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Abstract In this paper we propose and discuss several new
approaches to noise-resistant training of multilayer percep-
tron neural networks. Two groups of approaches: input ones,
based on instance selection and outlier detection, and out-
put ones, based on modified robust error objective functions,
are presented and compared. In addition we compare them
to some known methods. The experimental evaluation of the
methods on classification and regression tasks and compar-
ison of their performances for different amounts of noise in
the training data, proves the effectiveness of the proposed
approaches.

Keywords MLP neural networks · Robust learning ·
Outliers · Instance selection

1 Introduction

Artificial neural networks are one of themost popularmodels
applied to predictive analysis. Especially multilayer per-
ceptrons (MLP) have been successively used in various
applications, such as function approximation, classification,
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pattern recognition or signal and image processing. MLPs do
not require any prior knowledge about input-output depen-
dencies and are able to learn and build the data models based
on training examples. This is why they are popular and often
considered easy-to-use tools. However, the performance of
such networks, trained by minimizing an error function on
the training set, strongly depends on the quality of the data
(Chen and Jain 1994; Liano 1996). For the contaminated,
noisy datasets with many outlying and erroneous patterns,
the desired mapping from the input to output space cannot be
properly achieved. In this case, also neural networks trained
on that data do not build the desired model, instead trying to
fit to the noisy training examples.

We developed two groups of approaches designed to
deal with the problem of outliers in the training data. The
first group, so-called robust learning algorithms, is based
mainly on novel error performance measures, derived from
robust statistical estimators. In these approaches the train-
ing data is left in its original, potentially contaminated,
state, but the network training process is modified. From
that group we presented in Kordos and Rusiecki (2013)
the LMLS (Least Mean Log Squares), MAE (Median of
Absolute Errors), MIF (Median Neuron Input) and MedSum
performance measures. In this work we discuss three oth-
ers methods: ILMedS (Iterative Least Median of Squares)
Rusiecki (2012), LTA (Least Trimmed Absolute Deviations)
Rusiecki (2013) and TEF (Trapezoid Error Function) in
Sect. 3. The second group is based on instance selection
and outlier detection methods. In this case, the training data
are reduced or corrected, to remove the impact of outliers.
This is discussed in Sect. 4. We also describe hybrid meth-
ods, joining the aforementioned approaches. Next section
presents broad experimental comparison of different meth-
ods on several regression and classification tasks. In this
work we use not only the real datasets, but also add dif-
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ferent levels of noise to input attributes, to output values
and to both, and analyze how the performance of particular
methods depends on noise level and location. We perform
experimental comparison of the new methods proposed and
some other methods known from the literature. For that
purpose we conducted 1440 different experiments. Finally,
in the last section, we conclude the work and discuss in
which cases each method should be used and in which
conditions the methods proposed by us display their supe-
riority.

2 Robust learning and outliers

An outlier can be defined as an observation numerically dis-
tant from the majority of the data. Such a pattern can be
a point that is close to its neighbors in the input space,
but far from them in the output space (different class or
much different value in the case of regression) or that is
far from any points as well in the input as in the output
space. Outliers may be generated as measurement artifacts,
rounding errors, human mistakes, long-tailed noise distribu-
tion, etc. According to Hampel et al. (2005), the quantity
of outliers ranges from 1 to 10 % in typical raw data,
however it is hard to predict how much outliers the real
data contain. Detecting such points is not trivial, moreover,
sometimes it cannot be clearly stated if a given point is an
outlier or not and rather some degree of outlierness than
a crisp decision is preferred. In general, while building a
data-driven model we do not intend to disregard such a
point but only weaken its influence on the model parame-
ters.

Multilayer perceptron neural networks (MLP) are trained
by minimizing an error function on the training set. This
supervised training scheme strongly depends on the train-
ing data quality. The training procedure builds a model
trying to fit the data points as close as possible. This is
clearly evident that outliers and erroneous training pat-
terns may affect final network performance by leading to
improper mapping from the input to the output space.
Obviously, the most frequently used error measure, mean
squared error (MSE), can be considered as optimal only for
clean training data or data contaminated by at most errors
generated from zero-mean Gaussian distribution (Ham-
pel et al. 2005; Huber 1981; Olive and Hawkins 2007).
When the data contains gross errors or outliers the method
becomes unreliable (Chen and Jain 1994; Liano 1996;
Pernia-Espinoza et al. 2005). To overcome this problem sev-
eral methods, mainly based on modified error measures,
have been proposed Chen and Jain (1994), Chuang et al.
(2000), El-Melegy et al. (2009), Liano (1996) and Rusiecki
(2012)).

2.1 Modified error measures

Replacing theMSE criterionwith a new error function, based
on the idea of so-called robust statistical methods, is the
most common approach to make the MLP training more
robust to the presence of outliers in the training data. The
typical MSE function, derived from the least mean squares
method is therefore strongly influenced by large errors. To
demonstrate this phenomenon let us introduce a network per-
formance function. We consider, without loss of generality,
a simple feed-forward neural network with one hidden layer.
We assume that the training set consists of n pairs:
{(x1, t1), (x2, t2), . . . , (xn, tn)}, where xi ∈ Rp denotes the
p-dimensional i th input vector and ti ∈ Rq the correspond-
ing q-dimensional network target. For the given input vector
xi = (xi1, xi2, . . . , xip)T , the output of the j th neuron of the
hidden layer is given as:

zi j = f1

⎛
⎝

γ∑
k=1

w jk xik − b j

⎞
⎠ = f1(ui j ), for j = 1, 2, . . . , l,

(1)

where f1(·) is the activation function of the hidden layer,w jk

is the weight between the kth net input and j th neuron, and
b j is the bias of the j th neuron.

The output of such network yi = (yi1, yi2, . . . , yiq)T is
given as:

yiv = f2

⎛
⎝

l∑
j=1

w′
v j zi j − b′

v

⎞
⎠ = f2(uiv), for v = 1, 2, . . . , q.

(2)

Here f2(·) is the output layer activation function,w′
v j denotes

the weight between the vth neuron of the output layer and
the j th neuron of the hidden layer, and b′

v is the bias of the
vth neuron of the output layer.

If we define the residuals ri as:

ri =
q∑

v=1

|(yiv − tiv)|, (3)

the performance function may be written as:

E = 1

n

n∑
i=1

ρ (ri ), (4)

where ρ(ri ) is a loss function (Hampel et al. 2005), ri is an
error for the i-th training pattern (3), and n is the size of the
training set.

123



Reducing noise impact on MLP training 51

Applying a quadratic loss function:

ρ(ri ) = ri 2

2
, (5)

leads us directly to theminimizednetworkperformance equal
to the mean squared error (MSE):

Emse = 1

n

n∑
i=1

ri
2. (6)

To measure the influence of residuals to the training process,
the influence function was introduced Hampel et al. (2005);
Liano (1996) as a derivative of the loss function:

ψ(ri ) = ∂ρ(ri )

∂ri
. (7)

Hence, for the MSE performance function, the influence is
linear:

ψ(ri ) = ri , (8)

which means the larger the error, the larger its impact on the
network training process. This is why the model built by a
network becomes unpredictable, when the training procedure
minimizing MSE is applied on the contaminated data.

To cope with the problem of outliers in the training set,
robust learning algorithms have been proposed (Chen and
Jain (1994); Chuang et al. (2000); El-Melegy et al. (2009);
Liano (1996); Rusiecki (2012). These methods very often
make use ofmodified error function, achieving the robustness
to outliers by reducing the impact of large training residuals,
potentially caused by outlying data points.

