented

in Matlab environment is provided in Algorithm 1.

Algorithm 1. PermGA
begin
i = 0
1. Generate a number of random LH designs (i.e. based on GA 

population size) using permuted numbers
2. While the termination conditions are not met do

begin
3. Evaluate the individual’s fitness function (i.e. for MB 

DoE using equation (1), for MV DoE with symmetric 
design space of variables using equation (2), and for MV 
DoE with asymmetric design space of variables using 
equation (3))

4. Store a number of individuals with the best fitness values 
(i.e. elites)

5. While the number of new LH designs (i.e. children) is less 
than the set population size do
begin
6. Select two of the individuals (i.e. parents)
7. Apply Cycle and Inversion crossover operators 

considering the crossover rate
8. Apply mutation operator considering the mutation rate
end

i = i +1
Update penalty parameter (c) if the design space of variables 
is asymmetric  
end 

end 

To enhance the exposition of developed PermGA algo-
rithm, the extended design structure matrix (XDSM), which
is an extension of a common diagram in system engineering
(Lambe and Martins 2012), was employed to visualise the

interconnections among the PermGA components, as shown
in Fig. 2.

Following theXDSMconvention for architectural decom-
position (Lambe and Martins 2012), PermGA algorithm
components are represented by rectangles, special compo-
nents which control the iterations (known as drivers) are
shown by rounded rectangles, and data are represented by
parallelograms. The function of components is to process
data. The thick grey lines are used to show the data flow,while
the thin black lines illustrate the process flow. The input data
transfers to the components from the vertical direction and
departs the components from the horizontal direction. The
convention for the data flow is that connections above the
diagonal flow from left to right and top to bottom, and con-
nections below the diagonal flow from right to left and bottom
to top. Accordingly, parallelograms at the column above
and below the components define the input data, and par-
allelograms along the row define the output data. Moreover,
external inputs and outputs are placed on the outer edges of
the diagram, in the top row and leftmost column, respectively
(LambeandMartins 2012).AnotherXDSMarchitecture con-
vention is that any block referring to component i represents
a repeated pattern. In addition, a numbering system is used
to illustrate the order of components execution, i.e. it starts
from zero and proceeds in numerical order. In this number-
ing system, the loops are shown by j → k for k < j , which
denotes that the algorithm returns to step k until the required
termination condition by the driver is met. For further details,
see Lambe and Martins (2012).

Fig. 2 Illustration of Permutation GA algorithm process using the XDSM graph
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For implementation, the external inputs at level 0 (shown
as X) are N populations of RLH designs which have been
generated using the ‘Permutation’ encoding (Michalewicz
1996) in Matlab. Also, if the design space of variables is
constrained, an initial value for penalty parameter (c) is
another external input at this level.At level 1, the optimisation
objective function is calculated for each input population Xi

(i = 1, . . . , N ). This iterative analysis component is shown
as ‘Fitness Analysis’ in Fig. 2. The fitness function for the
MB points is calculated using Eq. (2) for MV points within
a symmetric design space, and Eq. (3) for MV points within
an asymmetric design space (i.e. constrained design spaces).
Given that each DoE parameter might have a different range
of units, the variables have each been normalised to the inter-
val [0 1] to calculate the L pq . Next, the fitness value for each
population fi is transferred to level 2 (shown as ‘Evolve pop-
ulations’), along with the initial populations X. In this level,
GA operators were applied to the initial population (parents)
to evolve the new population (children). In this implementa-
tion, ‘selection’, ‘crossover’ and ‘mutation’GAoperators are
utilised, shown as level 2.1, level 2.2, and level 2.3, respec-
tively, in Fig. 2.

• ‘Selection’ operator (Level 2.1): This operator defines
the method of selecting the parent populations to be
evolved. Several selection methods have been discussed
in literature, including ‘Tournament’ and ‘Biased
Roulette Wheel’ (Coley 1999). In this work, the ‘Biased
Roulette Wheel’ operator was implemented to increase
the convergence rate, by giving individualswith better fit-
ness values fi proportionally more chance to be selected
as parents. R1 and R2 external inputs are two random
numbers which define the parent populations (Xi and
X j ).

