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Abstract Biogeography-based optimization (BBO) is a
relatively new heuristic method, where a population of
habitats (solutions) are continuously evolved and improved
mainly by migrating features from high-quality solutions to
low-quality ones. In this paper we equip BBO with local
topologies, which limit that the migration can only occur
within the neighborhood zone of each habitat. We develop
three versions of localized BBO algorithms, which use three
different local topologies namely the ring topology, the
square topology, and the random topology respectively. Our
approach is quite easy to implement, but it can effectively
improve the search capability and prevent the algorithm from
being trapped in local optima. We demonstrate the effec-
tiveness of our approach on a set of well-known benchmark
problems. We also introduce the local topologies to a hybrid
DE/BBO method, resulting in three localized DE/BBO algo-
rithms, and show that our approach can improve the perfor-
mance of the state-of-the-art algorithm as well.
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1 Introduction

The complexity of real-world optimization problems gives
rise to various kinds of evolutionary algorithms (EA) such
as genetic algorithms (GA) (Holland 1992), particle swarm
optimization (PSO) (Kennedy and Eberhart 1995), differ-
ential evolution (DE) (Storn and Price 1997), etc. Drawing
inspiration from biological systems, EA typically use a pop-
ulation of candidate individual solutions to stochastically
explore the search space. As a result of the great success
of such heuristic methods, viewing various natural processes
as computations has become more and more essential, desir-
able, and inevitable (Kari and Rozenberg 2008).

Proposed by Simon (2008), biogeography-based opti-
mization (BBO) is a relatively new EA borrowing ideas from
biogeographic evolution for global optimization. Theoreti-
cally, it uses a linear time-invariant system with zero input
to model migration, emigration, and mutation of creatures
in an island (Sinha et al. 2011). In the metaheuristic algo-
rithm, each individual solution is considered as a “habitat”
or “island” with a habitat suitability index (HSI), based on
which an immigration rate and an emigration rate can be
calculated. High HSI solutions tend to share their features
with low HSI solutions, and low HIS solutions are likely to
accept many new features from high HIS solutions. BBO
has proven itself a competitive heuristic to other EA on a
wide set of problems (Simon 2008; Du et al. 2009; Song et
al. 2010). Moreover, the Markov analysis proved that BBO
outperforms GA on simple unimodal, multimodal and decep-
tive benchmark functions when used with low mutation rates
(Simon et al. 2011).

In the original BBO, any two habitats in the population
have a chance to communicate with each other, i.e, the algo-
rithm uses a global topology which is computationally inten-
sive and easy to cause premature convergence. In this paper
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we modify the original BBO by using local topologies, where
each habitat can only communicate with a subset of the popu-
lation, i.e., its neighboring habitats. We introduce three local
topologies, namely the ring topology, the square topology,
and the random topology, to BBO, and demonstrate that
our approach can achieve significant performance improve-
ment. We also test the local topologies on a hybrid algo-
rithm, namely DE/BBO (Gong et al. 2010), and show that
our approach is also useful to improve the state-of-the-art
method. To our best knowledge, the paper is the first attempt
to improve BBO by modifying its internal structure with local
topologies.

In the remainder of the paper, we first introduce the origi-
nal BBO in Sect. 2, and then discuss related work in Sect. 3.
In Sect. 4 we propose our approach for improving BBO, the
effectiveness of which is demonstrated by the experiments
in Sect. 5. Finally we conclude in Sect. 6.

2 Biogeography-based optimization

Biogeography is the science of the geographical distribu-
tion of biological organisms over space and time. MacArthur
and Wilson (1967) established the mathematical models of
island biogeography, showing that the species richness of an
island can be predicted in terms of such factors as habitat
area, immigration rate, and extinction rate. Inspired by this,
Simon (2008) developed BBO, where a solution is analo-
gous to a habitat, the solution components are analogous to
a set of suitability index variables (SIV), and the solution
fitness is analogous to the species richness or HSI of the
habitat. Central to the algorithm is the equilibrium theory of
biogeography, which indicates that high HSI habitats have a
high species emigration rate and low HSI habitats have a high
species immigration rate. For example, in a linear model of
species richness (Fig. 1), a habitat Hi ’s immigration rate λi

and emigration rate μi are calculated based on its fitness fi

as follows:

λi = I

(
1 − fi

fmax

)
(1)

I = E

HSI

ra
te

Fig. 1 A linear model of emigration and immigration rates

μi = E

(
fi

fmax

)
(2)

where fmax is the maximum fitness value among the pop-
ulation, and I and E are the maximum possible immi-
gration rate and emigration rate respectively. However,
there are other non-linear mathematical models of bio-
geography that can be used for calculating the migration
rates (Simon 2008).

