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Abstract In this work, we introduce a novel training
method for constructing boosted Support Vector Machines
(SVMs) directly from imbalanced data. The proposed solu-
tion incorporates the mechanisms of active learning strategy
to eliminate redundant instances and more properly estimate
misclassification costs for each of the base SVMs in the com-
mittee. To evaluate our approach, we make comprehensive
experimental studies on the set of 44 benchmark datasets
with various types of imbalance ratio. In addition, we present
application of our method to the real-life decision problem
related to the short-term loans repayment prediction.

Keywords Imbalanced data · Boosted SVM · Active
learning

1 Introduction

The imbalanced data phenomenon is known to be one of the
fundamental problems in data analysis andprediction. In gen-
eral, every dataset which exhibits disproportions in the class
distribution can be treated as imbalanced. In the context of
binary classification problem, we call the majority class to
be the one which dominates the training examples and the
less prominent one is the minority class. For further consis-
tency we refer to the minority class to as positive and to the
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major5ity class to as negative. In practice, the imbalanced
data issue is observed when disproportion between classes
has the impact on the constructed learner that is biased toward
majority class. For extremely uneven data distribution, typi-
cal learning methods may construct classifiers that have ten-
dency to classify all examples as members of the majority
class. The problem of imbalanced data is widely observed in
various domains such as medical diagnosis, fraud detection,
consumer credit risk assessment andmany others (Japkowicz
and Stephen 2002).

To solve themanner of the disproportions between classes,
various techniques can be applied (He and Garcia 2009). The
issue can be solved externally, by applying preprocessing on
data before the training procedure. Two techniques are com-
monly observed in this group: generating artificial exam-
ples from minority class (oversampling) and eliminating
observations frommajority class (undersampling). The most
commonly used oversampling technique is SMOTE (Syn-
thetic Minority Over-sampling TEchnique) (Chawla et al.
2002), which generates additional examples situated on the
path connecting two neighbors from minority class. Another
method in this group is Borderline-SMOTE which is an
extension of SMOTE that incorporates in the sampling proce-
dure only the minority data points with a high percentage of
the nearest neighbors from majority class (Hui et al. 2005).
The policy of undersampling methods is to remove those
instances from majority class that are redundant in train-
ing procedure and bias the classifier. It is usually performed
by random elimination, using K -NN algorithm (Mani and
Zhang 2003) or evolutionary algorithms (García et al. 2009).

The problem of imbalanced data can be solved directly
at the training stage by incorporating proper mechanisms
for well-known training methods. In this group, it is possi-
ble to distinguish ensemble classifiers such as SMOTEBoost
(Chawla et al. 2003), SMOTEBagging (Wang and Yao 2009),
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RAMOBoost (Chen et al. 2010), which make use of over-
sampling to diversify the base learners, and models such as
UnderBagging (Tao et al. 2006), Roughly Balanced Bagging
(Hido et al. 2009), RUSBoost (Seiffert et al. 2010) which
apply undersampling before creating each of the component
classifiers. In addition to the mentioned learning methods for
imbalanced data, other internal techniques are successively
applied to construct balanced classifiers, e.g., active learning
strategies (Ertekin et al. 2007), granular computing (Tang et
al. 2007), or one-sided classification (Manevitz and Yousef
2002).

Beside the internal and external approaches, we can dis-
tinguish cost-sensitive techniques that put higher misclassi-
fication costs to the minority examples. This group of meth-
ods perform inference by assigning weights to each of the
examples in the training data as well as adjusting training
procedure by introducing different misclassification costs.
In this group of techniques, we can identify the algorithms
for constructing cost-sensitive models such as decision trees
(Drummond and Holte 2000), neural networks (Kukar and
Kononenko 1998), SVMs (Morik et al. 1999) and ensemble
classifiers (Fan et al. 1999;Wang and Japkowicz 2010; Zięba
et al. 2014).

Modern solutions utilize boosted SVM classifiers as high-
quality, cost-sensitive predictors (Wang and Japkowicz 2010;
Zięba et al. 2014). Despite the high accuracy of prediction of
such models confirmed by numerous experiments, the prob-
lem of setting proper values of misclassification costs arises
during training. To avoid time-consuming calibration of the
parameters for each of the classification problems separately,
the ratio between negatives and positives is taken as a basis
for penalty cost calculation. In such approach, we assume
that the value of global imbalance ratio for entire data is sim-
ilar to the ratio between negatives and positives situated near
the borderline. This statement is not always satisfied because
of different distribution of examples for different datasets.

To overcome the stated issue, we propose a novel training
method for boosting SVM that makes use of active learning
strategy to select the most informative examples and more
accurately calculate misclassification costs. Each of the base
learners of the ensemble is trained on the reduced number of
instances, selected to be significant by the previously created
component classifier. In this approach, the considered dataset
is composed only of the examples situated near the border-
line and the penalization terms are calculated basing on local
cardinalities of positives and negatives. As a consequence,
the consecutive training sets used to construct the base clas-
sifiers are more balanced and do not contain redundant and
noisy cases.

We identify the borderline examples by introducing the
“widemargin” for the baseSVMthatwas created in the previ-
ous iteration of constructing the ensemble model. The “wide
margin” is the extended “soft margin” obtained in standard

training procedure of this component classifier. Therefore,
we select all the examples situated in the “widemargin”—the
support vectors (beside the “noisy” support vectors located
outside) as well as the examples located close to the “soft
margin”.