• ‘Crossover’ operator (Level 2.2): This operator com-
bines parts of input parent populations (X i and X j) and
generates two new individuals (X c

i and X c
j ). There are

different crossover methods used for PermGA, such as:
simple crossover, cycle crossover and inversion (Bates
et al. 2004). Bates et al. (2004) have shown that either
cycle crossover or inversion works well for a PermGA
algorithm. However, given that the interactions among
GA parameters are complex and dependent on the fit-
ness function (Deb and Agrawal 1999), it was decided
to employ both crossover functions, i.e. cycle crossover
followed by inversion. The cycle crossover preserves the
absolute position of the elements in the parent sequence
(Fig. 3), while using inversion crossover the points are
inverted between two sets of points (Narayanan et al.
2007) (Fig. 4). The aim was to introduce extra variability
into the children populations to reduce the chance of the
search algorithm being trapped in a local optima.

Fig. 3 Cycle crossover

Fig. 4 Inversion crossover

Fig. 5 Mutation operator

• ‘Mutation’ operator (Level 2.3): A simple mutation
technique (Liefvendahl and Stocki 2006; Michalewicz
1996) was used to swap two randomly selected elements
of the transferred individuals, from the crossover level
(X c

i and X c
j ), and evolve them into new child popula-

tions (Xm
i and Xm

j ), as shown in Fig. 5.

The output of the iterative process at level 2 is N new pop-
ulations which are transferred to level 3 to evaluate the fitness
of evolved populations. Finally, the convergence require-
ments are checked at level 4. If the convergence requirements
are met, the optimum solution (X∗), which is the final OLH
design, is delivered. Otherwise, the new population, along
with the updated penalty parameter (c), if the design space is
asymmetric, will be transferred to level 1 for another iteration
of program.

Additionally, some PermGA parameters, shown as exter-
nal inputs in Fig. 2, require tuning due to their significant
influence on the algorithm performance (Grefenstette 1986);
specifically:

• Elite Size (E): defines howmany individualswith the best
fitness value fi should transfer to the next iteration of the
algorithm without evolving. Thus, the best individuals
are not lost during subsequent generations, which can
accordingly assure a smoother convergence.
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• Crossover Rate (Cr): determines the number of individ-
uals that are evolved through the crossover operation.

• Mutation Rate (Mr): determines the number of individ-
uals that are evolved through the mutation operation.

• Population Number (N): denotes the population size for
the input design X .

II. PermGA Preliminary Results
For illustration, Fig. 6 shows the result of a MB DoE

sequence for a two-dimensional problem,with 60DoEpoints
generated using Eq. (1), where x1 and x2 ∈ [−1 1].

Figure 7 illustrates the space-filling properties of the MB
DoE, in terms of the minimum Euclidean distance from the
nearest point (Morris and Mitchell 1995), for each of the
test points. The Euclidean distance for each sample point is
calculated with Eq. (5) (Crombecq et al. 2011):

Fig. 6 MB Sequence (60 test points)

Fig. 7 Euclidean minimum distance for all MB DoE points

Fig. 8 Convergence plot of PermGA for generating theMBOLHDoE
sequence (60 points in 2 dimensions)

Di = minimum
xi,xj∈N

√√√√ K∑
k=1

|xki − xkj |2 where i �= j (5)

N is the sample size and K denotes the number of design
parameters. The graph in Fig. 7 shows a uniform distribution
of theminimumdistance to the nearest test point, with amean
of 0.106 and standard deviation of 0.015.

To study the orthogonality properties of the designs gen-
erated by PermGA, the correlation (r) between the vectors
of variables were calculated using Eq. (6) (Joseph and Hung
2008):

r =
∑N

i (xki − xk)(x j
i − x j )√∑N

i (xki − xk)2
√∑N

i (x j
i − x j )2

where k �= j (6)

where xki indicates the sample i for the design parameter k

and xk gives the samples’ average for the design parameter
k. The correlation between vectors of variables for 60 OLH
DoEpoints is−0.019,whichmeans that theMBOLHdesign
is quasi-orthogonal.

Figure 8 illustrates a typical convergence plot in terms
of fitness for the MB algorithm. The PermGA algorithm was
run with the following GA settings: ‘Population Size’= 200;
‘Crossover Rate’ = 0.8, ‘Mutation Rate’ = 0.05, and ‘Elite
Size’ = 5.