Migration modifies habitats by mixing features within the
population. BBO also use a mutation operator to change
SIV within a habitat itself, and thus probably increasing
diversity of the population. For each habitat Hi , a species
count probability Pi computed from λi and μi indicates the
likelihood that the habitat was expected a priori to exist
as a solution for the problem. In this context, very high
HSI habitats and very low HSI habitats are both improb-
able, and medium HSI habitats are relatively probable.
The habitat’s mutation rate is inversely proportional to its
probability:

πi = πmax

(
1 − Pi

Pmax

)
(3)

where πmax is a control parameter and Pmax is the maximum
habitat probability in the population.

Algorithm 1 shows the general framework of BBO for
a D-dimensional numerical optimization problem (where ld
and ud are the lower and upper bounds of the dth dimension
respectively, and rand is a function generating a random
value uniformly distributed in [0,1]).

Typically, in Line 8 we can use a roulette wheel method
for selection, the time complexity of which is O(n). It is
not difficult to see that the complexity of each iteration of
the algorithm is O(n2 D + n f ), where f denotes the time
complexity of the fitness function.
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3 Related work

Since the proposal of the original BBO, several work has been
devoted to improve its performance of by incorporating fea-
tures of other heuristics. Du et al. (2009) combined BBO with
the elitism mechanism of evolutionary strategy (ES) (Beyer
and Schwefel 2002), that is, at each generation the best n
solutions from the n parents and n children as the popula-
tion are chosen for the next generation. Based on opposite
numbers theory (Tizhoosh 2005; Rahnamayan et al. 2008;
Wang et al. 2011; Ergezer et al. 2009) employed opposition-
based learning to create the oppositional BBO, which uses
a basic population together with an opposite population in
problem solving. Each basic solution has an opposite reflec-
tion in the opposite population, which is probably closer to
the expected solution than the basic one. Consequently, the
required search space can be reduced and the convergence
speed can increase.

The migration operator makes BBO be good at exploit-
ing the information of the population. Gong et al. (2010)
proposed a hybrid DE/BBO algorithm, which combines the
exploration of DE with the exploitation of BBO effectively.
The core idea is to hybridize DE’s mutation operator with
BBO’s migration operator, such that good solutions would
be less destroyed, while poor solutions can accept a lot of
new features from good solutions. In some detail, at each
iteration, each dth component of each i th solution is updated
using the following procedure (where C R is the crossover
rate, r1, r2 and r3 are mutually distinct random indices of the
population, and F is a differential weight):

Li and Yin (2012) proposed two extensions of BBO,
the first using a new migration operation based on multi-
parent crossover for balancing the exploration and exploita-
tion capability of the algorithm, and the second integrat-
ing a Gaussian mutation operator to enhance its exploration
ability.

Observing that the performance of BBO is sensitive to the
migration model, Ma et al. (2012a) proposed an approach
that equips BBO with an ensemble of migration models.
They realized such an algorithm using three parallel popula-
tions, each of which implements a different migration model.
Experimental results show that the new method generally
outperforms various versions of BBO with a single migra-
tion model.

The original BBO is for unconstrained optimization.
Ma and Simon (2011) developed a blended BBO for con-
strained optimization, which uses a blended migration oper-
ator motivated by blended crossover in GA (Mühlenbein and
Schlierkamp-Voosen 1993), and determines whether a mod-
ified solution can enter the population of the next generation
by comparing it with its parent. In their approach, an infeasi-
ble solution is always considered worse than a feasible one,
and among two infeasible solutions the one with a smaller
constraint violation is considered better.