First approaches to modify error function were based on
robust M-estimators well known in the field of robust sta-
tistics (Hampel et al. 2005; Huber 1981). In Liano (1996)
Lianoproposed a newLMLS (LeastMeanLogSquares) error
function based on the idea of M-estimator, which should be
optimal for theCauchy distribution but performswell also for
other long-tailed error distributions. This seems to be simul-
taneously the most cited technique (Chen and Jain 1994;
Chuang et al. 2000; El-Melegy et al. 2009; El-Melegy 2013),
and the most popular robust error measure, mainly because
of its simplicity. The LMLS error can be defined as:

ELMLS = 1

n

n∑
i=1

log

(
1 + 1

2
ri
2
)

. (9)

One may notice that for the error defined by Eq. (9), the
impact of large residuals is gradually decreased. Similar
approach, the Hampel’s hyperbolic tangent with additional
scale estimator β, was used by Chen and Jain (1994). The

scale estimator helped in determining the range of residu-
als believed to be outliers: all the residuals larger than β

were partially excluded from the training procedure. Chuang
and Su (2000) proposed a similar error performance function
using the annealing scheme to decrease β with the training
progress. In Pernia-Espinoza et al. (2005) a more sophisti-
cated approach, using tau-estimators, was described. Also
quantile-based estimators were applied by Rusiecki as the
error function in the LTS (Least Trimmed Squares) Rusiecki
(2007) and LTA (Least Trimmed Absolute Values) Rusiecki
(2013) algorithms, and in El-Melegy et al. (2009), where El-
Melegy et al. presented the Simulated Annealing for Least
Median of Squares (SA-LMedS) algorithm. Similar median
error function was described in Rusiecki (2012). A com-
bination of the error measure based on robust estimators
and approaches known from image processing, as random
sample consensus algorithm, was applied by El-Melegy in
El-Melegy (2011a, b) and El-Melegy (2013).

In this work we discuss mainly two algorithms: LTA
and LMedS methods, because previous studies revealed that
they perform better than other aforementioned solutions (El-
Melegy et al. 2009; Rusiecki 2012, 2013).

3 LTA, ILMedS and TFE

3.1 Trimmed and median-based error measures

Between manymodified error functions described in the pre-
vious section, the most effective are those based on quantile
and trimmed performance measures (El-Melegy et al. 2009;
Rusiecki 2012, 2013). It is not surprising when we consider
their theoretical derivation. A breakdown point of a robust
statistical estimator is defined as the smallest percentage ε∗
of contaminated data that can cause the estimator to take
on aberrant values Hampel et al. (2005). Obviously, the most
robust estimators possess the highest breakdownpoints, how-
ever, the best that can be expected is ε∗ = 0.5 (Rousseeuw
1984). For the least squaresmethodwehave ε∗ = 0,while for
the least trimmed absolute value (LTA) and the least median
of squares (LMed) the breakdown point close is to ε∗ = 0.5.

3.2 Least trimmed absolute values

The least trimmed absolute value estimator (LTA) is one of
the classical high breakdown point robust location estima-
tors. It uses absolute values of residuals as L1 norm, but the
summation is replaced with a trimmed sum.

For the general nonlinear regression model:

yi = η(xi , θ) + εi , i = 1, . . . , n, (10)
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where yi is the dependent variable, xi = (xi1, . . . , xik)
the independent input vector, θ ∈ Rp denotes the under-
lying parameter vector, and εi independent and identically
distributed (iid) random errors with a continuous distribu-
tion function, we define the least trimmed absolute value
estimator as:

θ̂ = arg min
θ∈Rp

h∑
i=1

(|r |)i :n, (11)

where (|r |)1:n ≤ · · · ≤ (|r |)n:n are the absolute residuals
|ri (θ)| = |yi − η(xi , θ)| sorted in ascending order, so in
the sum only h smallest absolute values are used. Choosing
the trimming constant h in the range n/2 < h ≤ n we can
decide what percentage of largest residuals will not affect the
estimator.

3.2.1 LTA error criterion

Based on the LTA estimator we can define new robust LTA
error criterion (Rusiecki 2013) as:

ELT A =
h∑

i=1

(|r |)i :n, (12)

where (|r |)1:n ≤ · · · ≤ (|r |)n:n are ordered absolute network
output residuals. As one may notice, the error function given
by Eq. (12) excludes from the training process patterns caus-
ing largest errors in a given epoch simply assuming that they
were caused by outliers in the training set. In Rusiecki (2013)
a simple approach to estimate the scaling factor h, based on
hemedian of all absolute deviations from themedian (MAD)
(Huber 1981), was presented. The MAD is defined as:

MAD (ri ) = 1.483 median|ri − median(ri )|, (13)

and the trimming parameter can be calculated as:

h = ‖{ri : |ri | < 3 × MAD(|ri |), i = 1 . . . n}‖. (14)

If the estimated amount of outliers in the training data is
known, then h can be set empirically and Eq. (14) is not
needed. However, in our tests it was calculated with Eq. (14),
to make the whole algorithm less parameter-dependent.

3.3 Iterative least median of squares

3.3.1 LMedS estimator

Similarly to the LTA estimator, the least median of squares
(LMedS) is a high-breakdown robust estimator. It was orig-
inally proposed by Rousseeuw (1984) but informally used

even earlier (Huber 1981). In the LMedS estimator squared
residuals are not summed but their median is minimized:

θ̂ = argmin
i

med ri
2. (15)

3.3.2 Iterative LMedS

The LMedS error criterion was proposed in El-Melegy et al.
(2009), where simulated annealing was employed to mini-
mize the median error. The LMedS is given as:

Emed = med ri
2. (16)

Additional training procedure making the algorithmmore
effective in minimizing the error criterion given by Eq. (16)
was described in El-Melegy et al. (2009), Rusiecki (2012). In
thismethod, after an initial training phase, the robust standard
deviation (RSD) (Rousseeuw and Leroy 1987) is calculated
as:

σr = 1.4826 ×
(
1 + 5

(n − p)

) √
E∗
med , (17)

where E∗
med is the best achieved LMedS error (n and p are

the size of the training set and the dimension of the input).
Based on the RSD, all the training patterns associated with
residuals exceeding a threshold:

r2i ≥ 2.5 × σ 2
r (18)

are then removed from the training set, and the whole proce-
dure is repeated iteratively several times. For the detailed
explanation of the chosen threshold and methodology a
reader is referred to El-Melegy et al. (2009); Rousseeuw and
Leroy (1987); Rusiecki (2012).

3.4 Trapezoid error function

The idea of trapezoid error function (TEF) is to smoothly
reduce the outliers influence on the network training. Thus,
if the distance d between the actual and the desired net-
work output is small, the TEF grows with d. When d further
grows, TEF levels out for a while, and finally TEF begins
decreasing with further growth of d, as very high d is suppos-
edly connected with an outlier. Not only trapezoid function
satisfies these criteria and also other “bump” functions of
similar properties (first increasing and then decreasing with
the growth ofd) could be used.However, the functionmust be
introduced gradually, because at the beginning of the training
the network weights are random and high d value does not
necessarily point to an outlier. The trapezoid error function
is presented in Fig. 1 and in the pseudo-code:
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Fig. 1 Trapezoid error function for epoch e = 3, e = 5 and e > 6

Algorithm 1 Training with trapezoid error function
for epoch = 1 . . .maxEpoch do
Error ← 0
t1 ← 7.5
for vector = 1 . . . numVectors do
t1 ← t1/1.2
if t1 < 3.0 then
t1 ← 3.0

end if
t2 ← 1.5 · t1
Calculate network output Yactual
d ← |Ydesired − Yactual |
if d < t1 and d ≤ t2 then
d ← t1

end if
if d > t2 then
d ← t1 − (d − t2)

end if
if d > 0 then
Error ← Error + d

end if
end for
Modify network weights according to the training algorithm

end for

The problem that appears when applying LTA, LMedS
or bump error functions is that they are not continuous and
non-differentiable, so some approximations of their deriv-
atives in gradient-based learning are required. We decided
to use an alternative approach, training the networks with
our own non-gradient method called Variable Step Search
(VSS) Algorithm (Kordos and Duch 2008). The VSS algo-
rithmestimates the optimalmodifications of singleweights at
each iteration, based on their changes in previous iterations,
and then adjusts the changes. The signals (unlike in gradient-
based methods) are propagated each time only through the
recently changed fragments of the network, because change
of a single weight does not change signal propagations in the
entire network. This makes the training process fast. To limit
the number of compared variables we use VSSwith the same
default parameters for all the tests.

4 Outlier reduction

So far we discussed how to reduce the noise influence on net-
work learning by modifying the network properties. Another

possibility is to modify the data by detecting the instances
which differ much from their neighbors and either remove
them from the training sets or mark them as outliers to be
processed by the network training differently. In the first
case we developed a generalized version of the ENN algo-
rithm (Blachnik and Kordos 2014) for instance selection and
in the second case we developed the Modified k-NN Global
Anomaly Score (k-NN GAS) (Kordos and Rusiecki 2013)
for outlier reduction.

