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Abstract It is hard to obtain the entire solution set of
a many-objective optimization problem (MaOP) by multi-
objective evolutionary algorithms (MOEAs) because of the
difficulties brought by the large number of objectives. How-
ever, the redundancy of objectives exists in some problems
with correlated objectives (linearly or nonlinearly). Objec-
tive reduction can be used to decrease the difficulties of
some MaOPs. In this paper, we propose a novel objective
reduction approach based on nonlinear correlation informa-
tion entropy (NCIE). It uses the NCIE matrix to measure
the linear and nonlinear correlation between objectives and a
simple method to select the most conflicting objectives dur-
ing the execution of MOEAs. We embed our approach into
both Pareto-based and indicator-based MOEAs to analyze
the impact of our reduction method on the performance of
these algorithms. The results show that our approach signif-
icantly improves the performance of Pareto-based MOEAs
on both reducible and irreducible MaOPs, but does not much
help the performance of indicator-based MOEAs.
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1 Introduction

Loosely speaking, a many-objective optimization problem
(MaOP) (Khare et al. 2003; Praditwong and Yao 2007) is a
special kind of multi-objective optimization problem (MOP)
withmore than three objectives (Fleming et al. 2005; Hughes
2007). The large number of objectives in many-objective
optimization brings many challenges to multi-objective evo-
lutionary algorithms (MOEAs). Most solutions in the pop-
ulation of an MaOP are non-dominated (Ishibuchi et al.
2008), thus, the selection mechanism based on the Pareto
dominance is less effective. Pareto-based MOEAs such as
NSGA-II (Deb et al. 2002a) fail to solve MaOPs (Pur-
shouse and Fleming 2003; Hughes 2005;Wagner et al. 2007;
Khare et al. 2003). Without an effective dominance relation,
MOEAs are unable to provide promising search directions
(Deb and Jain 2014). Moreover, the growing number of
objectives increases the computational complexity of Pareto-
based MOEAs. Although the non-dominated rank sort (Deb
and Tiwari 2005), deductive sort (McClymont and Keed-
well 2012), and corner sort (Wang and Yao 2014) have been
proposed to reduce that complexity, the progress is still unsat-
isfactory.

Toovercome the difficulty ofMaOPs, the existing research
can be divided into five classes:

– Dominance relation modification The Pareto dominance
is ineffective for MaOPs. Much work aims to modify the
original dominance relation (Köppen et al. 2005; Kukko-
nen and Lampinen 2007; Sato et al. 2007; Farina and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1648-y&domain=pdf


2394 H. Wang, X. Yao

Amato 2002; Dai et al. 2015), but their performance is
still less than satisfactory.

– Decomposition-based MOEAs The main idea is to solve
MaOPs by aggregation functions with a series of weight
vectors to obtain several single-objective optimization
problems (Zhang and Li 2007; Ma et al. 2014), but it
suffers from poor performance on MaOPs with highly
correlated objectives (Ishibuchi et al. 2009) because of
the unsuitable arrangement of weight vectors (Ishibuchi
et al. 2011a, b).

– Indicator-based MOEAsWith a metric as a single objec-
tive, indicator-based MOEAs can avoid employing the
Pareto dominance (Zitzler and Künzli 2004; Bader and
Zitzler 2011;Wagner et al. 2007;Gong et al. 2014). How-
ever, Iε+ in IBEA Zitzler and Künzli (2004) and IH in
HypE Bader and Zitzler (2011) provide unsatisfactory
diversity on the Pareto front (PF) (Hadka andReed 2012).

– Incorporation with decision makers Usually, decision
makers do not need all the optimal solutions of MaOPs
(Cvetkovic and Parmee 2002). They can input their inter-
ested regions or preferences to obtain parts of the non-
dominated solution set (Sindhya et al. 2011; Ben Said
et al. 2010; Koksalan and Karahan 2010; Wang et al.
2013a; Kim et al. 2012; Karahan and Koksalan 2010;
Giagkiozis and Fleming 2014). Additionally, decision
makers have different targets for different objectives and
multi-target search was employed (Wang et al. 2013b).

– Objective reduction For someMOPs, unnecessary objec-
tives can be ignored without changing their Pareto sets
(Gal and Hanne 1999). Thus, the difficulty caused by a
large number of objectives of a MaOP can be reduced
(Fonseca and Fleming 1995; Coello Coello 2005; Deb
2001), and the existing Pareto-based MOEAs for MOPs
with low-dimensional objectives can be used.

Objective reduction aims to make the problems with
redundant objectives easier to solve by the existing MOEAs.
The basic goal of objective reduction is to select the small-
est set of objectives without changing the Pareto set of the
original problem (Gal and Hanne 1999). In Brockhoff and
Zitzler (2009), there is a related, but different explanation of
this aim through the correlation among objectives, i.e., try-
ing to obtain the smallest set of conflicting objectives. Based
on different understanding of objective reduction, the exist-
ing objective reduction techniques can be divided into three
classes:

– Dominance relation preservation-based objective reduc-
tion It is based on a measure for the changes of the
dominance structure, which obtains aminimum subset of
objectiveswith the preserved dominance relation (Brock-
hoff and Zitzler 2006). An additional term δ is adopted
to measure the difference between the dominance struc-

tures of two subsets. However, the technique can only be
applied to the linear objective reduction.

– Pareto corner search The Pareto corner search evolution-
ary algorithm (PCSEA) (Singh et al. 2011) is a newly
proposed objective reduction approach. It only searches
the corners of PFs. Then, it uses the obtained solutions
to analyze the relation among objectives. Finally, it out-
puts a subset of non-correlated objectives. PCSEA is an
off-line method.