To illustrate the MB–MV DoE algorithm using the modi-
fied objective functions, i.e. Eqs. (2) and (3), an MV DoE of
40 points was generated using the MB DoE shown in Fig. 6.
Several boundary conditions have been considered to reflect
common practical engineering situations, as illustrated in the
examples discussed below.
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Fig. 9 MB–MV Sequence for symmetric design space

Fig. 10 Euclidean minimum distance for MB–MV test points

Example 1 40 MV DoE test points with no boundary con-
straint, where x1 and x2 ∈ [−1 1].

Given that no boundary conditions are imposed, Eq. (2)
was used as the objective function. The PermGA algorithm
settings used were: ‘Population Size’ = 200; ‘Crossover
Rate’ = 0.8, ‘Mutation Rate’ = 0.05, and ‘Elite Size’ = 5.
Figure 9 illustrates the location of 40 MV infill DoE test
points (cross-shaped) among the existing 60 MB points (cir-
cle dots). Similar statistical analysis was executed on theMV
DoE to investigate the design space fillingness and orthog-
onality. Therefore, Fig. 10 illustrates the Euclidean distance
for 100 DoE points (60 MB + 40 MV points), calculated
using Eq. (5). This graph shows a uniform distribution of
Euclidean distances, with a mean of 0.079 and standard devi-
ation of 0.017. Also, the correlation between the vectors of
x1 and x2 parameters for 100 DoE points is 0.025, calcu-

Fig. 11 Convergence plot for PermGA

lated using Eq. (6), which means that the final design is still
quasi-orthogonal.

Figure 11 illustrates the convergence plot in terms of fit-
ness for the augmented MB–MV algorithm, showing that
the augmented search algorithm is smoothly converged to
the optimum solution.

Example 2 40 MV DoE test points with no boundary con-
straint, where x1 and x2 ∈ [0 1].

For many real-life engineering problems, it is the case
that after the first step of characterizing the response model
using the initial DoE, there is a need to collect more data
from a smaller part of the design space to achieve a better
model accuracy. One of the advantages of using an efficient
sequential DoE strategy is that the design space can be mod-
ified sequentially, which in effect provides the opportunity
to revise the design space after data analysis at each DoE
sequence using the same DoE principals. Therefore, in this
example, the design space for the two parameters at the MV
stage was revised from [−1 1] to [0 1]. The PermGA algo-
rithm was run with ‘Population Size’ 200; ‘Crossover Rate’
0.8, ‘Mutation Rate’ 0.05, and ‘Elite size’ 5.

Figure 12 illustrates the location of 40MVDoE test points
(cross-shaped) with revised design space, generated using
Eq. (2) as the objective function, among the existing 60 MB
points (circle dots). The square box in Fig. 12 shows the
revised design space, within which the MV test points are
generated. Figure 13 shows theEuclidean distances for all the
100 DoE points, with a mean of 0.149 and standard deviation
of 0.062. This figure shows that the distribution of Euclidean
distances (or space fillingness) is not as smooth as Example 1,
i.e. higher standard deviation for Euclidean distances, which
was expected since the design space of the additional 40 infill
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Fig. 12 MB–MV Sequence for revised design space

Fig. 13 Euclidean minimum distance for MB–MV test points

points was not equal to the design space of the 60 MB test
points.

The correlation between vectors of x1 and x2 parameters
for the total design of 100 test points is 0.18, which is still an
acceptable value for the correlation term, i.e.within the [−0.3
0.3] limit suggested by Steinberg and Lin (2006). Figure 14
illustrates the convergence plot in terms of fitness for the
augmented MB–MV algorithm, showing that the augmented
search algorithm is smoothly converged to the optimum
solution.

Example 3 40 MV DoE test points with 1 boundary con-
straint g(x) = x2 − x1 − 1 ≤ 0, where x1 and x2 ∈ [−1 1].
In this example, an asymmetric design space was consid-
ered, i.e. linearly constrained by the inequality constraint
g(x) = x2 − x1 ≤ 1. The augmented infill PermGA algo-
rithm, with the fitness function given in Eq. (3), including an

Fig. 14 Convergence plot for PermGA

Fig. 15 MB–MV Sequence for asymmetric design space

adaptive penalty function was used to generate the 40 infill
MV test points, as illustrated in Fig. 15. The PermGA algo-
rithm was run with ‘Population Size’ 200; ‘Crossover Rate’
0.8, ‘Mutation Rate’ 0.05, and ‘Elite size’ 5.