5 Instance selection

Instance selection algorithms in general fall into two cate-
gories: compression methods and noise filters. The purpose
of compression (condensation) methods is to remove an
instance if it is too similar to its neighbors. That allows
for reducing the data size and frequently also for improv-
ing generalization. An example of compression methods is
the CNN (Condensed Nearest Neighbor) algorithm (Wilson
1972). Although we could have used the compression meth-
ods,we do not use them in thiswork for the sake of simplicity.
The aim of noise filters is to remove an instance if it differs
too much from its neighbors. This is the opposite of com-
pression methods. An example of noise filters is the ENN
(Edited Nearest Neighbor) algorithm (Wilson 1972).

If an instance is too different it can be considered as
some error in the data and thus it gets removed. We can also
use methods from both groups on the same data. However,
the order of applying them is crucial. First the noise filters
must be applied and then the compression methods. In the
case of classification the instances that are really needed to
determine the decision boundaries between classes are those
situated close to the decision boundaries. As in classification
the definition of “similarity to k nearest neighbors” can be
in practice reduced to “being of the same class as k near-
est neighbors”, almost all the instances situated far from the
decision boundaries will have the same class as their neigh-
bors and thus will be removed by the condensation methods.
The only instances that will remain will be those close to
the boundaries and the outliers. However, the distribution of
the classes of the k nearest neighbors of the outliers will be
the same as before the selection. But the distribution of the
classes of the k nearest neighbors of the boundary instances
will be quite different, because a lot of the same class neigh-
bors have already been removed. If we apply a noise filter
at this moment, the filter can remove as well the outliers as
the boundary instances, which would lead to a very strange
situation. If the noise filter is applied before the condensa-
tion method it will perform as expected removing only the
outliers.

A large surveys of instance selection algorithms for
classification tasks appeared in Salvador et al. (2012)
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and Jankowski. On the other hand, there only very few
approaches to instance selection for regression tasks can be
found in the literature and in the the publications we were
able to find the experiments were conducted only on artificial
datasets, which were generated especially for the purpose of
the experiments. Tolvi (2004) presented a genetic algorithm
to perform feature and instance selection for linear regression
models. In their works Guillen (2009) discussed the con-
cept of mutual information used for selection of prototypes
in regression problems. Zhang 1997 presented a method to
select the input vectors while calculating the output with k-
NN.

In regression the problem is more complex. First of all
the concept of “the same class” is not defined and conse-
quently it cannot be used as a similarity measure. Therefore
we introduced some arbitrary threshold θ . If the output value
of on instance differs no more than θ from the average values
of its k nearest neighbors outputs, we assume that the sim-
ilarity condition is satisfied. However, as our experiments
showed the θ parameter should not be constant in the entire
data space. In the area of high data density θ should be
smaller, because even a relatively low difference indicate
an incorrect value. While in the sparse areas the threshold
θ should be set to a higher values. For that reason, for each
instance we use θ proportional to the standard deviation of
its k nearest neighbors. As the experiments showed, θ pro-
portional to the standard deviation of k nearest neighbors
of the instance rather than of the whole dataset allows for
obtaining higher compression while maintaining the same
prediction accuracy. In general the threshold should be deter-
mined experimentally, but our experiments showed that in
the GenENN algorithm (Kordos et al. 2013), the rejection
threshold θ can be set to 2–8 standard deviations of the data
for a broad range of regression problems. The higher value
can be used for a better quality data and the lower for highly
contaminated data. The reason for this is that in more conta-
minated data there are more outliers that should be removed
and there is a higher probability that the some of the neigh-
bors of the considered instance are also outliers. While in
a better quality data even the points that are far from their
neighbors do not necessary require rejection, as they may not
contain any wrong values. The best results can be obtained
if θ is experimentally determined for each dataset. However,
in the experiments we used a simplified rule of thumb, as
described in the experimental section, which on one hand
produces not so accurate results, but on the other hand the
topic of instance selection algorithm optimization is out of
scope of this paper.

The instance selection algorithm we used is Generalized
Edited Nearest Neighbor (GenENN) (Kordos et al. 2013),
whichwe developed from the ENN algorithm (Wilson 1972).
In the implementation used in our tests, GenENN rejects the
instances if their output differs more than θ from a value pre-

dicted by the weighted k-NN with k = 9, where the weight
wi exponentially decreases with the distance di between the
given instance and its i-th neighbor xi . The predicted output
y is expressed as:

y =
∑k

i=1 wi yi∑k
i=1 wi

(19)

where wi = 2−0.2di . As the regression model to predict the
output Y (xi ) we use k-NN with k = 9 and the Model(T,xi )
can be any learner, as neural network, decision tree, etc.How-
ever, in the experiments in this work we also use k-NN with
k = 9 as the model. The number of nearest neighbors k was
evaluated experimentally and k = 9 appears to be a good
choice for a broad range of problems (Kordos and Rusiecki
2013).

Algorithm 2 GenENN algorithm
Require: T
m ← si zeof (T);
for i = 1 . . .m do
Ȳ (xi ) =Model((T \ xi ), xi );
S ← k-NN(T, xi )
θ = α · std (Y (XS))

if
∣∣Y (xi ) − Ȳ (xi )

∣∣ > θ then
T ← T \ xi

end if
end for
P ← T
return P

In Blachnik and Kordos (2014) we evaluated the pos-
sible gains of bagging of six different instance selection
algorithms. Figure 2 presents the results obtained by aver-
aging the results of ENN for classification and GenENN
for regression problems on several different datasets. The

Fig. 2 Compression-accuracy gain plots of ENN and GenENN bag-
ging ensembles
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bagging ensemble selected a final training set, on which
a single k-NN was used to predict the output. The results
show how much the bagging improved the results in terms
of prediction accuracy of the k-NN learner in tenfold cross-
validation compared to a single instance selection algorithm
(point 0,0). Positive values on both axes are desired, because
they indicate gain in better data compression and in higher
prediction accuracy. The parameters of the bagging is the
acceptance threshold, that is a number between0 and1,which
indicates what percentage of the instance selection algo-
rithms within the bagging ensemble must select an instance
to finally decide that the instance is selected. We present
the example to show that the results presented in the tables
in the experimental section can still be improved on aver-
age by up to 5 % in case of regression and due to smaller
dataset size the network training can be about twice faster
in classification. However, in the current work we do not
use the bagging instance selection ensembles in the tests,
because it would introduce another parameter to optimize
and the number of experiments to be performed would
grow from the 1440 that we conducted to several thou-
sands.

5.1 Anomaly detection

The problem with instance selection algorithms is that the
decision made by them about each instance must be crisp:
either preserve or reject. In practice it is frequently difficult
to set a good rejection threshold θ and therefore it can be
desired to replace the crisp decision with a fuzzy one. That
is we do not reject any instances, but evaluate the probabil-
ity of each instance being an outlier and then we assign a
weight denoted as cout,n to each instance. The instances with
higher weights are more likely to be outliers and thus their
influence on the MLP training should be limited. We obtain
this by calculating the root mean square error RMSE that we
minimize in the network training with the following formula:

RMSE =

√√√√√√
N∑

n=0

((yr,n − yp,n)
2/cout,n)

N
(20)

where N is the number of instances, yr,n is the real value of
the n-th instance output, yp,n is the predicted value of the
n-th instance output and cout,n is the outlier coefficient of the
n-th instance.

There are a lot of anomaly detection methods and a sur-
vey of them can be found in Ben-Gal (2005). We decided
to adjust the k-NN Global Anomaly Score algorithm (k-NN
GAS) to labeled data. The original k-NN GAS calculates
the anomaly score using the k-NN algorithm. The out-
lier score of an n-th instance dx,n is the average distance
between the instance and its k nearest neighbors. In case

of labeled data we need both distances: in the input space
dx,n and in the output space dy,n , in a similar way as we
needed to determine θ in GenENN. And the purpose is also
the same: to make more outstanding instances less influ-
ence the network training and we also need to adjust the
coefficient to local data density for the same reason we
needed to adjust θ . We use Euclidean distance measure
to calculate the distances dy,n and dx,n and as the num-
ber of neighbors we again use k = 9. Thus the modified
global anomaly score of the n-th instance is defined as:

cout,n = dy,n/dx,n (21)

6 Experimental evaluation

Before the experiments, all the datasets were standardized so
that the mean value of each numerical variable is 0 and the
standard deviation is one. That enabled easy adding of the
desired noise values, made direct comparison of the results
more straightforward and enabled the neural network towork
in themiddle area of the hyperbolic tangent transfer function.
All the datasets in the version we used for the tests and the
source code of our program can be downloaded at Software
and datasets (2014).

