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Abstract
Turnpike phenomena of nonlinear port-Hamiltonian descriptor systems under mini-
mal energy supply are studied. Under assumptions on the smoothness of the system
nonlinearities, it is shown that the optimal control problem is dissipative with respect
to a manifold. Then, under controllability assumptions, it is shown that the optimal
control problem exhibits a manifold turnpike property.

Keywords Turnpike phenomenon · Nonlinear systems · Port-Hamiltonian systems

1 Introduction

This paper is concernedwith turnpike phenomena. These phenomenawere first noticed
in the context of economics [1, 2] and have since been observed in many different
situations, see, e.g., [3–5] and the references therein. Turnpike phenomena are studied
in optimal control problems, where the goal is the minimization of a cost functional
C(u). Here, the function u acts as the control of a system of interest. In many cases,
it can be observed that an optimal control u∗ will, for a majority of the time horizon,
steer the associated state trajectory x∗ to a point [6–8], a set [4, 5, 9] or, as in our case,
a manifold [10]. In other words, optimal solutions depend mainly on the underlying
system and the optimization objective and are more or less independent on the choice
of the time horizon and other data, such as initial or final values. The behaviour is
reminiscent of an observation from daily life: when traveling a long distance by car,
it is usually faster to take a detour via a turnpike than to choose a more direct way on
slower streets. Also, the chosen turnpike usually does not heavily depend on the start
and end of the route. If one would start the journey a few blocks away, then the fastest
path would remain more or less the same.
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Here, we consider a special class of systems called port-Hamiltonian (pH) systems.
Parts of the origins of port-Hamiltonian systems date back to the late 1950s [11], and
the interested reader is referred to [12] for an overview on the origins of this system
class. Despite their long history, they continue to be the focus of active research [13–
18]. Arguably, the key feature of pH systems is their modeling perspective: they focus
on taking energy as the lingua franca between subsystems. As a consequence, the class
of pH systems is a promising class for modeling real-world processes [18]. Benefits of
port-Hamiltonian models include inherent stability and passivity, the invariance under
Galerkin projection and congruence transformation, and the possibility to interconnect
multiple pH systems in a structure-preserving manner.

When pH systems are considered in an optimal control setting, the objective of
minimizing the supplied energy is quite natural. This results in a cost term of the form∫ T
0 y(t)Tu(t) dt , where y is a collocated observation of the system, and renders the
corresponding optimal control problem singular. In [19, 20], the authors have con-
sidered this objective for linear time invariant port-Hamiltonian (descriptor) systems.
They have shown that the optimal control problem has a measure turnpike property
with respect to the part of the state space where dissipation is present, given by the
kernel of the matrix corresponding to the non-conservative system dynamics. The
infinite-dimensional linear case is discussed in [21]. In this paper, we are concerned
with the finite-dimensional nonlinear case. We show that, under smoothness assump-
tions on the nonlinearities and controllability assumptions on the system, nonlinear
pH descriptor systems admit a turnpike phenomenon with respect to a submanifold of
R
n . This submanifold corresponds, as in the linear case, to the energy dissipating part

of the state space.
The structure of this paper is as follows. In Sect. 2, we recall the definition of port-

Hamiltonian systems and state the optimal control problem that is considered. After
that, a short repetition of results on submanifolds of Rn follows in Sect. 3. In Sect. 4,
we define manifold dissipativity andmanifold turnpikes following [10] and recall that,
under weak assumptions, manifold dissipativity implies a manifold turnpike property.
Section5 contains the main results of this work, where the previously established
results are applied to finite-dimensional nonlinear port-Hamiltonian descriptor sys-
tems. The theoretical results are then illustrated by a numerical example in Sect. 6.
Finally, in Sect. 7 a conclusion is drawn and an outlook on future research is given.

The paper is supplemented by an appendix which collects existence results for the
appearing differential algebraic equations and optimization problems.

Notation

For a set Z ⊆ R
n we define Z◦ as the interior of Z . We denote the Euclidean norm

by ‖ · ‖, other p-norms by ‖ · ‖p, and define the distance of a point x ∈ R
n to

the set M ⊆ R
n as dist(x,M) := inf p∈M ‖x − p‖. We denote the set of all k-

times continuously differentiable functions from U to V by Ck(U , V ) and define
C(U , V ) := C0(U , V ). When the spacesU and V are clear from context, we say that
f ∈ Ck(U , V ) is of class Ck . The derivative of a function f at point x is denoted by
Dfx . Further, for a matrix A ∈ R

n,n we write A � 0 if xTAx ≥ 0 for all x ∈ R
n ,
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and A 	 0 if xTAx > 0 for all x ∈ R
n\{0}, where ·T denotes the transpose. The

kernel and range of the matrix A are denoted by ker(A) and ran(A), respectively.
The non-negative square-root of a positive semidefinite matrix A is denoted by A1/2.
Often, we suppress the time dependency of functions and write z instead of z(t).