– Machine learning-based objective reduction As the
process of objective reduction can be seen as feature
selection, this method focuses on the objectives with
negative correlation and uses an improved correlation
matrix of objectives to measure the conflict degree of two
objectives (López Jaimes et al. 2008). With the obtained
correlation matrix as distances, the method divides those
objectives into neighborhoods. Then, it adopts a q-
neighbor structure to select objectives. However, q has to
be set in advance. Other machine learning techniques for
dimension reduction, such as principal component analy-
sis (PCA) and maximum variance unfolding (MVU),
have also been applied to objective reduction (Saxena and
Deb 2007;Deb and Saxena 2005). These objective reduc-
tion methods use machine learning techniques to select
conflicting objectives according to the correlation infor-
mation (the correlation matrix and correntropy matrix,
for instance).

The aforementioned objective reduction approaches have
their disadvantages. For example, both approaches in Brock-
hoff and Zitzler (2006) and PCSEA are off-line approaches
for supporting decision makers after running MOEAs. This
paper focuses on online objective reduction approaches.
Although interpreting objective reduction through the cor-
relation (Brockhoff and Zitzler 2009) is not exactly the same
as the original definition (Gal and Hanne 1999), it covers
the majority of cases in practice and is easy to apply to
online objective reduction approaches. Therefore, we follow
this interpretation of objective reduction and use the non-
dominated population in every generation as the learning
dataset to identify the redundant objectives in this paper.

Objectives that can be reduced are either linearly or non-
linearly correlated, mostly nonlinearly correlated (Saxena
et al. 2013). However, themajority of the existing approaches
use linear statistical tools to measure both linear and nonlin-
ear correlation. In such cases, nonlinear correlation would
be weakened by the linear description, which misleads the
reduction.

In this paper, we use the samemeasurement for both linear
and nonlinear correlation; thus, the performance of online
objective reduction approaches can be improved. We find
NCIE (Wang et al. 2005) to be a very robust measure for
both linearly and nonlinearly correlated datasets, which has
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been applied to the analysis of neurophysiological signals
(Pereda et al. 2005), the quantification of the dependence
among noisy data (Khan et al. 2007), etc. Therefore,we adopt
NCIE as a correlation measure in objective reduction and
study its impact on online objective reduction approaches.

The rest of the paper is organized as follows.We first show
different cases of redundant objectives in MOPs in Sect. 2.
In Sect. 3, NCIE is introduced. In Sect. 4, our approach will
be described in detail. Section 5 reports the experimental
results, inwhich the behavior of our approach is analyzed and
discussed. Finally, Sect. 6 gives the conclusion and points out
the future work.

2 Conflicting and redundant objectives

2.1 Conflicting objectives

Simply, the conflict between two objectives means that the
improvement on one objective would deteriorate the other
objective. The conflict might be global or local (the range
of conflict) (Freitas et al. 2013), and linear or nonlinear (the
structure of correlation) (Saxena et al. 2013).

2.2 Redundant objectives

If there is no conflict between two objectives, one of them
can be viewed as a redundant objective for this MOP. Gener-
ally, the redundant objectives in an MOP are defined as the
objectives that can be ignored without changing the structure
of its original PF (Gal and Hanne 1999).

2.3 Reducible MOPs

Many-objective optimization problems (MOPs) with redun-
dant objectives are reducible MOPs, which can be applied
objective reduction techniques. If suchMOPs can be reduced
to MOPs with low-dimensional objectives, existing MOEAs
can be used.

The above definition is not strictly mathematical. How-
ever, as Brockhoff and Zitzler (2006) mentioned, the existing
literature has not clarified two main problems for objec-
tive reduction. One is the effect of objective reduction on
dominance, and the other is the evaluation of the subset of
objectives after reduction.

To model objective reduction mathematically, the redun-
dant objectives are considered as the objectives positively
correlated to some other objectives in the MOP (Brockhoff
and Zitzler 2009). Actually, this transformation is not strictly
equivalent. Table 1 shows some MOPs with a redundant
objective f3. Their parallel coordinate graphs are shown in
Fig. 1. In Cases 1 and 2, f3 is positively correlated to f1,
which can be reduced. In Case 3, f3 is constant and non-

Table 1 Examples of minimalMOPs with redundant objectives, where
x ∈ [0, 1]

Case 1 f1 = x1
f2 = 1 − x1
f3 = 2 f1
PF : f1 + f2 = 1, f3 = 2 f1

Case 2 f1 = x1
f2 = 1 − x1
f3 = sin(0.5π f1)
PF : f1 + f2 = 1, f3 = sin(0.5π f1)

Case 3 f1 = x1
f2 = 1 − x1
f3 = 1
PF : f1 + f2 = 1, f3 = 1

Case 4 f1 = x1x2(1 + x32)
f2 = x1(1 − x2)(1 + x32)

f3 =
{

(1 − x1)(1 − x2)(1 + x32), x3 �= 0
0, x3 = 0

PF : f1 + f2 = 1, f3 = 0

correlated to any objective. In Case 4, f3 is in conflict with
f1 and f2 in most parts (locally), but it does not contribute to
the PF structure, because f3 is constant and non-correlated
to any objective on the PF. However, Cases 3 and 4 cannot be
covered by the above definition. Case 3 is special in the real
world, and Case 4 is hard to be detected during the search.
Therefore, we only focus on Cases 1 and 2 in this paper.

In Cases 1 and 2, the linear and nonlinear correlation are
both important in objective reduction. However, the majority
of the existing approaches employ linear tools to describe all
the scenarios (Deb and Saxena 2005), which results in poor
performance for nonlinear correlation. Comparing Cases 1
and 2, f3 is a redundant objective for f1. In Case 1, f3 is lin-
early correlated to f1, but nonlinearly correlated to f1 in Case
2. If we use linear tools to evaluate the correlation degree,
the obtained conflict degree in Case 2 is smaller than that
in Case 1. It is obviously less reasonable. That is the reason
why we use NCIE to capture a more general correlation for
objective reduction.