Some recent studies (Mo and Xu 2011; Ma et al. 2012b;
Costa e Silva et al. 2012) have been carried out on the applica-
tion of BBO to multiobjective optimization problems. Those
methods typically evaluate solutions based on the concept
of Pareto optimality, use an external archive for maintain-
ing non-dominated solutions, and employ specific strategy to
improve diversity of the archive. Experiments show that they
can provide comparable performance to some well-known
multiobjective EA such as NSGA-II (Deb et al. 2002).

Boussaïd et al. (2011) developed another approach com-
bining BBO and DE, which evolves the population by
alternately applying BBO and DE iterations. Boussaïd et
al. (2012) extended the approach for constrained opti-
mization, which replaces the original mutation operator
of BBO with the DE mutation operator, and includes a
penalty function to the objective function to handle problem
constraints.

Recently Lohokare et al. (2013) proposed a new hybrid
BBO method, namely aBBOmDE, which uses a modi-
fied mutation operator to enhance exploration, introduces a
clear duplicate operator to suppress the generation of simi-
lar solutions, and embeds a DE-based neighborhood search
operator to further enhance exploitation. The improved
memetic algorithm exhibits significantly better performance
than BBO and DE and comparable performance with
DE/BBO.

All of the above work focuses on hybridization and inher-
its the global topology of the original BBO, i.e., any two
habitats in the population have a chance to communicate
with each other. Up to now, few researches have been carried
out on the improvement of internal structure of BBO. Here
we refer to PSO, the most popular swarm-based EA which
also uses a global best model in its original version, i.e., at
each iteration each particle is updated by learning from its
own memory and the very best particle in the entire pop-
ulation. However, many later researches have revealed that
the global best model shows inferior performance on many
problems and prefer to use a local best model (Kennedy
and Mendes 2006), i.e., make every particle learn from a
local best particle among its immediate neighbors rather
than the entire population. Drawing inspiration from this,
we conduct this research that introduces local topologies
to BBO.
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(a) (b) (c)

Fig. 2 Illustration of the global, the local ring and the local square topologies

4 Localized biogeography-based optimization

The original BBO uses a global topology where any two
habitats can communicate with each other: if a given habitat
is chosen for immigration, any other habitat has a chance
to be an emigrating habitat, as shown in Fig. 2a. However,
such a migration mechanism is computationally expensive.
More importantly, if one or several habitats near local optima
are much better than others in the population, then all other
solutions are very likely to accept many features from them,
and thus the algorithm is easy to be trapped into the local
optima.

A way to overcome this problem is to use a local topol-
ogy, where each individual can only communicate with its
(immediate) neighbors rather than any others in the popu-
lation. Under this scheme, as some individuals in one part
of the population interact with each other to search one
region of the solution space, another part of the popula-
tion could explore another. However, the different parts of
the population are not isolated. Instead they are intercon-
nected by some intermediate individuals, and the flow of
information can be moderately pass through the neighbor-
hood. In consequence, the algorithm can achieve a better
balance between global search (exploration) and local search
(exploitation).

4.1 Using the ring and square topologies

The first local topology we introduce to BBO is the ring
topology, where each habitat is directly connected to two
other habitats, as shown in Fig. 2b. The second is the
square topology, where the habitats are arranged in a grid
and each habitat has four immediate neighbors, as shown
in Fig. 2c.

Suppose the population of n habitats are stored in an array
or a list, the i th of which is denoted by Hi . When using
the ring topology, each Hi has two neighbors H(i−1)%n and

H(i+1)%n , where % denotes the modulo operation. In this
case, Line 8 of Algorithm 1 can be refined to the following
procedure:

For the square topology where the width of the grid is w,
the indices of the neighbors of habitat Hi are respectively
(i − 1)%n, (i + 1)%n, (i − w)%n and (i + w)%n. In this
case, Line 8 of Algorithm 1 can be refined to the following
procedure:

For both the two topologies, the complexity of each itera-
tion of the algorithm decreases to O(nD + n f ). In case that
the fitness function of the problem is not very difficult, the
BBO with the ring topology can save much computational
cost.