In Fig. 15, the red lines show the feasible design space for
the MV DoE sequence. The space-filling uniformity for the
MB–MVOLHDoE points in the constrained design space is
illustrated in Fig. 16, based on the Euclidean distance to the
nearest test point. This figure shows that the infill points are
distributed within the constrained design space, with a mean
of 0.074 and standard deviation of 0.018. The correlation
between vectors of x1 and x2 parameters for the total design
of 100 test points is 0.13, which is an acceptable value for
the correlation term.

Figure 17 illustrates the convergence plot in terms of fit-
ness for the augmented MB–MV algorithm, showing that
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Fig. 16 Euclidean minimum distance for MB–MV test points

Fig. 17 Convergence plot for PermGA

the augmented search algorithm is converged to the opti-
mum solution. The figure shows that the fitness value has
increased for 6 iterations as the GA population with the
best fitness value (i.e. the solution of the GA process at
each iteration) could not meet the inequality constraint. In
effect, the increase in the fitness value was due to the sequen-
tially increasing penalty term. Then, from the 6th iteration
onwards the best population was within the linearly con-
strained design space; thus, the fitness value was decreased
significantly since no penalty term was applied.

Example 4 40 MV DoE test points with 2 boundary con-
straints, g1(x) = x2− x1−1 ≤ 0 and g2(x) = x1− x2−1 ≤
0, where x1 and x2 ∈ [−1 1].
In this example, the design space is linearly constrained
by two inequality constraints g1(x) = x2 − x1 ≤ 1 and

Fig. 18 MB–MV Sequence for asymmetric design space

Fig. 19 Euclidean minimum distance for MB–MV test points

g2(x) = x1 − x2 ≤ 1. Figure 18 illustrates the 40 infill MV
test points (cross-shaped), generated using Eq. (3) as the fit-
ness function, among the 60 MB test points (circle dots). In
this figure, the red lines show the feasible design space for
theMVDoE sequence. The PermGA algorithmwas run with
‘Population Size’ 200; ‘Crossover Rate’ 0.8, ‘Mutation Rate’
0.05, and ‘Elite size’ 5.

The space-filling uniformity for the MB–MV OLH DoE
points in the constrained design space is illustrated in Fig. 19,
based on the Euclidean distance, distributed with a mean of
0.077 and standard deviation of 0.02. Also, the correlation
between vectors of x1 and x2 parameters for the total design
of 100 test points is 0.22, which is still an acceptable value
for the correlation term.

Figure 20 illustrates the convergence plot in terms of fit-
ness for the augmented MB–MV algorithm. Similar to the
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Fig. 20 Convergence plot for PermGA

previous example, this figure shows an exponential increase
in the fitness value for the initial iterations until iteration 16,
until a feasible solution within the design space constraints
was found.

4 Validation case studies

To validate the application of the MB–MV DoE strategy
implemented through the developed PermGA algorithm, two
case studieswere considered, illustrating both theoretical and
empirical (via a real-world engineering case study) validation
of the approach.

4.1 Theoretical validation via benchmark problem: the
six hump camel back (SHCB) function

The SHCB function, given in Eq. (7), is a surrogate engineer-
ing problem which is a well-known example for evaluating
the global optimisation plans (Wang et al. 2004). This
function has a complex shape with six local optima and
two global optima of −1.0316 at (0.0898,−0.7127) and
(−0.0898, 0.7127).

f (x) = 4x21 − 2.1x41 + 1/3x61 + x1x2 − 4x22 + 4x42
where x1 ∈ [−2, 2], x2 ∈ [−1, 1] (7)