We compare the predictive performance of our solu-
tion with other reference methods dedicated to solve the
imbalanced data problem. The experiment is carried out for
44 benchmark datasets. In addition, we apply our training
method to the problem of the short-term loans risk analysis
and present how to induce reasonable rules from boosting
SVM. The short-term loans risk analysis is a typical situation
in which data are imbalanced and irregularly distributed.

The paper is organized as follows. In Sect. 2, we describe
the novel procedure for constructing boosted SVM. Section
3 contains the results of an experiment showing the quality
of the proposed approach. In Sect. 3.2, we present the case
study related to the problem of predicting short-term loans
risk assessment. The paper is summarized with conclusions
in Sect. 4.

2 Methods

2.1 SVM for imbalanced data

The standard SVM1 is trained by finding the optimal hyper-
plane H of the following form (Vapnik 1998):

H : a�φ(x) + b = 0, (1)

where x is the vector of the input values, a is the vector of the
parameters, b is the bias term and φ(·) is fixed feature-space
transformation.

Assume that the training set SN = {xn, yn}Nn=1 is given,
where yn ∈ {−1, 1}. The problem of training standard SVM
can be formulated as the following optimization task:

min
a,b

. Q(a) = 1

2
aT a + C

N∑

n=1

ξn

s.t. yn(aTφ(xn) + b) ≥ 1 − ξn
for all n = 1, . . . , N

(2)

where ξn are slack variables, such that ξn ≥ 0 for n =
1, . . . , N , and C is the parameter that controls the trade-off
between the slack variable penalty and the margin, C > 0.

The application of the following criterion to imbalanced
training data may result in constructing highly biased classi-
fier toward majority class. Therefore, in Zięba et al. (2014),

1 We refer SVM in case of balanced data to as standard SVM.
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a modified criterion was proposed:

min
a,b

. Q(a) = 1

2
a�a

+CN 2

2

( 1

N+

∑

n∈N+

wnξn+ 1

N−

∑

n∈N−

wnξn

)

s.t. yn(aTφ(xn) + b) ≥ 1 − ξn
for all n = 1, . . . , N

(3)

where N+ = {n ∈ {1, . . . , N } : yn = 1} is the set of all pos-
itive examples, N− = {n ∈ {1, . . . , N } : yn = −1} is the set
of all negative examples, and N+, N− are corresponding car-
dinalities of the sets. Weights wn are the penalty parameters
that fulfill the following conditions:

N∑

n=1

wn = 1 and wn > 0 for all n = 1, . . . , N . (4)

Notice that weights wn satisfy the properties of a probabil-
ity distribution. If we assume equal distribution for wn , i.e.,
wn = 1

N , the accumulated penalization term for the selected
positive example is equal C N

2N+ and for chosen negative

case is C N
2N− . The cardinality of instances from the posi-

tive class is significantly lower than for negative one because
of the considered imbalanced data phenomenon. Therefore,
the negative receives a higher penalty for improper loca-
tion relative to the separating hyperplane than the improperly
situated positive, and thus the trained classifier is unbiased
toward majority class. The classifier trained in this fashion is
known as a popular cost-sensitive SVM variation for imbal-
anced data (further named C-SVM). Parameter C has the
same interpretation as for standard SVM. The within-class
imbalance issue is handled by applying different values of
wn . The process of determining the values of weights will be
discussed further in this work.

The stated optimization problem (3) can be formulated in
its dual form:

min
λ

. QD(λ) =
N∑

n=1

λn − 1

2

N∑

i, j=1

λiλ j yi y j k(xi , x j )

s.t. 0 ≤ λn ≤ C N2

2N+ wn
N∑

n=1

λn yn = 0

for all n = 1, . . . , N ,

(5)

where λ is the vector of Lagrangemultipliers. In addition, we
have applied the kernel trick, i.e., we have replaced the inner
product with the kernel function, φ(xi )�φ(x j ) = k(xi , x j ).

The procedure of classification is made by applying the
model:

h(xi ) = sign
( ∑

n∈SV
ynλnk(xn, xi ) + b

)
, (6)

where SV denotes the set of indices of the support vectors,2

sign(a) is the signum function that returns −1 for a < 0,
and 1 – otherwise, and the bias parameter is determined as
follows:

b = 1

NSV

∑

n∈SV

(
yn −

∑

m∈SV
λm ymk(xn, xm)

)
, (7)

where NSV is the total number of the support vectors.

2.2 The issue of determining penalty costs

The main drawback of the presented method is a need of
incorporating the cardinalities N+, N− in the penalty term
of the criterion (3) which is minimized to construct the SVM
using imbalanced data. The presented method makes the
explicit assumption about the ratio between N− and N+, so
that its growth has very significant impact on the bias degree
of the constructed learner. In other words, the higher dis-
proportions between classes are observed, the stronger the
tendency of the trained classifier to classify positive exam-
ples as negatives. Such an assumption is not always correct
in real-life problems. We discuss this issue on a toy example.

Let us consider two artificially generated imbalanced
datasets presented in Fig. 1. Both of them have the same
cardinality of positive and negative examples, but the distri-
bution over them is noticeable different. In the first case (Fig.
1a), most of the majority examples are situated in the close
neighborhood of the separating hyperplane. In the second
case (Fig. 1b), the examples from dominating class are clus-
tered far from the classification borderline. Training SVM
using the first dataset results in very good predictive accu-
racy, i.e., the points from two classes seem to be almost per-
fectly separated. By the introduction of different penalization
terms in the training criterion,3 the hyperplane is stabilized
in such a form, that two of the minority cases supporting
positive class in the region at issue are located on the proper
side of the separator and the remaining positive instance was
dedicated at the expense of correct classification of a few
negatives (see Fig. 1a).

