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Abstract

We consider here the problem of constructing a general recursive algorithm to inter-
polate a given set of data with a rational function. While many algorithms of this kind
already exist, they are either providing non-minimal degree solutions (like the Schur
algorithm) or exhibit jumps in the degree of the interpolants (or of the partial realiza-
tion, as the problem is called when the interpolation is at infinity, see Rissanen (STAM
J Control 9(3):420-430, 1971) and Gragg and Lindquist (in: Linear systems and con-
trol (special issue), linear algebra and its applications, vol 50. pp 277-319, 1983)). By
imbedding the solution into a larger set of interpolants, we show that the increase in the
degree of this representation is proportional to the increase in the length of the data. We
provide an algorithm to interpolate multivariable tangential sets of data with arbitrary
nodes, generalizing in a fundamental manner the results of Kuijper (Syst Control Lett
31:225-233,1997). We use this new approach to discuss a special scalar case in detail.
When the interpolation data are obtained from the Taylor-series expansion of a given
function, then the Euclidean-type algorithm plays an important role.
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1 Introduction

The concepts of controllability indexes and tools from module theory like polyno-
mial basis have been widely used in system theory and they have been extensively
applied to different representations of transfer functions (rational functions, quotient

X Gy. Michaletzky
michaletzky @caesar.elte.hu

A. Gombani
gombani @ieiit.cnr.it

1 IEIIT-CNR, Via Giovanni Gradenigo 6a, 35131 Padua, Italy

Eotvos Lorand University, Pazmény Péter sétany 1/C, Budapest 1117, Hungary

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00498-020-00274-8&domain=pdf
http://orcid.org/0000-0001-7681-2628
http://orcid.org/0000-0001-6755-0208

2 Mathematics of Control, Signals, and Systems (2021) 33:1-48

of polynomials, etc., see Kailath [12]), and in Antoulas et al. [3] they have also been
connected to an interpolation problem for given data by means of a rational function.
In [18], the present authors developed an approach for the characterizations—under
weaker conditions—of proper interpolants by means of rational functions using con-
trollability indexes. We show here how this framework accommodates quite naturally
a recursive algorithm to compute the interpolants.

The simplest (and well-known) instance of the problem is, given a sequence of com-
plex values vy, . .., vk, to find, for k such that 0 < k < K, all rational functions which
interpolate those data at 0, that is, functions of the form f(s) = Zf:() st v; —l—sk'Hg (s).
This problem has a long history which (in its conceptual framework) goes back at least
to Euler (see Wyman and Wyman [21] for a nice translation of Euler’s paper and Mei-
jering [17] for an exhaustive history of the problem) and, in its recursive form, has been
widely studied especially in the case where there is one interpolation node at infinity
(instead of 0: it is the well-known partial realization problem). In this context particu-
larly relevant are the works of Ho and Kalman [11], of Rissanen [19] and of Gragg and
Lindquist [10]. The common feature of all these algorithms is the intrinsic presence of
sudden jumps in the degree of the interpolants as we add further data. A simple example
of this behavior is a Fibonacci-like sequence which suddenly gets out of the recursion,
like 1, 1, 2, 3, 5, 8, 13, 100: it can be seen that the degree of the recursion is 2 until it
“hits” 100 and jumps to 4. This makes these algorithms quite unsuitable for parame-
terization and thus for applications in identification. Their reliance on the Euclidean
algorithm also makes extensions to the multivariable case or to different interpola-
tion nodes intrinsically very difficult. The generalization of the approach initiated by
Loewner [15] in 1934 for scalar interpolation problem was first systematically applied
to the multivariable situation in Anderson and Antoulas [1]. The so-called Loewner
matrices (divided difference matrices, null-pole coupling matrices) play a key tool in
Ball et al. [4], Mayo and Antoulas [16] and Lefteriu and Antoulas [14], mentioning
only a few. While the multivariable multiple node problem has been studied by several
authors (see, for example, Antoulas et al. [3], Ball et al. [4] and Gombani and Michalet-
zky [9] for Kimura—Georgiou like fixed degree interpolants), a recursive version of
these characterizations are—in general—not discussed. A recursive algorithm, which
only works for two-sided interpolation, is presented for the matrix case in Lefteriu
and Antoulas [14]. We provide here a recursive scheme under weaker conditions than
those required in Antoulas et al. [3] and Fuhrmann [8].

We show how considering the larger (quite canonical) family of solutions (actually
an immersion into a larger space) considered in [18], provides an algorithm which
exhibits an astonishing regularity and makes the extensions to different nodes and the
multivariable case quite straightforward. This provides a substantial improvement on
Kuijper [13], where a single pole at infinity is considered and a coprimeness assumption
on the interpolating polynomials had to be made. This feature thus sparks renewed
attention for the Behaviors approach to Systems Theory devised by Polderman and
Willems [20], where lack of coprimeness of an AR representation was a fundamental
and interesting feature of the models, but where the practical construction of recursive
algorithms for such models relied on this very coprimeness assumption. Closer to
our approach are the nice results in Boros et al. [5], where also polynomial families
of solutions with the same regularity are obtained. Nevertheless, that approach does
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not guarantee uniqueness of the representation and its computation, in the case of
confluent interpolation, is quite involved.

The fundamental idea is quite simple: most recursive techniques consider, for the
scalar case, the smallest number for which some columns of data (in general arranged
as a Hankel matrix) are linearly dependent. This means to consider enough elements so
that we obtain a matrix with a one-dimensional kernel at each step. Adding a new row
of data usually makes the matrix full rank and we thus have to add another column to
this matrix to obtain a new kernel. The problems occur when the rank is not increased
by the extra data for a while (the model already accommodates the new data) and
then suddenly there is a jump in the rank. (We have to add several columns at once
to have a nontrivial kernel.) We consider instead a slightly larger matrix, with a two-
dimensional kernel, for which we introduce an algorithm which always decreases by
one the dimension of the kernel as we add data and thus has no jumps.

The paper is structured as follows: in Sect. 2 we introduce some general results
for the tangential problem (see Antoulas et al. [3] or Ball et al. [4]) and discuss the
existence of a polynomial solution. Since, as we said, the idea is quite simple, but
the details for the multivariable case are rather intricate, in Sect. 3 we discuss the
scalar rational interpolation problem and we lay the ground for characterizing all
interpolants through the construction of a fat matrix (essentially a basis obtained from
a nice selection with the addition of two extra columns) and connect it to a 2 x 2
polynomial matrix (see Antoulas et al. [3]) which we call fundamental solution: its
main feature is that its rank is always 1 at the interpolation nodes and 2 everywhere
else. (This solution is not unique, but all solutions are related by units.) As similar
results are needed for the multivariable case, most proofs are deferred to that part. In
Sect. 4 we exhibit a scalar interpolation algorithm in some detail, as we feel that it
provides the essential ingredients for the multivariable case while providing a grasp
of what the main idea is. In Sect. 5, we extend the construction of Sect. 3 to the case
of tangential interpolating conditions. In Sect. 6 we show how to extend the recursive
algorithm to the general tangential rational interpolation problem with arbitrary nodes.
In Sect. 7 we apply our analysis to a scalar case having only one interpolation point
at zero, and show how this special feature implies a very fine and detailed structure.
In the “Appendix” we provide an example with the Fibonacci sequence.

Remark 1 The present approach seeks minimal degree interpolants and does not
consider constrains on their norm and their analyticity, like in Nevanlinna—Pick or
Caratheodory problems (see, for example, Dym [6] and Ball et al. [4]). It turns out,
though that a similar, albeit non recursive, approach, can be used to tackle this kind
of problems and that it yields a simpler solution to them. This will be discussed in a
forthcoming paper.

2 A general tangential interpolation problem
Suppose that we are given a triplet (A, U, V), where A, U, V are of size (K + 1) x

(K+1),(K+1)xmand (K +1) x p, respectively, determining a so-called tangential
interpolation problem. The ultimate goal is to characterize all matrix-valued rational
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functions Q(s) of size m x p possibly in the form Q(s) = 8 ()a(s)~ ! of a given
McMillan degree (if any exists) such that

(I —ANUQs) - V] (1

is analytic at o (A), the spectrum of A.
Note that since the product Q(s)a(s) = B(s) is a polynomial a slightly different
formulation of this problem is the following:

Problem 1 For a given triplet (A, U, V) find all the pairs of matrix polynomials (&, 8)
such that

N(s) == (sI = A [UB(s) — Va(s)] @)

is a polynomial.

While the row dimensions of o and 8 are m and p, and their common column
dimension could be an arbitrary natural number, it turns out that, to characterize all
such pairs, we will need precisely « to be square and invertible.

Remark 2 Let us point out that, if 8 and « are right coprime and « is an invertible poly-

nomial matrix, then Problem 1 is equivalent to the following: set Q(s) = ﬂ(s)oz’] (s).
There exist a polynomial matrix p(s) such that

((s] — AU+ p(s)) 0@s) — (s — AV

is analytic on o (A).
Proof In fact, if N(s) in Eq. (2) above is a matrix polynomial then the right coprime

property of S(s), a(s) implies that there exist matrix-valued polynomials ¢ (s), ¥ (s)
such that

N(s) = @(s)B(s) + ¥ (s)a(s).

It follows that N (s)a ' (s) = ¢ (s) Q(s) + ¥ (s). Thus

(61 =70 = 69) 06) = (51 = A7V = N5} (5) = () Q) = ¥/ (s).

which is analytic on o (A).
The converse statement is obvious. |

As it is well known from the literature on interpolation (see, e.g., [3,4]) a coprime
factorization of (s — A)~'[U, —V] plays a crucial role. Since for the derivation of
the present results—except in Proposition 1, for the time being the distinction between
the tangential conditions U and the data V is irrelevant, we will set, from now on,
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W = [U, —V] of dimension (K + 1) x r and therefore we will consider the following
polynomial coprime factorization

(sI — AW =) () 3)

with @, I" right coprime. We will also refer to the interpolation problem as one defined
by (A, W) instead of (A, U, V). Thus, clearly (3) can also be written as

(sI — AD(s) = WI(s) (4)

provided that @ and I" are right coprime and I"(s) is invertible.
The following simple lemma—see Ex. 6.3—19 in Kailath [12]—provides a straight-
forward way to check whether, for a given factorization, this is the case:

Lemma 1 Assume that the pair (A, W) is controllable. Then, if the degree deg det I' =
degdet(s] — A) = K + 1, then ® and I in (4) are right coprime.

We will assume, from now on, that @ and I" are right coprime. There are a few
properties of (3) which will be needed.

Remark 3 Since @, I' are right coprime, (s/ — A) and I"(s) have the same—non-
unity—invariant factors; especially, det I'(s) = det(s/ — A), and thus, the zeros of
det I' are contained in o (A). Coprimeness also implies that if I"(1)§ = 0 for some
vector £ € C", and A € C, then @(A)§ # 0; therefore, @ (1)¢ is in the kernel of
A —A).

With some abuse of notation, we say that a polynomial matrix y generates solutions
to Problem 1 defined by (A, W) if there exists a polynomial matrix ¢ such that

(s1 = A)p(s) = Wy(s). (&)

In other words, using y (s) as a polynomial input to the transfer function (s1 — A~ w
the output—a (s)—is polynomial, as well.