3 Nonlinear correlation information entropy

Mutual information entropy is a kind of generalized corre-
lation; it is sensitive to different kinds of relation, which is
shown in Eq. (1) (Maes et al. 1997),

I (X,Y ) = H(X) + H(Y ) − H(X,Y ), (1)

where X (with domain of L possible values) and Y (with
domain of M possible values) are two discrete random vari-
ables, H(X) is the information entropy of X , which is defined
as Eq. (2). H(X,Y ) is the joint entropy of X and Y shown
as Eq. (3). In Eq. (2), pi is the probability of X with the i th
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Fig. 1 Parallel coordinate
graphs of Cases 1–4

value. Similarly, pi j is the probability of X with the i th value
and Y with the j th value in Eq. (3).

H(X) = −
L∑

i=1

pi ln(pi ). (2)

H(X,Y ) = −
L∑

i=1

M∑
j=1

pi j ln(pi j ). (3)

The authors in Wang et al. (2005) proposed a new non-
linear correlation information entropy for multi-variable
analysis. The results show that the new entropy quantizes
the correlation in [0,1] for both linear and nonlinear cases
(Wang et al. 2005).

Nonlinear correlation information entropy (NCIE) firstly
divides variables X and Y into b rank grids. Then, the prob-
abilities can be sampled by the counts in those grids. Thus,
pi j in the i j th grid can be calculated. The joint entropy is
shown in Eq. (4),

Hr (X,Y ) = −
b∑

i=1

b∑
j=1

ni j
N

logb
(ni j
N

)
, (4)

where N is the size of the dataset,ni j is the number of samples

distributed in the i j th rank grid, and b is set to
⌈√

N
⌉
. NCIE

is shown in Eq. (5), where Hr (X) is the revised entropy of X
as Eq. (6). Thus, the only parameter b is set self-adaptively,

which makes NCIE parameter self-adaptive. NCIE can also
be calculated by a simple formula as Eq. (7).

NCIE(X,Y ) = Hr (X) + Hr (Y ) − Hr (X,Y ). (5)

Hr (X) = −
b∑

i=1

ni
N
logb

(ni
N

)
. (6)

NCIE(X,Y ) = 2 +
b2∑
i=1

ni
N
logb

(ni
N

)
. (7)

Based on the NCIE matrix RN = {NCIEi j }, (1 ≤ i ≤
K , 1 ≤ j ≤ K ), the relation among K variables can be
analyzed.

4 Objective reduction based on nonlinear
correlation information entropy

4.1 Basic idea

Our proposedmethod uses NCIE as ametric to reduce redun-
dant objectives, whose flowchart is shown in Fig. 2. The
proposed method first analyzes the correlation of objectives
using the non-dominated population as its dataset. Based on
the correlation of objectives, the method obtains a subset
of conflicting objectives for MOEAs. Then, MOEAs only
focuses on this subset of objectives, which is updated by the
objective reduction approach in every generation.
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Fig. 2 Flowchart of the
proposed objective reduction
approach embedded in an
MOEA

The correlation analysis and objective selection are two
key steps in an objective reduction approach. For correlation
analysis, a majority of the existing approaches are based on
the correlation matrix, which is only used for the linear cor-
relation measure. As NCIE can handle both the linear and
nonlinear correlation, we adopt it to measure the correlation
in our approach. For objective selection, we abandon those
common techniques in the existing approaches (such as PCA
and feature selection) and design a straightforward method
to select conflicting objectives (explained in Sect. 4.3).

The NCIE-based correlation analysis is based on the non-
dominated population in every generation; thus, the conflict
between objectives are local rather than global (López Jaimes
et al. 2014). As Sect. 3 shows, the conflicts might be
local in some cases. Thus, our proposed method could
reduce some non-globally redundant objectives but locally-
redundant objectives. During the execution of MOEAs, the
conflict degree would be updated by the value of NCIE. In
short, the basic idea of our approach is to keep the most con-
flicting objectives and omit the most positively correlated
objectives in the NCIE matrix during run time.

4.2 Correlation analysis

Although NCIE can describe both the linear and nonlinear
correlation between objectives, it cannot describe their con-
flicting relation. NCIE cannot be used directly in its original
version for our aim. In view of this, NCIE is modified by
adding the information of covariance. Covariance is valued
in [−1, 1], whose sign describes whether two variables are
in conflict. The modified NCIE is shown in Eq. (8), where
covi j is the i j th element in the correlation matrix.

RN = {Sgn(covi j )NCCi j }, (1 ≤ i, j ≤ K ). (8)

In the modified NCIE, the sign is from covariance, whose
role is to show whether two objectives are in conflict. The
modified NCIE can describe the conflict degree. If the mod-
ified NCIE of two objectives is a large positive value, the
two objectives are highly positively correlated. If the mod-
ified NCIE of two objectives is a large negative value, the
two objectives are highly conflicted. If two objectives have
a modified NCIE around zero, they are not correlated. In
this case, the sign of the modified NCIE is not very impor-
tant, because the difference between the values with different

signs is small. With the modified matrix, we can use either a
threshold or a classification method to determine the corre-
lation degree of two objectives.

4.3 Objective selection

With the modified NCIE matrix, our approach selects the
most conflicting objectives for MOEAs. Our approach is
applied in every generation of MOEAs to update the correla-
tion information among objectives. The details are shown in
Algorithm 1, where Sr is the selected objective set and St is
a temporary set. After the calculation of the modified NCIE
matrix, our approach selects the most conflicting objective,
which is the objective with the largest absolute sum of its
negative NCIEs to other objectives. Then, it omits the objec-
tives that are positively correlated to the selected objective.
Finally, our approach outputs the selected objectives. In the
process of omitting objectives, a threshold T is applied to
determine whether two objectives are positively correlated.
The effect of T is analyzed in Sect. 5.2.3.

Algorithm 1 Pseudo code of the objective selection in our
approach.

1: Input: RN -modified NCIE matrix of the current population (calcu-
lated as Sect. 4.2), m-number of objectives.