On the other hand, if the same type of classifier is trained
on the second dataset with the same misclassification costs,
the quality of the trained separator is highly debatable. Con-
trary to the previous case, the considered dataset is balanced
in the disputed region, but due to the significantly higher
penalty weights for positive examples the classifier is biased
toward minority class (see Fig. 1b). As a consequence, the
trained classifier “sacrificed” 6majority points at the expense
of 2 correctly classified positives, because the ratio between

2 Support vectors are the examples, for which the corresponding
Lagrange multiplier is >0.
3 The penalization terms are proportional to 1

N+ (minority examples)

and 1
N− (majority cases).
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Fig. 1 Optimal hyperplanes for cost-sensitive SVM trained on imbal-
anced datasets, when: a the most of the majority examples are situated
near the hyperplane, b the most of the majority examples are situated
far from the hyperplane

N+ and N− calculated on the entire dataset is equal almost
4. If we associate this result with the ratio of misclassifica-
tion costs, such debatable behavior of the trained classifier is
justified.

From this simple example, we can notice that the ratio
between N+ and N− does not always inform about how real
data are imbalanced in the classification problem. Therefore,
it would be essential to propose a technique for selecting
informative examples for the training process.

The stated issue can be solved by applying so-called active
learning techniques (Settles 2010). These kinds of methods
are widely used for given unlabelled data and when the costs
of discovering the class labels are too high to receive com-
plete training set. Therefore, there is a need to find the most
informative candidates to inquire about objects’ class val-
ues. Authors of Ertekin et al. (2007) present the application
of the active learning strategy to deal with the imbalanced
data issue. In the first step, they generate small pool of the
balanced data and train the classifier. Next, they select the
most informative example to be incorporated to the training
data by applying a novel searching approach. Finally, they
correct the location of separating hyperplane by retraining
the classifier on the updated data. The entire procedure is
repeated until the set of the most informative examples is
selected. This approach makes an explicit assumption that
the examples located near the borderline tend to be much
more balanced than the entire data. Referring to the example
presented in Fig. 1a, such a statement is not always satisfied.

2.3 Our Approach

In this work, we propose a boosted SVM with a novel active
learning strategy that solves the issue of imbalanced data by
proper informative examples selection and misclassification
costs estimation. Each of the base SVMs of an ensemble is
trained by solving (5) with actual values of weight w

(k)
n on

the reduced dataset that contains the most informative exam-
ples situated near the separating hyperplane. The process of
active selection is performed using previously constructed

base classifier as an oracle-based selector that makes use of
extended margin to locate the most important observations.

Algorithm 1: Boosted SVM with active learning for
imbalanced data
Input : SN : training set, Sval : validation set, Y = {−1, 1}: set

of class labels, K : number of iterations, l: rescaled
distance between extended and separating margins, γ :
rescaling parameter

Output: Boosted SVM: H(x) = argmax
y∈Y

K f inal∑

k=1

ck I (hk(x) = y)

1 Initialize: w(1)
n ←− 1/N for n ∈ {1, . . . , N } ;

2 G ←− 0;
3 K f inal ←− 1;
4 for k = 1 → K do
5 //active learning strategy for selecting

examples
6 if k > 1 then
7 Determine SNk given by (8);
8 else
9 Determine SNk by applying one-sided selection;

10 end
11 //procedure of learning boosting SVM
12 Train SVM hk on SNk by solving (5) with actual values of

w
(k)
n , N (k)

+ and N (k)
− .;

13 Calculate ek given by (9) on SNk achieved by hk ;
14 if ek < 0.5 then
15 ck ←− ln 1−ek

ek
;

16 Calculate GMean value gk on Sval achieved by

Hk(x) = argmax
y∈Y

k∑

l=1

cl I (hl (x) = y) ;

17 if gk > G then
18 G ←− gk ;
19 K f inal ←− k;
20 end

21 Update: w(k+1)
n ←− w

(k)
n exp

(
ck I (hk(xn) �= yn)

)
;

22 Normalize: w(k+1)
n ←− w

(k+1)
n

N∑

n=1

w(k+1)
n

;

23 else
24 ck ←− 0;

25 Update: w(k+1)
n ←− 1/N ;

26 C ←− (1 − γ )C ;
27 end
28 end

The entire procedure is described in Algorithm 1. In the
initial step, the starting weights w

(k)
n are equal 1

N . Next, if
k > 1, the dataset SNk used to construct the k-th base learner
is determined in the following way:

SNk = {(xn, yn) ∈ SN : yn yk−1(xn) ≤ 1 + l}, (8)

where yk−1(xn) represents the output of (k−1)-th base SVM
and l (l ≥ 0) is the parameter that stays behind the rescaled
distance between extended and separating margins. In the
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Fig. 2 The application of the wide margin for active selection

rescaled data space, the width of the margin is equal 2, and
the separating hyperplane is located exactly in the middle,
diving it into equidistant space regions. Therefore, the para-
meter l represents the percentage extension of the margin
extracted in the process of training SVM. As a conclusion,
the higher value of l is observed, the more examples are
selected. Figure 2a presents the exemplary wide margin for
an exemplary dataset and Fig. 2b represents the data after the
active learning procedure, i.e., the examples selection.