Although the next lemma is essentially the basic starting block of the derivation of
all solutions to an interpolation problem in the form of linear fractional transformation
(cf. [3,4,14]) for the readers convenience we include here a short proof of it.

Lemma 2 Assume that the pair (A, W) is controllable and y generates a solution
to Problem 1 defined by (A, W). Then, there exists a matrix polynomial 7 (s) such
that y(s) = I'(s)m(s) (that is, I'(s) generates the module of polynomials solving
Problem 1).

Proof The pair (A, W) is controllable. Thus, (sI — A) and W are left coprime and
according to our assumptions @, I" in (4) are right coprime. Therefore—using Lemma
6.4-2 in [12]—there exist matrix polynomials X (s), Y (s), X(s), Y (s) such that

(sI—A) W X(@s) @) | _|I O 6
X6s) -7 || ve) = | Tlo 1" ©)
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Thus we can always write

[—dJ(S)] _ [X(S) P (s) ][(sl_—/l) 4 ][—MS)]
Y (s) Y(s) =I'(s) X(s) =Y ][ v |-

If ¢(s), y (s) satisfy (5), we obtain

[—qb(S)} _ [X(S) P (s) ][ ) (U }
y(s) Y() =L 6) [ = (X)) + Yy () |’

that is, setting 7 (s) := )_((s)¢(s)+1?(s)y(s),we obtain y (s) = I'(s)m(s), as wanted.
O

The following proposition shows that under some mild conditions there exists a
matrix polynomial solution to Problem 1.

Proposition 1 Consider Problem 1 determined by the triplet (A, U, V) assuming that
the pair (A, [U, V1)) is controllable.

Bo
1
solution to Problem 1 if and only if the pair (A, U) is controllable. (That is in this
case Q(s) = ,30(s)1_1 = Bo(s) is a polynomial matrix. )

Then there exists a matrix polynomial By(s) such that yo(s) = provides a

Proof Consider the coprime factorization of (s/ — AU, —V] defined in (3) and
define a partitioned form of I":

(N

[ﬁU(S) ﬂV(S)]
aVes) oV(s) |
corresponding to the partition W = [U, —V].

First we show the controllability of the pair (A, U) is equivalent to the left coprime-
ness of «¥ and «V. Assume that there exists a scalar sy € C such that the matrix
[aY (s0), @V (s9)] is not of full row-rank. This implies that there exists a vector n such
that

n*la” (s0), ¥ (s0)] = 0
and the matrix I"(sg) is singular. In particular,
[0, n*1T (s0) = 0.

At the same time, according to Remark 3 the zeros of det I"(s) are contained in o (A)
thus sp is necessarily an eigenvalue of .A. Since according again to Remark 3 the non-
unity invariant factors of s/ — A and I'(s) coincide thus the dimensions of the left
kernel of so/ — A and that of I"(sp) are equal. Let us observe that the controllability of
the pair (A, [U, —V]) implies taking a basis in the subspace of the left eigenvectors of
A with eigenvalue s their image vectors under the transformation defined by [U, — V]
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should be also linearly independent—otherwise there would exist a left eigenvector
of A orthogonal to the columns of [U, —V] contradicting to the controllability of
(A, [U, —V1]). Since the dimensions of the left kernels of so/ — A and I" (sg) coincide
and the vector [0, n*] is in the left kernel of I"(sp) there exists a vector & such that

§%(sol —A) =0,
E*[U, -V]=10,n"].
In particular, £*U = 0. Thus, the pair (A, U) is not a controllable pair.
Conversely, if the pair (A, U) in not controllable, then there exists a left eigenvector

& of A for which £*U = 0. Denoting the corresponding eigenvalue by so we get that
E*(sol —.A) = 0, implying that

0= &*(sol — AP (s0) = E¥[U, VI (s0) = —&*V[aY (50), @" (50)].

Since the vector £*[U, —V] is nonzero due to the controllability of the pair
(A, [U,—=V]) we have that £*V # 0. This implies that the polynomial matrices
[V and «" are not left coprime.

Next we show that the left coprimeness of @V and V' is equivalent to the existence
of a matrix polynomial Sy such that (7, Bp) provides a solution to Problem 1.

Since according to Lemma 2 any solution can be written in the form "7 thus if
(I, Bo) provides a solution then for some matrix polynomial = we have that

_[BY%s) B ][=%s T _[ho
I'm = [aU(s) aV(s)i| I:nv(s)i| = [ I ] :

The second entry shows that oV and V" are left coprime.
Conversely, if «V, " are left coprime, then there exist a polynomial pair 7Y, 7V
such that

@Y (s), ¥ (5)] [”U(s)] =1.

7V (s)
Introducing the notation

(s) = [n”(s)}

7V (s)
and
Bo(s) = [BY (), BY () (s) .

We obtain that
[ﬁol(s)} = ['(s)7(s) .
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Thus |:,310 :| provides a solution to Problem 1, concluding the proof of the proposition.

O

Remark 4 Let us point out the following immediate corollary of the previous Lemma.
If the pair (A, U) is controllable, then the rank drop of the polynomial matrix I"(s)
cannot be greater than the number of the columns of U at any s € C.

The following proposition slightly generalizes the argument applied in the proof of
Theorem 3.5 in [3].

Proposition 2 Consider Problem 1 determined by the triplet (A, U, V) assuming that
the pair (A, U) is controllable. According to the previous Proposition there exists a

Bo
1

AU =w(s)Mis)
B(s)

a(s)

polynomial solution [ :| Let us consider a right coprime factorization of (sI —

Then all solutions :| can be written in the form

[ﬁm} _ [n ()77 (5) + ﬁo(S)Ol(S)}
a(s) a(s)

for some matrix polynomial 7w(s).

In particular, in this case
0(s) = B () = N($)mg () (5) + Po(s) .

where Bo(s) is a particular polynomial solution (might be called Hermite interpolant),
and (sI — AU (s) = ¥ (s) is already a polynomial matrix.

Proof According to Proposition 1 there exists a polynomial matrix 7y such that
|:ﬂ OI(S):| = ['(s)mo(s). The right coprime factorization of (sI — A~ 'u =

W, (s)I(s)~! can be written as

I(s)
0

(sI — A~ 'urs) =61 —-A"'U,-V] [ ] = Y (s)

which is a polynomial; thus, Lemma 2 implies that [Flés)] = I'(s)m(s) for some

polynomial 7y (s). In other words

[ o] = royimemon.

Since both I" and I'y were defined by coprime factorizations, we have that det(s/ —
A) = det I'(s) = det I (s). Consequently, det[m;(s), mo(s)] = 1, that is, it has a
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B(s)
a(s)

to Problem 1 then there exists a matrix polynomial 7 (s) = |:7Tg (s) :| such that

polynomial inverse. Thus—using Lemma 2—if y (s) = |: :| generates solutions

7 (s)

[ﬂ(s)] _ |:F1(S) ,BO(S)i| [ﬂg(s)i|
a(s) 0 1 ma(s) |’

concluding the proof of the remark. O

Although all the ingredients of the recursive algorithm for constructing solutions of
the tangential interpolation problem are quite simple, the details for the multivariate
case are rather cuambersome, and therefore, we start our analysis with the scalar case—
presenting the basic ideas in a simpler form and reverting to the general multivariate
case in Sect. 5. But in order to avoid repetitions the detailed proofs will be given for
the matrix-valued functions.

3 The template problem: scalar interpolation

We consider the situation when all the interpolation nodes are at the origin. Assume that

we are given the data {v, v1, ..., vg} and want to characterize all rational functions
0(@s) = % of a given degree (if any exists) such that
K
B(s) ;
00 =5 = D st +55104(s), ®)
i=0

where Q1 (s) is a rational function analytic in 0. We do not presently require that Q (s)
is proper: a method to achieve this condition is thoroughly examined in [18].

Note that the product (s) Q1 (s) should obviously be a polynomial. Thus a slightly
different formulation of the problem is the following.

Problem 2 Find all the pairs («, 8) such that

1 ko
ey <ﬂ(S) —a(s)Zvisl) : ©)

i=0

is a polynomial.

(These two formulations coincide if o and g8 are coprime).
A second well-known instance is, given points Ag, ... Ax € C distinct, and values

vo, - . . Vg, to find all rational functions Q(s) of a given degree (if any exists) such that
)\‘ .
00 =% o, k. (10)
a(Ai)

Again, if we assume « and 8 coprime, we can rewrite the problem as
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Problem 3 Find all the coprime pairs («, 8) such that

1
——I[B(s) —a(s)vil (11)
S — Aj

is a polynomial foralli : 0 <i < K.

Both problems can be written in the same matricial form: in case of (9) define:

0...00 ) %
: 0 vy

A= PO o T v (12)
0...10 0 VK

where Aisa (K 4+ 1) x (K + 1) matrix and U, V are (K + 1)-dimensional vectors.
For (11), set A := diag{ry, ..., g}, U :=1[1,1,..., l]T and V as above.
Both problems are thus immediately seen to be special cases of the

Problem 4 Find all the pairs («, 8) such that G(s)
G(s)=(sI — A)fl(U,B(s) — Va(s)) isapolynomial vector. (13)

We will thus focus on the general case (which includes the above examples) of a
given matrix A4 of dimension (K + 1) x (K + 1) and vectors U, V of dimension K + 1.

We will assume that the pair (A, U) is controllable and, to construct recursively
the interpolants, that the matrix A is lower triangular.

Since the recursive algorithm will be formulated using the coefficients of the pair
o, B we need an equivalent formulation of Problem 4.

We introduce the following notation: for any polynomial y we denote by p the
column vector of the coefficients—starting with the constant term—of the polyno-
mial y. (In some cases we will have to increase the dimension of the corresponding
vector, by adding extra zeros as entries. This is in coherence with considering higher
order terms in the polynomial but with zero coefficients.) In case of the polynomi-
als BY(s), BY (s), aV (s), «" (s) we shall use BV, BV, «¥, &V for the corresponding
column vectors.

We set U/ to be the matrix of dimension (K + 1) x (j + 1) of the form

Ul =[U, AU, AU, ..., AU]. (14)
Similarly, we set V" to be the matrix of dimension (K + 1) x (r + 1) of the form
Vi =[V,AV, AV, ... AV]. (15)
Notice that U = U% and V = V.
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Lemma3 Leta =) ; aist, B = Y Bis! be two polynomials. Consider integers j, r
for which j > deg B, r > deg«. Then condition (13) is equivalent to

Up=Va. (16)
Moreover, if «, B have a common factor s — )‘Q’ that is a(s) = (s — Ag)a1(s) and
B(s) = (s — 10)B1(s), with Ag ¢ o (A), then U'~18, = V"~ lay.
The proof is deferred to the general case result in Theorem 2
BY B
Definition 1 We say that oV oV ] is a fundamental solution to Problem 4 deter-

mined by the data (A, U, V) if each of its columns are solutions to the Problem 4 and
for any other solution (8, «), there exist polynomials 7Y, 7" such that

gl _[8Y BY][=Y
=L ]
We saw in Lemma 2 that, if ¥ (s), I"(s) are coprime, I"(s) is a fundamental solution.
To construct a coprime factorization (3) from the data, we denote by p and v the
controllability indexes of U and V relatively to (A, [U, V]). (That is, consider the
vectors U, V, AU, AV, A2U, A%V, ... in this order. Then w is the smallest number
for which A*U can be expressed as a linear combination of its preceding vectors. The

v is defined similarly.) In view of controllability, u 4+ v = K + 1. Then, for suitable
coefficients ozl.U , ,BiU the identity

" pu—1
ZﬂiUAiU=Zaf’AiV (17)
i=0 i=0
is satisfied with 8 = 1. Similarly, for suitable coefficients o, 8" the identity
v v
DBV AU =Y ol AV (18)
i=0 =0

holds with &) = 1.