4.2 Using the random topology

The neighborhood size is fixed to 2 in the ring topology and 4
in the square topology. A more general approach is to set the
neighborhood size to K (0 < K < n), which is a parameter
that can be adjusted according to the properties of the problem
at hand. But how to set the topology for an arbitrary K ?
A simple way is to randomly select K neighbors for each
habitat, the result of which is called a random topology. In
the algorithm implementation, the neighborhood structure
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Table 1 The experimental results of BBO and localized BBO algorithms on test problems

ID NFE Fitness value Success rate (%)

BBO RingBBO SquareBBO RandBBO BBO RingBBO SquareBBO RandBBO

f1 150,000 2.43E+00 2.90E−01• 3.09E−01• 3.26E−01• 0 0 0 0

(8.64E−01) (1.01E−01) (1.19E−01) (1.38E−01)

f2 150,000 5.87E−01 1.96E−01• 1.95E−01• 2.09E−01• 0 0 0 0

(8.60E−02) (3.72E−02) (4.18E−02) (3.73E−92)

f3 500,000 4.23E+00 4.88E−01• 4.09E−01• 3.98E−01• 0 0 0 0

(1.73E+00) (2.09E−01) (1.58E−01) (1.58E−01)

f4 500,000 1.62E+00 7.61E−01• 6.55E−01• 7.00E−01• 0 0 0 0

(2.80E−01) (1.00E−01) (1.44E−01) (1.25E−01)

f5 500,000 1.15E+02 8.60E+01• 6.63E+01• 7.83E+01• 0 0 0 0

(3.66E+01) (2.84E+01) (3.73E+01) (3.25E+01)

f6 150,000 2.20E+00 0.00E+00• 3.33E−02• 3.33E−02• 13.3 100 96.7 96.7

(1.61E+00) (0.00E+00) (1.83E−01) (1.83E−01)

f7 300,000 3.31E−03 6.16E−03◦ 5.93E−03◦ 5.90E−03◦ 96.7 83.3 90 93.3

(3.01E−03) (3.65E−03) (3.13E−03) (2.44E−03)

f8 300,000 1.90E+00 2.44E−01• 2.35E−01• 2.04E−01• 0 0 0 0

(8.02E−01) (1.17E−01) (9.27E−02) (5.92E−02)

f9 300,000 3.51E−01 3.89E−02• 3.94E−02• 3.69E−02• 0 0 0 0

(1.40E−01) (1.73E−02) (1.18E−02) (1.06E−02)

f10 150,000 7.79E−01 1.76E−01• 1.77E−01• 1.63E−01• 0 0 0 0

(2.03E−01) (4.02E−02) (4.85E−02) (4.21E−02)

f11 200,000 8.92E−01 2.36E−01• 2.35E−01• 2.82E−01• 0 0 0 0

(1.01E−01) (7.00E−02) (8.34E−02) (8.34E−02)

f12 150,000 7.35E−02 7.32E−03• 6.29E−03• 7.71E−03• 0 0 0 0

(2.87E−02) (3.68E−03) (4.23E−03) (7.19E−03)

f13 150,000 3.48E−01 3.81E−02• 4.19E−02• 3.90E−02• 0 0 0 0

(1.23E−01) (2.81E−02) (2.87E−02) (2.71E−02)

f14 50,000 3.80E−03 3.38E−06• 3.44E−06• 1.01E−06• 13.3 50 56.7 40

(1.01E−02) (1.41E−05) (1.87-05) (4.04E−06)

f15 50,000 6.59E−03 2.42E−03• 3.52E−03• 2.99E−03• 0 0 0 0

(7.70E−03) (2.12E−03) (5.23E−03) (4.25E−03)

f16 50,000 2.61E−03 2.40E−04• 1.55E−04• 2.40E−04• 0 0 0 0

(3.85E−03) (3.71E−04) (1.51E−04) (4.87E−04)

f17 50,000 4.71E−03 5.78E−04• 3.90E−04• 6.61E−04• 0 0 0 0

(1.18E−02) (9.65E−04) (7.37E−04) (1.05E−03)

f18 50,000 9.30E−01 3.44E−03 3.50E−03 2.54E−03 0 0 0 0

(4.93E+00) (7.08E−03) (6.32E−03) (4.54E−03)

f19 50,000 2.59E−04 2.19E−05• 1.41E−05• 2.49E−05• 0 0 0 0

(2.37E−04) (3.62E−05) (1.66E−05) (1.97E−05)