2 Preliminaries and problem setting

Following the definition of [18], we consider nonlinear port-Hamiltonian descriptor
systems of the form

E(x)ẋ = (J (x) − R(x))η(x) + B(x)u,

y = B(x)Tη(x).
(pH)

Here, x , u and y are the state, input and output of the system, respectively. We
restrict our analysis to pH systems without feedthrough but note that the discussion
can be extended to systems with a feedthrough term as introduced in [18].We consider
the state space Rn and a set of admissible controls Uad and require that

E, J , R ∈ C(Rn,Rn,n), η ∈ C(Rn,Rn) and B ∈ C(Rn,Rn,m).

Further, the functions J and R have to satisfy J (x) = −J (x)T and R(x) = R(x)T � 0
for all x ∈ R

n . We assume that the system (pH) is associated with a Hamiltonian
H ∈ C1(Rn,R)which is bounded from below along any solution of (pH) and satisfies

d

dx
H(x) = E(x)Tη(x)

for each x ∈ R
n . As in [18], we may assume thatH is nonnegative along any solution

of (pH), since otherwise we can add its infimum along solutions of (pH). A brief
discussion regarding the existence of solutions of (pH) is given in the appendix.

Remark 1 We only consider pH systems which do not explicitly depend on time. The
definition given here can be generalized to include explicit time dependence, but these
systems can easily be made autonomous [18, Remark 4.2].

When it comes to the optimal control of port-Hamiltonian systems, the cost func-
tional should take into account that pH systems stem from using energy as the lingua
franca. Hence, choosing the supplied energy as the optimization objective is quite
natural. For this, usually the impedance supply yTu is considered, which is related
to the scattering supply ‖u‖2 − ‖y‖2 via the Cayley transform [22]. We focus on the
former and thus consider the optimal control problem

min
u∈Uad

CpH,T (u) :=
∫ T

0
yTu dt

subject to the dynamics (pH)and

x(0) = x0, x(T ) = xT .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(pH OCPT )
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Here and in the following, we assume x0, xT ∈ K , where K ⊆ R
n is a compact

set. Further, as we are interested in the properties of optimal solutions to (pH OCPT ),
throughout the paper we assume that an optimal solution u∗ and a corresponding
trajectory x∗ exist. The existence of optimal controls is shortly discussed in the
appendix.

It can be shown [18] that the power-balance equation

d

dt
H(x) = −η(x)TR(x)η(x) + yTu (1)

holds along any solution x of (pH). This allows us to rewrite the cost functional
CpH,T (u) as

CpH,T (u) = H(xT ) − H(x0) +
∫ T

0
‖R(x)1/2η(x)‖2 dt .

This equation is called the energy-balance equation, and we can interpret each of the
terms physically [23]. The termH(xT )−H(x0)measures the conserved energy, while
the integral term corresponds to the dissipated energy. By rearranging and plugging
in the definition of CpH,T , we see that

H(xT ) − H(x0) =
∫ T

0
yTu − ‖R(x)1/2η(x)‖2 dt .

Note that this implies dissipativity in the sense of Willems [24], and as a consequence
shows the aforementioned passivity of pH systems.Wewill use both of these equations
in Sect. 5.

3 Submanifolds ofRn and the orthogonal projection

This section repeats mostly well-known results regarding submanifolds of Rn , with
a focus on manifolds defined as the zero locus of some smooth function. The main
result of the section is Lemma 5, which provides an upper bound for the distance of a
point to such a manifold.

We begin with recalling the classical definition of submanifolds of Rn . Following
[25, 26], we distinguish manifolds whose tangent spaces locally satisfy a Lipschitz
condition.

Definition 2 (submanifolds of Rn)

• Let M be a subset of Rn . We call M an s-dimensional Ck manifold if for each
p ∈ M there exists an open neighborhood U of p and a Ck diffeomorphism
φ : U → φ(U ) ⊆ R

n such that

M ∩U = {x ∈ U | φs+1(x) = · · · = φn(x) = 0}.

The function φ is called a local coordinate system of M at p.
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• Let M ⊆ R
n be an s-dimensional manifold, p ∈ M and let φ : U → R

n be a
local coordinate system of M at p. We define the tangent space at p relative to
M as

TpM := Dφ−1
φ(p)(

{
y ∈ R

n
∣
∣ ys+1 = · · · = yn = 0

}
).

The space NpM := TpM⊥ is called the normal space at p relative toM.
• We call M ⊆ R

n an s-dimensional Ck,1 manifold if M is an s-dimensional Ck

manifold and for all p ∈ M there exists a set V ⊆ M that is open relative to M
and a positive constant L > 0 such that p ∈ V and for all p̃ ∈ V it holds that

dH(TpM, Tp̃M) ≤ L‖p − p̃‖.

Here, dH denotes the Hausdorff distance defined by

dH(T1, T2) := sup
{
inf

{‖t2 − t1‖
∣
∣ t2 ∈ T2 ∩ S

} ∣
∣ t1 ∈ T1 ∩ S

}
,

where S := {
z ∈ R

n
∣
∣ ‖z‖ = 1

}
is the unit sphere.

Next, we recall the definition of the orthogonal projection on a manifold from [26].
For this, consider a manifold M ⊆ R

n and define the set of points with the unique
nearest points property as

unpp(M) := {
x ∈ R

n
∣
∣ there exists a unique ξ ∈ M with dist(x,M) = ‖x − ξ‖} .