For the purpose of comparing the model accuracy after each
iteration of MB–MV DoE strategy, the MB–MV DoE was
planned in four iterations. In the first step, an MB OLH DoE
with 60 points was generated using Eq. (1). A MV OLH
DoE with 15 points was generated as the first Model Val-
idation design (MV1) using Eq. (2). The SHCB function
was evaluated at both MB and MV1 points, and a response

model was fitted based on the MB test points in the MAT-
LAB MBC Toolbox™, using Radial Basis Functions (RBF)
models (Fang andMark 2005; Forrester et al. 2008) [i.e. RBF
with Thinplate Kernel function (Morton and Knott 2002)].
In step two, the same type of RBF response model was built
based on the joint MB + MV1 test points (i.e. 75 points). A
secondModelValidation (MV2)was generated based on a 15
pointsOLHMVDoE.The sameprocess of internal and exter-
nal validation (MV2 points) was applied. This process was
repeated with two further iterations, with MV3 = 15 points
and MV4 = 15 points (i.e. in the 4th iteration the model
building set comprised MB + MV1 + MV2 + MV3 = 105
points, an MV4 = 15 points).

Figure 21 illustrates the distribution of points in the DoEs
at each iteration. Figure 22 shows the uniformity of the dis-
tribution of the points in the design space, in terms of the
Euclidean distance for each of the 120 test points in the joint
MB–MVDoEs. This histogram indicates that distribution of
the Euclidean distance for the test points is quasi-uniform
and even after 4 independent steps of testing the distributed
points are still remote fromeach otherwithin the design space
(i.e. test points are not replicated). For better illustration of
the uniformity of the distributed test points within the design
space (i.e. space-filling properties), the distributions of the
minimumEuclidean distance of the test points across the sub-
sequent MV DoEs are illustrated using boxplots, as shown
in Fig. 23. This figure indicates that:

1. TheEuclidean distance of test points decreases by adding
more test points (from MB–MV1 to MB–MV4), which
was expected since the number of test points within
the finite design space are increasing over the MV DoE
sequences.

2. The variability of the Euclidean distances measured via
the interquartile range decreases across the subsequent
DoEs. This trend demonstrates the ability of PermGA
algorithm to enhance the space-filling properties of the
merged DoEs, by preserving the uniform distribution of
test points when generating the MV DoEs.

Figure 23 shows a number of outliers from collecting more
data (i.e. ‘MB–MV3’ and ‘MB–MV4’). The main reason
for the appearance of the outliers is that the spread of the
Euclidean distances is smaller for the ‘MB–MV3’ and ‘MB–
MV4’ DoEs, due to amore uniform distribution of Euclidean
distances. Accordingly, the interquartile range, and conse-
quently the whiskers, is smaller in these DoEs, which in
effect increases the possibility of having more test points
with Euclidean distances out of the whiskers’ range (i.e. out-
liers).

Figure 24 characterises the distribution of the Euclidean
distances in termsof its standard deviation across the 4 stages.
This graph shows that the uniform space-filling properties of
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Fig. 21 MB–MV DoE projection and response surface modelling for SHCB problem

Fig. 22 Euclidean ‘Maxi–min’ (Mm) distances of all the sample points in four steps
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Fig. 23 Boxplot of Euclidean distances across the subsequent valida-
tion DoEs

Fig. 24 Standard deviation (σ) of the Mm Distance (Stages 1 to 4)

theMB–MVDoEs are improving over the subsequent stages
of DoE. The correlation between x1 and x2 after 4 stages
was also calculated as r = 0.05, which indicates that the
final design is quasi-orthogonal.

Furthermore, Fig. 21 gives a graphical illustration of the
response surfaces fitted at each stage. These graphs clearly
show that the accuracy of the model improves through the
successive MB–MV stages. By looking at the internal model
validation criterion (PRESS RMSE, given in Fig. 21) and
external validation (RMSE for the MV test points, shown in
Fig. 25), it can be concluded that the accuracy of the model
improves dramatically over the first 3 stages, with only a
small improvement between the 3rd and 4th stages.

The main conclusion from this study was that the pro-
posed MB–MV sequential DoE framework is successful at
generating a quasi-orthogonal DoE with good space-filling
properties. The proposed design is also a fine-grained design,
augmented iteratively with small batches of MV points, with
good projection properties, since it uses batches of OLH
designs to cover the whole range of design space for each
parameter.

