Skip to main content

Advertisement

Log in

Improving fuzzy cognitive maps learning through memetic particle swarm optimization

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Fuzzy cognitive maps constitute a neuro-fuzzy modeling methodology that can simulate complex systems accurately. Although their configuration is defined by experts, learning schemes based on evolutionary and swarm intelligence algorithms have been employed for improving their efficiency and effectiveness. This paper comprises an extensive study of the recently proposed swarm intelligence memetic algorithm that combines particle swarm optimization with both deterministic and stochastic local search schemes, for fuzzy cognitive maps learning tasks. Also, a new technique for the adaptation of the memetic schemes, with respect to the available number of function evaluations per application of the local search, is proposed. The memetic learning schemes are applied on four real-life problems and compared with established learning methods based on the standard particle swarm optimization, differential evolution, and genetic algorithms, justifying their superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clerc M (2006) Particle Swarm Optimization. ISTE Ltd

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1): 58–73

    Article  Google Scholar 

  • Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, London

    Google Scholar 

  • Craiger JP, Goodman DF, Weiss RJ, Butler A (1996) Modeling organizational behavior with fuzzy cognitive maps. J Comput Intell Organ 1: 120–123

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • Fan SKS, Liang YC, Zahara E (2004) Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Eng Optim 36(4): 401–418

    Article  Google Scholar 

  • Fons S, Achari G, Ross T (2004) A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park. J Intell Fuzzy Syst 15(2): 75–88

    Google Scholar 

  • Georgopoulos V, Malandraki G, Stylios C (2003) A fuzzy cognitive map approach to differential diagnosis of specific language impairment. Artif Intell Med 29(3): 261–278

    Article  Google Scholar 

  • Groumpos PP, Stylios CD (2000) Modelling supervisory control systems using fuzzy cognitive maps. Chaos Solit Fractals 11: 329–336

    Article  MATH  MathSciNet  Google Scholar 

  • Hart WE (1994) Adaptive global optimization with local search. PhD thesis, University of California, San Diego, USA

  • Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for the behavioral analysis. Artif Intell Rev 12(4): 265–319

    Article  MATH  Google Scholar 

  • Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8: 212–229

    Article  MATH  Google Scholar 

  • Juang CF (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B Cybern 34(2): 997–1006

    Article  Google Scholar 

  • Juang CF, Hsu CH (2005) Temperature control by chip-implemented adaptive recurrent fuzzy controller designed by evolutionary algorithm. IEEE Trans Circuits Syst 25(11): 2376–2384

    Google Scholar 

  • Kennedy J, Eberhart RC (2001) Swarm intelligence. MorganKaufmann Publishers, San Francisco

    Google Scholar 

  • Khan F (1994) The physics of radiation therapy. Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan MS, Khor S, Chong A (2004) Fuzzy cognitive maps with genetic algorithm for goal-oriented decision support. Int J Uncertain Fuzziness Knowledge-based Syst 12: 31–42

    Article  Google Scholar 

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24: 65–75

    Article  MATH  Google Scholar 

  • Kosko B (1997) Fuzzy engineering. Prentice Hall, New York

    MATH  Google Scholar 

  • Koulouriotis DE, Diakoulakis IE, Emiris DM (2001) Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior. In: Proceedings of 2001 IEEE congress Evol Comp, Seoul, Korea

  • Koulouriotis DE, Diakoulakis IE, Emiris DM, Antonidakis EN, Kaliakatsos IA (2003) Efficiently modeling and controlling complex dynamic systems using evolutionary fuzzy cognitive maps. Int J Comput Cogn 1(2): 41–65

    Google Scholar 

  • Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. PhD thesis, University of the West of England, Bristol, UK

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans Evol Comput 9(5): 474–488

    Article  Google Scholar 

  • Land MWS (1998) Evolutionary algorithms with local search for combinatorical optimization. PhD thesis, University of California, San Diego, USA

  • Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evol Comput 12(3): 273–302

    Article  Google Scholar 

  • Merz P (1998) Memetic algorithms for combinatorial optimization: fitness landscapes and effective search strategies. PhD thesis, Department of Electrical Engineering and Computer Science, University of Siegen, Germany

  • Michalewicz Z (1999) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    Google Scholar 

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report C3P Report 826, Caltech Concurrent Computation Program, California, USA

  • Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F(eds) New ideas in optimization. McGraw-Hill, London, pp 219–235

    Google Scholar 

  • Ong YS, Keane AJ (2004) Meta-lamarkian learning in memetic algorithms. IEEE Trans Evol Comput 8(2): 99–109

    Article  Google Scholar 

  • Papageorgiou EI, Parsopoulos KE, Groumpos PP, Vrahatis MN (2004) Fuzzy cognitive maps learning through swarm intelligence. In: Rutkowski L, Siekmann J, Tadeusiewicz R, Zadeh LA(eds) Lecture Notes in Computer Science (LNAI), vol 3070. Springer, Heidelberg, pp 344–349

    Google Scholar 

  • Papageorgiou EI, Stylios CD, Groumpos PP (2004) Active hebbian learning algorithm to train FCMs. Int J Approx Reason 37(3): 219–249