Clearly, for each x ∈ unpp(M) there exists a unique p(x) ∈ M with the property

‖x − p(x)‖ = dist(x,M) = min
p∈M

‖x − p‖.

Definition 3 (orthogonal projection on manifold, [26]) Let M ⊆ R
n be a manifold.

The function p : unpp(M) → M, x �→ p(x) is called the orthogonal projection on
M.

Often, we write px instead of p(x). The maximal open set on which the orthogonal
projection is defined plays a special role in [26] and also in our setting. We will refer
to this set as E(M) := unpp(M)◦.

The next proposition collects selected results on submanifolds of Rn defined in a
particular manner and will be useful in Sect. 5, where it will allow us to study the
optimal control problem (pH OCPT ).

Proposition 4 Suppose f : Rn → R
n is of class C2, assume that

M := {
x ∈ R

n
∣
∣ f (x) = 0

}

is nonempty and assume that there exists an open neighborhood G ⊆ R
n ofM and a

constant s with 0 < s < n such that dim(ker(Dfx )) = s for all x ∈ G. Then
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(i) the set M is an s-dimensional C2 submanifold of Rn,
(ii) the tangent space at p ∈ M is given by TpM = ker(Dfp),
(iii) the manifold M is a C2,1 manifold, and
(iv) it holds that M ⊆ E(M), and if x ∈ E(M) \ M then x − px ⊥ TpxM.

Proof (i) Let p ∈ M. It can be shown [27] that there exist open neighborhoods
U1 ⊆ R

n of p and U2 ⊆ R
n of f (p) and C2 diffeomorphisms

φ : U1 → φ(U1) and ψ : U2 → ψ(U2)

such that

f (U1) ⊆ U2

and

ψ ◦ f ◦ φ−1(y1, . . . , yn) = (y1, . . . , yn−s, 0, . . . , 0)

for all y ∈ φ(U1). Thus, for each v ∈ U1 we have

v ∈ M ⇐⇒ f (v) = 0

⇐⇒ (ψ ◦ f )(v) = 0

⇐⇒ (ψ ◦ f ◦ φ−1 ◦ φ)(v) = 0

⇐⇒ φ1(v) = · · · = φn−s(v) = 0.

(ii) Suppose that p ∈ M and that φ : U → R
n is a local coordinate system ofM at

p. Since

( f ◦ φ−1)
({y ∈ R

n | ys+1 = · · · = yn = 0} ∩ φ(U )
) = {0},

we have

Dfp(TpM) = Dfp
(
Dφ−1

φ(p)

( {
y ∈ R

n
∣
∣ ys+1 = · · · = yn = 0

} )) = 0.

The claim then follows from the fact that ker(Dfp) has dimension s.
(iii) In [25, Equations (3.3) and (3.6)], it is shown that a Ck manifold with k ≥ 2 is

also a Ck,1 manifold, from which the claim follows.
(iv) This claim was mentioned in [26, Remark 4] and is a consequence of the results

of [25].
��

We finish this section with Lemma 5 and a corresponding remark. The lemma
establishes an upper bound on the distance to the manifold M defined in Propo-
sition 4 in terms of the function f . This result will be the key in our application
to port-Hamiltonian systems, as it will allow us to deduce a dissipativity property
for (pH OCPT ).
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Lemma 5 Suppose f : Rn → R
n is of class C2, assume that

M := {
x ∈ R

n
∣
∣ f (x) = 0

}

is nonempty and assume that there exists an open neighborhood G ⊆ R
n of M such

that for all x ∈ G it holds that dim(ker(Dfx )) = s, where the constant s is independent
of x and satisfies 0 < s < n. Further, assume that for each x ∈ G the smallest nonzero
singular value of D fx is bounded from below by c̃ > 0. ThenM is a C2 manifold and
there exists an open set V ⊆ R

n and a constant c > 0 withM ⊆ V ⊆ E(M) and

c dist(x,M) ≤ ‖ f (x)‖ (2)

for all x ∈ V .

Proof We will first show that (2) is true locally. Fix a point p ∈ M and notice that
due to f ∈ C2, for all x ∈ R

n we have

f (x) = f (p) + Dfp(x − p) + gp(x − p), (3)

where the remainder gp satisfies

lim
x→p

‖gp(x − p)‖
‖x − p‖ = 0. (4)

To establish (2) locally, our first goal is to show that there exists an open set Up ⊆
E(M) such that for all x ∈ Vp := Up ∩ NpM we have

‖gp(x − p)‖
‖Dfp(x − p)‖ <

1

2
. (5)

For the sake of simplicity, let us set Ap := Df Tp D f p. Then, by the definition of M
and Proposition 4, we have ker(Ap) = ker(Dfp) = TpM. Now, let us decompose
R
n = ker(Ap) ⊕ ran(Ap) = TpM ⊕ NpM and accordingly also Ap = 0 ⊕ Ã p.