f20 50,000 2.83E−02 3.99E−03• 7.95E−03• 3.36E−05• 0 0 0 0

(5.12E−02) (2.17E−02) (3.02E−02) (3.63E−05)

f21 20,000 5.08E+00 2.70E+00• 2.95E+00• 3.60E+00• 0 0 0 0

(3.40E+00) (3.39E+00) (3.63E+00) (3.67E+00)

f22 20,000 4.25E+00 3.14E+00 3.91E+00 2.32E+00• 0 0 0 0

(3.44E+00) (3.41E+00) (3.48E+00) (3.34E+00)
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Table 1 continued

ID NFE Fitness value Success rate (%)

BBO RingBBO SquareBBO RandBBO BBO RingBBO SquareBBO RandBBO

f23 20,000 5.01E+00 3.64E+00• 2.55E+00• 1.98E+00• 0 0 0 0

(3.37E+00) (3.48E+00) (3.36E+00) (3.31E+00)

Win 20 vs 1 20 vs 1 21 vs 1

In column 3–5, • means that the localized BBO has statistically significant improvement over BBO and ◦ vice versa (at 95 % confidence level). The
last row compares the number of problems on which the algorithm outperform BBO and vice versa. In table column 2–5, the upper part of each
cell corresponds to the mean best and the lower part corresponds to the standard deviation

can be saved in an n × n matrix Link: if two habitats Hi and
Hj are directly connected then Link(i, j) = 1, otherwise
Link(i, j) = 0.

However, such an approach has the following limitations:

– K has to be an integer, which limits the adjustability of
the parameter.

– All habitats in the population have the same number of
neighbors. But for an EA modeling a social network, it
can be better that some individuals have more informants
while others have less (Kennedy and Mendes 2006).

A more effective way is to make that each habitat
has probably K neighbors. This gives a Bernoulli distri-
bution where any value between 0 ∼ (n − 1) is pos-
sible, such that all possible topologies may appear. Pre-
cisely, the probability of any two habitats being connected
is K/(n − 1), and thus we can use the following procedure
for setting the topology with an expected neighborhood size
of K :

The random topology provides enough diversification
for effectively dealing with multimodal problems, but its
neighborhood structure should be dynamically changed
according to the state of convergence. There are differ-
ent strategies, such as resetting the neighborhood structure
at each iteration, after a certain number of iterations, or
after one or a certain number of non-improvement itera-
tions. Empirically, we suggest setting K to a value between
2 and 4 and resetting the neighborhood structure when
the best solution has not been improved after a whole
iteration.

Algorithm 2 presents the framework of such a localized
BBO with the random topology.

5 Computational experiments

5.1 Benchmark functions and experimental settings

We test the localized BBO algorithms on a set of well-known
benchmark functions from Yao et al. (1999), denoted as
f1 ∼ f23, which span a diverse set of features of numerical
optimization problems. f 1 ∼ f13 are high dimensional and
scalable problems, and f14 ∼ f23 are low dimensional prob-
lems with a few local minima. For the high dimensional f8

and all the low dimensional functions that have non-zero opti-
mal values, in the experiments we simply add some constants
to the objectives such that their best fitness values become 0.

The experiments are conducted on a computer of Intel
Core i5-2520M processor and 4 GB memory. For a fair
comparison, all the algorithms use the same population size
n = 50 and the same maximum number of function evalua-
tions (NFE) preset for each test problem. For the local BBO
with the random topology we set K = 3. Every algorithm
has been run on each problem for 60 times with different
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Fig. 3 Converge curves of the BBO and localized BBO algorithms on test functions f1∼ f13. The horizontal axis denotes the number of algorithm
iterations and the vertical axis denotes the mean best fitness
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Table 2 The experimental results of DE, DE/BBO and localized DE/BBO algorithms on test problems

ID NFE Fitness value Success rate (%)