Fig. 25 External validation of the built models through MB–MV
sequence (Stages 1 to 4)

4.2 Empirical validation: application to a GDI engine
steady-state engine mapping

TheGDI engine case study described in this paper is based on
engine dynamometer experiments conducted in the power-
train testing facility at the University of Bradford for the part
load “hot” steady-state calibration of a 5-l naturally aspirated
V8 GDI engine. This case study was based on the model-
based steady-state calibration process discussed in (Dwyer
et al. 2013), with testing conducted at a number of engine
speed-load operating points, to study the effect of calibration
variables on fuel consumption and emissions.

The MB–MV DoE strategy, implemented through the
algorithms described in this paper, was used to generate
the test plan for the GDI engine mapping experiments, and
to develop response models of sufficient accuracy for the
calibration optimisation process. Table 3 and Fig. 26 sum-
marise the engine calibration control variables and the engine
responses of interest at each engine speed/load operating
point.

From a calibration engineering viewpoint, the fuel con-
sumption and particulates number (PN) emissions are res-
ponses that are of interest for calibration optimisation, which
can be defined as identifying variables settings to minimise
fuel consumption and PN emissions. However, combustion
stability and exhaust gases temperature are in fact state
variables, which act as nonlinear constraints for the cali-
bration optimisation problem. From a DoE strategy point
of view, collecting test points in areas where the engine

Table 3 GDI engine calibration parameters

Name Description Limits Unit

IVO Inlet Valve Opening −12 50 deg ATDC

EVC Exhaust Valve Closing −6 44 deg ATDC

FRP Fuel Rail Pressure 8 15 MPa

SOI Start of Injection 260 335 deg BTDC
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Fig. 26 GDI engine calibration parameters and responses

operation is infeasible from the point of view of these state
variables would be a waste. Thus, combustion stability and
exhaust temperature act as nonlinear constraints for the DoE
problem.

The approach adopted for the GDI mapping case study
was to design and run a preliminary screening experiment
as an OLH DoE. Response models were fitted based on the
screening experiment and used to define a revised variable
space based on the evaluation of the combustion stabil-
ity and exhaust temperature responses. For example, it was
observed that for lower speed/load engine operating points,
negative valve overlap (valve overlap can be defined as the
time that both the inlet and exhaust vales are open, i.e.
Overlap = EVC − IVO), results in poor combustion sta-
bility. This is consistent with engineering judgment where,
at part load, high overlap results in excessive exhaust gas
recirculation (EGR) with negative effects upon combustion
stability, especially under low load conditions such as idle
(Hagen and Holiday 1976). Based on this analysis, a nega-
tive overlap constraint was introduced for the design space
for IVO and EVC calibration variables at low speed/load
operating points for the MB–MV sequence.

4.2.1 MB–MV DoE strategy implementation

The implementation plan for the sequential DoE generated
a sequence of MB–MV OLH DoEs using the developed
PermGA algorithms. Given the constrained design space for
IVO and EVC parameters at some of the minimap points,
Eq. (3) was used as fitness function for the individual OLH
designs during the MB–MV process.

Similar to the SHCB case study, the model building DoE
was planned as an OLH DoE with 50 test points, with each
subsequent model validation DoE of size 15, i.e. MV1 = 15
validation test points for the main MB DoE, iteratively aug-
mented with subsequent MVs of size 15 (following the
process outlined in Fig. 2), until engine response models
of satisfactory quality are achieved. Within the case study,
to validate the sequential DoE methodology, four MB–MV
iterations were planned and run, and the performance of the
models were evaluated after each iteration. TheMatlabMBC
toolbox was used to fit Radial Basis Function (RBF) models

(Fang and Mark 2005; Forrester et al. 2008) for all engine
responses; preliminary evaluation of RBF models showed
that the thin-plate kernel provided good models across the
engine responses of interest. The RBF model selection cri-
terion (including the number of basis functions) was based
on minimising PRESS RMSE. The quality of the model was
judged based on statistical diagnostics: validationRMSE (i.e.
RMSE for prediction errors of the new test data in the vali-
dation set), and PRESS RMSE for the MB set (i.e. root mean
square of prediction sum of squared errors for the MB set
based on simple cross-validation). The model residuals for
the MB set were also monitored at each DoE stage to ensure
that models are not over-fitting.