Since Ã p is symmetric positive definite, for any x ∈ NpM we obtain

‖Dfp(x − p)‖2 = (x − p)TAp(x − p) = (x − p)T Ã p(x − p)

≥ λmin( Ã p)‖x − p‖2. (6)

Now, using (4) and (6), we obtain

0 = lim
x→p

‖gp(x − p)‖
‖x − p‖ ≥ lim

x→p
cp

‖gp(x − p)‖
‖Dfp(x − p)‖ ≥ 0,

where we set cp := λmin( Ã p)
1/2 > 0. In particular, we have

lim
x→p

‖gp(x − p)‖
‖Dfp(x − p)‖ = 0.
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Thus, choosing x ∈ NpM sufficiently close to p we obtain the estimate (5), and we
can deduce that an open set Up with the sought-after properties has to exist. Now,
since (3) and p ∈ M imply

‖Dfp(x − p)‖ ≤ ‖ f (x)‖ + ‖gp(x − p)‖ for all x ∈ R
n,

using (5) we obtain

1
2‖Dfp(x − p)‖ ≤ ‖ f (x)‖ for all x ∈ Vp = Up ∩ NpM. (7)

To finish the local argument, notice that by (6) we have

cp dist(x,M) = cp‖x − p‖ ≤ ‖Dfp(x − p)‖ for all x ∈ Vp,

which together with (7) shows that (2) holds for all x ∈ Vp.
To construct the set V , first notice that the differentiability of f implies that an

expression of the form (3) is possible on the set E(M). In other words, there exists a
function g·(·) such that

f (x) = f (px ) + Dfpx (x − px ) + gpx (x − px )

for all x ∈ E(M). Since the orthogonal projection x �→ px is differentiable [26] and
f ∈ C2, the map x �→ gpx (x − px ) is continuous on E(M). Define the function

h : E(M) → R, x �→ ‖gpx (x − px )‖
‖Dfpx (x − px )‖ .

Then h is continuous and hence the preimage of the open set (−∞, 1
2 ) ⊆ R under h

is open. Note that M is a subset of this preimage. Define

M ⊆ V := h−1((−∞, 1
2 )

) ⊆ E(M).

Then for each p ∈ M we have

Vp ⊆ V ∩ NpM.

The previous arguments can then be used to show that for c := c̃
2 and x ∈ V we have

2c dist(x,M) ≤ cpx dist(x,M) ≤ ‖Dfpx (x − px )‖ ≤ 2‖ f (x)‖,

finishing the proof. ��
Remark 6 The estimate (2) is related to the Łojasiewicz inequality [28, 29], which
states that for a real analytic function g : U → R defined on an open set U ⊆ R

n and
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a compact set K ⊆ U , the distance of x ∈ K to the zero locusZ := {z ∈ U | g(z) = 0}
of g may be estimated by

dist(x,Z)α ≤ C |g(x)|,

where α and C are positive constants.

4 Manifold dissipativity andmanifold turnpikes

In this section, we recall the definition of dissipativity with respect to a manifold and
the definition of manifold turnpikes as introduced in [10]. Further, a theorem relating
the two properties is stated. Here and in the following, the set K is defined as

K := {α : [0,∞) → [0,∞) | α(0) = 0, α is continuous and strictly increasing}.

We consider the general optimal control problem

min
u∈U

CT (u) :=
∫ T

0
�(x, u) dt

subject to

h(x)ẋ = g(x, u),

x(0) = x0, x(T ) = xT .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(OCPT )

As before, we assume x0, xT ∈ K , where K ⊆ R
n is a compact set. Here, the

function g defines the dynamics of the system and the function h corresponds to
possible algebraic constraints. We refrain from further specification of these functions
as (OCPT ) is only used for general definitions. Throughout this section, we assume
that an optimal control u∗ of (OCPT ) and an associated trajectory x∗ exist.

We begin with the definition of manifold dissipativity. The definition is related to
Willems’ notion of dissipativity [24] and is also found in [10].

Definition 7 (manifold dissipativity) Consider the optimal control problem (OCPT )
together with the manifold M ⊆ R

n . We say that (OCPT ) is dissipative with respect
to the manifold M if there exists a function S : Rn → [0,∞) that is bounded on
compact sets and a function α ∈ K such that all optimal controls u∗ and associated
trajectories x∗ satisfy the dissipation inequality

S(xT ) − S(x0) ≤
∫ T

0
�(x∗, u∗) − α(dist(x∗,M)) dt (8)

for all T > 0.

The function S from Definition 7 is also called storage function. Note that we
require the dissipation inequality (8) only to hold along optimal solutions of (OCPT ).
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This is not a severe restriction when turnpike phenomena are studied, as we are only
interested in properties of optimal solutions.

Next, we define a manifold turnpike property, again following [10]. The property
is essentially a notion of measure turnpikes, see, e.g., [3–5, 30].

Definition 8 (manifold turnpike) Consider the optimal control problem (OCPT )
together with the manifold M ⊆ R

n . We say that (OCPT ) has the manifold turn-
pike property with respect to the manifold M if for all compact sets K ⊆ R

n and all
ε > 0 there exists a constant CK ,ε > 0 such that for all T > 0 all optimal trajectories
x∗ of (OCPT ) satisfy

λ
({t ∈ [0, T ] | dist(x∗(t),M) > ε}) ≤ CK ,ε

for all x0, xT ∈ K . Here, λ denotes the Lebesgue-measure.