2: Output: Sr -selected objective set.
3: Parameter:T -threshold.
4: St = [1 : m], Sr = ∅.
5: While St �= ∅
6: If all the elements in RN are positive,
7: J = argmax(sum(RN (1 : m, j))). Find the most represen-

tative objective
8: Else
9: J = argmin(sum(RN (i, j))), where RN (i, j) < 0 and

1 ≤ i ≤ m. Find the most conflicting objective with remaining
objectives

10: End
11: Move f J from St to Sr .
12: F = { f j |RN (J, j) > Tmax(RN (J, j))( f j ∈ St )}. Find set F

with the objectives correlated to f J .
13: Delete set F from St .
14: End

To show the process of our objective selection method,
we take a modified NCIE matrix on DLTZ5(2,5) (Deb et al.
2002b) in Table 2 as an example (T is set as 0.3). Firstly, St
is { f1, f2, f3, f4, f5}, and Sr is ∅. Objective f5 is selected
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Table 2 Example of the modified NCIE matrix on DLTZ5(2,5)

f1 f2 f3 f4 f5

f1 1.0000 0.4959 0.4244 0.5348 −0.3552

f2 0.4959 1.0000 0.3972 0.4686 −0.3381

f3 0.4244 0.3972 1.0000 0.4765 −0.4352

f4 0.5348 0.4686 0.4765 1.0000 −0.4488

f5 −0.3552 −0.3381 −0.4352 −0.4488 1.0000∑
NCIE < 0 −0.3552 −0.3381 −0.4352 −0.4488 −1.5773

(Sr = { f5}, St = { f1, f2, f3, f4}), because it has the largest
absolute sumof its negativeNCIEs to other objectives ( f5 has
themost conflicting degreewith other objectives). There is no
objective positively correlated to f5; thus, there is not a redun-
dant objective with f5 in the remaining objectives. Then,
objective f4 is selected (Sr = { f5, f4}, St = { f1, f2, f3}),
because it has the largest absolute sum of NCIEs to other
objectives. Objectives f1, f2, f3 are omitted (St = ∅); they
are all positively correlated to f4 (not in conflict with f4)
as redundant objectives, because RN

(4,1) > T , RN
(4,2) > T ,

and RN
(4,3) > T . Finally, our approach obtains the reduced

objective set { f5, f4}, which represents the main conflict in
DLTZ5(2,5).

Our approach is different from the approach that outputs a
fixed number of objectives (Deb and Saxena 2005). It selects
different numbers of objectives according to the situation of
the current population, which is more robust for different
problems.

4.4 Classification for correlated and non-correlated
objectives

Parameter T ([0, 1]) is the threshold to determine the cor-
relation degree between objectives. It is important to use a
suitable T , because if T is too large, some redundant objec-
tives may be regarded as non-reducible, or some conflicting
objectives would not be retained. It is difficult to set T man-
ually in advance without any knowledge of the optimization
problem. Actually, the whole issue should be regarded as a
classification problem that separates the objectives correlated
to objective fi from those non-correlated to objective fi . We
avoid the manual setting of T by Algorithm 2. As the clus-
tering problem is a one-dimensional problem of a small size,
any clustering technique can fulfill the task of cutting across
the least dense area between the two clusters. In this paper,
we use K-means for clustering. In practice, there is the situ-
ation that all the objectives are non-correlated or correlated
to fi . Therefore, we add two virtual values 0 and 1 during
the clustering to handle such cases.

Algorithm 2 Pseudo code of classifying objectives.
1: Input: R-modified NCIE of the remaining objectives to objective fi

(R = RN (i, j), ( f j ∈ St ) and ( fi ∈ Sr )), m-number of objectives.
2: Output: R′ with classification for correlated and non-correlated

objectives.
3: Add values 0 and 1 (the boundary of non-correlated and correlated)

to RN as R∗.
4: Sort R∗ to R′ in an ascending order.
5: Classify R′ into two clusters (R′[1 : k] and R′[k+1 : end]). In other

words, cut across the least dense area between the two clusters.
6: R′[1 : k] without 0 is the cluster of objectives non-correlated to fi ,

R′[k + 1 : end] without 1 is the cluster of objectives correlated to
fi .

4.5 Computational complexity

For an m-objective problem with a solution set of size N (in
most cases, N is larger than m), the NCIE matrix calcula-
tion in the correlation analysis has O(m2N ) complexity, and
the objective selection has O(m2) complexity. Therefore, the
total complexity of our method is (O(m2N )) per generation.

5 Experimental studies

5.1 Test problems, metrics, and settings

As the DTLZ problems (Deb et al. 2002b) and WFG3
(Huband et al. 2006) are MOPs with different numbers of
objectives, we adopt them as the test problems in our experi-
ments. Among these test problems, DTLZ1-4 are irreducible,
andDTLZ5 (Deb andSaxena 2005) andWFG3are reducible.
DTLZ5(I ,M) is an M-objective problem with I conflicting
objectives.

We use IGD (the average distance from the true PF to
the obtained PF) (Van Veldhuizen and Lamont 1998; Zhang
et al. 2008) to evaluate both convergence and diversity in
our experiments. The calculation of IGD is shown in Eq. (9),
where PFtrue is a reference set that is uniformly sampled from
the true PF. Most of the test problems in this paper can be
reduced, whose PFs are degraded on their dimensions, and
we uniformly sample PFtrue in its objective-reduced space to
guarantee the accuracy of IGD. Taking DTLZ5(2,M) as an
example, it can be reduced to { fM−1, fM }; we sample PFtrue
in the space of fM−1 and fM and then the values of other
objectives can be calculated. It is worth noting that PFtrue and
PF obtained in IGD are both of their full dimensions rather than
that after objective reduction to guarantee fair comparison:

IGD(PFtrue,PFobtained) =
∑

v∈PFtrue d(v,PFobtained)

|PFtrue.| . (9)

All the algorithms in the following subsections are repeated
for 30 independent runs and stop after 200 generations (SBX
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Fig. 3 Average IGD values of NSGA-II on DTLZ5(2,10) with only
two selected objectives { fi , f10}(1 ≤ i ≤ 9)

crossover (η = 15) with probability 1 and polynomial muta-
tion (η = 15) with probability 0.1). The population size is
200 (due to larger numbers of objectives in the test problems
of following subsections, we will enlarge the size of the pop-
ulation later). Themachine characteristics in our experiments
are a T5470 1.6-GHz CPU and 1G RAM.