4.2.2 Engine case study results and discussion

Figure 27 illustrates the Euclidean distance of the test
points at each of the model validation stages using boxplots.
This figure shows that variability of the Euclidean dis-
tances decreases by adding the subsequent MVDoEs, which
in effect shows the capability of the developed PermGA
algorithm to distribute the points evenly within the four-
dimensional design space even after 4 independent sequences
of MV DoEs. Also, 4 outliers were seen at ‘MB–MV4’ DoE
stage. The Euclidean distance of these outliers are not worse
(less or more) than the previous DoE stage (i.e. ‘MB–MV3’),
however; since the variability is less at ‘MB–MV4’ (i.e.
interquartile range is smaller) these test points are recognised
as outliers.Moreover, Fig. 28 characterises the distribution of
Euclidean distances in terms of its standard deviation across
the 4 MB–MV stages. This figure shows that the uniformity
of the distribution of the test points within the design space
is improving across the subsequent stages of MV DoEs.

The correlation (r) between each of the twoDoE variables
was also studied for all the 4 stages of the MB–MV strategy.
It was observed that the correlation between the variables

Fig. 27 Boxplot of Euclidean distances across the subsequent valida-
tion DoEs
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Fig. 28 Standard deviation (σ) of the Mm Distances

was negligible (i.e.−0.05 ≤ r ≤ 0.05), thus, the designs are
quasi-orthogonal.

Figures 29, 30, 31 and 32 illustrate plots of ‘PN’ and
‘Fuel Consumption’ responses through stages MV1 and
MV4. These figures clarify how the shape and trend of the
responses, particularly the fuel consumption response, are
transformed iteratively through collecting more infill test
points, improving the prediction accuracy throughout the
design space. As an example, it can be seen that the shape
of fuel consumption response after collecting 4 sets of val-
idation points (Fig. 32) is significantly different from the
response model at sequence 1 (Fig. 31), especially at the
extremes of the design space, i.e. the corner areas. Given that
one of the main shortcomings of rigid OLH designs is to
collect enough information at the areas around the bound-
ary limits, using the sequential DoE method for this case

study helped to collectmore data around the unexplored areas
next to the boundary limits, and consequently delivered a
more accurate response model. Figures 33 and 34 illustrate
the improvement in model accuracy through the MB–MV
sequence in terms of the model prediction error (expressed
as the ratio of validation RMSE tomean response, as percent-
age) for PN and fuel consumption. The decreasing trend in
the validation RMSE shows that the quality of the response
surfaces is enhanced, step by step. It can be seen that for
the minimap point illustrated in Figs. 33 and 34, the relative
validation RMSE is 1 % for ‘Fuel Consumption’ and 8 %
for ‘PN’ after the 4th MB–MV iteration. Given the engineer-
ing target for model quality for fuel and PN responses of 1
and 10 %, respectively, it could be argued that for this case
the engine response models were acceptable after the sec-
ond MB–MV iteration, i.e. based on a mapping DoE of only
80 (65 MB + 15 MV) test points. This is significantly less
than the normal mapping DoEs, which typically use 150 test
points.

5 Summary, conclusions and future work

The aim of this paper was to present the development
and validation of a permutation genetic algorithm for a
sequential MB–MV DoE strategy based on OLHs. The
motivation for the research was the complex engineering
problem of a GDI engine mapping case study, for which an
efficient DoE strategy is required to maximise the informa-
tion gained with minimal resource expenditure, in terms of

Fig. 29 PN response at MV1 Stage
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Fig. 30 PN response at MV4 Stage

Fig. 31 Fuel consumption response at MV1 Stage

engine testing. Many other practical engineering problems,
including those requiring computer-based experimentation,
such as aerospace or automotive structural design based on
finite elements simulation, where computation places sig-
nificant challenges, could benefit from the application of

the exploration-based sequential DoE methodology and the
PermGA algorithm described in this paper.