The next theorem can be found similarly in [10, 30, 31]. The theorem shows that
manifold dissipativity implies a manifold turnpike property.

Theorem 9 (manifold dissipativity implies manifold turnpike) Consider the optimal
control problem (OCPT ) together with a submanifoldM ⊆ R

n and assume that

(i) there exists a constantC�(K ) > 0 such that for all optimal controls u∗ of (OCPT )
and the associated trajectories x∗ we have

∫ T

0
�(x∗, u∗) dt < C�(K )

for all T > 0, and
(ii) the optimal control problem is dissipative with respect to the manifold M.

Then the optimal control problem (OCPT ) has the manifold turnpike property.

Proof Rearranging (8), we see that

∫ T

0
α(dist(x∗,M)) dt ≤ S(x0) − S(xT ) +

∫ T

0
�(x∗, u∗) dt .

Since the set K is compact and S is bounded on compact sets, there exists a constant
CS(K ) > 0 independent of T such that

∫ T

0
α(dist(x∗,M)) dt ≤ CS(K ) + C�(K ) < ∞.

Now define

Mε(T ) := {
t ∈ [0, T ] ∣

∣ dist(x∗,M) > ε
}
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and notice that

∫ T

0
α(dist(x∗,M)) dt =

∫

Mε(T )

α(dist(x∗,M)) dt +
∫

[0,T ]\Mε(T )

α(dist(x∗,M)) dt

≥ λ(Mε(T ))α(ε).

Thus, for all T > 0 we have

λ
( {

t ∈ [0, T ] ∣
∣ dist(x∗,M) > ε

} ) ≤ CS(K ) + C�(K )

α(ε)
=: CK ,ε,

finishing the proof. ��
Remark 10 Denote the optimal value function of (pH OCPT ) by VT (x0), that is

VT (x0) := inf
u∈Uad

∫ T

0
�(x(x0, u), u) dt .

Then, assumption (i) of Theorem 9 is equivalent to

VT (x0) ≤ C�(K ). (9)

In [10], assumption (i) is replaced by the assumption that (pH OCPT ) is cost control-
lable. The latter takes Uad = L∞([0, T ],Rm) and bounds the growth of the optimal
value function by

VT (x0) ≤ bK (T ) �∗(x0), (10)

where the growth function bK : [0,∞) → [0,∞) is assumed to be bounded and
increasing and �∗(x0) := infu∈Rm �(x0, u) is assumed to be real for all x0 ∈ K .
Provided that � is bounded on compact sets, [10] shows that (10) implies (9) as we
can bound bK (T ) �∗(x0) ≤ C�(K ) in this case.

5 Application to port-Hamiltonian systems

Finally, we are ready to apply the previous results to port-Hamiltonian systems and
the optimal control problem (pH OCPT ). First, recall that we can rewrite the cost
functional CpH,T (u) as

CpH,T (u) =
∫ T

0
yTu dt = H(xT ) − H(x0) +

∫ T

0
‖R(x)1/2η(x)‖2 dt, (11)

and that rearranging gives

H(xT ) − H(x0) =
∫ T

0
yTu − ‖R(x)1/2η(x)‖2 dt . (12)
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Equation (11) hints that any optimal trajectory will have to spend most of the time
close to the set

M :={
x ∈ R

n
∣
∣ R(x)1/2η(x) = 0

}
,

and thatH can be used as a storage function to derive dissipativity notions with respect
toM. Our aim will be to formalize these ideas. The first step will be to ensure thatM
has the necessary manifold structure. For that, we make the following assumptions.
See also Remark 16.

Assumption 11(A1) The map x �→ R(x)1/2η(x) is of class C2.
(A2) The set M is nonempty and there exists an open neighborhood G ⊆ R

n of
M such that for all x ∈ G it holds that dim(ker(D(R1/2η)x )) = s, where the
constant s is independent of x and satisfies 0 < s < n.

(A3) For each x ∈ G, the smallest nonzero singular value of D(R1/2η)x is bounded
from below by a positive constant c̃ > 0.

(A4) Let V be the open set from Lemma 5. Any optimal trajectory x∗ of (pH OCPT )
remains in V for all times.

With assumptions (A1) and (A2), Proposition 4 ensures thatM is an s-dimensional
C2,1 submanifold of Rn and that M ⊆ E(M).

The next step is to show that the problem is dissipative. As we will see shortly,
this is ensured by assumptions (A3) and (A4), which allow us to use Lemma 5 to
conclude that the optimal control problem (pH OCPT ) is dissipative with respect to
the manifold M. Notice that (A4) implies x0, xT ∈ V .

Theorem 12 ((pH OCPT ) is dissipative) Under assumption 11, the optimal control
problem (pH OCPT ) is dissipative with respect to the manifold M with storage
function H.