Lemma4 Let the polynomials Y (s) and BY (s) be defined as

pu—1 Iz
otU(s) = Zaiusi and ﬁU(s) = Zﬂiusi ,
i=0

i=0

where the coefficients are those in (17); let oV (s), B Vi(s) be defined similarly from
(18). Then

CTAYs) ()
F(”‘[al’(s) aV(s)}
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is a fundamental solution to Problem 4.

Proof Let us point out that that for the polynomials constructed above the inequalities
deg aU(s) < deg ,BU(s) , deg,BV < av(s) .

hold. Thus this restriction gives us a fundamental solution of special type, although it
does not imply uniqueness. For a general fundamental solution these inequalities do
not necessarily hold.

From Lemma 3 we obtain that the coefficients aiU , al.V, ﬂl.U, ﬂiv, i > 0, define
polynomials providing solutions to Problem 4, that is there exists a matrix polynomial
W (s) of size (K + 1) x 2 such that Eq. (3) holds. Since we can assume that BY (s)
and aV(s) are monic, the matrix of the coefficients of the highest column degrees of
I'(s) is upper triangular, with identity on the diagonal. Since © + v = K + 1, the
degree of det I'(s) is K + 1, that is it coincides with that of det(s/ — .A). Using (3),
the controllability of the pair (A, [U, V]) gives in view of Ex. 6.3—19 in Kailath [12]
that ¥ (s) and I"(s) are right coprime. O

In order to ensure uniqueness, introduce the following notion:

Definition 2 A minimal fundamental solution (MF solution) is a fundamental solution
such that

degBY(s) =, dega’(s)=v, BY,a" are monic;
deg BY(s) < min(deg,BU(s) -1, degav(s));
dega¥ (s) < min(deg BY (s), degar” (s)) . (19)

Proposition 3 For any controllable set of data (A, U, V) there exists a unique MF
solution.

Proof the statement is essentially trivial because Lemmas 3 and 4 show that the MF
solution is nothing else than a basis selection scheme. Another way to see this if, for
example u > v, is that the vector A*U can be uniquely expressed in terms of the
columns of

[U,V,AU, AV, ... AU, A7V, AU, ..., A*~1U], since the matrix has
full rank (similarly for .4” V). For sake of completeness, we provide a proof in terms
of matrices for the multivariable case in Proposition (4). O

4 Scalar recursive interpolation

The interest of MF solutions is that its regularity and uniqueness allow for a straight-
forward recursion algorithm which, as we shall see, can be easily generalized to the
multivariable case.

We consider the situation where we have a sequence of nested problems indexed
by k < K, where Ay is lower triangular (k + 1) x (k + 1) and Uy and Vj are (k + 1)-

@ Springer



Mathematics of Control, Signals, and Systems (2021) 33:1-48 13

dimensional vectors. We say that the problems are nested if, for each k,

| Ak 0 | Uk | Wk
A1 = [ak+1 )\k+1i| s Uk = |:Mk+1i| v Vet = |:Uk+1 (20)

and the pair (A, Uy) is controllable for k < K. Our goal is to present a recursive
algorithm to compute a minimal degree solution for each k from the solution for k — 1.

As in (3), for each k, we can consider right coprime polynomial matrices [} (s) and
Y (s) such that

(sI — AW (s) = [Ux, = Vil Tk (s) . 21
. B B
Partitioning I} (s) as [ := , the above Eq. (21) becomes
U v
a, o
B B
(s1 — A)Wi(s) = [Ux, — Vil |: vov e (22)
o, o
ko %k
As in (14) and (15), we can define, for each &, j, r integers, U,g and Vk’ as
Ul = Uk, AUr, AUs, ... ALUL, (23)
Vi = [Vie AVie Ve, ... ALV (24)
By BY
Let U and |:a’§, ] be the MF solution to the Problem 4 determined by the data
oy k

BY B!
(Ag, Uk, Vi) with controllability indexes px and vg, that is |: ];] and I‘(/ span
o L7
the kernel two-dimensional kernel of [U*, —V,**].
The following remark contains the core idea of the recursion:

Remark 5 The matrix [U;*, —V,"*] has k + 1 rows (of data), k + 3 columns and thus,
in view of controllability, it has a two-dimensional kernel. The recursion adds one
row to this matrix: controllability will imply that its kernel is always one dimensional.
Since it must be contained in the previous kernel (in view of the triangularity of .4), it

U 14
can be expressed as a linear combination of |: ];] :| and |: ]:/ . This is the first step
o o
of the algorithm. To find the appropriate linear C(Igmbinationskthe “error terms” should
be considered arising from the solutions obtained in the k¥ step but applying those for
the next interpolation data. Let us note that the construction of a recursive scheme for
simultaneous left and right interpolation in [14] using Loewner matrix pencils is also
based on the use of similar error terms.
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The second step consists of adding a column to this extended matrix, so that its
kernel has again dimension two and the property of being a minimal fundamental
solution is preserved, as well.

In view of the above remark, us denote by [ul* 1 v,‘:’;]] (with components of
dimension (u; + 1) and (vx + 1), respectively) the last row of the extended matrix
[Uesy. —Vek ], thatis

k+1°
U,i/vk V”k
i v
ka1=[ i } Vk4k-1:|: " } (25)
Upt1 Vk+1

and compute the error terms arising from using the linear combinations obtained in
the kth step for the next interpolation values w1, vk+1, as well:

U pV
[GU EV ] _[ Mk ] ﬁk ﬂk
ks Gl = Ly~ U v
o, o
k O
Hic Vk
U U % 14
= zz:(ﬁhj“k—j+l“akak—j+l)aj{j(ﬂhj”k—j+l“akdvk—j+l>
j=0 j=0

(26)

Let us point out that if e,ﬁjﬂ = 0 then pux4+1 = g while 61:/+1 = 0 implies that
Vk+1 = Vk. In view of controllability, this implies that either 6/5] 4 or e,:/ 4 is different
from zero. Furthermore, if x4+ = ur < vi then elg +1 = 0 and similarly, if vey) =
Vg < M then EIY-H =0.

Now, if elgﬂ # 0, then

U pV v e
m " Bi Bi _Sal |y v — -0
[uk+l’ vk+1] U .V 6]?+1 - [6k+1’ 6k+]] k1 -
op o 1

The above procedure allows to identify an element in the kernel of [U k + Vi +1] and,
more precisely, if ek 1 70,

\% U \%4
€ee1 | Bi By

Wit — k+1]( it B B =0. 27)
k+1 [ O oy

Similarly, if €, # 0,

ﬂ;[(] 6k+1 ﬂk
,— =0. 28
Wi =i ([“/ﬁ/} e o/ o
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In view of controllability, at least one of the errors is not zero and thus at least one of
Egs. (27) and (28) is satisfied, identifying the kernel.

In case both errors e,ﬁj 1 and e,:/ 1 are nonzero, we might have a choice between
these representations of the kernel. In Theorem 1 we give explicitly which one should
be selected, but in order to complete the recursive step, we will need to extend either
Uy or Vk";l to make the kernel two dimensional and find an extra generating vector

in this kernel. (We consider j, » generic in the next lemma.) So, let U kj T and Vkr 41 be
partitioned as (25). Then

j Ak 0 Uj AkUj
U’
Ai1Upyy = a A o | = j ’ J
k+1 k+1 U ap1Up + A1y

and thus

j j+1
j+ j | Uk s AUy N RY
Uit _I:Uk+17Ak+1Uk+1i|_ TR el BN SR (29)
U1 s Q1 Up + A1y U1

A similar representation holds if we want to extend V;, ;| to Vkrf:ll. We discuss now
how to handle these extension and, crucially for defining the algorithm, which one to
pick.

Lemma5 Let U,‘C/H, U,'{/Ill be partitioned as (25) and let Ay be partitioned as in

(20). Then, for any vector y of dimension m, it is

Miil <[y] — Ak+1 [g]) = a1 U]y . (30)
Similarly,
O o 12 = e vy 31)
k+1 y k+1] =ai+1 Vi Y
for vzﬂ in the partition equivalent to (25) of Vkrill.
Proof Notice that, in view of (29),
uiil [y] = (ar 11U} + hp1ui, )y - (32)

On the other hand, from (14), Ukjill = [U,Lr], A,C:]l Uk+1] and thus

1 .
“i—tl)‘kﬁ |:gi| = )\kJr]l/t,i_H)l . (33)
Subtracting (33) from (32) yields the result. The corresponding equality for v,:ﬂ , Vk’jfll
is proved similarly. O
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Notice that the expressions in (30) and (31) do not depend on the last data points
ur+1 and vg4 1, respectively, a fact which is crucial to derive Egs. (34) and (35) below.

We denote by X = [0, x0, X1, ..., xk—1]¥ the downward shift of the vector x =
BY
[x0, X1, X1, - - -, Xx]T. An immediate consequence of Lemma 5 is that, if |: U isin
o
k

the kernel of [U If , —Vkr ] and oz,gr =0, then

0 BY
. 1 U
Wi vl | Be | —aa| 0 =0. (34)
ilr PR
oy ag

14

B .
Similarly, if |: ]:/ is in the kernel of [U ,f , —Vk’ ] and 'BIX ;= 0, then
.

—_
| By Bl
Wi =VERT] | 70 [ —hen | Q7 | | =0 (35)
14 0
&y

We are now ready to construct an interpolant of (A1, Uk+1, Vi+1). from a min-

BY (s) BY (s)

imal fundamental solution |: U v
oy (s) o ()

:| to the problem defined by (Ag, U, Vi).

Notice that, if the vector x = [xg, x1,..., xk]T represents the coefficients of the
polynomial x(s), then x” := [0, xo, x1, ..., xl” represents the coefficients of sx(s).
Similarly, if the last entry x; of x vanishes, then also X = [0, X0, X1, -, Xp—1]17

represents the coefficients of sx(s).

U pVv
kﬁk

Lemma6 Let I (s) = |: :| with column degrees i, vi be a minimal funda-

o, o
mental solution to (A, Uy, Vi) nested in (Ag+1, Uk+1, Vir1). Let [€]£J+1, 6,:/4_1] be as
in (26).

Then, if e’ # 0,

o
S =M1 s — v
Tiy1(s) = Ti(s) k (36)
0 , 1
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provides a fundamental solution to (Ag+1, Uk+1, Vis1) column degrees i + 1, vg.
Similarly, ife,:/+1 %0,

1, 0
g1 (s) = Ti(s) [_e,ﬁ’ } 37

v S — Akt
€k

provides a fundamental solution to (Ak+1, Ug+1, V1) with column degrees iy, vi +
1.