6.1 Regression datasets

6.1.1 Yacht hydrodynamics

The dataset contains 308 experiments,whichwere performed
at the Delft Ship Hydromechanics Laboratory. There are 6
input variables describing the ships: position of the center of
buoyancy, prismatic coefficient, length-displacement ratio,
beam-draught ratio, length-beam ratio and Froude number
(Merz andMurphy 2015). The purpose is to predict the resid-
uary resistance per unit weight of displacement.

6.1.2 Building

One real-world training task was taken from the PROBEN
1 benchmark collection (Prechelt 1994). The task was to
predict building energy consumption based on 14 input vari-
ables, such as the date, time, and weather conditions. There
are 1052 instances in the dataset.

6.1.3 Concrete compression strength

There are 1030 instances with 7 input attributes in the dataset
reflecting the amount of particular substances in the concrete
mixture, such as cement, slag, water, etc. (Merz and Mur-
phy 2015). The task is to predict the concrete compressive
strength. There are 1030 instances in the database.
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6.1.4 Crime and communities

There are 318 instanceswith originally 120 input attributes in
the data set, describing various social, economic and criminal
factors (Merz andMurphy 2015). However, after preliminary
feature selection we used only 7 attributes to predict is per
capita violent crime.

6.1.5 Steel

The dataset contains 960 instances with 12 input attributes.
The task is to predict the amount of carbon that must be
added in the steel-making process, given various chemical
and physical properties of the liquid steel in the furnace. The
data comes from one of the steelworks we were working for
in the past (Software and datasets 2014).

6.2 Classification datasets

6.2.1 Image segmentation

The original dataset atMerz andMurphy (2015)were divided
into 210 training and 2100 test examples.Wemerged the two
sets and randomly chosen 1000 instances. The instanceswere
drawn from a database of 7 outdoor images segmented to
create a classification for every pixel. Each instance is a 3 ×
3 pixel region. There are 19 continuous attributes depicting
various aspects of color and geometry of that region. The
purpose is to predict the object in the region. There are 7
classes, as: brickface, sky, foliage, cement, window, path,
grass.

6.2.2 Banknote authentication

The data were extracted from photos of genuine and forged
banknote-like specimens. The final images have 400x 400
pixels. Then a wavelet transform was performed to extract
four features from images: variance, skewness, curtosis, and
entropy of image. The two classes are: genuine and forged.
There are 1372 instances (Merz and Murphy 2015).

6.2.3 Climate simulation model crashes

There are 540 instances and 18 attributes, which describe 18
climatemodel input parameters. The purpose is to predict cli-
mate model simulation crashes. There are two classes: crash
and no-crash (Merz and Murphy 2015).

6.2.4 Seeds

The 210 instances depict measurements of 7 geometrical
properties of kernels belonging to three different kinds of

wheat. The purpose is to predict the wheat kind (Merz and
Murphy 2015).

6.2.5 Iris

IrisMerz andMurphy (2015)with 150 attributes and3 classes
is one of the simplest and best known datasets andwe decided
to use it to have a good reference point.

6.3 Testing methodology

We performed the experiments in software created by us in
C# language. The source code can be downloaded from Soft-
ware and datasets (2014). The testing process consists of the
following blocks:

1. Obtaining from the original dataset the 10 training and
10 test subsets used in each crossvalidation iteration.

2. On each training subset two operations are performed (if
needed): instance selection with generalized ENN algo-
rithm and outlier detection with modified k-NN Global
Anomaly Score method.

3. The MLP neural network is trained on the test subsets
using the VSS algorithm with one a an appropriate error
function (MSE, ILMedS, LTA, TEF) and a possible error
weighting if k-NN Global Anomaly Score was used in
the preceding step or discarding some of the instances if
the generalized ENN was used in the preceding step.

4. The network error on the corresponding test subset is
evaluated always using RMSE for regression tasks and
classification accuracy for classification tasks, even if a
different error measure was used in the training. That
allows us to directly compare the results obtained with
different methods.

5. The mean RMSE (for regression) or classification accu-
racy (for classification) and the standard deviation are
calculated over the 10 test sets within the crossvalidation
and these values are reported in the tables.

We used a standard MLP network architecture with one
hidden layer and 5 neurons in the hidden layer for all datasets,
except image segmentation and climate simulation model
crashes, where we used 9 neurons in the hidden layer. We
trained all the networks for 12 epochs with the VSS algo-
rithm. Since the purpose of the experiments was not to select
the optimal network architecture and the optimal stopping
criteria, but to evaluate the noise-robust methods, we did
not perform any optimization of the network structure and
number of training epochs. That would obviously improve
the results; however we were rather more interested in the
performance ratio between particular methods than in the
absolute values of the network performance. We used hyper-
bolic tangent transfer function in the hidden and output layer
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for classification and hyperbolic tangent transfer function in
the hidden and linear transfer function in the output layer for
regression. The number of output neurons for classification
was equal to the number of classes.

Also in case of classification, a term preventing too high
weight growth was added to the error function: the classifi-
cation was considered correct if the signal generated by the
output neuron associated with the class of the current vector
(and when it was≥ 0.997, the error for that neuron was set to
zero) was higher than the signals of all other output neurons
(and when any of that signals was ≤ −0.997, the error for
that neuron was set to zero).

In our software it is possible to train the networks with
any number of hidden layers and also with additional direct
connections between input and output layer, but trying to
optimize the network architectures would first require thou-
sands of tests, and second it would make more difficult
comparison of the learning methods.

We performed experiments with the original datasets and
with 15 levels of added noise. For inputs and outputs in
regression and for inputs in classification the noise levels
were:

0. a = 0, f = 0;
1. a = 0.5, f = 0.20;
2. a = 0.85, f = 0.25;
3. a = 1.5, f = 0.30;
4. a = 2.5, f = 0.35;
5. a = 4.0, f = 0.40;

where a (amplitude) is the standard deviation of theGaussian
distribution from which the random noise was added and f
(frequency) is the probability of the noise being added to the
data (uniform distribution). For outputs in classification the
following values of f were used:

0. f = 0;
1. f = 0.12;
2. f = 0.24;
3. f = 0.36;
4. f = 0.48;
5. f = 0.60;

where f is the probability of the noise being added to the data
(uniform distribution); with probability f the class of a given
instance was substituted with a class of a random instance
(thus in some cases the class could remain unchanged).

In the header lines of the tables the two digits x/y mean:
input noise level/output noise level. Thus 0/0 means no noise
added, and e.g. 2/0 means: input level noise= 2, output level
noise= 0, 0/2means: input level noise= 0, output level noise

= 2, 2/2 means: input level noise = 2, output level noise =
2.

6.4 Results

Analyzing results obtained for the regression problems, we
can see some general tendencies, which are best visible in
Fig. 3. For low levels of noise, networks trained with the
MSE objective function perform quite well, much better than
trainedwith LTA.As the noise level increases, LTA is gaining
advantage over MSE. Also ENN and k-NN GAS methods
added toMSEdisplay their advantages. However, none of the
methods is as universal to be superior in each condition,when
their performance for different levels of noise is compared.
Although for the data without artificial contamination we
could expect traditional MSE method to perform relatively
well, for some datasets, there exist methods that outperform
MSE even for the clean data. This may be due to the fact
that the methods were tested on real data that could already
contain some noise (Fig. 4).

As it might be expected, combining input and output
noise in the training data, had the largest impact on network
learning. Robust learning algorithms (LTA and ILMedS),
dedicated to regression tasks, often presented good per-
formance, especially for higher levels of contamination.
Unfortunately, results for these methods observed in our
previous research, reported in Rusiecki (2012, 2013), for
experiments performed on different datasets with different
methodology, were much better. Looking at the Fig. 3 for
exemplary dataset, one may notice an interesting phenom-
enon. The ENN and GAS methods, combined with different
learning algorithms, usually keep their general direction: if an
algorithm is stable with increasing noise, the hybrid version
of the method is also stable, whereas when the error grows
rapidly for the basic algorithm, when the noise increases, it
grows also for the modified method.

The ILMedS method was designed especially for regres-
sion tasks and therefore it is expected that its performance
for classification problems can be poor.