The issue of determining the dataset for the first base
learner (k = 1) can be solved by applying one of the typical
undersampling techniques. In this work, we recommend to
use method called one-sided selection (Kubat and Matwin
1997). The idea of this approach is as follows. First, a nega-
tive example is randomly selected from the training set. Next,
each of the remaining negatives in the dataset is examined
if it is located closer to the selected sample than to any of
the positives. If the considered example is located closer to
the one of the minority cases, it remains in the training set.
Otherwise it is removed from the dataset. This solution is
successively applied to identify and eliminate the majority
instances located far from the borderline and can be also
repeated to eliminate such located examples from the minor-
ity class. An exemplary application of the one-sided selection
is presented in Fig. 3.

Next, after the active learning strategy in the Algorithm 1,
the set of base learners hk represented by SVMs is itera-
tively constructed in the loop. Each of the classifiers is trained
on SNk by solving the optimization problem (5) with actual

weight values (wn = w
(k)
n for n ∈ {1, . . . , N }) and with the

Fig. 3 The application of one-sided selection

actual cardinalities of positive examples (N+ = N (k)
+ , N− =

N (k)
− ). Therefore, the imbalanced data issue is handled each

time the base learner is trained by solving the problem with
updated penalization terms calculated basing on cardinalities
of positives and negatives situated close to the borderline.

In the following step, the value of error function ek is
calculated using the formula:

ek = EImb

1

N+

∑
n∈N+

w(k)
n + 1

N−

∑
n∈N−

w(k)
n

(9)

where EImb is equal:

EImb = 1

N+

∑

n∈N+
w(k)
n I (hk(xn) �= yn)

+ 1

N−

∑

n∈N−
w(k)
n I (hk(xn) �= yn), (10)

where I (·) denotes the indicator function. The application of
such error function has theoretical justification (see Zięba et
al. 2014 for details).

If the error value is lower than 0.5 it is further used to
compute the value of parameter ck , which represents the sig-
nificance of the classifier hk in the committee. The weights
are updated using typical AdaBoost procedure to increase the
impact of misclassified examples in the training set (Freund
et al. 1996). Otherwise, the value of ck is set to 0 to eliminate
the impact of poor learner in the committee, and the weights
are reset to the initial values. In addition, the value of para-
meter C is decreased by multiplying it by (1 − γ ), where
γ ∈ [0, 1] is an arbitrarily chosen rescaling parameter. As
a consequence, the base learners created in the further steps
will be more general because of the weaker penalization for
incorrectly classified examples.

The output ensemble is composed of the set of base learn-
ers with the highest geometric mean (GMean) value.GMean
is the typical evaluation criterion for imbalanced data and is
described by the equation (Kubat and Matwin 1997):

GMean = √
T Prate · T Nrate, (11)

where T Nrate is specificity rate (true negative rate) defined
by:

T Nrate = T N

T N + FP
, (12)

and T Prate is sensitivity rate (true positive rate) described
by the following equation:

T Prate = T P

T P + FN
(13)

The meaning of true positive (T P), false negative (FN ),
false positive (FP) and true negative (T N ) is explained by
confusion matrix (see Table 1), which illustrates prediction
tendencies of considered classifier.
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Table 1 A confusion matrix

Predicted positive Predicted negative

Actual positive TP (True positive) FN (False negative)

Actual negative FP (False positive) TN (True negative)

The process of selecting the proper values of parameters
is an important issue for training the presented classifier.The
K value should be large enough, because we select the sub-
set of base learners with the highest GMean gained on the
validation set. As a consequence, the problem of overfitting
is handled. For the other parameters, we suggest to use val-
idation set to find their optimal values. Moreover, for the
sparsely populated data, we rather recommend to use the lin-
ear kernel, than more sophisticated functions, e.g., Radial
Basis Functions. By selecting the base learner with lower
number of degrees of freedom, we are able to achieve proper
model generalization and we avoid overfitting.

3 Experiments

We carry out two experiments:

– Experiment 1: the presented method is evaluated on
44 benchmark datasets with varying value of imbalance
ratio.

– Experiment 2: the presented approach is applied to the
real-life decision problem related to the short-term loans
repayment prediction.

3.1 Experiment 1: benchmark datasets

3.1.1 Description

In this part of the paper, we examine the quality of the pre-
sented approach in comparison to other methods dedicated
for imbalanceddata on the set of 44benchmarkdatasets avail-
able in KEEL tool and on website.4 Multiclass datasets are
modified to obtain two-class imbalanced data by merging
some of possible class values (Galar et al. 2012). Detailed
description of the datasets is presented in Table 2, where
#Inst. denotes total number of instances, #Attr. is the num-
ber of attributes in dataset, %P and %N represent percentage
of positive and negative examples, respectively, and Imbrate
is the imbalance ratio, i.e., the ratio between negative and
positive examples.

As it was noticed in Sect. 2.2, the imbalanced ratio cal-
culated by dividing the cardinalities of the examples from

4 http://www.keel.es/dataset.php.