Proof Since I} (s) is a minimal fundamental solution, the degree of oc,ij (s) is smaller
than v; and thus the vector representation of the first column in the identity (36) is

v 0 B
|:.8k+1:|: BY —het | o

U
Xy

=T -
oy Oy
which, in view of (34), is in the kernel of [U}' Sy —V;*], while the vector represen-

tation of the second column in the identity reads as

U
[ﬂk&]] _ Br BY

4 el 0 | iv
o
k1 i o)

which, in view of (27), is again easily seen to be in the kernel of the matrix
[U,ﬁ‘ "+1, —Vkvk]. Therefore I'y41(s) is an interpolant of for the problem defined by
(Ag+1, Uk+1, Vi+1) with column degrees py + 1, vg.

Furthermore, it is a fundamental interpolant: in fact, if r (s) is a minimal fundamen-
tal interpolant, there exists a polynomial matrix P (s) such that r ()P (s) = Ty1(5).
Since the determinants of ;1 (s) (by construction) and r (s) (by definition) are both
X A1 (8) (xA(s) being the characteristic polynomial of A), the matrix P (s) is a unit.
A similar reasoning holds for (37), using (28) and (35). O

So, the recursive step appears to be quite simple. The problem is that we obtain a
fundamental solution which is not minimal. Since the proof of Lemma 6 makes use
of (34) and (35), we need the degree of oz,g (s) to be less than v or that of ,3,2/ (s) to be
less than . There is a small modification of the above procedure which ensures that
this condition is satisfied, making the recursion complete. Notice that if both e,fj 1 and
e,l/ | are different from zero then the cases p; < vr and pr > vi should be analyzed
separately.

Theorem 1 Let (Ay, Uy, Vi) be a sequence of nested problems for k < K and let
B B
I (s) = |:

U v :| be as in (22) and such that (19) are satisfied and let [€, |, €/ ]
be as in (26).

o, o
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Then, ife/gﬂ # 0 and either u; < vi or GIY—H =0

U \4 U pV elz/Jrl[_'xllc/]Vk*l 61:/+1
,Bk1,3k1 ,Bk ,Bk § = Ayl — T sy T U
+ + € €
Fk+1 (S) — = k+1 k+1 ,
alg-i-l’ O‘IY—H O‘Iij Ot,z/ [—a¥] 1
kAv—1 ’
(38)
where [ot] j denotes the coefficient with index j in the vector a = [y, . . ., avk]T.
Similarly, ife,:/+l # 0 and either i > vi or EI?H =0
1%
U gV U gV L, (-B:1,,
ot (&) [ Bt 'Bk+1i| |:'Bk B ] 1k
kr1(s) = = U el [-BY 1
U 1% /% € k1 LB,
Yys Ygn o o s i e R
k+1 k+1
(39)

In both cases, T'iy1(s) satisfies (19), that is it determines the minimal fundamental
solution.

The proof will be given in Theorem 3, where the multivariable case is treated.
Let us point out that Eq. (38) implies that if e,ﬂl # 0 and pr < v then

deg oc,g (s) < deg ﬂ,ﬁ/ (s) < deg aly (s) and therefore [—oc,L{/] = 0, which means

Vk*
that the polynomials g ,5/ 4 and a,ﬁjﬂ are no longer coprime. Similarly, Eq. (39) implies
that if EIY_H # 0 and vy < g — 1 then ,8,2:_1 and a,YH will have (s — Ar41) as a
common factor.

Notice that, in the second factor of (38) and (39), the determinant is always (s —

Ak+1), as expected.

5 A general minimal degree solution for the tangential interpolation
problem

Let us return to the interpolation Problem 1 on matrix valued functions. Using the
general notation W = [U, —V] and, similarly to what was done in the scalar case,
define, relatively to (A, W), where W = [Wy, ..., W,], the matrices Wl.wi fori =
1,...,ras

Wiwi = (W, AW;, ..., A W;] fori=1,...,r

and W® := [W"', W52, ..., W], where @ := [w1, ..., »]. We set k' to be the
controllability index of W; in the pair (A, W), that is, the smallest exponent «* such
that

Kt Kt Kt Ki—1 Ki—1 ki—1
AS Wi e span{Wy ..., W, WS Wi, ., W)
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Notice that this implies that the vectors in [W{‘ l_l, Wé‘ 2_1, o W r_l] are linearly

independent. On the other hand, in view of controllability, they span CK+1 and thus

Yi_1k'" = K + 1. We denote by y; j(s) the (i, j)-th entry of I"(s) and set, for
Vi,

V2, .
J=L..ry;= : / , where y; ; denotes the vector formed by the coefficients

}’r‘j
lvi,jlo, lvi,j11, ... i, j],i of the polynomial y; ;(s) (we add zero coefficients of the

higher powers if the actual degree of y; ;(s) is lower than «!). That is

Vi) =1Ls .y ;= Iy jls*. (40)
k=0

We now have the analogous of Lemma 3, showing that a matrix polynomial y generates
a solution to Problem 1 if and only if its coefficients determine linear dependencies
among the columns of the controllability matrix [W, AW, A2w, .

Theorem2 Let y; j(s) = ZZ;O[yi,j]ksk fori,j =1,...,r be scalar valued poly-
nomials.

Assume that for the integers wi, ..., w, the inequalities w; > degy; j(s), i =
1,...,r hold.

Then condition (5) is equivalent to

W“’yj=0 for j=1,...,r 41)
with the corresponding
ro i k—1
$i() =Y vl y (' AHw, (42)
i=1 k=0 =0
in Eq. (5). Moreover, if y1j, ..., ¥r,j have a common factor s — sg that is

Yi,j(8) = (s —s0)7i,j(s),

i=1,...,r, where sy ¢ o(A), then W“’_e?j = 0, where all the components of the
vector e are equal to 1.
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Proof A straightforward computation gives that:
r
;
Wey =3 Wvi,
i=1

=> E[Vi,j]kAkWi

i=1 k=0
r r wj

=Y Wiy () = Y ) i (s 1 = AW,
i=1 i=1 k=0

ro owi k—1
=Wy() = (I =AY D ik Y ATHw. 43

i=1 k=1 =0

Thus, setting ¢;(s) as in (42), we immediately get that (41) implies that Wy, (s) =
(s — A)g;(s) for j = 1,...r, thatis (5) holds.

Conversely, if for some matrix polynomial E;(s/), Eq. (5) holds with I"(s), then
for each column q%, for j = 1,...,r, we have, substituting in (43), W"yi =
(sI—A) (gbj (s) — m) The term on the left-hand side is constant, while the degree

of the right-hand side—if it is not identically zero—is at least 1. Consequently, identity
(41) should hold.

Suppose now y; j(s) = (s —s0)¥i,j(s),i = 1,...,r,withso ¢ o (A). Thus, setting
[7i,j1-1 = 7, j1p; = 0 we can write [y; j1k = [7i,jlk—1 — sol¥i, k. Thus we have
that:

,
Wey =2 Wi,
i=1

= Z Z (73, Tk=1 = sol7i, ;1) AXW;

i=1 k=0
r wj r wj
= Y Wik AW =50 Y Y 7 kAW
i=1 k=0 i=1 k=0
r wi—1 rowi—1
= Z Z[ff?,j]kAkHWi — 50 Z Z 7, e AW
i=1 k=0 i=1 k=0
r wi—1
= (A—=soD) Y Y 7 kAW,
i=1 k=0

= (A—soD) WP

Since (A — sol) is invertible, we reach the desired conclusion. O

Immediate consequence of the calculation in the previous Theorem is the following
corollary.
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Corollary 1 Under the conditions of Theorem 2 the following representation holds
1 -1 ®
s | I A" Wy;(s)ds =W, (44)
2i J4
where A is any simple closed curve with counterclockwise orientation around the

eigenvalues of A.

Proof Introducing the notation

r i k—1
$i() =YY lrijl y (' AHw,
=0

i=1 k=1

Equation (43) can be written in the form
W“’yj =Wy(s) — (s — A (s).

Multiplying both sides by (s — A)~! and integrating, we obtain:
1 —1lywo 1 —1
— | I =AW ds=— [ (sI = A Wy;(s)ds.
27i Ja J 27i Ja

Using that 5 [, (s] — A)~'ds = I we get (44). O

As we have pointed out after Eq. (5) the polynomial matrix y generates a solution
to Problem 1 if together with ¢(s) = (s — A1 Wy (s) form a polynomial input-
output pair. According to Theorem 5 in Forney [7] the column degrees of a minimal
polynomial basis of the polynomial input-output pairs coincide with the controllability
indexes of the pair (A, W). This connection leads to the following definition.

Definition 3 We say that I"(s) = [y1(s), ..., y,(s)] is a minimal fundamental solu-
tion (MF solution) to the interpolation Problem 1 determined by (A, W) if there
exists a matrix polynomial @ such that (4) is satisfied and, for each column y;(s) =
1,5 (s)
2.5 ($)

of '(s)y(for j=1,...,r),
Vr,j(s)

degy; j(s) =7, yj j(s) is monic

degyi,j(s) < min(x' — 1,/<j), forl <i,j<r,i#]j (45)

where 7, j =1, ...r are the controllability indexes of (A, W).

Remark 6 Let us observe that an immediate consequence of the degree constraints in
the MF solution that it will be column reduced. This property plays a crucial role in
the analysis of the minimal possible McMillan degree of the interpolants in [3].
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The following proposition shows that the MF solution is essentially equivalent to a
basis selection scheme corresponding to the controllability indexes of the pair (A, W)
(Cf. Section 6.7.2 in [12]). This statement follows from the more general analysis
presented in [2] which is based on the so-called nice selections defined by Young-
diagrams, but we present here a short proof of it which fits more to our purposes.

Proposition 4 For any controllable set of data (A, W) there exists a unique MF solu-
tion.

Proof By construction, the set

(Wi, AW, A YWy, Wa, AW, L A W) (46)
constitutes a basis for CK+1. This basis is uniquely determined by the order of the
columns of W. Thus, for j = 1,...,r, there exist unique vectors ¥ j, ..., p, ; of
dimensions !, ..., k", such that

AW+ Wi, AW, AT WP, =0, (47)
i=1
Setnow, for j =1,...,r,

vji= [yflf] Vi = |:y61i| for j #1i.

Then (47) can be rewritten as:

r

S IWi AW, A Wil =0. (48)

i=1

Therefore, in view of Theorem (2), for each j = 1, ..., r, the vector-polynomial
yj(s) corresponding to y e ¥rjas in (40) provides a solution to Problem 1.

Furthermore, the polynomlals )/1 i), v, () v j(s) associated with the vec-
tors y ; will have degree at most k' — 1if i # j and k! if i = j. On the other hand, by
construction, for j = 1, ..., r only the components of (46) with exponent / < K/ are
needed, which means that deg y ;. j (s) < k. Thus, the following inequalities hold:

. j e,
degys j(s) | = MR~ )T,
=K ifi =j

and y; j(s) will be monic. Thus conditions (45) are satisfied. Moreover, for each
column j the degree of its j-th entry is exactly «/ and it is not greater than «/ if i < j
and strictly less than j if i > j. Thus, setting I"(s) := [y1(s), y2(s), ..., ¥-(s)], its
column highest degree coefficient matrix is a triangular matrix with the diagonal equal
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to the identity. Therefore degdet I'(s) = Y i k) = K + 1. In particular, det I"(s) is
not identically zero. (Moreover, I" is column reduced.)