When we analyze the tests performed for classification
tasks, it is not hard to notice that increasing noise level in the
input, as well as in the output data, makes the classification
accuracy deteriorate. What may be surprising is that LTA
method, though designed for regression tasks, performs well
formany tested datasets. Interesting results were obtained for
Banknote Authentication dataset: the accuracy for this task
was almost perfect for many input and output noise levels.
This may suggest that the classes for this dataset are eas-
ily separable. In many cases (e.g. for Seeds dataset) LTA,
ILMedS and the hybrid solutions are definitely better than
traditional approach, especially for the joined input/output
noise.
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Fig. 3 Experimental results (RMSE) for Steel dataset. Note that for some other datasets TEF gives much better results

Fig. 4 Experimental results (classification accuracy) for climate simulation model crashes dataset

7 Conclusions

In this paper we discussed the problem of training MLP
networks on noisy data. Several state-of-the-art methods
were described and implemented in our testing environment.
These include methods created by us, as TEF, GenENN
and modified GAS. One group of methods, which works
at the network output, was based on robust learning algo-
rithms, while another one, which works at the network
input, uses instance selection and outlier detection meth-
ods. Hybrid approaches, combining one input with one
output method were also proposed and examined. We per-
formed many simulations and experiments to determine the
quality of neural networks trained with the tested algo-
rithms for different levels of noise and outliers added to the
training sets. In the training data we considered corrupted
outputs, inputs, and noise in both of them. Only real-life
training data were used in order to allow reliable exami-
nation of the methods (Tables 1, 2, 3, 4, 5, 6 , 7, 8, 9,
10).

The general conclusions from the work are that the net-
work training method should be adjusted to the amount of
noise in the data. In regression tasks, MSE can be used for
low noise level, LTA and TEF for high. Because prior to the
network training, the noise level may be unknown, it is worth
trying first both methods: MSE and LTA and then trying to
add GenENN or k-NN GAS to the better performing one.
When the results for both types of problems, regression and
classification, are considered, combination of ENN and LTA
algorithm presents the best performance, which can probably
be further improved if we use the bagging ensemble of ENN
algorithms. However, in most regression datasets, the TEF
methods performed especially good, in some cases allowing
to obtain RMSE on the test set up to 40 % lower than any
other method. For that reason, in our future work, we want
to examine the use of various “bump” functions as robust
learning methods and application of the robust methods to
deep learning neural architectures. The regular MSE algo-
rithm, even for not contaminated data, in most classification
tasks was outperformed by robust methods.
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Table 1 RMSE in tenfold crossvalisation for Yacht Hydrodynamics
dataset. In each table the upper row contains mean values and the lower
row standard deviations. Note that the standard deviation always comes

from two sources: method dependant (random initial weights in the
neural network) and data dependant (differences in particular sets of
training-test datasets)

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.206 0.240 0.263 0.46 0.52 0.60 0.268 0.29 0.276 0.52 0.88 0.228 0.36 0.49 0.80 1.14

0.057 0.069 0.083 0.08 0.14 0.11 0.115 0.19 0.076 0.13 0.15 0.050 0.14 0.13 0.07 0.19

ENN-MSE 0.224 0.276 0.35 0.53 0.56 0.62 0.246 0.199 0.32 0.67 0.98 0.282 0.36 0.53 0.76 1.10

0.062 0.091 0.11 0.20 0.15 0.12 0.092 0.042 0.05 0.25 0.12 0.085 0.08 0.12 0.16 0.10

GAS-MSE 0.49 0.48 0.57 0.66 0.77 0.84 0.41 0.35 0.33 0.36 0.47 0.41 0.50 0.62 0.82 0.91

0.18 0.17 0.18 0.14 0.15 0.16 0.18 0.19 0.07 0.16 0.13 0.12 0.14 0.24 0.13 0.15

ILMedS 0.217 0.36 0.51 0.52 0.59 0.59 0.180 0.288 0.50 0.88 1.50 0.30 0.43 0.84 1.12 1.46

0.044 0.08 0.17 0.11 0.13 0.12 0.015 0.089 0.17 0.19 0.74 0.16 0.08 0.24 0.18 0.27

ENN-ILMedS 0.164 0.37 0.48 0.57 0.61 0.66 0.214 0.29 0.59 0.97 1.59 0.36 0.38 0.76 1.27 1.31

0.050 0.18 0.20 0.17 0.08 0.11 0.062 0.13 0.25 0.35 0.32 0.12 0.06 0.11 0.43 0.33

GAS-ILMedS 0.47 0.45 0.50 0.69 0.74 0.88 0.46 0.39 0.44 0.45 0.98 0.42 0.51 0.80 0.93 1.37

0.17 0.15 0.16 0.17 0.17 0.19 0.19 0.14 0.10 0.14 0.26 0.13 0.14 0.20 0.12 0.30

LTA 0.38 0.45 0.39 0.46 0.45 0.58 0.35 0.43 0.39 0.47 0.53 0.37 0.43 0.52 0.63 0.69

0.08 0.06 0.06 0.09 0.10 0.10 0.04 0.08 0.07 0.06 0.09 0.08 0.10 0.13 0.12 0.10

ENN-LTA 0.37 0.38 0.39 0.42 0.50 0.51 0.38 0.34 0.39 0.39 0.46 0.39 0.40 0.48 0.59 0.67

0.10 0.08 0.07 0.09 0.11 0.11 0.08 0.05 0.09 0.07 0.09 0.08 0.08 0.13 0.08 0.09

GAS-LTA 0.52 0.51 0.49 0.58 0.66 0.67 0.52 0.47 0.44 0.37 0.47 0.51 0.47 0.60 0.64 0.71

0.09 0.13 0.09 0.11 0.12 0.13 0.13 0.10 0.11 0.06 0.06 0.11 0.09 0.09 0.12 0.07

TEF 0.50 0.57 0.42 0.73 0.62 0.71 0.59 0.43 0.36 0.33 0.50 0.46 0.44 0.60 0.68 0.72

0.16 0.18 0.15 0.22 0.16 0.21 0.18 0.16 0.11 0.13 0.20 0.15 0.12 0.19 0.22 0.21

ENN-TEF 0.44 0.43 0.56 0.61 0.55 0.50 0.37 0.47 0.49 0.43 0.57 0.50 0.45 0.44 0.52 0.64

0.14 0.12 0.20 0.20 0.18 0.14 0.14 0.12 0.18 0.11 0.18 0.14 0.18 0.15 0.17 0.21

GAS-TEF 0.85 0.88 0.86 0.82 0.91 0.99 0.84 0.64 0.50 0.48 0.55 0.80 0.70 0.72 0.81 0.73

0.14 0.23 0.23 0.20 0.25 0.20 0.18 0.24 0.17 0.14 0.20 0.26 0.20 0.21 0.25 0.21

Table 2 RMSE in tenfold crossvalidation for Building dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.251 0.258 0.298 0.34 0.40 0.45 0.255 0.275 0.33 0.49 0.64 0.271 0.303 0.40 0.53 0.76

0.017 0.013 0.025 0.03 0.03 0.02 0.013 0.023 0.02 0.03 0.10 0.014 0.014 0.03 0.06 0.05

ENN-MSE 0.252 0.258 0.283 0.309 0.40 0.42 0.253 0.278 0.32 0.47 0.72 0.285 0.32 0.41 0.53 0.67

0.020 0.016 0.020 0.032 0.03 0.05 0.016 0.010 0.02 0.02 0.05 0.011 0.02 0.03 0.04 0.08

GAS-MSE 0.259 0.291 0.33 0.39 0.43 0.53 0.269 0.259 0.268 0.34 0.43 0.282 0.34 0.41 0.52 0.69

0.020 0.015 0.02 0.04 0.04 0.07 0.032 0.019 0.008 0.04 0.02 0.025 0.02 0.03 0.05 0.07

ILMedS 0.234 0.298 0.39 0.39 0.45 0.51 0.33 0.42 0.60 0.93 1.17 0.39 0.44 0.70 1.12 1.15

0.014 0.067 0.11 0.08 0.05 0.10 0.11 0.15 0.08 0.14 0.19 0.13 0.14 0.14 0.17 0.10

ENN-ILMedS 0.243 0.35 0.35 0.45 0.50 0.51 0.261 0.37 0.65 0.90 1.07 0.32 0.48 0.66 1.07 1.40

0.016 0.11 0.07 0.06 0.06 0.08 0.008 0.08 0.10 0.15 0.18 0.13 0.12 0.09 0.08 0.41

GAS-ILMedS 0.259 0.39 0.42 0.48 0.53 0.58 0.261 0.246 0.48 0.65 0.79 0.32 0.50 0.61 0.81 0.97

0.013 0.20 0.16 0.10 0.08 0.08 0.007 0.014 0.17 0.09 0.12 0.06 0.13 0.05 0.17 0.09