    Article  MATH  MathSciNet  Google Scholar 

  • Papageorgiou EI, Parsopoulos KE, Stylios CD, Groumpos PP, Vrahatis MN (2005) Fuzzy cognitive maps learning using particle swarm optimization. J Intell Inf Syst 25(1): 95–121

    Article  Google Scholar 

  • Parsopoulos KE, Vrahatis MN (2002a) Initializing the particle swarm optimizer using the nonlinear simplex method. In: Grmela A, Mastorakis NE (eds) Ad\ces in intelligent systems, fuzzy systems, evolutionary computation. WSEAS Press, pp 216–221

  • Parsopoulos KE, Vrahatis MN (2002b) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2–3): 235–306

    Article  MATH  MathSciNet  Google Scholar 

  • Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3): 211–224

    Article  MathSciNet  Google Scholar 

  • Parsopoulos KE, Vrahatis MN (2007) Parameter selection and adaptation in unified particle swarm optimization. Math Comput Modell 46(1–2): 198–213

    Article  MATH  MathSciNet  Google Scholar 

  • Parsopoulos KE, Papageorgiou EI, Groumpos PP, Vrahatis MN (2004a) Recent advances in fuzzy cognitive maps learning using evolutionary computation techniques. In: Proceedings of the 1st international conference “From Scientific Computing to Computational Engineering” (IC-SCCE 2004), Athens, Greece

  • Parsopoulos KE, Papageorgiou EI, Groumpos PP, Vrahatis MN (2004b) Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In: Lecture Notes in Computer Science (LNCS), vol 3102. Springer, Heidelberg, pp 402–413

  • Petalas YG, Papageorgiou EI, Parsopoulos KE, Groumpos PP, Vrahatis MN (2005) Fuzzy cognitive maps learning using memetic algorithms. In: Proceedings of the international conference of “Computational Methods in Sciences and Engineering” (ICCMSE 2005), pp 1420–1423

  • Petalas YG, Parsopoulos KE, Papageorgiou EI, Groumpos PP, Vrahatis MN (2007a) Enhanced learning in fuzzy simulation models using memetic particle swarm optimization. In: IEEE 2007 Swarm Intelligence Symposium (SIS’07), Hawaii, USA, pp 16–22

  • Petalas YG, Parsopoulos KE, Vrahatis MN (2007b) Memetic particle swarm optimization. Ann Oper Res 156(1): 99–127

    Article  MATH  MathSciNet  Google Scholar 

  • Plagianakos VP, Vrahatis MN (2002) Parallel evolutionary training algorithms for “hardware-friendly” neural networks. Nat Comput 1(2–3): 307–322

    Article  MATH  MathSciNet  Google Scholar 

  • Rao SS (1992) Optimization: theory and applications. Wiley Eastern, London

    Google Scholar 

  • Solis F, Wets R (1981) Minimization by random search techniques. Math Oper Res 6: 19–30

    Article  MATH  MathSciNet  Google Scholar 

  • Stach W, Kurgan L, Pedrycz W (2005) Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst 153(3): 371–401

    MATH  MathSciNet  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11: 341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Styblinski MA, Meyer BD (1988) Fuzzy cognitive maps, signal flow graphs, and qualitative circuit analysis. In: Proceedings of 2nd IEEE international conference in neural networks, San Diego, USA, pp 549–556

  • Stylios CD, Groumpos PP (1998) The challenge of modelling supervisory systems using fuzzy cognitive maps. J Intell Manufact 9: 339–345

    Article  Google Scholar 

  • Stylios CD, Groumpos PP (2000) Fuzzy cognitive maps in modeling supervisory control systems. J Intell Fuzzy Syst 8(2): 83–98

    Google Scholar 

  • Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern 34: 159–165

    Article  Google Scholar 

  • Stylios CD, Georgopoulos V, Groumpos PP (1999) Fuzzy cognitive map approach to process control systems. J Adv Comp Intell 3(5): 409–417

    Google Scholar 

  • Taber R (1991) Knowledge processing with fuzzy cognitive maps. Expert Syst Appl 2: 83–87

    Article  Google Scholar 

  • Taber R (1994) Fuzzy cognitive maps model social systems. AI Experts 9: 8–23

    Google Scholar 

  • Törn A, Žilinskas A (1989) Global optimization. Springer, Berlin

    MATH  Google Scholar 

  • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85: 317–325

    Article  MATH  MathSciNet  Google Scholar 

  • Wells D, Niederer J (1998) A medical expert system approach using artificial neural networks for standardized treatment planning. Int J Radiat Oncol Biol Phys 41(1): 173–182

    Google Scholar 

  • Willoughby T, Starkschall G, Janjan N, Rosen I (1996) Evaluation and scoring of radiotherapy treatment plans using an artificial neural network. Int J Radiat Oncol Biol Phys 34(4): 923–930

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Vrahatis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petalas, Y.G., Parsopoulos, K.E. & Vrahatis, M.N. Improving fuzzy cognitive maps learning through memetic particle swarm optimization. Soft Comput 13, 77–94 (2009). https://doi.org/10.1007/s00500-008-0311-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0311-2

Keywords

Navigation