To prove uniqueness, observe that, if I (s) is another solution to (4) which satisfies
(45), then the difference f(s) := I'(s) — I'(s) is such that, for each j=1,...r,
degy; j(s) < «/. Thus, in view of (43), it is

max degy; j(s) < min ((Kj —1), max (k; — l))

ik <Kj IRE NI g

=«k;—1<degy;(s) j=1,...,r. 49)

In particular
deg yj(s) < degy;(s). (50)
On the other hand, I"(s) still satisfies (4) and thus each of its columns 7j(s) can be
expressed in terms of the columns of the fundamental solution I" (s): thus there exists

a polynomial 77;(s) such that y;(s) = I"(s)7;(s). Since I"(s) is column reduced, it
has the predictable degree property (see [12, Theorem 6.3-13], that is,

degyj(s) = max {degy(s)+degm ;} (@28
Lt (s)#0
where 71; ;(s) is the [-throw of 7w (s) for [ =1, ...7.

Let us introduce the notation 7y = max  « ;. From Eqs. (50) and (51) itis immediate
that ﬁ'i,j =0,ifx; = 17.
Consequently, the following representation holds:

Fj= Y ViifLj (52)

k<t

Let us observe that rearranging the columns (and the rows accordingly) of I" accord-
ing to the decreasing order of the controllability indexes the highest column degree
coefficients matrix is transformed into an upper triangular matrix with diagonal entries
equal to 1; thus, any of its principal submatrix is of full rank, and thus, the correspond-
ing part of the matrix I" has the predictable degree property. Reduce now the column
vectors of I" keeping only those entries 7;. j for which «; < 7;. Now, let us introduce
the notation: 7o, = max {«;|«x; < t1}. Since the submatrix of I" formed by the entries
i1 for which k; < 7 and k; < 1 also has the degree predictable property we have
that

max degy; ;j = max  (degy; +degm ;).

1Kki<Tp l:Klftz,JTl_j#O

Using again inequality (49) we get that max,.; <, deg y;,j < T2, consequently 77; ; =
0,ifxy =m,forj=1,...,r.
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The argument can be repeated for the matrix obtained from I after eliminating
those entries y; ; for which «; < 12, and so on, finally proving that 77; ;(s) = 0 for
l,j=1,...,r, thus f(s) = 0, achieving the proof. O

Remark 7 The uniqueness of the solution I"(s) hinges on both of the conditions in
(45) and thus it relies on the controllability indexes of (A, W). If I''(s) is another
column-reduced matrix polynomial satisfying only the second condition in (45) then
using Theorem 6.5-4. in [12] we see that I” '(s) can be obtained from I"(s) multiplying
it from the right by a unimodular matrix; consequently, Lemma 6.3-14. in [12] gives
us that the column degrees of I'(s) and I (s)—after an appropriate permutation of
the columns—coincide.

6 General multivariable recursive interpolation

Similarly to the scalar case, given a controllable pair (A, W), with A lower triangular
of dimension (K+1)x (K+1)and W := [W{, W5, ..., W,]of dimension (K +1) xr,
we can consider a sequence of reduced interpolation problems (A, Wy) where Ay is
the submatrix of the first K+ 1 rows and columns of Aand Wy = [Wi k, ..., W, x] the
truncation of W to its first k 4+ 1 rows. According to Lemma 2 this means in particular
to find right coprime polynomial matrices @ (s), I';(s) such that

(sI — Ap)Dr = Wil (s). (53)

Again, we can define Wj‘.‘jk = Wk, AWjik, ..., AP W; ). It is immediate to see
that

W;‘jz] = [Wj,k, .Aijajk] = [Wﬁk, -A(]é)Jerj,k] 54)

so that, if [xo, ..., x,]" € ker W{’;, both [xo, ..., X, 01" and [0, xo, . .., x,,]" are

in the kernel of W;"Z‘l.
We can thus consider the sequence of nested (interpolation) problems (Ax, W)
where, for each £,

Ay 0 Wi
Apq = Wiay = 55
ko [ak+l /\k+1] s |:wk+1 (53)
and set
ki, ki “
W =IWihe Wl s WA
where W,f"l =[Wjr, AWjk, ..., AZ" W; ], the index « is the controllability index
of W i in (Ax, Wi) and Ky = [K;, ..., ki] as a row vector. Let us point out that

the lower triangular assumption on A implies that the vector formed from the first &
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coordinates of the vector A7’ | W; k1 is equal to the vector A" W i for any m > 0,
j=1,....r,k > 1, and consequently x{ < K]‘(/_H forall j=1,...,r,k>1.

(Let us point out that we assume (A, Wy) controllable for each k. Now since A is
lower triangular, this can be achieved if for example the first entry of a column of W
and at least one element of each row of A before the diagonal are not zero. Another
possibility is given when the diagonal elements of A are different and nonzero, and
in each row of W there is a nonzero element.) _

Comparing the previous inequalities to the identities Zr/:l Kkl = k+ 1,

Z;-:] /c,{ 41 = k + 2 we obtain that there is only one controllability index which
changes during the step k — k + 1. To locate this let us introduce the following
notation:

Fork, j fixedandi = 1, ..., r let us denote by yf ;a column vector of dimension
kj + 1 defined by the coefficients of the polynomial y;* ;(5) (which is the @, " entry
of I';(s))—extended by extra zeros if necessary—and we set

k
Yy ]1,
k. Y2
V= .
k
Yrj
Notice that
Wikph =0 forj=1,....r (56)
(see (48)).
Furthermor.e, let wfil = [wel . wi, ... wy ] denote the last row of the
extended matrix
R “i i
Wit =W Wl - Wl
Kj Ki
where Wj’kkﬂ = [Wj,k+1" Ag41 W]:,k+1, R Ak’;le,k+1]. Let us observe that due
to the assumption that .4 is lower triangular we have that
j
K
W o Wik
Wk :[ ,C Wk = j=1,...r (57)
k+1 k k+1 ; s
* Wit B !
Wi k+1
and thus, similarly to the scalar case,
o o
j A 0 Wk AWk
i k j.k Jj.k
Akt Wil = N ; = ; ;
Af1 Ak+1 K K “i
Wikt Wt W+ Mep 1wy
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and eventually, for j =1, ..., r,

j
. K
Kl +1 Wik AkW»k
k _ . Js ’
Wj,k+1 = W],k+17Ak+1W k41 1
Wi k+1 s ak+1W +)»k+1w/ kil

(58)
Finally, set
€yl = [Eliﬂv 6/%+1, e €] = waH[y]f, yé, e yf] . (59)

Let us observe that if 61£+1 = 0 for some j, then k], | = «]. (The same linear
combination which “worked” for the first k coordinates also gives zero at the last
position.) Notice as well that, since Wk 1 has k +r + 1 columns and k + 2 rows,
its kernel has dimension r — 1, in view of controllability Thus €x4+1 # 0, since
Wzk[ylf, y’é, .., ¥Y"1=0and [y’l‘, yé, ..., X7 is of full rank.

The following lemma shows how to locate which controllability index changes
during the step k — k + 1.

1

Lemma 7 Suppose that (A, Wi) has controllability indexes /ck,...,/c,: and

(Ak+1, Wiy1) are as in (55). Let us order the set of controllability indexes K]l(,

I =1,...,r according to their value and in case some of them are equal then accord-
ing to the index I. Let j be such that K,f is the smallest index (in this ordering) for

which €], #0.
Then K,{Jrl = K]f + 1.

Proof For any j € {1, ..., r} such that e)fﬂ # 0, setting
sk ok Ek+1 60
pi=vyi— -k (60)
6k+1
we obtain
WEPi=0 i# (61)

in view of (56), (57) and (59). We claim that the controllability indexes of
(Ag+1, Wiy1) satisfy Kk+l = /ck for i # j. The claim is immediate if €k+] = 0.
Otherwise, we can write (61) as

. k+1 .,
Kkl ZWlk+l(ylk _sz) L # ]

€k+1

where the highest nonzero component in each f/f, « should be the (x} + 1)—stifl <i

and (K]l;)—th if [ > i (both y}'{ and y,{ have this property). If K,i > K,{ the condition
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is automatically satisfied; therefore K,i 4 = K,i. This is always the case if i < j.
If K,i = K,f , then the highest nonzero compopent of y}l k is the (K,i)—th forl > i,
whereas the highest nonzero component of ylj ¢ is the (K’,'(] )—th for/ > j. In view of

the ordering, it is i > j and, therefore, the condition is satisfied also for )7;( proving
the claim.
Since, in view of controllability, the sum of the controllability indexes has to increase
by 1, the only possibility is k/,; = & + 1. Thus, the controllability indexes of
it -
(Aks1, Wigr) are k..., ki ,K,ﬁ—i—l,/(,i*’,...,/(,f. u]
In the proof of the recursive scheme for the scalar case Lemma 6 played an important
role which was based onto Lemma 5. The multivariate version of this latter one is
formulated below.

J
Lemma8 Let W]'-(f‘k 41 be partitioned as (57) and let Ay be partitioned as in (55).

Then, for any vector y of dimension K,f + 1, we have that

J41 0 !
Y 1 O

The proof is similar to that of the scalar case in Lemma 5 and it will not be repeated
here.
Again—using the observation that the last entry of the vector yf j iszero fori # j,

an immediate consequence of Lemma 8 is that, if y’; € ker Wzki, then

- —k - _ k —
Y Y1
7 vio
1 =
O }I] ; Ick+eJT
}’k» . — Ak+1 0’ erI'Wj’kJrl ,
j.i
Y it Vit
—k k
L ),r/ - L yr,j -

where ¢ denotes the j th »_dimensional unit vector.
Set furthermore

0 for i =j;

L (63)
[)’i’ij],(]l;_l for i # j

k .
Pij =

denotes the entry with index
]T

k. 1k k k7.
aIlld P = [pl,j’ ...,or)j], where, we recall, [Vi,j]/«,’(—l
k;, — 1 of the k; + 1-dimensional vector [[}/f’j]o, [}’f-ijh, e, [yf’j]%_l, [yﬁf]'fzi’

Notice that, in view of (45), ,of"j =0ifx; <Kk — L
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Theorem 3 Let (Ay, W) be controllable pairs with Ay lower triangular for k < K
and let T (s) = [ylk (s),..., yrk (s)] be as in (53) (for some @y ) and such that (45) are
satisfied (that is, I}, is a MF solution). Define e,l(_H asin(59) forl =1,...,r and let
J denote the index for which K,fH = /c,f + 1.

Then Ty (s) = [ k+1(s) . )/,k+1(s)] defined as

v ) =yl = 2k, i # (64)
€k+1
and
Yy (s) = (s = )y (5) — Zm, [ (s) (65)

is an MF solution for (Ag+1, Wit1).