LTA 0.45 0.44 0.43 0.46 0.49 0.52 0.44 0.42 0.45 0.45 0.50 0.44 0.45 0.48 0.54 0.60

0.03 0.02 0.02 0.01 0.02 0.03 0.01 0.02 0.02 0.02 0.04 0.03 0.01 0.03 0.03 0.03

ENN-LTA 0.43 0.44 0.44 0.45 0.47 0.50 0.42 0.43 0.43 0.46 0.52 0.43 0.46 0.50 0.57 0.65

0.01 0.02 0.02 0.03 0.01 0.04 0.01 0.01 0.01 0.02 0.05 0.02 0.01 0.01 0.03 0.04

123



60 M. Kordos, A. Rusiecki

Table 2 continued

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

GAS-LTA 0.45 0.45 0.48 0.49 0.53 0.59 0.45 0.44 0.44 0.44 0.47 0.45 0.45 0.50 0.58 0.66

0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.04 0.04

TEF 0.266 0.253 0.278 0.272 0.313 0.37 0.258 0.269 0.301 0.277 0.287 0.248 0.266 0.296 0.40 0.48

0.029 0.018 0.030 0.015 0.031 0.06 0.020 0.021 0.024 0.022 0.016 0.015 0.015 0.025 0.05 0.06

ENN-TEF 0.265 0.251 0.254 0.304 0.282 0.37 0.267 0.266 0.263 0.287 0.308 0.257 0.275 0.32 0.36 0.44

0.019 0.017 0.016 0.043 0.016 0.04 0.021 0.017 0.017 0.029 0.034 0.011 0.013 0.02 0.04 0.06

GAS-TEF 0.32 0.292 0.311 0.36 0.40 0.44 0.268 0.285 0.281 0.257 0.284 0.277 0.33 0.33 0.36 0.45

0.06 0.038 0.020 0.04 0.06 0.03 0.013 0.040 0.028 0.012 0.034 0.018 0.05 0.04 0.03 0.07

Table 3 RMSE in tenfold crossvalidation for Concrete dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.88 0.88 0.90 0.92 0.90 0.93 0.89 0.89 0.91 0.96 1.03 0.89 0.89 0.92 0.94 1.03

0.15 0.15 0.14 0.16 0.15 0.17 0.14 0.14 0.15 0.15 0.13 0.14 0.15 0.15 0.19 0.15

ENN-MSE 0.88 0.88 0.90 0.89 0.91 0.91 0.89 0.89 0.90 0.92 1.07 0.89 0.87 0.91 0.96 1.03

0.14 0.15 0.15 0.15 0.15 0.17 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.13 0.13

GAS-MSE 0.99 0.96 0.95 0.95 0.97 1.01 0.99 0.97 0.94 0.93 0.99 0.94 0.96 0.96 1.02 1.03

0.20 0.19 0.18 0.21 0.20 0.20 0.20 0.20 0.19 0.15 0.17 0.19 0.20 0.19 0.18 0.14

ILMedS 0.95 0.93 0.96 0.95 0.96 0.96 0.97 0.97 1.04 1.19 1.34 0.96 0.99 1.03 1.11 1.15

0.14 0.16 0.14 0.18 0.15 0.19 0.17 0.15 0.21 0.20 0.19 0.15 0.15 0.17 0.18 0.19

ENN-ILMedS 0.93 0.93 0.95 0.96 0.97 0.97 0.95 0.98 1.03 1.10 1.30 0.94 0.97 1.02 1.09 1.12

0.15 0.16 0.16 0.14 0.17 0.17 0.15 0.19 0.15 0.16 0.18 0.19 0.16 0.13 0.16 0.19

GAS-ILMedS 0.99 0.97 0.96 0.97 1.03 1.01 0.98 0.98 1.00 1.02 1.08 0.99 1.02 1.02 1.05 1.10

0.20 0.20 0.20 0.20 0.22 0.20 0.19 0.19 0.19 0.19 0.16 0.19 0.20 0.15 0.19 0.17

LTA 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.72 0.74 0.71 0.71 0.71 0.72 0.73

0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.06 0.05 0.06

ENN-LTA 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.72 0.71 0.72 0.73 0.71 0.71 0.71 0.72 0.73

0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05

GAS-LTA 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.71 0.72 0.71 0.72 0.74

0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.06

TEF 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.03 1.03 1.05 1.03 1.03 1.04 1.03 1.05

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.15 0.17

ENN-TEF 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.03 1.03 1.02 1.03 1.04 1.03 1.04

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.17

GAS-TEF 1.05 1.04 1.03 1.04 1.04 1.04 1.03 1.04 1.03 1.02 1.02 1.03 1.03 1.04 1.04 1.05

0.18 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.17 0.17 0.16 0.16 0.16 0.15 0.17 0.16

Table 4 RMSE in tenfold crossvalidation for Crime dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.58 0.60 0.61 0.60 0.62 0.61 0.59 0.59 0.64 0.75 1.20 0.60 0.61 0.65 0.70 1.05

0.08 0.08 0.07 0.06 0.09 0.06 0.10 0.08 0.11 0.10 0.15 0.08 0.08 0.07 0.11 0.12

ENN-MSE 0.57 0.60 0.59 0.62 0.61 0.66 0.61 0.64 0.66 0.76 1.10 0.58 0.62 0.65 0.79 0.89

0.08 0.09 0.07 0.08 0.09 0.09 0.07 0.08 0.09 0.10 0.20 0.09 0.07 0.10 0.06 0.13

GAS-MSE 0.59 0.60 0.59 0.62 0.64 0.61 0.60 0.60 0.60 0.66 0.71 0.60 0.61 0.61 0.70 0.84

0.09 0.10 0.09 0.09 0.10 0.07 0.09 0.09 0.09 0.11 0.17 0.09 0.10 0.07 0.05 0.07
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Table 4 continued

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

ILMedS 0.59 0.60 0.60 0.62 0.64 0.63 0.59 0.74 0.92 1.25 1.48 0.61 0.65 0.98 1.03 1.34

0.09 0.09 0.08 0.07 0.09 0.10 0.07 0.10 0.17 0.23 0.32 0.08 0.11 0.14 0.21 0.29

ENN-ILMedS 0.58 0.59 0.58 0.62 0.66 0.66 0.59 0.66 0.82 1.23 1.56 0.62 0.69 0.84 0.98 1.11

0.09 0.08 0.09 0.09 0.07 0.08 0.10 0.09 0.13 0.29 0.41 0.09 0.10 0.11 0.28 0.29

GAS-ILMedS 0.58 0.60 0.61 0.61 0.64 0.63 0.60 0.59 0.60 0.78 1.08 0.59 0.60 0.68 0.86 1.03

0.10 0.10 0.10 0.09 0.08 0.08 0.10 0.11 0.07 0.15 0.18 0.08 0.07 0.12 0.06 0.16

LTA 0.68 0.68 0.69 0.67 0.70 0.70 0.69 0.68 0.70 0.71 0.72 0.68 0.70 0.71 0.72 0.72

0.06 0.05 0.05 0.06 0.04 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.03 0.07 0.03 0.07

ENN-LTA 0.66 0.68 0.69 0.70 0.69 0.69 0.69 0.68 0.68 0.70 0.76 0.70 0.69 0.72 0.71 0.75

0.04 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.07 0.06 0.08 0.05 0.05 0.04 0.05 0.06

GAS-LTA 0.68 0.69 0.68 0.69 0.71 0.68 0.67 0.67 0.70 0.69 0.71 0.70 0.70 0.70 0.72 0.74

0.04 0.05 0.06 0.06 0.04 0.05 0.06 0.05 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06

TEF 0.59 0.60 0.60 0.61 0.62 0.64 0.61 0.60 0.64 0.65 0.63 0.62 0.60 0.64 0.64 0.66

0.07 0.07 0.07 0.05 0.09 0.06 0.06 0.06 0.08 0.07 0.06 0.07 0.05 0.05 0.06 0.07

ENN-TEF 0.60 0.59 0.61 0.61 0.61 0.64 0.61 0.61 0.64 0.61 0.64 0.60 0.63 0.64 0.66 0.64

0.07 0.08 0.06 0.05 0.09 0.05 0.08 0.03 0.05 0.09 0.07 0.06 0.05 0.09 0.05 0.07

GAS-TEF 0.61 0.61 0.62 0.61 0.63 0.62 0.58 0.63 0.62 0.61 0.65 0.61 0.60 0.64 0.65 0.64

0.08 0.06 0.08 0.09 0.06 0.05 0.07 0.07 0.06 0.06 0.05 0.08 0.07 0.07 0.04 0.07

Table 5 RMSE in tenfold crossvalidation for Steel dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.30 0.30 0.32 0.36 0.42 0.50 0.28 0.31 0.38 0.51 0.66 0.28 0.35 0.42 0.53 0.70