DE DE/BBO RingDB SquareDB RandDB DE DE/BBO RingDB SquareDB RandDB

f1 150,000 2.69E−51 5.48E−57+ 2.96E−83•+ 1.92E−71•+ 5.92E−70•+ 100 100 100 100 100

(7.28E−51) (6.70E−57) (4.40E−83) (1.49E−70) (4.01E−69)

f2 150,000 8.38E−28 5.27E−33+ 3.04E−50•+ 4.79E−49•+ 6.59E−47•+ 100 100 100 100 100

(1.20E−27) (2.63E−33) (2.56E−50) (2.63E−48) (3.59E−46)

f3 500,000 1.09E−178 2.93E−198 1.79E−285 4.41E−225 5.81E−216 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f4 500,000 9.89E+00 1.84E−09+ 2.32E−05◦ 3.47E−05 6.63E−05◦ 0 96.7 80 56.7 63.3

(4.33E+00) (1.01E−08) (7.84E−05) (1.36E−04) (2.40E−04)

f5 500,000 1.46E+01 2.57E+02− 2.60E+02− 2.63E+02◦− 2.62E+02◦− 0 0 0 0 0

(4.13E+00) (6.17E−01) (1.37E+01) (6.84E−01) (1.41E+01)

f6 50,000 3.33E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 96.7 100 100 100 100

(1.83E−01) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f7 300,000 7.22E−03 5.66E−03 1.77E−03•+ 1.81E−03•+ 1.60E−03•+ 70 83.3 100 100 100

(5.49E−03) (4.03E−03) (1.42E−03) (1.11E−03) (9.62E−04)

f8 300,000 4.99E+02 0.00E+00+ 0.00E+00+ 0.00E+00+ 0.00E+00+ 10 100 100 100 100

(3.0E+02) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f9 300,000 1.32E+01 0.00E+00+ 0.00E+00+ 0.00E+00+ 0.00E+00+ 0 100 100 100 100

(3.62E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f10 150,000 7.19E−15 5.30E−15+ 4.47E−15•+ 4.23E−15•+ 4.59E−15•+ 100 100 100 100 100

(1.95E−15) (1.74E−15) (1.23E−15) (9.01E−16) (1.35E−15)

f11 150,000 2.96E−03 0.00E+00+ 0.00E+00+ 0.00E+00+ 0.00E+00+ 100 100 100 100 100

(5.31E−03) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f12 150,000 2.00E−32 1.57E−32 1.57E−32 1.57E−32 1.57E−32 100 100 100 100 100

(1.02E−32) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f13 150,000 3.30E−18 1.35E−32 1.35E−32 1.35E−32 1.35E−32 100 100 100 100 100

(1.81E−17) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f14 10,000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f15 40,000 5.53E−19 7.39E−05− 1.35E−04− 1.27E−04− 1.33E−04− 100 20 3.33 13.3 13.3

(9.16E−20) (8.76E−05) (1.31E−04) (1.26E−04) (1.87E−04)

f16 10,000 1.22E−13 1.22E−13 1.22E−13 1.22E−13 1.22E−13 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f17 10,000 1.74E−16 1.74E−16 1.74E−16 1.74E−16 1.74E−16 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f18 10,000 9.59E−14 9.59E−14 9.59E−14 9.59E−14 9.59E−14 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f19 10,000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f20 10,000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 100 100 100 100

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

f21 10,000 1.68E−01 2.49E−01 4.59E−01 2.56E−01 1.20E−01 96.7 96.7 90 93.3 93.3

(9.22E−01) (1.36E+00) (1.75E+00) (1.36E+00) (5.17E−01)

f22 10,000 1.81E−10 1.81E−10 1.81E−10 1.81E−10 1.81E−10 100 100 100 100 100

(8.95E−16) (6.73E−16) (7.99E−16) (6.73E−16) (8.95E−16)
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Table 2 continued

ID NFE Fitness value Success rate (%)

DE DE/BBO RingDB SquareDB RandDB DE DE/BBO RingDB SquareDB RandDB

f23 10,000 2.00E−15 2.00E−15 2.13E−15 1.78E−15 2.07E−15 100 100 100 100 100

(5.42E−16) (5.42E−16) (7.23E−16) (0.00E+00) (6.73E−16)