Proof Due to the definition of the index j to find the matrix polyn0m1a1 Tt (s) satis-

fying (45) we have to consider special elements in the kernel of [Wl k1 W2 el -

Kk+1
Wj,k+1’."" rk—H]
To this aim, for i # j, set

Yik BR4N,
K k
Yi_1i Vi
j—1. ; j=1.j
yhHl = )’(J)-,i _ Skt y{)’j 66)
— | Gkl | ——
Yii Vit
k k
L yr,i - L yr,] B
and, fori = j,
- —>k - — k -
Y, Y1
=i K
LO;lL Yicvi
y ..
Y= e | e | T Zp,] it (67)
.
Yij+1j Vit
—k k
L YV, 4 L Yy A
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Clearly, in view of (54), (66) and (67) we have

k2 Kkj+1
[Wl e Woggr - W

N ESEERRE rk+1]}’k+1 =0 forj=1,...,r. (63)

On the other hand the above recursion is again equivalent to the recursion (64) and
(65) on the matrix polynomials I (s). In fact, letus recall that, if x = [xo, x1, ..., Xk] r
represents the coefficients of the polynomial x(s), then x” := [0, xq, X7, coox?
represents the coefficients of sx(s). Similarly, if the last entry of x vanishes, then
also ¥ := [0, x0, X1, - ., xk—117 expresses the coefficients of sx(s). Therefore, it is
immediate to see that (64) is the polynomial versions of (66): now notice that, since
I (s) is an MF solution, degy (s) < k; if i # j, so the last entry of y Vamshes
and thus (65) is the polynomlal vers1on of (67).

Now using the fact that kf_ | = «f fori # j and k], | = k] + 1 and equation (68),
Theorem 2 implies that ;41 (s) is a solution for the pair (Ag+1, Wit1).

We have to check that the inequalities in (45) are also satisfied.

Consider first the elements in the /™ column for [ # j. If K,i < K]{ or K,i = /c,{ and
| < j, then ek = 0 and thus yk'H(s) = lkl(s) fori = 1,...,r, so the conditions in
(45) are obviously satlsﬁed In particular, yk+1 (s) is monic and its degree is /c,i = K,i Iy

If/ck > /c,f OI'K,I{ :/ck but j > [ then

fori #1

l
deg /' (s) = deg (y,-’f,(s) - ﬂy, ,(s)) < min(k] — 1, max(kf. 7))
6k+1
= min(k — 1,&}) < min(k}_; — 1, &}, )

fori =1 (45) yields

l
deg ylkfl(s) = deg (y/fl(s) — —yl J( )) = Kk = K,l(_H
€k+1

k+1

and furthermore v () is monic; therefore, for these columns (45) holds.

Consider next the elements in the jth column. Fori =1,...,r,

RO ECEPY AN OR sz, K Gs).
=0

If i = j then using the fact that deg yl.kj (s) < K,i — 1 fori # j we obtain that

k+1 _ k+1 _ _ )
deg Yij (s) = degsyj’j )=k, + 1=K,
moreover it is monic.
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Now if i # j then we have to prove that
deg 1 (s) = min (il — 1ay, ) - (69)

If i # j then degsyi’fj(s) < (ki — 1) + 1 = ki, but in the second term for / # i
deg v (s) < ki — 1 while deg y!

() = K,i, and thus this term has the highest
degree. Moreover yl.]flfl (s) is monic; thus, if deg yi]fj (s) = K,i —1, then the highest order

term in syl.k j (s) is canceled by the second sum. Consequently, fori = 1,...,r,i # j

deg yi]f}fl(s) = deg syi]fj(s) — Zpl’ijilffl(s) < K,i —1= K;;_H —1 (70)
I#j

On the other hand, since, as we said, ,olk j= 0forl : K,f < K,l( — 1, we can write for
l<i<rii#j '

degsyilfj(s) < degsyj’ij(s) = K,{H

degpf jyi M) swb < i + 1=k, 1#£]

which, together with (70), yields (69).
Let us point out again that the degrees of the columns of I}41(s) are K]l( = K][( Tl

forl # j and K/{_H = K,f + 1. Thus it has degree ) ;_, K,l{ + 1 = k + 2 and therefore
it is minimal. ]

A multivariable recursive algorithm has been developed, for the special case of
interpolating an m x p function F (s) given its coefficients Fy, ..., F, in [13]. While
it describes, in a behavioral framework, a clever generalization of [10], it also focuses
only on a particular pair of interpolants; it presents therefore the same problem of
jump in degree when this interpolating pair is not coprime.

6.1 Tangential recursive interpolation algorithm

While the proof of the algorithm is quite involved, its implementation is quite straight-
forward: we need, in fact only to compute (59), (66) and (67).

1. Initializing step: Let i be the first column of W whose first entry is not zero (such
column exists, in view of controllability of (4, W) and lower triangularity of .A)
and set

. i i i+1
Wo :=10,...,0, wy, Aowg, wy' ..., wyl,

Ko :=10,....0.1,0,....0]
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and
0 m0] ) .
0
_wp | ! J :
wy 0
0 0 0 0 =200
Y= 0 if j >1i, Y= : if j<i, py, = 1 ;
: 0 0
: ol.
1 . — | :
Jj+1 : :
: ; L 0
2. Recursion step: Repeat while k < K (where K is the number of data):
— Given WZ", y]; for j = 1,...,r, compute Wk+1 using (57) and €x4 using

(59). Set i to be the index correspondmg to the smallest K,i such that e,i 41 in
(59) is different from 0. Define, for j = 1,...,r, y]j‘fH using (66) and (67).

Define sz:ll using (57) and (58).
— Increase k.

7 Recursive interpolation of a given function—scalar case

In the remaining part of this paper we consider a very special situation, when all the
interpolation nodes are at the origin. We are going to show that this problem exhibit
several interesting properties not present in the general case.

We suppose that the data vy, . . ., vy we consider are derived from the power series
expansion of a given rational function

16 JT‘Z”“’

where we assume that o and 8 are coprime, « is monic and that «(0) # 0. We denote
in this section by p and m the degrees of « and B, respectively.

We would like to assess now how the controllability indexes wx and vy—giving the
column degrees of minimal fundamental solutions—increase as the number of data
Vg, . . ., Ut under consideration increases.

In this special scalar interpolation problem the matrices of the sequence of nested
problems indexed by k, are given as
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0...00 . %
10 0 Vi

T 7/ el I R 1)
0 N .
0...10 0 Uk

where Ay is lower triangular (k + 1) x (k+ 1) and Uy and Vj, are (k + 1)-dimensional
vectors.

Due to the special structure of the matrix A the equations characterizing the poly-
nomials ﬂU, al, ﬁv, aV can be written in a simpler form. (Since for the time being
we analyze the properties for a fixed k, we omit the index from the notation.) Thus the
matrix U™ = [U, AU, A%U, ..., A" U] is the matrix of dimension (k + 1) x (m+1)
of the form

10...0
01 .0
Do .0
um=10...01 72)
.. 0
1 0... 0 |
Similarly, the matrix V? = [V, AV, A2V, ... APV] is the matrix of dimension
(k+1) x (p+ 1) of the form
F v O ... 0 T
V1 Vo 0
: . 0
vP=| Vp viovw | (73)
Up+1 Up—1 --- V1
Vk—1 Vk—2  Vk—p—1
L Vk Vk—1 ... Vk—p |

Notice that U = U% and V = VO,

Denoting the controllability indexes of U and V by w and v, respectively, we see
that Eq. (16) characterizing the coefficient vectors of the polynomials in the minimal
fundamental solution can be written as finding the kernel of the matrix [U#, —V"],
which for u > v can be written as follows:
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[U*, —v"]
10... ... 0]0] —vo o ... 0 7]
01... ... 00 —v;  —uwp :
00 . 00 :
o - : —v H
00... 10 ...10] —v, —vp_1... —vg —v0
“loo... o
00... L 0]—vpu—1 —Vp—2 ... —Vy_y |—Vy_v_1
00... Ol —vp —Vp—1 ... =V vyl —Vpuy
00... 0 |0|=vug1 =V oo =V vi2|—Vu—vil
. . . v
1 00 ... 010 —vp —vg—1 —Vk—p+1| —Vk—p
n+1 v+41
(74)

Let us point out that to determine p the second block column should be written as
a linear combination of the columns in the first and third block, while to find v the
last column should be expressed as a linear combination of all the previous ones. But
the vectors in the first block are the unit vectors, thus for p the part below the first
horizontal line should be analyzed, for v that one below the second horizontal line.

Using the special structure of (74) the behavior of the controllability indexes as
k — oo is described by the following Lemma.

Lemma 9 Given the rational function f = g define the Ay, Uy, Vi matrices as in (71).
B B
of of
be the minimal fundamental solution of Problem 2 determined by vy, . . . v, fork > 0.
Ifdega > deg B, then vy = deg«a for large enough k, and thus puy = k+1—vp —
o0 (when k — o0), while if dega < deg B, then uy = deg 8 when k is large enough,
and vy — oo (as k — o0).

Denote by g, vi the controllability indexes of (Ay, [Uk, Vi]). Let T (s) = |:

Proof First let us assume that deg o > deg 8. That is, f is a proper rational function.
In order to find the controllability index v the last column in (74) should be
expressed as a linear combination of the “previous” ones. But the columns in the
first block part of (74) contains unit vectors this means that we should look after linear
combination between the vectors in the third part—below the second horizontal line.
Now, let us denote by p the degree of «. Then computing from the power series
expansion of f = g the coefficients of s¥, k > p+ 1,in f(s)a(s) we obtain that

0 =aovpy +avpp—1 +---+oapy forl >1.
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Since a, # 0O the coefficient of the polynomial provides a linear combination we are
looking for. Thus, we get if k is large enough then vy < p. Consequently, as k — 00
the sequence v; remains bounded, so puy — oo.

At the same time, when we already have that py > vi then columns in the third
block in the matrix (74) are linearly independent, thus the matrix

Vytl Uy -o. 02
Vyp+2 V41 -+ U3 (75)
Vb Uk—1 ... Uy

is of full column-rank. Consequently, in this case oz,z/ = o and vy = dego.

Next consider the case when p = dega < deg .

In order to find the controllability index ; the second column in (74) should be
expressed as a linear combination of the “previous” ones. But the columns in the first
block part of (74) contains unit vectors this means that we should look after linear
combination expressing the vector in the second column using vectors from the third
block column—but now below the first horizontal line.

Let us denote by m the degree of B. Expressing again the coefficients of s¥ in
f(s)a(s) but now for k > m we obtain that

B = aoUpy + QU1 + -+ ApUn—p,
0

OVl + X V=1 + -+ + ApUpyi—p forl>1.