0.08 0.11 0.08 0.08 0.08 0.07 0.09 0.08 0.08 0.06 0.06 0.08 0.07 0.07 0.08 0.12

ENN-MSE 0.27 0.29 0.33 0.36 0.42 0.50 0.297 0.33 0.35 0.52 0.67 0.29 0.33 0.41 0.55 0.70

0.07 0.07 0.08 0.06 0.07 0.10 0.09 0.07 0.10 0.09 0.08 0.07 0.07 0.09 0.08 0.10

GAS-MSE 0.34 0.32 0.34 0.40 0.48 0.54 0.31 0.33 0.31 0.41 0.54 0.32 0.35 0.41 0.55 0.65

0.07 0.09 0.08 0.08 0.07 0.07 0.07 0.08 0.09 0.08 0.07 0.08 0.09 0.09 0.07 0.10

ILMedS 0.41 0.35 0.38 0.47 0.47 0.55 0.44 0.52 0.65 0.84 1.14 0.42 0.48 0.65 0.84 1.07

0.08 0.08 0.09 0.10 0.07 0.08 0.08 0.07 0.12 0.22 0.27 0.10 0.07 0.14 0.16 0.17

ENN-ILMedS 0.37 0.34 0.42 0.46 0.49 0.51 0.43 0.51 0.66 0.81 1.31 0.40 0.53 0.64 0.78 1.08

0.10 0.09 0.08 0.10 0.11 0.09 0.09 0.09 0.14 0.18 0.38 0.06 0.08 0.10 0.09 0.26

GAS-ILMedS 0.33 0.34 0.36 0.41 0.50 0.57 0.293 0.37 0.46 0.61 0.88 0.31 0.38 0.57 0.70 0.89

0.09 0.09 0.10 0.10 0.10 0.07 0.082 0.13 0.08 0.13 0.25 0.08 0.10 0.07 0.14 0.15

LTA 0.42 0.42 0.43 0.45 0.49 0.52 0.40 0.46 0.47 0.49 0.48 0.44 0.44 0.48 0.52 0.55

0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.05 0.05 0.03 0.03 0.04 0.03 0.03 0.04 0.06

ENN-LTA 0.44 0.43 0.44 0.47 0.47 0.51 0.42 0.42 0.46 0.47 0.51 0.42 0.43 0.47 0.53 0.57

0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.05 0.03 0.02 0.02 0.04 0.04 0.03

GAS-LTA 0.45 0.45 0.45 0.45 0.48 0.55 0.44 0.44 0.44 0.45 0.47 0.44 0.44 0.48 0.53 0.59

0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.02 0.03 0.04 0.04 0.04

TEF 0.45 0.46 0.44 0.45 0.50 0.55 0.39 0.45 0.43 0.45 0.50 0.40 0.44 0.44 0.53 0.54

0.09 0.08 0.07 0.08 0.08 0.08 0.07 0.07 0.08 0.08 0.07 0.09 0.07 0.08 0.07 0.09

ENN-TEF 0.45 0.42 0.45 0.51 0.50 0.52 0.45 0.44 0.45 0.41 0.48 0.43 0.43 0.46 0.53 0.53

0.08 0.06 0.09 0.11 0.10 0.09 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.09 0.07 0.09

GAS-TEF 0.48 0.48 0.50 0.51 0.57 0.59 0.44 0.44 0.44 0.44 0.47 0.47 0.44 0.51 0.51 0.56

0.09 0.09 0.09 0.08 0.10 0.09 0.12 0.08 0.09 0.07 0.10 0.10 0.07 0.09 0.07 0.12
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Table 6 Classification accuracy in tenfold crossvalidation for Image Segmentation dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.93 0.91 0.92 0.90 0.85 0.81 0.93 0.91 0.90 0.86 0.83 0.92 0.90 0.87 0.73 0.52

0.01 0.02 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.03 0.03 0.06 0.08

ENN-MSE 0.93 0.92 0.91 0.89 0.86 0.81 0.92 0.91 0.91 0.89 0.83 0.92 0.89 0.84 0.77 0.54

0.02 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.03 0.02 0.04 0.01 0.02 0.02 0.05 0.14

GAS-MSE 0.92 0.91 0.90 0.89 0.84 0.80 0.90 0.90 0.89 0.87 0.82 0.91 0.86 0.81 0.71 0.56

0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.04 0.10

ILMedS 0.93 0.91 0.91 0.89 0.87 0.82 0.91 0.92 0.89 0.87 0.82 0.92 0.89 0.86 0.79 0.52

0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.01 0.01 0.02 0.03 0.07 0.13

ENN-ILMedS 0.88 0.92 0.92 0.88 0.86 0.84 0.91 0.90 0.90 0.84 0.84 0.91 0.89 0.87 0.74 0.65

0.07 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.04 0.08

GAS-ILMedS 0.91 0.90 0.89 0.88 0.86 0.83 0.91 0.89 0.88 0.84 0.82 0.91 0.89 0.88 0.71 0.62

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.04 0.10

LTA 0.90 0.90 0.89 0.89 0.80 0.71 0.90 0.87 0.85 0.77 0.54 0.90 0.88 0.75 0.49 0.30

0.01 0.02 0.02 0.02 0.05 0.07 0.02 0.04 0.10 0.04 0.11 0.02 0.03 0.07 0.13 0.10

ENN-LTA 0.90 0.89 0.89 0.87 0.79 0.70 0.90 0.89 0.81 0.73 0.62 0.90 0.89 0.73 0.54 0.33

0.02 0.02 0.02 0.03 0.04 0.07 0.00 0.05 0.06 0.09 0.08 0.01 0.02 0.05 0.09 0.11

GAS-LTA 0.90 0.88 0.86 0.83 0.79 0.72 0.90 0.89 0.83 0.74 0.64 0.91 0.88 0.77 0.68 0.59

0.02 0.02 0.02 0.03 0.04 0.06 0.01 0.03 0.05 0.09 0.11 0.01 0.02 0.04 0.06 0.12

Table 7 Classification accuracy in tenfold crossvalidation for Banknote Authentication dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 1.00 1.00 0.99 0.98 0.99 0.96 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.95 0.89

0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.07

ENN-MSE 0.99 1.00 0.99 0.99 0.98 0.98 1.00 0.99 0.99 0.99 0.98 1.00 0.99 0.97 0.95 0.90

0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.02 0.06

GAS-MSE 1.00 1.00 0.99 0.99 0.98 0.96 1.00 1.00 0.99 0.99 0.98 1.00 0.99 0.98 0.94 0.80

0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.08

ILMedS 1.00 0.98 0.99 0.98 0.98 0.98 0.99 1.00 0.99 0.99 0.98 1.00 0.99 0.98 0.96 0.89

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.05

ENN-ILMedS 1.00 0.98 1.00 0.99 0.99 0.96 0.99 1.00 0.99 0.98 0.98 1.00 0.99 0.98 0.97 0.89

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.04

GAS-ILMedS 1.00 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.96 1.00 0.98 0.98 0.99 0.98 0.94 0.78

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.03 0.11

LTA 0.99 0.99 0.99 0.99 0.98 0.97 1.00 0.99 0.99 0.99 0.97 0.99 0.99 0.98 0.96 0.59

0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.16

ENN-LTA 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.98 0.97 0.44

0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.27

GAS-LTA 0.99 0.98 0.98 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.97 0.98 0.99 0.98 0.95 0.28

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22
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Table 8 Classification accuracy in tenfold crossvalidation for climate simulation model crashes dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.95 0.94 0.95 0.93 0.93 0.93 0.89 0.88 0.82 0.84 0.79 0.90 0.87 0.84 0.86 0.85

0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.03 0.04 0.05 0.03 0.01 0.03 0.04 0.04 0.04

ENN-MSE 0.94 0.94 0.94 0.93 0.93 0.92 0.91 0.87 0.80 0.83 0.76 0.90 0.88 0.85 0.85 0.87

0.02 0.04 0.01 0.01 0.02 0.01 0.03 0.03 0.04 0.04 0.03 0.03 0.02 0.02 0.04 0.03

GAS-MSE 0.95 0.95 0.94 0.94 0.91 0.91 0.93 0.88 0.87 0.85 0.79 0.91 0.90 0.88 0.89 0.89

0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.04 0.02 0.05 0.04 0.03 0.05 0.01 0.02