Proof The proof is essentially an application of Lemma 5. Since all assumptions of
Lemma 5 are satisfied under assumption 11, there exists an open set V ⊆ R

n and
constant c > 0 such that M ⊆ V ⊆ E(M) and

c dist(x,M) ≤ ‖R(x)1/2η(x)‖ (13)

holds for all x ∈ V . In particular, assumption (A4) ensures that the estimate holds
along any optimal trajectory x∗ of (pH OCPT ). With this and (12), we see that for any
optimal control u∗ and the associated trajectory x∗ and output y∗, we have

H(xT ) − H(x0) =
∫ T

0
y∗Tu∗ − ‖R(x∗)1/2η(x∗)‖2 dt

≤
∫ T

0
y∗Tu∗ − c2 dist(x∗,M)2 dt

=
∫ T

0
y∗Tu∗ − α(dist(x∗,M)) dt,
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where α : s �→ c2s2 ∈ K. Finally, note that the Hamiltonian H, acting as a storage
function here, is bounded on compact sets since it is differentiable. ��
Remark 13 Let us emphasize that the estimate (2) from Lemma 5 was the key to
conclude the dissipativity property of (pH OCPT ). Aswe havementioned inRemark 6,
the estimate is related to Łojasiewicz’ inequality [28, 29]. In fact, if the map g : x �→
‖R1/2(x)η(x)‖2 is real analytic, then we may use the Łojasiewicz inequality to derive
dissipativitywithout Lemma5, as long as any optimal trajectory stays in some compact
set D ⊆ R

n .

Now, an application of Theorem 9 yields the following result, showing that the
optimal control problem (pH OCPT ) has the manifold turnpike property with respect
toM.

Theorem 14 ((pH OCPT ) has a manifold turnpike) In addition to assumption 11,
assume that

(A5) there exists a trajectory x1 that starts in x0 and reaches the manifoldM in time
T1 ≥ 0, and

(A6) for any p ∈ M, there exists a trajectory x2 that starts in p and reaches xT in
time T2 ≥ 0.

Then the optimal control problem (pH OCPT ) has a manifold turnpike at the
manifold M.

Proof Since the port-Hamiltonian system (pH) is autonomous and there is no control
cost on the manifoldM, the conditions (A5) and (A6) ensure that the total cost of the
optimal control u∗ is bounded by

CpH,T (u∗) =
∫ T

0
y∗Tu∗ dt

= H(xT ) − H(x0) +
∫ T

0
‖R(x∗)1/2η(x∗)‖2 dt

≤ CH(K ) +
∫ T1

0
‖R(x1)

1/2η(x1)‖2 dt +
∫ T2

0
‖R(x2)

1/2η(x2)‖2 dt
≤ CH(K ) + C1(K ) + C2(K ) < ∞.

Notice that the constantsCH(K ), C1(K ) andC2(K ) are independent of the final time
T . Thus, using the results of Theorem 12, we may apply Theorem 9 to conclude that
the optimal control problem (pH OCPT ) has the manifold turnpike property atM. ��

In Theorem 14, in order to show that a turnpike property holds true, we needed
to make the controllability assumptions (A5) and (A6). This is a common pattern in
turnpike results, similar controllability assumptions are made in [3, 10] and [19].

Remark 15 In [19], the authors considered linear pH systems of the form

ẋ = (J − R)Qx + Bu,
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y = BTQx,

where J = −J T, R = RT � 0 and Q = QT 	 0. They have shown that in this case the
optimal control problem (pH OCPT ) admits a subspace turnpike property with respect
to ker(R1/2Q). We can interpret Theorem 14 as a generalization of this result to the
nonlinear case. In the linear case, assumption (A1) is immediately satisfied. Further,
the set M is the kernel of R1/2Q, and if the dimension of ker(R1/2Q) is 0 < s < n,
then assumptions (A2) and (A3) are also satisfied. Since the distance estimate (13) can
be shown to hold true globally [19, Lemma 13], the set V from Lemma 5 is V = R

n

and thus assumption (A4) is also satisfied.

Remark 16 In many real-world examples, such as, for example, port-Hamiltonian for-
mulations of the isothermal Euler equations arising from gas network modeling [32],
the function R has additional structural properties. One example is block structure,
where themanifoldM often is a linear subspace. In this case, assumption (A2) usually
does not pose a problem. On the other hand, even in this situation, assumption (A3)
can be difficult to ensure.

If x0, xT ∈ V and the controllability assumptions of Theorem 14 are satisfied, then
assumption (A4) is not critical in many cases. Examining (11), we observe that leaving
the manifold M is connected to a higher cost. Hence, any optimal trajectory should
approach the manifoldM, and thus, unless the set V is fairly irregular and x0 and xT
are chosen poorly, optimal trajectories will stay within V .

We finish this section with a simple example illustrating Theorem 14.