5.2 Experiments on analysis of components

5.2.1 Characteristics of DTLZ5

As we know, the objectives of DTLZ5(2,M) can be reduced
to a two-objective problem with only two selected objectives
{ fi , fM }(1 ≤ i ≤ M − 1). Further, { fM−1, fM } is the best
reduction result. To demonstrate this, we compare NSGA-IIs
onDTLZ5(2,10)swith only two selected objectives { fi , f10}.
The average IGD values of 30 independent runs are shown
in Fig. 3. Although DTLZ5(2,10)s with { fi , f10} all have
two objectives, the difficulties are not at the same level. In
Fig. 3, we find the increasing i decreases the difficulty of
DTLZ5(2,10), which can be proved theoretically (Deb et al.
2002b). The reduction results by different approaches are
shown in the following subsections.

5.2.2 Correlation analysis

The modified NCIE matrix plays an important role in the
correlation analysis of our approach. The correlation matrix
is another popular metric of correlation of multiple vari-
ables. We embed these two different matrices separately
into our objective reduction approach to show the behavior
of the modified NCIE matrix. The two objective reduction
approaches are both embedded in NSGA-II. The differences

Fig. 4 Median number of objectives after reduction over 200 gener-
ations of our objective reduction approaches based on modified NCIE
and correlation matrices on DTLZ5(2,M)

in reduction performance and execution time are summarized
below.

The number of objectives after reduction over 200 gen-
erations is shown in Fig. 4. For the five-objective DTLZ5,
both approaches based on themodified NCIE and correlation
matrices reduce the problem to a three-objective optimization
problem. However, when the number of objectives increases,
the approach based on the modified NCIE matrix reduces
more redundant objectives than that based on the correlation
matrix. For the 50-objective problem, the approach based on
the modified NCIE matrix reduces it into a three-objective
problem, while the correlation matrix-based approach can
only reduce the number of objectives to 14.

To investigate the differences of the modified NCIE and
correlation matrices further, we show the number of times of
each objective retained over 200 generations after objective
reduction in Fig. 5. The approach based on the correlation
matrix cannot reduce DTLZ5 to a two-objective problem
except for five-objective DTLZ5. For the five-objective
DTLZ5, the approach based on the modified NCIE matrix
retains { f1, f5}, which is not the best reduction result. How-
ever, when the number of objectives increases to 50, the
chance of retaining { f1, fM } by the approach based on
the modified NCIE matrix decreases, but that of retaining
{ fM−1, fM } increases. According to Fig. 5, the modified
NCIE matrix performs better than the correlation matrix on
keeping objectives when the number of objectives is large,
e.g., 50.

Figure 6 shows the execution time of NSGA-IIs with our
objective reduction approaches based on modified NCIE and
correlation matrices on DTLZ5(2,M). With the increasing
number of objectives, both approaches increase their exe-
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Fig. 5 Number of times of each objective retained over 200 generations after our objective reduction approaches based on modified NCIE and
correlation matrices on DTLZ5(2,M)

Fig. 6 Execution time of NSGA-IIs with our objective reduction
approaches based on modified NCIE and correlation matrices on
DTLZ5 (2,M)

cution time. However, the approach based on the modified
NCIE matrix increases its execution time much slower than
the approach based on the correlation matrix.

From the above results, we find that the approach based on
the modified NCIE matrix performs better than the approach
based on the correlation matrix for the problems with a
large number (e.g., 50) of objectives, because the correla-
tion matrix cannot provide clear correlation information for
the subsequent objective selection.

5.2.3 Classification for objectives

The classification of objectives plays an important role in
our approach. We compare our approaches with different T s
and the classification method. The experiment is conducted
on the reducible and irreducible problems (DLTZ5(2,10)
and DLTZ2 with 10 objectives). Our objective reduction

approach is embedded in NSGA-II. For the reducible prob-
lems, our objective reduction approach aims to reduce the
most redundant objectives. For the irreducible problems, our
objective reduction approach aims to keep the right correla-
tion of objectives. Therefore, we adopt the median number
of objectives after reduction over 200 generations to evaluate
the behavior of our approach.

Figure 7 shows the number of objectives after reduction
over 200 generations in 30 independent runs with different
T s. As the classification method has no T , which cannot
be shown on the horizontal axis as other fixed T s, hence
we show it on the horizonal axis by a special position out-
side the interval [0, 1]. Comparing the two sub-figures, we
find that the size of T affects the behavior of our approach
on reducible problems more than irreducible problems. Our
approach decreases its performance with increasing T . The
classification method obtains the best performance of objec-
tive reduction. For the globally irreducible problem DTLZ2,
there are still some locally redundant objectives and our
approach reduces three objectives. If T is set too small, some
conflicting objectives are considered as redundant objectives,
which would lead to the wrong dominance structure. If T
is set too large, some redundant objectives would not be
removed, which would waste the computational expense.
The suitable value of T varies across problems. Therefore, a
robust classification is very important to our approach.