ILMedS 0.94 0.90 0.86 0.68 0.66 0.74 0.70 0.86 0.83 0.80 0.79 0.80 0.88 0.87 0.88 0.87

0.03 0.08 0.14 0.09 0.07 0.09 0.09 0.04 0.05 0.04 0.04 0.10 0.04 0.04 0.04 0.04

ENN-ILMedS 0.92 0.92 0.91 0.75 0.73 0.71 0.80 0.84 0.85 0.79 0.79 0.87 0.88 0.84 0.87 0.88

0.03 0.02 0.05 0.11 0.05 0.15 0.10 0.02 0.05 0.03 0.04 0.08 0.03 0.05 0.05 0.04

GAS-ILMedS 0.78 0.85 0.91 0.73 0.74 0.67 0.68 0.76 0.86 0.85 0.76 0.81 0.59 0.88 0.89 0.90

0.18 0.13 0.07 0.15 0.11 0.08 0.20 0.14 0.04 0.05 0.03 0.05 0.09 0.03 0.02 0.02

LTA 0.94 0.94 0.94 0.94 0.92 0.92 0.94 0.91 0.89 0.90 0.82 0.91 0.92 0.89 0.89 0.88

0.03 0.01 0.02 0.01 0.02 0.02 0.02 0.03 0.04 0.03 0.08 0.01 0.03 0.02 0.05 0.04

ENN-LTA 0.95 0.95 0.94 0.92 0.91 0.91 0.92 0.90 0.91 0.89 0.84 0.92 0.89 0.91 0.92 0.90

0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.02 0.05 0.03 0.02 0.02

GAS-LTA 0.95 0.94 0.95 0.91 0.92 0.91 0.93 0.91 0.90 0.90 0.86 0.93 0.91 0.89 0.90 0.89

0.02 0.02 0.03 0.03 0.02 0.02 0.01 0.03 0.02 0.05 0.03 0.02 0.03 0.01 0.04 0.01

Table 9 Classification accuracy in tenfold crossvalidation for Seeds dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.94 0.94 0.94 0.88 0.89 0.90 0.94 0.69 0.58 0.68 0.51 0.92 0.70 0.58 0.65 0.32

0.03 0.03 0.03 0.03 0.06 0.02 0.03 0.12 0.05 0.19 0.14 0.03 0.15 0.15 0.12 0.13

ENN-MSE 0.94 0.93 0.91 0.90 0.90 0.88 0.83 0.70 0.61 0.67 0.55 0.76 0.67 0.71 0.56 0.40

0.04 0.04 0.05 0.05 0.02 0.06 0.15 0.15 0.09 0.19 0.12 0.17 0.12 0.11 0.18 0.20

GAS-MSE 0.95 0.95 0.90 0.91 0.90 0.90 0.94 0.86 0.83 0.60 0.66 0.86 0.85 0.64 0.70 0.28

0.03 0.02 0.01 0.04 0.06 0.04 0.03 0.12 0.13 0.08 0.11 0.06 0.13 0.26 0.19 0.13

ILMedS 0.89 0.94 0.91 0.91 0.89 0.86 0.87 0.90 0.69 0.67 0.70 0.88 0.71 0.58 0.71 0.46

0.07 0.03 0.04 0.04 0.07 0.07 0.10 0.02 0.19 0.19 0.12 0.08 0.13 0.10 0.20 0.08

ENN-ILMedS 0.92 0.92 0.92 0.91 0.89 0.89 0.80 0.78 0.67 0.64 0.60 0.83 0.68 0.60 0.63 0.32

0.03 0.06 0.06 0.04 0.04 0.04 0.10 0.15 0.09 0.15 0.20 0.14 0.11 0.08 0.09 0.15

GAS-ILMedS 0.92 0.91 0.88 0.75 0.92 0.87 0.93 0.86 0.85 0.70 0.60 0.78 0.85 0.66 0.52 0.49

0.06 0.07 0.08 0.17 0.02 0.06 0.04 0.13 0.11 0.11 0.07 0.22 0.07 0.12 0.14 0.14

LTA 0.95 0.93 0.90 0.92 0.90 0.87 0.89 0.90 0.87 0.90 0.70 0.91 0.74 0.79 0.72 0.27

0.02 0.03 0.04 0.04 0.03 0.06 0.11 0.06 0.10 0.05 0.09 0.03 0.14 0.18 0.23 0.12

ENN-LTA 0.94 0.94 0.94 0.91 0.91 0.88 0.95 0.90 0.90 0.89 0.74 0.89 0.83 0.73 0.43 0.20

0.04 0.03 0.02 0.04 0.06 0.09 0.03 0.09 0.03 0.07 0.13 0.10 0.10 0.17 0.14 0.15

GAS-LTA 0.93 0.93 0.93 0.90 0.91 0.90 0.91 0.92 0.92 0.91 0.73 0.92 0.95 0.83 0.63 0.28

0.04 0.03 0.03 0.05 0.04 0.04 0.03 0.03 0.03 0.05 0.13 0.03 0.03 0.12 0.15 0.13
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Table 10 Classification accuracy in tenfold crossvalidation for Iris dataset

Method 0/0 0/1 0/2 0/3 0/4 0/5 1/0 2/0 3/0 4/0 5/0 1/1 2/2 3/3 4/4 5/5

MSE 0.97 0.95 0.97 0.95 0.93 0.93 0.97 0.96 0.93 0.91 0.80 0.95 0.97 0.93 0.84 0.62

0.04 0.03 0.04 0.04 0.04 0.05 0.04 0.03 0.03 0.07 0.09 0.04 0.04 0.06 0.05 0.12

ENN-MSE 0.98 0.96 0.95 0.96 0.93 0.87 0.96 0.95 0.93 0.90 0.90 0.93 0.95 0.94 0.82 0.76

0.03 0.04 0.02 0.02 0.03 0.04 0.02 0.04 0.06 0.07 0.05 0.05 0.05 0.04 0.11 0.09

GAS-MSE 0.95 0.97 0.96 0.91 0.91 0.84 0.97 0.95 0.93 0.93 0.89 0.96 0.96 0.88 0.78 0.62

0.04 0.02 0.03 0.05 0.01 0.07 0.04 0.01 0.05 0.05 0.04 0.03 0.03 0.08 0.11 0.20

ILMedS 0.95 0.95 0.91 0.95 0.96 0.90 0.95 0.91 0.94 0.94 0.82 0.94 0.93 0.90 0.83 0.75

0.05 0.07 0.05 0.03 0.03 0.06 0.02 0.06 0.06 0.04 0.09 0.05 0.04 0.06 0.05 0.13

ENN-ILMedS 0.93 0.91 0.94 0.95 0.92 0.91 0.95 0.94 0.95 0.89 0.92 0.96 0.93 0.93 0.83 0.73

0.04 0.06 0.03 0.02 0.08 0.07 0.04 0.06 0.04 0.04 0.06 0.03 0.05 0.02 0.05 0.19

GAS-ILMedS 0.97 0.96 0.91 0.91 0.87 0.88 0.94 0.92 0.95 0.91 0.91 0.92 0.91 0.93 0.78 0.68

0.04 0.03 0.06 0.03 0.06 0.06 0.10 0.05 0.03 0.05 0.04 0.04 0.06 0.07 0.08 0.16

LTA 0.97 0.96 0.94 0.92 0.91 0.91 0.94 0.95 0.94 0.77 0.76 0.96 0.95 0.91 0.74 0.45

0.03 0.05 0.03 0.03 0.08 0.05 0.03 0.03 0.02 0.18 0.12 0.03 0.04 0.04 0.17 0.25

ENN-LTA 0.96 0.95 0.95 0.95 0.93 0.92 0.96 0.97 0.97 0.75 0.51 0.97 0.93 0.95 0.75 0.36

0.03 0.04 0.04 0.04 0.05 0.03 0.03 0.04 0.03 0.11 0.16 0.04 0.05 0.04 0.14 0.14

GAS-LTA 0.94 0.95 0.95 0.91 0.90 0.92 0.97 0.93 0.94 0.89 0.82 0.94 0.94 0.93 0.83 0.35

0.02 0.03 0.03 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.08 0.06 0.03 0.03 0.05 0.24
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