Table 2 Characteristic of datasets used in experiment (Galar et al. 2012)

ID Dataset #In #At %P %N Imbrate

1 Glass1 214 9 35.51 64.49 1.82

2 Ecoli0vs1 220 7 35.00 65.00 1.86

3 Wisconsin 683 9 35.00 65.00 1.86

4 Pima 768 8 34.84 66.16 1.90

5 Iris0 150 4 33.33 66.67 2.00

6 Glass0 214 9 32.71 67.29 2.06

7 Yeast1 1, 484 8 28.91 71.09 2.46

8 Vehicle1 846 18 28.37 71.63 2.52

9 Vehicle2 846 18 28.37 71.63 2.52

10 Vehicle3 846 18 28.37 71.63 2.52

11 Haberman 306 3 27.42 73.58 2.68

12 Glass0123vs456 214 9 23.83 76.17 3.19

13 Vehicle0 846 18 23.64 76.36 3.23

14 Ecoli1 336 7 22.92 77.08 3.36

15 New-thyroid2 215 5 16.89 83.11 4.92

16 New-thyroid1 215 5 16.28 83.72 5.14

17 Ecoli2 336 7 15.48 84.52 5.46

18 Segment0 2,308 19 14.26 85.74 6.01

19 Glass6 214 9 13.55 86.45 6.38

20 Yeast3 1,484 8 10.98 89.02 8.11

21 Ecoli3 336 7 10.88 89.77 8.77

22 Page-blocks0 5,472 10 10.23 89.77 8.77

23 Yeast2vs4 514 8 9.92 90.08 9.08

24 Yeast05679vs4 528 8 9.66 90.34 9.35

25 Vowel0 988 13 9.01 90.99 10.10

26 Glass016vs2 192 9 8.89 91.11 10.29

27 Glass2 214 9 8.78 91.22 10.39

28 Ecoli4 336 7 6.74 93.26 13.84

29 Yeast1vs7 459 8 6.72 93.28 13.87

30 Shuttle0vs4 1,829 9 6.72 93.28 13.87

31 Glass4 214 9 6.07 93.93 15.47

32 Page-blocks13 472 10 5.93 94.07 15.85

33 Abalone9vs18 731 8 5.65 94.25 16.68

34 Glass016vs5 184 9 4.89 95.11 19.44

35 Shuttle2vs4 129 9 4.65 95.35 20.5

36 Yeast1458vs7 693 8 4.33 96.67 22.10

37 Glass5 214 9 4.20 95.80 22.81

38 Yeast2vs8 482 8 4.15 95.85 23.10

39 Yeast4 1,484 8 3.43 96.57 28.41

40 Yeast1289vs7 947 8 3.17 96.83 30.56

41 Yeast5 1,484 8 2.96 97.04 32.78

42 Ecoli0137vs26 281 7 2.49 97.51 39.15

43 Yeast6 1,484 8 2.49 97.51 39.15

44 Abalone9 4,174 8 0.77 99.23 128.87

the different classes does not always correspond to the real
bias level of the constructed learner trained using typical pro-
cedure. To evaluate the real degree of misclassification ten-
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Fig. 4 The GMean values for each of the 44 benchmark datasets gained by standard SVM trained with SMO

dency, we examined the quality of standard SVM trained on
each of the datasets. We applied fivefold cross validation and
used the GMean as an evaluation criterion. The plot of the
results is presented in Fig. 4. It can be observed that the value
of imbalanced ratio is weakly correlated with the GMean
value achieved by SVM.5 For instance, the classifier trained
on Ecoli0137vs26 dataset (I D = 42, Imbrate = 39.15) was
significantly more balanced (GMean = 0.84) than the pre-
dictor of the same type trained onHaberman data (I D = 11,
Imbrate = 2.68, GMean = 0) despite the fact that the first
of them contains only 2.5% positives and for the second
of the considered benchmarks almost 27.5% minority cases
were identified. Therefore, the application of the active learn-
ing strategy presented in this work for constructing boosted
SVM classifier seems to be justified.

3.1.2 Methods

The quality of the boosting SVMwith active learning strategy
(BSIA) was compared with other methods suitable for the
imbalanced data:

– SVM (SVM): SVM trained using SMO.
– SVM+ SMOTE (SSVM): SVM trained on data oversam-
pled by SMOTE.

– SMOTEBoostSVM (SBSVM): Boosted SVMwhich uses
SMOTE to generate artificial samples before construct-
ing each of base classifiers.

– C-SVM (CSVM): Cost-sensitive SVM described in
details in Veropoulos et al. (1999).

5 The datasets are sorted ascending by the value of this imbalance ratio
(for the higher ID of the dataset, we observe the higher Imbrate value).

– AdaCost (AdaC): Cost-sensitive, ensemble classifier, in
which the misclassification cost for minority class is
higher than the misclassification cost for majority class
(Fan et al. 1999).

– SMOTEBoost (SBO): modified AdaBoost algorithm, in
which base classifiers are constructed using SMOTE syn-
thetic sampling (Chawla et al. 2003).

– RUSBoost (RUS): extension of SMOTEBoost approach,
which uses additional undersampling in each boosting
iteration (Seiffert et al. 2010).

– SMOTEBagging (SB): bagging method, which uses
SMOTE to oversample dataset before constructing each
of base classifiers (Wang and Yao 2009).

– UnderBagging (UB): bagging method, which randomly
undersamples dataset before constructing each of base
classifiers (Tao et al. 2006).

– BoostingSVM-IB (BSI): boosted SVM trained with cost-
sensitive approach presented in Zięba et al. (2014).