5.2.4 Objective selection

We adopt a direct method to select the most conflicting
objectives according to the obtained NCIE matrix from cor-
relation analysis. The objective reduction approach based on
PCA (Saxena et al. 2013) is a well-known one. Therefore,
we compare our objective selection method with the PCA
method (using the same setting as in Saxena et al. 2013). As
NCIE is a nonlinear metric, we also compare it with the ker-
nel PCA (KPCA) method (with Gaussian kernel function).
DTLZ5(2,M) (M = 5, 10, 20, 30, 50) is chosen as the test
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Fig. 7 Median number of objectives after reduction over 200 generations with different T s and the classification method

Fig. 8 Median number of objectives after reduction over 200 gener-
ations by our approach, PCA, and KPCA as the objective selection
method on DTLZ5 (2,M)

problem in this subsection. We embed all the approaches
in NSGA-II. The differences in reduction performance and
execution time are summarized below.

The number of objectives after reduction over 200 gener-
ations is shown in Fig. 8. DTLZ5(2,M) can be reduced to a
two-objective problem. All the approaches obtain two objec-
tives for the DTLZ5 with five objectives. The KPCA-based
method cannot reduce any objectives for the DTLZ5 with 10
and 20 objectives, but reduces the DTLZ5 with 30 and 50
objectives to 25 objectives. In contrast, our approach and the
approach based on PCA have better performance. When the

number of objectives increases, our approach reduces more
objectives than the approach based on PCA. For example, our
approach reducesDTLZ5(2,50) to a three-objective problem,
which is much better than the approach based on PCA.

In addition to the number of objectives after reduction,
the obtained objectives affect the final results. We show the
number of times of each objective retained after objective
reduction in Fig. 9, from which we can find their different
strategies of reducing objectives. As the approach based on
KPCA does not have a good reduction behavior, the dis-
cussion is now focused on our approach and the approach
based on PCA. For the DTLZ5s with 5, 10, 20, and 30 objec-
tives, the approach based on PCA reduces the problems to
{ f1, fM }.Our approach reduces them to { fM−1, fM }bymore
chances than other compared approaches. For 50-objective
DLTZ5, the approach based on PCAobtains a three-objective
set { f1, f49, f50}, while our approach obtains { f49, f50}.

Our proposed approach can reduce objectives more effi-
ciently than the approach based on PCA. This is reflected
through two aspects, one is the number of objectives after
reduction, and the other is the selected objectives.

Figure 10 is the execution time of these methods in 30
independent runs. For the DTLZ5 with five and ten objec-
tives, our approach and the approach based on PCA use
almost the same time. With the increasing number of objec-
tives, the approach based on PCA requires longer execution
time than our approach. Because of the poor performance of
KPCA, few objectives can be reduced and its execution time
is much longer than the other two methods.

We find that the objective selection in our approach
performs better than the approach based on PCA in differ-
ent aspects (objective reduction performance and execution
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Fig. 9 Number of times of each objective retained after our approach, PCA, and KPCA as the objective selection method on DTLZ5(2,M)

Fig. 10 Execution time of NSGA-IIs with our approach, PCA, and
KPCA as the objective selection method in our objective reduction
approach on DTLZ5 (2,M)

time). Themain reason why our objective selection approach
outperforms the approach based on PCA is that our approach
reduces more objectives than the approach based on PCA.
Because of the larger number of objectives obtained by the
approach based on PCA, it cannot reduce the difficulty of the
original problem.

KPCA, as a nonlinear method, maps the data to a
high-dimensional space to keep its nonlinear characteristic.
However, its kernel function has to be chosen in advance,
which affects its performance significantly. From the results,
we can find that the Gaussian kernel function is not suitable
for DTLZ5.

5.2.5 Population size

Our approach uses NCIE to measure the correlation among
objectives based on the population during the execution of
MOEAs. To study the effect of the population size on the
performance of NCIE, we embed our approach in NSGA-II
with different population sizes (100 and 200). DTLZ5(2,M)
(M = 5, 10, 20, 30, 50) is chosen as the test problem in

this subsection. We show the probability of each objective
retained for 30 independent runs in Fig. 11. In the cases of 100
and 200 solutions, the retained objectives are very similar on
all the tested DTLZ5 problems. In other words, the influence
of the population size on the performance of NCIE is small.

5.3 Experiments on performance

In this subsection, we apply our approach to both Pareto-
based and indicator-based MOEAs (NSGA-II Deb et al.
2002a and IBEA (Iε+-based) Zitzler and Künzli 2004). Both
the reducible and irreducible problems are tested in the fol-
lowing experiments.

5.3.1 Pareto-based MOEAs

WeembedourNCIE-based approach inNSGA-II onDTLZ1-
5. The results are analyzed by Mann–Whitney U test (Hol-
lander and Wolfe 1999). The significant ones are in boldface
(the significant level is 0.05).

Table 3 shows the IGD values of the NSGA-II with our
approach and the original NSGA-II on DTLZ5. DTLZ5 is
a reducible problem. We find the original NSGA-II cannot
solve the MaOPs with more than 10 objectives, whereas the
NSGA-II with our approach can solve the MaOPs with 50
objectives. Our objective reduction approach reduces these
problems into easier problems. As a result, the NSGA-II
with our approach performs better than the original NSGA-
II in most cases. However, the NSGA-II with our approach
performs worse than the original NSGA-II on DTLZ5(7,10)
becauseDTLZ5(7,10) has fewobjectives that can be reduced.

