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Abstract
We consider here the problem of constructing a general recursive algorithm to inter-
polate a given set of data with a rational function. While many algorithms of this kind
already exist, they are either providing non-minimal degree solutions (like the Schur
algorithm) or exhibit jumps in the degree of the interpolants (or of the partial realiza-
tion, as the problem is called when the interpolation is at infinity, see Rissanen (SIAM
J Control 9(3):420–430, 1971) and Gragg and Lindquist (in: Linear systems and con-
trol (special issue), linear algebra and its applications, vol 50. pp 277–319, 1983)). By
imbedding the solution into a larger set of interpolants, we show that the increase in the
degree of this representation is proportional to the increase in the length of the data.We
provide an algorithm to interpolate multivariable tangential sets of data with arbitrary
nodes, generalizing in a fundamental manner the results of Kuijper (Syst Control Lett
31:225–233, 1997). We use this new approach to discuss a special scalar case in detail.
When the interpolation data are obtained from the Taylor-series expansion of a given
function, then the Euclidean-type algorithm plays an important role.

Keywords Interpolation · Recursion · Multivariable · Tangential

Mathematics Subject Classification 41A05 · 47A56 · 93B05 · 93D51

1 Introduction

The concepts of controllability indexes and tools from module theory like polyno-
mial basis have been widely used in system theory and they have been extensively
applied to different representations of transfer functions (rational functions, quotient
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of polynomials, etc., see Kailath [12]), and in Antoulas et al. [3] they have also been
connected to an interpolation problem for given data by means of a rational function.
In [18], the present authors developed an approach for the characterizations—under
weaker conditions—of proper interpolants by means of rational functions using con-
trollability indexes. We show here how this framework accommodates quite naturally
a recursive algorithm to compute the interpolants.

The simplest (andwell-known) instance of the problem is, given a sequence of com-
plex values v0, . . . , vK , to find, for k such that 0 ≤ k ≤ K , all rational functions which
interpolate those data at 0, that is, functions of the form f (s) = ∑k

i=0 s
ivi +sk+1g(s).

This problem has a long history which (in its conceptual framework) goes back at least
to Euler (see Wyman and Wyman [21] for a nice translation of Euler’s paper and Mei-
jering [17] for an exhaustive history of the problem) and, in its recursive form, has been
widely studied especially in the case where there is one interpolation node at infinity
(instead of 0: it is the well-known partial realization problem). In this context particu-
larly relevant are the works of Ho and Kalman [11], of Rissanen [19] and of Gragg and
Lindquist [10]. The common feature of all these algorithms is the intrinsic presence of
sudden jumps in the degree of the interpolants aswe add further data.A simple example
of this behavior is a Fibonacci-like sequence which suddenly gets out of the recursion,
like 1, 1, 2, 3, 5, 8, 13, 100: it can be seen that the degree of the recursion is 2 until it
“hits” 100 and jumps to 4. This makes these algorithms quite unsuitable for parame-
terization and thus for applications in identification. Their reliance on the Euclidean
algorithm also makes extensions to the multivariable case or to different interpola-
tion nodes intrinsically very difficult. The generalization of the approach initiated by
Loewner [15] in 1934 for scalar interpolation problem was first systematically applied
to the multivariable situation in Anderson and Antoulas [1]. The so-called Loewner
matrices (divided difference matrices, null-pole coupling matrices) play a key tool in
Ball et al. [4], Mayo and Antoulas [16] and Lefteriu and Antoulas [14], mentioning
only a few.While the multivariable multiple node problem has been studied by several
authors (see, for example, Antoulas et al. [3], Ball et al. [4] andGombani andMichalet-
zky [9] for Kimura–Georgiou like fixed degree interpolants), a recursive version of
these characterizations are—in general—not discussed. A recursive algorithm, which
only works for two-sided interpolation, is presented for the matrix case in Lefteriu
and Antoulas [14]. We provide here a recursive scheme under weaker conditions than
those required in Antoulas et al. [3] and Fuhrmann [8].

We show how considering the larger (quite canonical) family of solutions (actually
an immersion into a larger space) considered in [18], provides an algorithm which
exhibits an astonishing regularity and makes the extensions to different nodes and the
multivariable case quite straightforward. This provides a substantial improvement on
Kuijper [13],where a single pole at infinity is considered and a coprimeness assumption
on the interpolating polynomials had to be made. This feature thus sparks renewed
attention for the Behaviors approach to Systems Theory devised by Polderman and
Willems [20], where lack of coprimeness of an AR representation was a fundamental
and interesting feature of the models, but where the practical construction of recursive
algorithms for such models relied on this very coprimeness assumption. Closer to
our approach are the nice results in Boros et al. [5], where also polynomial families
of solutions with the same regularity are obtained. Nevertheless, that approach does
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not guarantee uniqueness of the representation and its computation, in the case of
confluent interpolation, is quite involved.