Example 17 Consider the functions E, J , R, η and B defined by

E(x) =
[
1 0
0 1

]

, J (x) =
[
0 1

−1 0

]

, B(x) =
[
1
0

]

,

R(x) =
[ 1
4 (4‖x‖2 + 1)2 0

0 0

]

, η(x) =
[
2 0
0 1

]

x

for all x ∈ R
2, which together with the Hamiltonian

H(x) = 1

2
xT

[
2 0
0 1

]

x

form the port-Hamiltonian system

E(x)ẋ = (
J (x) − R(x)

)
η(x) + B(x)u,

y = B(x)Tη(x).
(pH-1)

For the system (pH-1), the function R1/2η is given by

R(x)1/2η(x) =
[
4‖x‖2 + 1 0

0 0

]

x =
[
4(x31 + x22 x1) + x1

0

]

,
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where we take x = [
x1 x2

]T. Thus, the derivative D(R1/2η) reads as

D(R1/2η)(x) =
[
12x21 + 4x22 + 1 8x2x1

0 0

]

�= 0

and the subspace ker(D(R1/2η)(x)) is one-dimensional for all x ∈ R
2. A simple

calculation shows that the nonzero singular value of D(R1/2η)(x) is given by

σ(x) = 144x41 + 160x21 x
2
2 + 24x21 + 16x42 + 8x22 + 1 ≥ 1.

The zero locus M of R1/2η is given by

M =
{ [

x1
x2

]

∈ R
2

∣
∣
∣
∣ (4x21 + 4x22 + 1)x1 = 0

}

=
{[

x1
x2

]

∈ R
2

∣
∣
∣
∣ x1 = 0

}

.

Hence, assumptions (A1), (A2) and (A3) are satisfied for (pH-1). As M is a lin-
ear subspace, the orthogonal projection on M is well defined globally and we have
E(M) = R

2. Further, for the set V from Lemma 5 it holds that V = R
2 since

dist(x,M) = |x1| ≤ |x1(4x21 + 4x22 + 1)| = ‖ f (x)‖

for all x ∈ R
2. Thus, also assumption (A4) is satisfied for (pH-1).

Now, for ξ = [
ξ1 ξ2 ξ3

]T ∈ R
3, let us define the functions Ẽ, J̃ , R̃, η̃ and B̃ by

Ẽ(ξ) :=
⎡

⎣
1 0 0
0 0 1
0 0 0

⎤

⎦ , J̃ (ξ) :=
⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦ , B̃(ξ) :=
⎡

⎣
1
2
0

⎤

⎦ ,

R̃(ξ) :=
⎡

⎣
1
4 (4ξ

2
1 + 4ξ22 + 1)2 0 0

0 0 0
0 0 0

⎤

⎦ , η̃(ξ) :=
⎡

⎣
2ξ1
ξ2
ξ3

⎤

⎦ .

It is easy to see that also the system

Ẽ(ξ)ξ̇ = (
J̃ (ξ) − R̃(ξ)

)
η̃(ξ) + B̃(ξ )̃u,

ỹ = B̃(ξ)Tη̃(ξ)
(pH-2)

satisfies assumptions (A1) – (A4). The zero locus of the map ξ �→ R̃(ξ)1/2η̃(ξ) is

M̃ =
{[

ξ1 ξ2 ξ3
]T ∈ R

3
∣
∣ ξ1 = 0

}
.
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Fig. 1 Minimal energy control for (pH-1). As initial and final values x0 = [ 21 ] and xT = [ 11 ] are chosen. The
considered timehorizon is [0, T ]withfinal timeT = 10, and the control is constrainedvia−50 ≤ u(t) ≤ 50.
We used 100 discretization steps

6 Numerical example

As an example, we consider the optimal control problem (pH OCPT ) together with
the pH systems (pH-1) and (pH-2) from Example 17. For the implementation, we use
the open-source software package CasADi [33].

In order to use CasADi, the optimal control problem (pH OCPT ) is formulated as
a minimization problem of the form

min
w

J (w)

subject to wlb ≤ w ≤ wub and G(w) = 0.
(14)

We follow a similar procedure as [33, Sect. 5.4]. In our implementation, w contains
the values x(ti ) for the discretization points ti ∈ [0, T ], and the values u(ti ) for
the discretization points ti ∈ [0, T ], i �= 0. The initial condition and possible control
constraints are incorporated inwlb andwub. The functionG is used to enforce the final
condition and a continuity condition on x by using an integrator scheme to determine
the value x(ti+1) given the values x(ti ) and u(ti ). This integrator scheme is also used
to calculate the cost J via the quad option in CasADi’s integrator function. For
the solution of the nonlinear optimization problem (14), Ipopt [34] is used.

In Fig. 1, the solution of the optimal control problem (pH OCPT ) with the sys-
tem (pH-1) under the control constraint −50 ≤ u(t) ≤ 50 is shown. The turnpike
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Fig. 2 Minimal energy control for (pH-2). As initial and final values x0 = [ 2 1 10 ]T and xT = [ 1 2 20 ]T
are chosen. The considered time horizon is [0, T ] with final time T = 20, and the control is constrained
via −200 ≤ u(t) ≤ 200. We used 400 discretization steps

behaviour is clearly visible; the first component x1 of the optimal trajectory x∗
approaches the manifold M = {x ∈ R

2 | x1 = 0} very quickly and remains there for
the majority of the time horizon. The same observation can be made for larger time
horizons, which is not shown in Fig. 1.

In Fig. 2, the solution of the optimal control problem (pH OCPT ) with the sys-
tem (pH-2) under the control constraint −200 ≤ u(t) ≤ 200 is shown. Again, the
turnpike phenomenon can be observed.