There are no objectives that can be ignored globally in
the irreducible problems DTLZ1-4. To show the behavior
of our approach clearly, the NSGA-II with random objec-
tives reduced is also compared with the NSGA-II with our
approach and the original NSGA-II on DTLZ1-4 in Table 4.
After objective reduction, the NSGA-II with our approach
can handle the problem with more objectives than the orig-
inal NSGA-II. Comparing the performance of the NSGA-II
with our approach and the originalNSGA-II onfive-objective
DTLZ problems, the IGD values are not greatly improved by
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Fig. 11 Probability of each objective retained by our approach in different population sizes (100 and 200) on DTLZ5(2,M)

Table 3 IGD values of the NSGA-II with our approach and the original
NSGA-II on DTLZ5 analyzed by Mann-Whitney U test

I M NSGA-II (NCIE) NSGA-II p value

2 5 0.0042 ± 0.0000 0.0042 ± 0.0000 0.0256

2 10 0.0042 ± 0.0000 1.8023 ± 1.5792 0.000

2 20 0.4613 ± 0.2211 – –

2 30 0.1086 ± 0.2108 – –

2 50 0.3886 ± 0.3688 – –

3 5 0.1155 ± 0.1684 0.0550 ± 0.0009 0.4735

3 10 0.0886 ± 0.1068 3.4976 ± 7.2347 0.0000

3 20 0.1192 ± 0.1706 – –

5 10 20.2226 ± 38.9470 70.7366 ± 47.8311 0.0003

5 20 134.9047 ± 62.8815 – –

7 10 93.9852 ± 58.3535 67.9335 ± 33.8466 0.0315

7 20 153.1658 ± 54.6619 – –

“–” Means that the algorithm cannot obtain the solution set within
limited computational time. The significant results are in boldface (sig-
nificant level = 0.05)

our approach except the hard-to-converge problem DTLZ1.
Our objective reduction method did not seem to be effec-
tive on irreducible problems. Comparing the IGD values
of the NSGA-IIs with our approach and random objectives
reduced, the former outperforms the latter significantly.How-
ever, some objectives can be reduced locally; thus objective
reduction to some extent promotes the population to better
convergence. In short, the objective reduction for some irre-
ducible problems can still make them easier for MOEAs by
exploiting local correlation among objectives.

5.3.2 Indicator-based MOEAs

IBEA(Zitzler andKünzli 2004) is an indicator-basedMOEA,
which is well known for its ability forMaOPs.We embed our
objective reduction approach in IBEA to analyze its effects
on indicator-based MOEAs. The significant results are in
boldface after being analyzed byMann–WhitneyU test (Hol-
lander and Wolfe 1999) (the significant level is 0.05).

Table 4 IGD values of the
NSGA-IIs with our approach
and random objectives reduced
and the original NSGA-II on
DTLZ1-4 analyzed by
Mann–Whitney U test

DTLZ M NSGA-II (NCIE) NSGA-II (Random) NSGA-II

1 5 3.5257 ± 5.4437 29.7310 ± 18.8620 28.1565 ± 14.7707

1 15 15.8986 ± 17.1624 36.6916 ± 23.5109 –

1 25 17.7863 ± 15.8425 27.6838 ± 21.9433 –

2 5 0.5188 ± 0.2108 1.2836 ± 0.3187 0.4893 ± 0.0741

2 15 2.1166 ± 0.2912 2.2857 ± 0.2768 –

2 25 2.4970 ± 0.3190 2.7165 ± 0.1811 –

3 5 129.0159 ± 62.0312 209.6908 ± 20.1481 160.7862 ± 24.2639

3 15 216.4849 ± 15.3258 232.9653 ± 13.5670 –

3 25 230.2662 ± 17.5408 277.0580 ± 107.0687 –

4 5 0.7899 ± 0.3023 1.1632 ± 0.0114 0.5651 ± 0.0613

4 15 1.2916 ± 0.0634 1.3412 ± 0.0399 –

4 25 1.3417 ± 0.0602 1.4126 ± 0.0750 –

“–” Means that the algorithm cannot obtain the solution set within limited computational time. The
significant results are in boldface (significant level = 0.05)
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Table 5 IGD values of the IBEA with our approach and the original
IBEA on DTLZ5 analyzed by Mann–Whitney U test

I M IBEA (NCIE) IBEA p value

2 5 0.6529 ± 0.1694 0.5784 ± 0.1953 0.0764

2 10 0.6324 ± 0.1789 0.5453 ± 0.2052 0.0439

2 20 0.6734 ± 0.1457 0.4877 ± 0.1922 0.0003

2 30 0.6083 ± 0.1835 0.5603 ± 0.1601 0.2503

2 50 0.7018 ± 0.1159 0.6298 ± 0.1997 1.0000

3 5 0.7876 ± 0.1536 0.7506 ± 0.1633 0.9676

3 10 0.8257 ± 0.1953 0.7815 ± 0.1771 0.3369

3 20 0.7874 ± 0.2094 0.8227 ± 0.1836 0.9461

5 10 0.9366 ± 0.1882 0.9312 ± 0.2111 0.7764

5 20 0.8839 ± 0.2212 0.8099 ± 0.1878 0.4903

7 10 1.1193 ± 0.1839 1.0622 ± 0.2286 0.8817

7 20 1.1482 ± 0.1584 1.0911 ± 0.2212 0.7353

The significant results are in boldface (significant level = 0.05)

Table 5 is the result of the IBEAwith our approach and the
original IBEAonDTLZ5. For the reducible problemDTLZ5,
no statistically significant difference is detected between the
IBEA with our approach and the original IBEA, although
our objective reduction approach seems to reduce the perfor-
mance of IBEA.

As DTLZ1-4 are irreducible, the same random objective
reduced IBEA as that in Sect. 5.3.1 is compared with the
IBEA with our approach and the original IBEA. The results
are shown in Table 6. There is no statistically significant
difference among the three IBEAs.

The number of objectives appears to have little influence
on the behavior of IBEA. In other words, the effect of our
approach is not significant on IBEA for either reducible or
irreducible problems.

5.3.3 WFG problems

WFG3 (Huband et al. 2006) can be reduced to a two-objective
optimization problem, which is a different reducible prob-
lem from DTLZ5. We embed our approach in both NSGA-II
and IBEA on WFG3 with 5–50 objectives. Table 7 shows
the results of the MOEAs (NSGA-II and IBEA) with our
approach and the original MOEAs in terms of IGD. The
results are similar to those on DTLZ5 in Sects. 5.3.1 and
5.3.2. Our approach significantly improves Pareto-based
MOEAs, but not indicator-based MOEAs.