Win 4 vs 1 4 vs 1 4 vs 2

7 vs 2 7 vs 2 7 vs 2 7 vs 2

In table column 2–6, the upper part of each cell corresponds to the mean best and the lower part corresponds to the standard deviation. In column
4–6, • means that the localized BBO has statistically significant improvement over DE/BBO and ◦ vice versa; In column 3–6, + means that the
algorithm has statistically significant improvement over DE and − vice versa (at 95 % confidence level). The last row compares the number of
problems on which the algorithm outperform DE/BBO and vice versa, and the last row compares the number of problems on which the algorithm
outperform DE and vice versa

random seeds, and the resulting mean best fitness values and
the success rate (with respect to the required accuracies) are
averaged over 60 runs. The required accuracies are set to
10−8 for 22 test functions expect 10−2 for f7 (Suganthan et
al. 2005).

5.2 Comparative experiments for BBO with global
and local topologies

We first compare our three versions of localized BBO,
denoted by RingBBO, SquareBBO and RandBBO respec-
tively, with the basic BBO (for which we use program code
from http://academic.csuohio.edu/simond/bbo). For all the
four algorithms, we set I = E = 1. We also set πmax to 0.01
for BBO, but 0.02 for localized BBO to increase the chance
for mutation since the local topologies decrease the impact
of migration.

Table 1 presents the mean bests and success rates of the
four BBO on the test functions. As we can see, the mean
best fitness values of the three localized BBO algorithms are
always better than BBO on all the functions except f7. In par-
ticular, on high dimensional functions except f7, the mean
bests of the localized BBO are typically about 1−20 % of that
of the BBO. The localized BBO also have obvious improve-
ment of the success rates on functions f6 and f14. The BBO
achieves better mean best fitness only on f7, but in terms
of success rate there is no significant difference between the
BBO and localized BBO.

We have performed paired t-tests on the mean values of
the BBO and localized BBO. As the results show, RingBBO
and SquareBBO have significant improvement over the BBO
on 20 functions, and RandBBO has significant improvement
on 21 functions. There are no significant differences between
the four algorithms on function f17, which is low dimensional
and is one of the simplest functions among the test problems.
BBO is significantly better only on f7.

Moreover, Fig. 3a–m respectively present the convergence
curves of the four algorithms on high dimensional functions

f1 − f13. From the curves we can see that, on all the func-
tions except f7, the three localized BBO have obvious advan-
tages in convergence speed. There are no obvious differences
between the convergence speeds of the three localized BBO.

Quartic function f7 is the only function on which the BBO
has performance advantage over the localized BBO, but the
advantage is not very significant. Note that f7 is a noisy
function with one minima, where the noise is a random value
uniformly distributed in [0,1]. For such a relatively simple
function, the BBO with global communication topology is
more capable of tolerating noises. However, since the Ring-
BBO and SquareBBO have low time complexity and it is
not expensive to evaluate f7, when given the same computa-
tional time, we observe that the RingBBO and SquareBBO
still achieve better result than the BBO. For most functions
without noises and multimodal functions, the local topolo-
gies have much more advantages.

On the other hand, there are no statistically significant
differences between the three versions of localized BBO.
Roughly speaking, the performance of the RandBBO is better
than the RingBBO and SquareBBO, but RandBBO consumes
a bit more computational cost. On most high dimensional
problems, SquareBBO is slightly better than RingBBO in
terms of mean best fitness, but RingBBO is better in terms of
standard deviation. In other words, all of the three localized
BBO provide performance improvement over the BBO; the
improvement of RandBBO and SquareBBO is more obvious,
and RingBBO is expected to be more stable.

5.3 Comparative experiments for DE/BBO with global
and local topologies

As described in the related work, the DE/BBO (Gong et al.
2010) balances the exploration of DE with the exploitation
of BBO by hybridizing DE mutation with BBO migration.
In order to show that the local topologies can also improve
the state-of-the-art hybrid BBO, we develop three new ver-
sions of DE/BBO by introducing the ring, square, and random
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Fig. 4 Converge curves of the BBO and localized BBO algorithms on test functions f1∼ f13. The horizontal axis denotes the number of algorithm
iterations and the vertical axis denotes the mean best fitness
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topologies, denoted by RingDB, SquareDB, and RandDB
respectively. For parameters concerning with DE scheme,
we set F = 0.5 and C R = 0.9.