3.1.3 Methodology

As a testing methodology we used fivefold stratified cross
validation with a single repetition and each of the meth-
ods was tested on the same folds. The values of the train-
ing parameters for the reference methods were set basing on
the experimental results described in Galar et al. (2012). For
BSI and BSIA, we identified the most proper values of the
training parameters experimentally by testing their quality on
validation set. The quality criterion selected for our studies
was GMean because of its very strict penalization for biased
models.
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3.1.4 Results and discussion

The results of the comprehensive study are presented in
Table 3. The analysis of the performance of the considered
classifiers leads us to the conclusion that BSIA outperforms
other methods by archiving the average GMean value equal
0.8845. We observed the slight increase of BSIA in compar-
ison to the results obtained by boosted SVM trained without
applying additionalmechanisms of active selection (BSI). To
evaluate the significance of the results, we applied the Holm–
Bonferroni method Holm (1979) that is used to counteract
the problem of multiple comparisons. First, the set of pair-
wise Wilcoxon tests is conducted to calculate the p values
for the hypothesis about the equality of medians of the both
samples. Next, the calculated p values are sorted ascending
and the following inequality is examined:

pvali ≤ FWERi , (14)

where pvali represents i-th p value in the sequence. The
factor FWERi is familywise error rate and for the given
significance level α it can be calculated using the equation:

FWERi = α

M + 1 − i
, (15)

where M is the number of tested hypothesis. If the inequality
(15) is satisfied, then the hypothesis about medians equality
is rejected. The results for the pairwise tests between BSIA
and the reference methods are presented in Table 4. For the
set of Wilcoxon test, the p values are lower than the corre-
spondingvalues FWERi for a given significance rateα equal
0.05. Therefore, with the probability equal 95%, we can say
that our approach constructs better predictors than the other
methods considered in the experimental studies. To get better
insight into the results ofGMean, we have presented the box-
plot for the best performing methods, including BSIA, see
Fig. 5. It can be noticed that BSIA outperforms all methods
and performs similarly to UB and BSI. However, it obtains
better first quartile in comparison to UB and slightly higher
value of minimum of GMean.

It is important to highlight that if we select lower sig-
nificance rate α (e.g. 0.02) we are not allowed to reject
the hypothesis that corresponds to the comparison between
BSIA and BSI. Therefore, the deeper analysis of these two
methods should be made. The computational complexity of
the training procedure for BSI is equal O(K · Nsvm · N ),
where K is the total number of base learners, Nsvm is the
maximal number of supporting vectors for each of the con-
structed SVMs and N is total number of examples in train-
ing data. For the BSIA computational complexity is equal
O(K · Nsvm,active · Nactive), where Nactive represents max-
imal number of examples selected in the active learning
procedure and Nsvm,active number of detected supporting
vectors in the reduced data. Therefore, if the number of

active examples is significantly lower than total number of
cases (Nactive << N ), the computational costs and memory
requirements for training BSIA are visibly lower.

Furthermore, we consider deeper comparison between
BSIA and BSI in the context of imbalance ratio. For this
purpose, we constructed two subsets of the training datasets
considered in the previous experiment. The first one is gained
by eliminating 10 datasets with the lowest imbalance ratio
and the second one is obtained by excluding 10 datasets with
the highest values of imbalance ratio. For the first subset,
we gained the mean value of GMean for BSIA equal 0.8924
and for BSI equal 0.8843. For the Wilcoxon test, the p value
was equal 0.0120. For the second subset of datasets the mean
value of GMean was equal 0.8913 for BSI and 0.8931 for
BSI2. The p value for that comparisonwas equal 0.2699. The
presented results show that BSIA outperforms BSIwhen the
imbalance ratio is extremely high. The high quality of BSIA
comparing to the results gained byBSIwas especially notice-
able for datasets Shuttle2vs4 (I D = 35, Imbrate = 20.50)
and Ecoli0137vs26 (I D = 42, Imbrate = 39.15) that have
high imbalance ratio, but they do not construct as biased
learner as for the other sets (see Fig. 4).

3.2 Experiment 2: the short-term loans repayment
prediction

3.2.1 Description

In this work, we also consider the problem of 30-day loans
risk assessment as a case study for the proposed classifier.
The issue of credit risk modeling was initially considered by
Durman in 1941, who first proposed the discriminant func-
tion that separates “bad” and “good” clients. Recent develop-
ments dedicated to solve the problemof constructingdecision
models that classify credit applicants make use of modern
machine learning techniques such as neural networks (West
2000), Gaussian processes (Huang 2011), SVMs (Huang et
al. 2007), or ensemble classifiers (Nanni and Lumini 2009).
The modern learning methods indicate the necessity to deal
with the imbalanced data issue (Huang et al. 2006; Zięba and
Świątek 2012), as well as with the need of constructing the
comprehensible predictors (Martens et al. 2007).

The short-term loans are typically easier to qualify for,
both in terms of income and credit rating, than other types
of credits. They are unsecured one-payment loans where no
additional collateral is required as a basis for the approval.
Moreover, the maximum loan amount varies, depending on
the lender, from few hundred to thousands of dollars, rela-
tively to the applicant’s monthly income.

Our goal is to construct the best decision model that can
be used to predict whether the applicant will be able to pay
the short-term loan. As a suitable model, we recommend to
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Table 3 Results of the experiment on the set of the benchmarks according to GMean criterion

ID IB SVM SSVM SBSVM CSVM AdaC SBO RUS SB UB BSI BSIA

1 1.82 0.0000 0.5567 0.6932 0.7140 0.7893 0.8008 0.7824 0.7518 0.7649 0.7416 0.7179

2 1.86 0.9869 0.9835 0.8327 0.9700 0.9695 0.9695 0.9765 0.9835 0.9800 0.9835 0.9800

3 1.86 0.9686 0.9758 0.9570 0.9463 0.9724 0.9633 0.9590 0.9641 0.9628 0.9728 0.9688

4 1.90 0.6963 0.7534 0.7436 0.7321 0.7159 0.7439 0.7331 0.7609 0.7602 0.7456 0.7456