Now since B, # 0 we get that if k is large enough then puy < m. So vy — 00 as
k — oo.
If vy > g, then the columns of the matrix

Vi Vpg—1 --- Ul
Vig+1 Vg oo 02
S : (76)
Vk Uk—1 ... Uy
are linearly independent and thus in this case alg = ﬂla and px = degp. This
P
concludes the proof of the Lemma. O

In the construction of the recursive scheme for interpolation the so-called error
terms €V, €V played an important role.
Let [U['},, — V.5 || be as in (25) and define the error terms arising from the linear

combinations obtained in the k™ step but including the next interpolation value v 41,
as well
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U aV
B, B
U Vo1, Mk k Pk
L exr] = Dy —vty] U v
% O

Mk Vk
U U |4 |4
= [Z (5k,j”k—1+1 - “k,j”k—j+1) 2 (ﬂk,j“k—fﬂ - O‘k,j”k—fﬂ)} :

j=0 Jj=0
(77)

In general, given two polynomials B¢ (s), ok (s) of degree uk, vi, respectively, and
the corresponding vectors B, ¢k, we can set €x4 := uﬁlﬂk — vz’;lak. The repre-
sentation (44) in Corollary 1 implies that

1 _
UL By — k+1ak— 5T — Ak T Uks1 Bi(s) — Viepra(s)1ds .
7Tl A

The last row of the vector on the left hand side is €4 1; thus, using that the last row

of (sI — .A)~!in this special interpolation problem is [s—&+D =k s71]wecan
write that
k+1
i =57 [ ] 35 ) = vtk Olds. )

Corollary 2 Suppose Bi(s) = sBr—1(s) and ay(s) = sag—1(s). Then

€k+1 = €k .
Proof From (78), we have:
k+1
=5 f D27 1 10) = k- )l
k+1

=57 f ZS kg 1-isBro1(8) = vipi-isag—1(s)lds

k+1

=5 / Z Htgg1—i Br—1(5) — Vip1—iok—1(s)]ds
+_'/ [tk+1Bk—1(5) — Vig10k—1(5)]ds
- 2mi / Zs - l[uk iBr—1(8) — vk—iax—1(s)]ds = €k .

O
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In the general recursion scheme presented in Theorem 1 the minimal fundamental
solution I was defined using I';. In the present situation—as we are going to see—
it will be natural to consider larger steps. To this end, given k| < k3 and the associated
minimal fundamental solutions I}, (s) and I, (s), set fkl,kz (s) ;= F,;l ()T, (s) (it
clearly is a polynomial matrix). If k; = k1 + 1 then we write shortly sz (s) = fkl ko (8).

In the generic case, for each k, the errors e,? , 61!/ are both nonzero and, since
Wi + v = k + 1, from Theorem 1 we obtain that p; = v for k odd and py = vy + 1
for k even. Graphically, the representation is the following:

¥

Vi

/

Hk Pattern 1

So, if ux = vx and e,ﬁj 1 # 0, following Theorem 1, we will use (38) to interpolate
also the (k+ 1)-st data vg1. If also 62/4_2 # 0, then we can then use (39) to match vg4».
Notice that, if e,:/ 41 = 0, then I;k, k+1(s) (the last factor in (38)) is lower triangular. It is

s U \% 14 —_0-
not hard to se? that, in this case, deg B/, | (s) > deg B/, | +1 and thus 'Bk+1,uk+1*1 =0:
that is, also Ik k+2(s) is lower triangular. In conclusion, if ux = v and e,:/ = 0,
then I42(s) and Ik (s) are related by a lower triangular matrix. Similarly, if uy =
vt + 1 and both e,:/ T and e,f] | are not zero, we can use (39) and (38) to match the
next two data vg41, vgo. If e,ﬂl = 0, then I}47(s) and I} (s) are related, this time,
by an upper triangular matrix.

What is surprising is that this is true whenever one of the errors is 0, even as we go
astray from the pattern 1, as the next result shows.

Theorem 4 Consider the recursive version of Problem 2 determined by the coefficients
in the Taylor-series expansion of the rational function f(s) considered around the
origin.

(i) Suppose that for some k we have that ux = v + 1 and GIYH == GIYH =0

and €, | #0.

Let k' := k + 2l: then uyp = vp + 1 and k' is the next smallest integer with
this property. Furthermore, the matrix f'k,k/ relating I, and Ty from repeated
iterations of (38) and (39) is lower triangular. That is,

BY B BU BV ' 0 i
Ms)z[ ¢ ’C}:[ ‘ "M }zms)Fk,k/(s), (79)

a,?,, Ol,Y/ aly a,:/ pi(s) st
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where | = v — vi and py is suitable polynomial of degree less than .

(ii) Similarly, suppose i = vy and 6/5]+1 =...= 61?4—1 = 0and 61?+l+1 # 0.
Let k' := k + 2l: then up = vy and k' is the next smallest integer with this
property. Moreover, the matrix T ki relating I'y and Iy from repeated iterations
of (38) and (39) is upper triangular. That is,

BY B BY BY 1T s! pits) N
Ty(s) = = = ) T (s),  (80)

o:,g, a,Y, a,’(J a,Y 0 s

where | = py — Wk, where py is a suitable polynomial of degree no greater than

L.

Proof Since p; = vy + 1 > v, but 61:/+1 = ... = 61:/+1 = 0, in accordance with
Theorem 1, we need, in order to obtain I 4/, to use first (38) / times. It is immediate
to verify that each of these factors is lower triangular. Thus also the matrix relating I'y
and Iy, is lower triangular. Furthermore, during these steps the second controllability
index does not change, that is, vx4; = vg, while the first one in each step increases by
one: (i = pi + 1.

We claim now that, to obtain I}/, we need [ iterations of (39) which are also lower
triangular. Since e,:/ 141 # 0, for the step k + [ + 1 we have to use (39). Now the
column degrees of I are v +1+ 1, vk. Therefore, deg ,BIEJH —deg :3/:/+1 >[+1and
thus the coefficient /3,:/ -1 = 0; consequently, also the last factor in (39) is lower
triangular for this step. Thus, B, () = sB" ()iqs and @)y, () = sa),(s)
In view of Corollary 2, 62/ 4 = e,l/ 4141 Thus it is different from zero. The same

reasoning can be repeated while I j+1(s) is lower triangular, that is as long as
deg :31?4-14—]' —deg IBIXH—H > 1. This will happen, if (k44 > Vg4 + 1. But during
these steps the sequence of pi-s does not change. Thus

Micri+j = Vi +1+ 1, vigpj =ve+J.

fk+l+j+1 (s) still will be lower triangular for j = 0, ...,/ — 1. In conclusion, I:k,k/(s)
is lower triangular. Since it has determinant 2/, and each column has degree at least /,
it can only have the form described in (79).

Let us point out that using again Corollary 2 for 62/, we obtain that elg 41 #0and

thus wg41 = pypr and vp41 = v + 1. But now the factor fkq,l is not necessarily
lower triangular.

The second statement can be proven similarly. But in this case the final application
of Corollary 2 gives that jt;11 = g + 1 and v 41 = vy again pointing out that now
the polynomial matrix I (s) is not necessarily upper triangular. O

In conclusion, the possible paths the controllability indexes can exhibit are of the
forms:
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/ 1 e
/ | s
N /S N s
s v
s r
Mk Mk

Paths of the following form are not admissible:

‘ »//ﬁ/ ‘ o

Vk Vk

I\
-~
AN

Mk Mk

The construction and the proof of Theorem 4 is based on Theorem 1 determining
a recursion for the minimal fundamental solutions of Problem 2. The next theorem
is based on a recursion for an appropriate sequence of fundamental (not necessarily
minimal) solutions. This construction gives the possibility of explicitly determining
the positions in the jumps of the degrees in the minimal solutions of the interpola-
tion problem using the form of the given rational function f. The basic idea is that
if for example Y, " are already given and provide a solution for Problem 2 for
vp, V1, ..., Uk, then to find the corresponding j U «V which complete the pair to a
minimal solution, a pair of polynomials should be determined in such a way that the
determinant of the corresponding polynomial matrix formed from these polynomial
vectors is equal to sK+1,

In order to show this let us assume that f = g, where dega = p, deg B = m and
«(0) # 0, and generate a sequence of polynomials using the following recursion:

First let us denote by £; > 0 the multiplicity of 0 as a possible zero of 8 and
introduce the notation: 8 (s)shl = B(s). (Thatis B81(0) #~ 0.) Consider the solutions
of the following equation

als) = y1()Bi(s) —s"181(s)
where y; and §; are polynomials, degy; < hi, while §;(0) = 0. Notice that the
coefficients of 1, s, ..., s" in shis 1 are zero. Since according to the construction the
constant term in B is nonzero, this equation has a unique solution. Furthermore,

degd; < max(dego — hy,degBy) .
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Let us continue similarly—as in the Euclidean-algorithm—denoting by 4, > 1 the
multiplicity of 0 as the zero of §; and introducing the polynomial §; as

Ba(s)s™ = 81(s) |

solve the equation

BL(s) = 12(5)Ba(s) — 5"282(5).
where y», §, are polynomials, deg y» < hy and §2(0) = 0. In general, if

Bj-1(8) = vj($)B;(s) —s"18;(s). 81
where 6;(0) = 0, then denote by 4 ;1 the multiplicity of O as the zero of §; and set
Bj1()s"iH = 38;(s).
Then y;41 and §;, are defined as solutions of
Bi($) = vir1()Bjs1(s) = s"418j51(s),
where deg yj11 < hjy1 and §;41(0) = 0. We obtain that
deg Bj4+1 =degdjt1 —hji1 < degdji1 < max(deg Bj—1 — hj, degf;).

Consequently, the sequence deg B, j > 2 is strictly decreasing, so this algorithm
terminates in finite steps. That is, for some » we have that

Br—1(s) = v ($)B(s) .

Straightforward computation gives that

B(s) s
a(s) - shl"l‘hz
J/I(s) - Sh2+h3
y2(s) —
shr71+hr
Yr—1(s) — 7 (s)

Now let us define a sequence a polynomial pairs as follows:
No(s) | | 0],
RoGs) |~ [ 1]~
. hi h;
Nj(s) | _ Oh s Oh. s 0 . 82)
R;j(s) =" yi(s) —styj(s) |1
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for j =1, ..., r. We obtain that
[—sthjl(s) Nj(s):| _[ 0 sh } [ 0 shi } 83)
—s"IR;_1(s) Rj(s) |~ [ =" mis) | =s" yi(e) |
and
Nj(s) _ sh
R](s) Shl"l‘hz
Y1 (S) - Sh3
y2(s) —
shj—1th;
i—1(8) — ———
v i (s)
In particular,
Ny (s) _ B(s)
Re(s)  als)’

Let us introduce the notation

i
=Y hi.
i=1

For the sake of simplicity we are going to assume that 41 > 1. In this case h| =
min{A | v, # 0}.

Let us point out that if #; = 0 then 7y = min{h > 1 | v # 0}, thus the sequence of
I1, 12, ... essentially remains the same, except the O as a first element is added to it.

Theorem 5 Assume that f(s) = 2% where a(0) # 0 while B(0) = 0, with the

als)?
Taylor-series expansion around the origin

f&) =) vt
j=1

Apply the construction described above to obtain the polynomials N, R for j =
1,...,r. Then a fundamental solution for K = 2l; — 1 is given by

[_Sh"Nf‘ Nf'] . (84)

hjp. .
—s"Rj_| R;

Furthermore, both controllability indexes i, vk are equal to l}, and coincide with
the column degrees of this matrix.