We respectively run the DE, DE/BBO, RingDB,
SquareDB, and RandDB for 60 times on the set of 23 func-
tions, the results of which are shown in Table 2. As we can
see, on f1, f2, f3, f7 and f10, the mean bests obtained by the
three local DE/BBO algorithms are better than the original
DE/BBO with the default global topology; on the contrary,
performance of DE/BBO is slightly better only on two uni-
modal functions f4 and f5, but the advantages are not very
obvious. Since DE/BBO scheme is very efficient for multi-
modal functions, all of the four DE/BBO algorithms reach
the true (or very near true) optima on functions such as f8,
f9, f11, f12 and f13.

Statistical tests show that, the three localized DE/BBO
have significant performance improvement over DE/BBO
on four high dimensional functions, and DE/BBO has
significant improvement over RingDB and RandDB on
f4 and over SquareDB and RandDB on f5. In compari-
son with DE, the four versions of DE/BBO have signif-
icant performance improvement on five high dimensional
functions, and DE has significant improvement over the
DE/BBO algorithms only on high dimensional f5 and low
dimensional f15. Moreover, on f7 DE and the original
DE/BBO have no significant difference, but the three local-
ized DE/BBO have significant performance improvement
over DE.

The convergence curves presented in Fig. 4a–m also show
that, the four DE/BBO algorithms converge faster than DE
on 12 high dimensional functions except f5; the DE/BBO
algorithms have similar convergence speed on f4 and f5, but
the three localized DE/BBO converge faster than DE/BBO
on the remaining 11 functions.

Similarly, there are no statistically significant differences
between the three versions of localized DE/BBO. However,
the performance of RingDB is slightly better than SquareDB
and RandDB on some high dimensional problems. This is
mainly because that, the DE search method enhances the
global information sharing in the population and provides
good exploration capability, and a large neighborhood size
(such as in SquareDB) or random topology is not very impor-
tant for hybrid DE/BBO. A local topology can effectively
enhance the BBO’s exploitation capability, and the combi-
nation of DE and BBO with the ring topology can provide a
promising search capability.

6 Conclusion

Biogeography-based optimization is a relatively new bio-
inspired EA which has proven its quality and versatility
on a wide range of optimization problems. Although many

researches have been devoted to improve the performance
of BBO, most of them focus on combining with opera-
tors of some other heuristic methods and thus increase the
difficulty of implementation. In this paper we propose a
new approach to improve BBO by simply replacing the
global topology of BBO with a local topology. Under this
scheme, as some individuals in one part of the population
interact with each other to search one region of the solu-
tion space, another part of the population could explore
another, and the flow of information can be moderately pass
through the neighborhood. Thus our method can achieve a
much better balance between exploration and exploitation.
The main contributions of the paper can be summarized as
follows:

1. To our best knowledge, it is the first attempt to improve
BBO with local topologies, which not only effectively
improves the algorithm’s search capability and avoid pre-
mature convergence, but also is much easier to implement
than other hybrid approaches.

2. The localized approach has also been successfully used
to greatly improve a hybrid DE/BBO method. Also,
we believe that our approach can be utilized to further
improve other enhanced BBO methods, such as Li and
Yin (2012); Ma et al. (2012a); Lohokare et al. (2013),
etc.

3. The localized approach can be very useful in design-
ing new BBO-based heuristics, including those for con-
strained, multiobjective, and/or combinatorial optimiza-
tion.

Currently, we are testing the hybridization of our local-
ized BBO with ES and PSO. Another ongoing work is the
parallelization of our BBO algorithms, which is much easier
to implement on local topologies than on a global one (Zhu
2010).

In this paper we study three local topologies: ring, square,
and random. There are many other interesting neighborhood
topologies that are worth to study (Mendes et al. 2004).
But we still have an intense interest in the random topol-
ogy, especially in the dynamic changes of the topology
within a single run of the algorithm. For example, how
can we adaptively vary the neighborhood size K during
the search to achieve better performance improvement? Or
can we dynamically and randomly change the neighbor-
hood structure, as dictated by the topic of variable neigh-
borhood search (Mladenović and Hansen 1997)? All of these
require deep theoretical analysis and extensive computational
experiments.
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