5 2.00 1.0000 1.0000 1.0000 1.0000 0.9899 0.9899 0.9899 0.9798 0.9899 1.0000 1.0000

6 2.06 0.4807 0.7069 0.7481 0.7742 0.8150 0.8150 0.8557 0.8269 0.8292 0.7782 0.7994

7 2.46 0.4522 0.7057 0.7033 0.7163 0.6460 0.7070 0.7059 0.7294 0.7225 0.7245 0.7274

8 2.52 0.5409 0.7899 0.8266 0.8299 0.7953 0.7438 0.7404 0.7710 0.7758 0.8413 0.8451

9 2.52 0.9376 0.9503 0.9837 0.9744 0.9813 0.9774 0.9758 0.9701 0.9595 0.9807 0.9752

10 2.52 0.3914 0.7668 0.8173 0.8214 0.7668 0.7388 0.7747 0.7555 0.7898 0.8204 0.8206

11 2.68 0.0000 0.5529 0.6199 0.6241 0.5598 0.6302 0.6258 0.6559 0.6620 0.6421 0.6640

12 3.19 0.8828 0.8940 0.8925 0.8925 0.9231 0.9028 0.9101 0.9231 0.9054 0.9141 0.9337

13 3.23 0.9504 0.9646 0.9652 0.9779 0.9765 0.9633 0.9601 0.9638 0.9525 0.9714 0.9739

14 3.36 0.8277 0.8973 0.8894 0.8798 0.8912 0.8776 0.9115 0.9035 0.9035 0.9015 0.8953

15 4.92 0.7928 0.9888 0.9710 0.9774 0.9574 0.9690 0.9547 0.9663 0.9494 0.9801 0.9972

16 5.14 0.7746 0.9860 0.9801 0.9944 0.9464 0.9832 0.9774 0.9746 0.9663 0.9916 0.9972

17 5.46 0.7719 0.9108 0.9238 0.9188 0.8815 0.9035 0.8835 0.8801 0.8947 0.9221 0.9270

18 6.01 0.9906 0.9934 0.9944 0.9947 0.9824 0.9959 0.9914 0.9929 0.9891 0.9985 0.9954

19 6.38 0.8440 0.8948 0.8686 0.8882 0.8873 0.8347 0.9130 0.9209 0.8969 0.8857 0.8711

20 8.11 0.7653 0.9177 0.8977 0.9068 0.8918 0.8932 0.9162 0.9413 0.9311 0.9191 0.9249

21 8.77 0.4106 0.8938 0.8673 0.8377 0.8215 0.8151 0.8713 0.8687 0.8902 0.8897 0.8946

22 8.77 0.6547 0.9539 0.9625 0.9604 0.9977 0.9966 0.9703 0.9898 0.9703 0.9775 0.9944

23 9.08 0.7402 0.8941 0.8712 0.8826 0.9195 0.8770 0.9131 0.9021 0.9536 0.8920 0.8961

24 9.35 0.0000 0.7948 0.7507 0.7424 0.7810 0.7726 0.8444 0.7973 0.7907 0.7907 0.7958

25 10.10 0.9713 0.9882 1.0000 1.0000 0.9702 0.9911 0.9577 0.9861 0.9477 1.0000 0.9978

26 10.29 0.0000 0.5615 0.5751 0.6193 0.5561 0.6059 0.5980 0.6600 0.7331 0.7674 0.7492

27 10.39 0.0000 0.5710 0.5757 0.7795 0.7187 0.7689 0.7043 0.8355 0.7697 0.8123 0.8127

28 13.84 0.8062 0.9244 0.8802 0.8859 0.9274 0.8802 0.9259 0.9290 0.8866 0.9259 0.9336

29 13.87 0.9959 0.9959 0.9956 0.9956 0.9997 1.0000 1.0000 0.9997 1.0000 0.9959 0.9997

30 13.87 0.0000 0.7511 0.5432 0.6906 0.7011 0.6325 0.7351 0.6522 0.7454 0.7939 0.7738

31 15.47 0.3922 0.9067 0.8216 0.8661 0.8810 0.9192 0.9267 0.8801 0.8572 0.9292 0.9463

32 15.85 0.7015 0.9057 0.9016 0.9344 0.7967 0.9343 0.9499 0.9563 0.9599 0.9337 0.9371

33 16.68 0.0000 0.8706 0.7206 0.8603 0.6904 0.7831 0.7847 0.7796 0.7731 0.8989 0.8960

34 19.44 0.0000 0.9502 0.8743 0.8118 0.8641 0.9292 0.9885 0.8537 0.9411 0.9827 0.9769

35 20.50 0.9092 0.9959 0.9129 0.9129 0.9129 1.0000 1.0000 1.0000 1.0000 0.9129 1.0000

36 22.10 0.0000 0.6382 0.6662 0.5734 0.4208 0.4384 0.6190 0.5460 0.6424 0.6636 0.6686

37 22.81 0.0000 0.9422 0.7435 0.8125 0.9728 0.9828 0.8667 0.9195 0.9474 0.9902 0.9753

38 23.10 0.7408 0.7670 0.7408 0.6102 0.4984 0.7368 0.7705 0.7975 0.7623 0.7957 0.7966

39 28.41 0.0000 0.8125 0.6196 0.7731 0.6954 0.6600 0.8217 0.7474 0.8477 0.8141 0.8222

40 30.56 0.0000 0.6973 0.1820 0.6256 0.5771 0.5945 0.7453 0.5809 0.7149 0.7326 0.7455