5.3.4 Discussion

Generally, the advantage of IBEA is its good convergence
ability onMaOPs, whichNSGA-II cannot achieve. However,
IBEA cannot obtain the results of good diversity because
of the poor performance from Iε+ (Hadka and Reed 2012).
NSGA-II pays more attention to this aspect. Our experimen-
tal results support these two points. The aim of our approach
is to improve the convergence ability while maintaining the
good diversity of NSGA-II.

Our approach works well with Pareto-based MOEAs,
but not with indicator-based MOEAs. Pareto-based MOEAs
have difficulties on MaOPs because of ineffective Pareto
dominance for large numbers of objectives. Our approach
can reduce the redundant number of objectives to make
the Pareto dominance work again. However, indicator-based
MOEAs do not suffer from the Pareto dominance problem,
even though the large numbers of objectives decrease their
performance too.

For the reducible problems such as DTLZ5 and WFG3,
our approach selects the most conflicting objectives, which
decreases much computational cost. Thus, the NSGA-II with
our approach can solve problemswithmore objectives,which

Table 6 IGD values of the
IBEA with our approach and
random objectives reduced and
the original IBEA on DTLZ1-4
analyzed by Mann–Whitney U
test

DTLZ M IBEA (NCIE) IBEA (Random) IBEA

1 5 1.8145 ± 3.8061 3.7388 ± 7.9257 3.7992 ± 8.2498

1 15 3.9714 ± 4.1883 3.5229 ± 3.9579 7.8709 ± 10.3937

1 25 13.0244 ± 13.0977 8.4152 ± 12.7078 12.6828 ± 16.3969

2 5 1.1047 ± 0.1011 1.1429 ± 0.0667 1.0741 ± 0.2317

2 15 1.3278 ± 0.1319 1.2825 ± 0.0649 1.2207 ± 0.1260

2 25 1.3969 ± 0.1818 1.3004 ± 0.0977 1.3148 ± 0.0318

3 5 43.9396 ± 37.2782 39.3212 ± 38.0931 34.4497 ± 30.4998

3 15 39.3778 ± 16.4310 42.8500 ± 19.0732 47.5738 ± 30.2017

3 25 39.1774 ± 21.4049 42.2101 ± 20.6839 52.6554 ± 17.5275

4 5 1.1659 ± 0.0002 1.1662 ± 0.0007 1.1658 ± 0.0002

4 15 1.3340 ± 0.0000 1.3340 ± 0.0000 1.3340 ± 0.0000

4 25 1.3652 ± 0.0042 1.3662 ± 0.0001 1.3671 ± 0.0005

The significant results are in boldface (significant level = 0.05)
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Table 7 IGD values of the NSGA-II with our approach, the original NSGA-II, the IBEA with our approach, and the original IBEA on WFG3
analyzed by Mann–Whitney U test

M NSGA-II (NCIE) NSGA-II p value IBEA (NCIE) IBEA p value

5 0.0731 ± 0.0609 0.4337 ± 0.0714 0.0000 4.5874 ± 0.1647 4.6532 ± 0.0869 0.1404

10 1.3057 ± 1.0653 2.3687 ± 0.4006 0.0003 9.7115 ± 2.2619 9.5860 ± 2.5905 0.9031

20 3.7720 ± 3.1806 9.1938 ± 0.5134 0.0000 19.9937 ± 5.4725 14.3213 ± 9.5895 0.0859

30 5.8213 ± 4.9378 – – 30.7959 ± 8.6535 24.3803 ± 13.2391 0.2393

50 5.6174 ± 6.8068 – – 51.7169 ± 14.1403 32.2109 ± 22.5460 0.0275

“–” means that the algorithm cannot obtain the solution set within limited computational time. The significant results are in boldface (significant
level = 0.05)

cannot be solved by the original NSGA-II. For example,
DTLZ5(2,50) can be reduced to a two-objective problem,
and the computational cost is decreased to 4 % of that for
a 50-objective problem. However, with the increasing I in
DTLZ5(I ,M), the NSGA-II with our approach decreases its
convergence ability. This is because the difficulties of those
problems are still high after objective reduction. For the
irreducible problems such as DTLZ1-4, the NSGA-II with
our approach can solve those with 25 objectives, whereas
the original NSGA-II can only solve the problems with five
objectives. Furthermore, the NSGA-II with our approach can
also obtain slightly better results than the original NSGA-II,
because our approach was able to capture and exploit local
objective interactions.

6 Conclusion

Since the correlation among redundant objectives might be
either linear or nonlinear, the existing linear objective reduc-
tion approaches have limitations. We have proposed a novel
objective reduction approach based onNCIE, which can han-
dle both linear and nonlinear correlations.

In our approach, we employ NCIE, a nonlinear metric, to
measure the correlation amongobjectives. In addition,weuse
a simple objective selection method without any pre-defined
parameter, which results in the robustness of our approach.
The experiments on DTLZ5 in Sect. 5.2.4 shows that our
approach can select themost conflicting objectives for reduc-
tion. Our approach can be embedded in anyMOEA to reduce
the number of objectives, as demonstrated by the experiment
on NSGA-II and IBEA. The experimental results show that
our approach improves Pareto-based MOEAs (NSGA-II) on
reducible problems (DTLZ5 andWFG3), but cannot improve
the performance of indicator-based MOEAs (IBEA). At the
same time, our approach also improves the performance of
Pareto-based MOEAs on the irreducible problems (DTLZ1-
4) slightly, because the difficulty of the original problems
decreases locally, which promotes convergence.

However, there are some disadvantages of the NCIE
approach that we have to overcome in our future work. (1)
The reduction performance of our approach on the prob-

lems with more than 20 objectives is still not ideal. (2) The
improvement of our approach on indicator-based MOEAs
needs to be strengthened. (3) It will be interesting to evaluate
our techniques on hypervolume-based IBEAs. (4) It will be
useful to apply our approach to search knee areas of MaOPs
(Bechikh et al. 2011).
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