Proof Let us note that the assumption $(0) = O implies that 2#; > 1 and representation
(82) implies that deg R; <[, deg N; <;
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First we are going to show by induction according to the number of products in
the representation (82) that the polynomials N, R; are coprime, and R;(0) # 0. Let
us observe that since according to the construction 8;_1(0) # 0, 8;(0) # 0 while
4;(0) = 0 we have from Eq. (81) that y;(0) # 0. Thus s"i and y;j are coprime. Now
let us introduce the notation

) h h;
et B IO P TN | (85)
RP() |~ L=s" e | L=s" v ][
for j =2,...,r. Let us observe that N](.Z) (0) = 0 while R?) 0) £0.
Then N; and R; can be expressed as
Nj(s) =" RP(s),
Rj(s) = —s"' NP (s) + y; ()R (s) .

where N;z) and R;z) are coprime using the induction hypothesis, while y;(0) # 0
implying that N; and R; are coprime, as well. At the same time, since N/(.z) ©0) =0

we obtain that R;(0) # 0 using the corresponding induction hypothesis on R;Z).
The representation (83) gives that

—s"H N () Njp1(9) | _ 2
= +1
det |:_Shj+l R;(s) Rj+1(S)] sotitL (86)

Consequently,

Nj(s) B Njyi(s) s2lithj4
Rj(s)  Rj+1(s) N Ri(s)Rj41(s) ’

(87)

implying the lz\e]_; is a solution of the Interpolation Problem 2 determined by the values
vo = 0,vy,..., Vil —1- In particular, the multiplicity of the origin as a zero of
Nj(s) is exactly hy.

Notice that the pair shiN i—1(5), shi R i—1(s) provides a solution for the Problem 2
determined by the values vg = 0, vy, ..., V211

Choosing K = 21; — 1 we obtain that both columns of the matrix

|:—sthj—1(S) Nj(s)]
—Sthj—l(S) R;j(s)

provide solutions of the Problem 2 for vy, vy, ..., vg and the determinant of this
matrix equals to that of the minimal fundamental solution Ik (s). Thus

[ =5"N1 ) Ny T (oot [ =5 N1 () i) T\
re=| o e | (7 [ Sorno me )
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where the matrix standing in the brackets is unimodular, thus its inverse is a polynomial
matrix. Consequently, the matrix (84) is a fundamental solution, as well, concluding
the proof of the first part.

Furthermore, since the column degrees of the matrix (83) are no greater than /;
while its determinant is s2/7, its highest column degree coefficient matrix should
be of full rank and both column degrees should equal to /;. Using Lemma 6.3-14 in
Kailath [12] we obtain that its column degrees and those of FK coincide. Thus /; = vk
and uy = K +1 —vg = vg. O

Remark 8 In order to get the minimal fundamental solution I'x from the matrix (84)
the degrees of the (1, 2) and (2, 1) elements should be reduced and the (1, 1) and
(2, 2) elements should be transformed to monic polynomials. Denoting by g; and f;
the coefficients of s' in R j(s) and N (s), respectively, Eq. (86) implies that

det[_fj_l ff} —1.
—8j-18j
Consequently,
_[BY® ﬂ%(s)]

I -

x(5) [ U(s) al (s)
[ NG () N (S)} [—f,-_l fj:|_l

sMIR;Z1(s) Rj(s) || —8j-1 &

—s JN/ 1(s) N;(s) i = fj }
~s"R;_1(s) R; (s)”g, L= fi | (88)

where K =21; — 1.

Now, combining Theorems 4 and 5 we can describe the paths of the controllability
indexes generated by the minimal fundamental solutions to the restricted interpolation
problems generated by the Taylor-series of a given function f. In fact, using the
notations of Theorem 5 the following theorem holds.

Theorem 6 Let introduce the notation kj = 21; — 1. Then the set
{kj | j=1}

coincides with the set containing those values when for the recursive version of
Problem 2 determined by the Taylor-series coefficients of the function f = g the
controllability indexes coincide. In particular, jux; = vi; =1;.

Furthermore,

(1) if the coefficient g of the term sli in R; is zero, then
Mkj+1 = Hkj, Vkj+1 = Vk; + 1

and the path of the pair of controllability indexes evolves according to part (i) of
Theorem 4.
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(ii) if g; # 0, then
Mkj+1 = Mi; + 1, Vi1 = vk;

If moreover

(a) hji1 = 1thenin the next step both controllability indexes are equal:
Mkj+2 = Vig+2 = Ljt1 .

(This is the generic case.)
(b) Ifgj #0andh i1 > 1thenthe path determined by the controllability indexes
evolves according to part (ii) of Theorem 4.

Proof Theorem 5 implies that i, = vi; = [;. Analyzing the path behavior of the
controllability indexes we show that the next occasion when they are equal again is
given by /1, moreover at the same time we describe the form of the path between
these two points.

From Theorem 5 we have obtained that

B () = —gjs"I Nj—1(s) + 8j-1N; (s)

Ol;g. (s) = —g;s" Rj_1(s) + gj—1R;(s) .
It was already pointed out that the pair N;, R; provide solutions to the Problem 2
exactly up to /; + [j41 — 1. Thus, if the next interpolation value v;; 1, is taken

into consideration there will be a nonzero error term obtained via using this pair of
polynomials. Let us denote this error by €;. That is,

Kb+l -1 VIl -1
e JT+L L JTj+1 X
€=U J T % R

Since hji1 > 1 and thus /; + 141 — 1 > 2/; so the pair N;, R; still interpolates for
the next value vy, , using Corollary 2 we obtain that

v _ . .
€ki+1 = —8j—1€j-1-
Similar computation gives that
Vi f.e.
€41 = fi€j-1-

Consequently, e,g 41 = Oifandonly if g; = 0. Theorem 1 implies that in this case
Mkj+1 = [k;> and v, 41 = vg; + 1. Butif g; = 0 then the pair ﬁ,g,oz,g are obtained
from N;, R; viamultiplication with a nonzero constant g ; 1, thus partii) of Theorem 1
gives that in the present case ﬁ,g 4= ﬁ,g , ag 4= a,g_ providing solutions to the
interpolation problem determined by vo, v1, ..., vt uptok <2/; +hj;y1 — 1. Now
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the second part of Theorem 4 gives that for the next /4 steps v remains constant
while © increases. That is

Vk_/+hj+1+l=ij+h_/+|=lj+hj+l7 forl =0,. J+1,
,U«kj+hj+1+l=ﬂkj+l=lj+l’ forl=0,...,hj+1.

In particular, ;. i1 = Lj+1 proving that in this case /1 is the next value
when the controllability indexes are equal, and also describing the path behavior of
this pair of indexes, concluding the proof of part i).

Now, if g; # 0, then from Theorem 1 we obtain that Kkj+1 = Mk; + 1=1[;+1,
vkﬁ] = ij = lj and

= Vi

14
€
v kit y 14
Brj+1 = U By + By, »
kj+1
14
€
v N kj+1 v
iyl = U o, oy, -
kj+1

Straightforward calculation based on part i) of Theorem 1 gives that

e v
) +1 €ki+1
ﬂlz/j+2:Sh1Rj_1 (f,+g, - >_Rj (fj—1+gj—l 7 )

€kj+1 6k_,+1
14
€ 4
7% h kj+1 kj+1
U =8 Nj—1 (fj T8 fi-1+8j-1 :
ekj-H 6k_j-H
Substituting the expressions e,gﬂ = —gj_1€;—1 and 6/2/,«+1 = fjej—1 we get that

v i 1
B2 = — R (fj—l - gj—l;) =—Rj,
v i 1
W42 = —Nj <fj—1 - g./—lg—> = —Nj.
Thus if 21 = 1 then e,!/,_ 42 # 0, s0 Theorem 1 implies that
M2 = i1 =1+ 1 and v o =v 1 +1=1;+1.
This is the so-called generic case.

But if ;41 > 2 then E]Yj+2 = 0 and the pair N;, R; provides solution to the
interpolation problem up to 2/; + hjy1 — 1. Theorem 4 implies that after that the
controllability index p remains constant and v increases up to the point when they
will be again equal. This happens at k1 = 2/; 41 — 1. That is

Mkjp = Vkjp = Lj+1s
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concluding the proof of the theorem. O
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Appendices
A Example: the Fibonacci sequence

Let us consider the Fibonacci sequence of integers 1, 1, 2, 3, 5, 8, 13, 21, ... generated
by the recursion vj 41 = v;_1 + v;, with initial condition vy = 1, v = 1. To make
the computations more readable, we use the recursions (36) and (37) and we do not
normalize.

_ B (s) B (5) o .
Given I (s) = U v , we denote by I' the matrix of its coefficients by
ay (s) ay (s)
By B
r;, = kT . So, the initial step is:

o e

01
_ s 1
s, =viro=[101=1 ]| 1o | =0. N = [0 1]

01

with the controllability indexes g = 1, vg = 0. Adding one row of data [u1, ug, —v1],
we get

01
I ooy [10]-1 ool [o o
U1 Vl]ro_[m—l 7(1)(1) -1 T Ve

that is, € 1V # 0 and po > vp; we can thus increase the second controllability index

vg. Therefore, multiplying by [ }i| we obtain an element in the kernel for the first

column. We then add the column — A4, V; = _01 to get [U 11, —Vll] and shift the

second column of I' to get I'| (the values of indexes are now n; = 1,v; = 1) and
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by construction

10
1 1 . 10—10 11 . . S+1S
[U"_V‘]Fl_[01—1—1 To | =0 NW=1

01
The next row of data is [u%, —v%] = [0, 0, —2, —1], and the errors are
[ef . &)1 = [u3, —v3]1Fy = [-2, —1].

Since eg #0,and uy = vy =1, wecanthusset uo = w1 +1 =2, vop =v; =1,

multiply I'| by |:_21] and obtain

100/-1 0
(U, -V}l = | 010[-1—1
001|—2—1]]0-1

—_—— O

—_

and
2
A sc4+s s—1
Fz(s)=|: 2S_1i|.

Now applying Theorem 1 we get that

I[2s2+s+1 s—1
FZ(S)_E[ 1 2s—1]"

A similar computation will yield I's with errors [e}, €}] = [—2, —1]. Going
up to I'y4, it is not hard to see that, for the data {1, 1, 2, 3, 5}, the new data row is
[ui, —vi] = [0, 0, 0, =5, —3, —2] and the error is [—1, —1]. Thus, after some simple
computations we obtain:

0-—1
1000/—1 0 O 2 0
0100/—1 -1 0 -1 0
(U3, VT4 =] 0010/—2—1—1 1 0|=o0,
0001|—-3 -2 -1 0-—1
0000|—5-3 -2 2 1
__3 1_
A 3 —s242s -1 T
F4(s)=|: —3s2 4+ 25 s2+s—1_ ’
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Applying again Theorem 1 we get that

32 _ _
F4(s)=|:s s“+2s —3 1 j|

55 — 3 s24s5—1

Considering the new interpolation value vg = 8 and thus adding the row [ug‘, —vg] =
[0, 0,0, 0, —8, —5, —3], we see that the errors are

(€Y, ed] = [uf, —vdIry = [-1,0].

Therefore, we cannot increase the index vs. We thus have to increase ps. While the

k=3
Fibonacci sequence continues, this yields, for k > 4, I'i41(s) = T4(s) |:s 0 (l)i| If

for some k¢ the value vy, is not a Fibonacci number (while all the previous are),
then GIX) 41 # 0 and we can increase vg, by multiplying the second column of I, (s)
by s. A minimal interpolant will thus now have the degree of the first column of I 41,
which is k.
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