41 32.78 0.2132 0.9661 0.8463 0.9401 0.8754 0.9090 0.9600 0.9630 0.9575 0.9477 0.9699

42 39.15 0.8421 0.8755 0.9665 0.7462 0.8153 0.8296 0.8121 0.8312 0.7539 0.8390 0.8966

43 39.15 0.0000 0.8763 0.7132 0.8640 0.6782 0.8019 0.8374 0.8245 0.8698 0.8887 0.9009

44 128.87 0.0000 0.6842 0.1759 0.6120 0.1753 0.1759 0.6847 0.3867 0.6904 0.7658 0.7807

AV 0.5098 0.8501 0.8003 0.8379 0.8088 0.8281 0.8596 0.8478 0.8634 0.8785 0.8845

Best results are in bold
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Table 4 Results of Wilcoxon test made between BSIA and reference
methods

Methods p value FWER Hypothesis (α = 0.05)

BSIA versus SVM 0.0000 0.0050 rejected for BSIA

BSIA versus SSVM 0.0000 0.0056 rejected for BSIA

BSIA versus SBSVM 0.0000 0.0063 rejected for BSIA

BSIA versus CSVM 0.0000 0.0071 rejected for BSIA

BSIA versus AdaC 0.0000 0.0083 rejected for BSIA

BSIA versus SBO 0.0000 0.0100 rejected for BSIA

BSIA versus UB 0.0006 0.0125 rejected for BSIA

BSIA versus RUS 0.0008 0.0167 rejected for BSIA

BSIA versus SB 0.0008 0.0250 rejected for BSIA

BSIA versus BSI 0.0255 0.0500 rejected for BSIA

Fig. 5 Boxplot for the results of the experiment on the set of the bench-
marks according to GMean criterion

apply boosted SVM trained with the active learning strategy
presented in this paper. Therefore, we examined the qual-
ity of the solution in comparison to the reference methods
on the real-life dataset gathered from a financial institution.
In the experiment, we consider the most effective methods
(basing on the results presented in Table 3) that deal with the
imbalanced data issue:UB,RUS, SSVM and BSI. The intel-
ligibility of the model is extremely important in the loan risk
management domain. Therefore, we also took into account
two comprehensible models, namely, decision rules inducer
JRip and the algorithm for constructing decision trees J48. In
addition, we applied the oracle-based procedure of decision
rules induction which makes use of the boosted SVM trained
with the active learning strategy to relabel the initial data. As
the rule inducer we used JRip (we refer this approach in the
experiment to as JRip + BSIA). Very similar approach was
applied in Craven and Shavlik (1996) for neural netoworks
and in Zięba et al. (2014) for SVMs.

Table 5 Results of the experiment for short-term loans dataset

Method TPrate TNrate Acc GMean

UB 0.6383 0.5930 0.5986 0.6153

RUS 0.4468 0.7393 0.7033 0.5747

SSVM 0.6596 0.5592 0.5716 0.6073

BSI 0.5957 0.6448 0.6387 0.6198

BSIA 0.6312 0.6388 0.6379 0.6350

JRip 0.0000 1.0000 0.8770 0.0000

J48 0.0000 1.0000 0.8770 0.0000

JRip + BSIA 0.6028 0.6537 0.6475 0.6277

Best results are in bold

The data used in the experiment were composed of 1,146
applicants, each described by 11 features including gender
and age of the client, his monthly income and applied credit
amount. We considered two-class problem in which the first
class (assumed to be negative) represented the situation in
which the consumer made timely repayment of the finan-
cial liability and the second class (positive) meant that the
client had large problems with settling the debt. We iden-
tified a strong imbalance issue with negative/positive ratio
equal 7.13.

3.2.2 Results and discussion

The results of the experiment are presented in Table 5. For the
methods that have incorporated mechanisms of dealing with
imbalance data issue, the most stable classifier was BSIA
that gained the results of T Prate, T Nrate and GMean near
0.63. The other reference algorithms were slightly biased
either towards minority class (UB, SSVM) or majority class
(RUS, BSI) and received lower GMean value than BSIA.
The comprehensible models failed completely in loan repay-
ment prediction for the considered dataset and were totally
biased toward the majority class. However, the JRip rules
inducer trained on the relabelled data by boosted SVM per-
formed comparably to the strongest “black box” imbalance
resistant models considered in the experiment. Therefore,
we can successfully obtain a comprehensible model using
the BSIA as the oracle.

4 Conclusion and future work

In this work, we proposed the novel method for construct-
ing boosted SVM that makes use of active learning strategy
to eliminate redundant instances and more properly estimate
the misclassification costs. The outlined method was com-
pared to the ensemble of SVMs as well as to other reference
methods that consider the imbalanced data issue. The results
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obtained within the experiment, i.e., on the representative
number of benchmark datasets, supported by the statistical
tests show that the presentedmodification of the training pro-
cedure improves the prediction ability of boosted SVM sig-
nificantly. We also presented the real-life case study related
to the problem of the short-term loans repayment prediction
for which our solution achieved promising results comparing
to other approaches. Moreover, we showed that our approach
can be successfully applied as the oracle for rules induction
which is an important issue in credit risk assessment.

Furthermore, we plan to adjust our model to the multi-
class problem. This issue can be handled by applying a tech-
nique that combines two-class models, e.g., one-versus-rest.
In addition, it would be beneficial to propose a tuningmethod
for finding optimal width of the “widemargin”. However, we
leave investigating these issues as future research.
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