The PermGA algorithm of Bates et al. (2003, 2004) was
used as the basis for the development presented in this
paper. The algorithm was modified principally by extensions
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Fig. 32 Fuel consumption response at MV4 Stage

Fig. 33 PN model prediction error

Fig. 34 Fuel consumption model prediction error

to the fitness function to enable the generation of flexible
sequences of infill DoEs using the same principles of opti-
mal Latin hypercubes, and preserving good space fillingness
and statistical properties of the overall DoE. Significant fur-
ther modification and extension of the PermGA algorithm
was required to deal with non-orthogonal variables spaces.
The introduction of the adaptive penalty function (SUMT)
was proven to be effective in dealing with nonlinearly con-
strained design spaces to ensure that uniform space-filling
DoE sequences can be achieved. The paper shows that this
can work effectively even when the design space is progres-
sively constrained (i.e. between MB–MV iterations). This
is a very important feature as practical problems such as the
enginemapping experiments reported byDwyer et al. (2013),
required revisions of the design space after the initial screen-
ing OLH DoE, based on both feasibility (e.g. combustion
stability) and engineering preference (e.g. narrowing down
of the variable space of interest to hone in on areas where
optimal solutions appear more likely based on the analysis
of trends).

The overall PermGA algorithm is presented in Fig. 2 as
an XDSM graph, which adds clarity to the understanding of
the flows compared to the conventional pseudocode or flow
graph, and improves communication between the computa-
tion and design science communities.

Given that the motivation for this research is a real-world
engineering problem, the validation of the methodology and
algorithm developedwas underpinned by the rigorous frame-
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work used in design science known as “the validation square”
(Pedersen et al. 2000). Accordingly,

(i) The theoretical structural validity was based on a sys-
tematic analysis of the problem and the corresponding
algorithm structural and logical requirements;

(ii) The empirical structural validity was demonstrated
through Examples 1–4 presented in Sect. 3.2.2, which
have demonstrated that the algorithm performs well
under the range of test cases derived from the analy-
sis of practical engineering problems;

(iii) The theoretical performance validity was pursued via
a theoretical benchmark problem based on the SHCB
function. The scenario considered a 4-step MB–MV
sequence, with performance evaluated both in terms
of uniformity of the overall DoE —which is directly
related to the fitness function of the
PermGA algorithm (hence validating the performance
of the PermGA algorithm), and in terms of the improve-
ment in the model quality measured in terms of PRESS
RMSE—validating theMB–MVmethodology based on
PermGA;

(iv) The empirical performance validity was completed via
the GDI engine mapping experiments case study, where
engine dynamometer test data was collected based
on a DoE plan generated using the PermGA algo-
rithm presented in this paper. The case study results
provided validation evidence for the PermGA-based
MB–MV methodology. Furthermore, this case study
has emphasised the complexities of real-world appli-
cation of computational methodologies; e.g. validation
of models must include phenomenological reasoning,
and the observed behaviour along different response
dimensions can have significantly different intrinsic
characteristics (e.g. the combustion variability andmea-
surement accuracy has a significant impact on the
modelling fidelity that can be achieved for fuel flow
compared to particulate numbers, as illustrated by the
results in Figs. 33, 34).

As an overall conclusion, the work reported in this paper
demonstrates that the developed PermGA and Infill PermGA
algorithms can generate quasi-orthogonal uniformly distrib-
uted space-filing OLH DoEs, through sequential augmen-
tation of a space-filling OLH DoE. The validation results
have shown that a sequential MB–MV strategy is effective in
generating models of required accuracy with a reduced test-
ing sequence compared to the conventional approach used
in practice, which is based on collecting one large DoE.
By monitoring the modelling accuracy a model’s accuracy
within the MB–MV iteration, testing can be stopped if the
models are sufficiently accurate, thus reducing unnecessary
further testing which adds little additional information. Con-

versely, a further MV OLH DoE can be added if any of the
response models is insufficiently accurate for prediction pur-
poses.

Thus, it can be summarised that: (i) MB–MV reduces
both testing and computational effort for achieving speci-
fied model accuracy (e.g. MB–MV reduced the total number
of required test points for the GDI engine testing problem by
up to 45 %, compared to the current practice), and (ii) pro-
vides robust scalable adaptivity to account for insufficient
model accuracy. On this basis, it can be expected that this
work will have significant impact in application to a broad
range of engineering problems.

While the validation approach presented in this paper is
complete from a design science framework viewpoint in the
sense that theoretical/empirical and structural/performance
aspects have been systematically considered, from a com-
putational point of view further work is needed to formally
address the efficiency of the PermGA algorithm.
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