7 Conclusion

In this paper, we have considered the optimal control of port-Hamiltonian systems
under minimal energy supply with fixed initial and final values. We have seen that the
map R1/2η, corresponding to the energy dissipating portion of the right-hand side,
and its zero locus M = {x | R1/2(x)η(x) = 0}, which corresponds to the dissipative
part of the state space, play an important role. It was shown that under smoothness
assumptions on R1/2η, the setM forms a C2 submanifold of Rn . In particular, using
results from [26], we observed that the orthogonal projection ontoM is well-defined in
an open set E(M). Further, we have shown that under these assumptions the distance
of a point x toM can essentially be bounded by ‖R1/2(x)η(x)‖ from above. This fact
allowed us to deduce that the considered optimal control problem is dissipative with
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respect to the manifold M. Our main result was a consequence of this dissipativity
property. Under additional controllability assumptions, we have seen that the problem
has a manifold turnpike property with respect toM. This theoretical observation was
confirmed in a simple numerical example.

An open question from a theoretical perspective is whether the problem (pH OCPT )
exhibits hidden regularities as in the linear case [35]. Another open topic is the study
of stronger turnpike properties, such as exponential turnpikes [31, 36]. Applications
of the theoretical results to specific port-Hamiltonian systems such as gas networks
[32] will be studied in future works.
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A Existence of solutions to (pH)

To study the existence of solutions to (pH) for arbitrary final times T , we consider the
time interval [0,∞) and assume u ∈ Uad is fixed. We may then write the system (pH)
in the general form

F(t, x, ẋ) = 0. (15)

Assuming that F is sufficiently smooth and satisfies [37, Hypothesis 4.2] uniformly
in t ∈ [0,∞), we arrive at the reduced differential algebraic equation

ẋ1 = L(t, x1), x2 = R(t, x1). (16)

Adapting [37, Theorem 4.13], we get the following result.
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Proposition 18 Assume that F is sufficiently smooth and satisfies [37, Hypothesis 4.2]
with characteristic values μ, a, d and μ + 1, a, d uniformly in t ∈ [0,∞). Then, for
any suitable initial condition, the reduced problem (16) has a unique solution defined
on [0,∞), and this solution locally solves the original problem (15).

Remark 19 We may also combine x and u in the generalized state vector z = (x, u)

and rewrite (15) accordingly to arrive at a version of Proposition 18 that does not
depend on one particular control u ∈ Uad.

B Existence of solutions to (pH OCPT )

In order to state sufficient conditions for the existence of optimal controls u∗ and
associated trajectories x∗ for (pH OCPT ), we restrict ourselves to the ODE case and
assume that E(x) is pointwise invertible with sufficiently smooth inverse and use
results of [38].

Let T > 0 be a final time, U ⊆ R
m be compact. We consider the problem

min
u∈L∞([0,T ],U)

∫ T

0
�(x, u) dt (17)

subject to

ẋ = g(t, x, u),

x(0) = x0, x(T ) = xT ,
(18)

with � and g continuous, and set

Ubvp := {u ∈ L∞([0, T ],U) |x(u)solves (18)}.

Theorem 20 ( [38, Theorem IV.2]) Consider the problem (17), (18), assume Ubvp �= ∅
and that all solutions to the boundary value problem (18) satisfy an a priori bound

‖x(u)‖1 ≤ α for all u ∈ Ubvp (19)

where α = α(T ) is a constant depending only on T . If the set

{[
�(x, v)

g(x, v)

] ∣
∣
∣
∣ v ∈ U

}

is convex for each x ∈ R
n, then there exists an optimal control.

In [38], Theorem 20 is stated for the case of free final time t1 ≤ T and x(t1) = 0.
The remarks made after [38, Theorems IV.1 and IV.2] justify the modifications made
here. Further, asmentioned in [38, Example IV.4], the convexity assumption is satisfied
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for the dynamics (pH) and a cost term of the form yTu. Since the bound (19) is satisfied
if

‖g(x, v)‖1 ≤ α‖x‖1 + β or ‖xTg(x, v)‖1 ≤ α‖x‖2 + β (20)

for some constants α, β ≥ 0 and all (x, v) ∈ R
n ×U, see [38], this leaves us with the

following result.

Proposition 21 Consider the optimal control problem (pH OCPT ) with Uad =
L∞([0, T ],U), where U ⊆ R

m is compact. Assume that E is pointwise invertible
with continuous inverse, and that for

g(x, u) = E(x)−1(J (x) − R(x))η(x) + E(x)−1B(x)u

either of the bounds in (20) holds. If there exists some u ∈ Uad that steers (pH) from x0
to xT in time T , then there exists an optimal control.

In the general differential-algebraic case, the situation is more involved, and suffi-
cient conditions are difficult to obtain. A thorough treatment of necessary conditions
can be found in [39], where a boundary value problem of necessary optimality con-
ditions is stated. The result can be adapted to problems that involve end conditions.
As mentioned in the reference, the boundary value problem can in general not be
formulated in terms of the original data. In particular, the port-Hamiltonian structure
is likely lost.
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