The fundamental idea is quite simple: most recursive techniques consider, for the
scalar case, the smallest number for which some columns of data (in general arranged
as aHankel matrix) are linearly dependent. Thismeans to consider enough elements so
that we obtain a matrix with a one-dimensional kernel at each step. Adding a new row
of data usually makes the matrix full rank and we thus have to add another column to
this matrix to obtain a new kernel. The problems occur when the rank is not increased
by the extra data for a while (the model already accommodates the new data) and
then suddenly there is a jump in the rank. (We have to add several columns at once
to have a nontrivial kernel.) We consider instead a slightly larger matrix, with a two-
dimensional kernel, for which we introduce an algorithm which always decreases by
one the dimension of the kernel as we add data and thus has no jumps.

The paper is structured as follows: in Sect. 2 we introduce some general results
for the tangential problem (see Antoulas et al. [3] or Ball et al. [4]) and discuss the
existence of a polynomial solution. Since, as we said, the idea is quite simple, but
the details for the multivariable case are rather intricate, in Sect. 3 we discuss the
scalar rational interpolation problem and we lay the ground for characterizing all
interpolants through the construction of a fat matrix (essentially a basis obtained from
a nice selection with the addition of two extra columns) and connect it to a 2 × 2
polynomial matrix (see Antoulas et al. [3]) which we call fundamental solution: its
main feature is that its rank is always 1 at the interpolation nodes and 2 everywhere
else. (This solution is not unique, but all solutions are related by units.) As similar
results are needed for the multivariable case, most proofs are deferred to that part. In
Sect. 4 we exhibit a scalar interpolation algorithm in some detail, as we feel that it
provides the essential ingredients for the multivariable case while providing a grasp
of what the main idea is. In Sect. 5, we extend the construction of Sect. 3 to the case
of tangential interpolating conditions. In Sect. 6 we show how to extend the recursive
algorithm to the general tangential rational interpolation problemwith arbitrary nodes.
In Sect. 7 we apply our analysis to a scalar case having only one interpolation point
at zero, and show how this special feature implies a very fine and detailed structure.
In the “Appendix” we provide an example with the Fibonacci sequence.

Remark 1 The present approach seeks minimal degree interpolants and does not
consider constrains on their norm and their analyticity, like in Nevanlinna–Pick or
Caratheodory problems (see, for example, Dym [6] and Ball et al. [4]). It turns out,
though that a similar, albeit non recursive, approach, can be used to tackle this kind
of problems and that it yields a simpler solution to them. This will be discussed in a
forthcoming paper.

2 A general tangential interpolation problem

Suppose that we are given a triplet (A,U , V ), where A,U , V are of size (K + 1) ×
(K +1), (K +1)×m and (K +1)× p, respectively, determining a so-called tangential
interpolation problem. The ultimate goal is to characterize all matrix-valued rational

123



4 Mathematics of Control, Signals, and Systems (2021) 33:1–48

functions Q(s) of size m × p possibly in the form Q(s) = β(s)α(s)−1 of a given
McMillan degree (if any exists) such that

(s I − A)−1[UQ(s) − V ] (1)

is analytic at σ(A), the spectrum of A.
Note that since the product Q(s)α(s) = β(s) is a polynomial a slightly different

formulation of this problem is the following:

Problem 1 For a given triplet (A,U , V ) find all the pairs of matrix polynomials (α, β)

such that

N (s) := (s I − A)−1[Uβ(s) − Vα(s)] (2)

is a polynomial.

While the row dimensions of α and β are m and p, and their common column
dimension could be an arbitrary natural number, it turns out that, to characterize all
such pairs, we will need precisely α to be square and invertible.

Remark 2 Let us point out that, if β and α are right coprime and α is an invertible poly-
nomial matrix, then Problem 1 is equivalent to the following: set Q(s) = β(s)α−1(s).
There exist a polynomial matrix p(s) such that

(
(s I − A)−1U + p(s)

)
Q(s) − (s I − A)−1V

is analytic on σ(A).

Proof In fact, if N (s) in Eq. (2) above is a matrix polynomial then the right coprime
property of β(s), α(s) implies that there exist matrix-valued polynomials φ(s), ψ(s)
such that

N (s) = φ(s)β(s) + ψ(s)α(s) .

It follows that N (s)α−1(s) = φ(s)Q(s) + ψ(s). Thus

(
(s I − A)−1U − φ(s)

)
Q(s) − (s I − A)−1V = N (s)α−1(s) − φ(s)Q(s) = ψ(s) ,

which is analytic on σ(A).
The converse statement is obvious. ��
As it is well known from the literature on interpolation (see, e.g., [3,4]) a coprime

factorization of (s I − A)−1[U ,−V ] plays a crucial role. Since for the derivation of
the present results—except in Proposition 1, for the time being the distinction between
the tangential conditions U and the data V is irrelevant, we will set, from now on,
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W := [U ,−V ] of dimension (K +1)×r and therefore we will consider the following
polynomial coprime factorization

(s I − A)−1W = Φ(s)Γ −1(s) (3)

withΦ,Γ right coprime.Wewill also refer to the interpolation problem as one defined
by (A,W ) instead of (A,U , V ). Thus, clearly (3) can also be written as

(s I − A)Φ(s) = WΓ (s) (4)

provided that Φ and Γ are right coprime and Γ (s) is invertible.
The following simple lemma—see Ex. 6.3–19 in Kailath [12]—provides a straight-

forward way to check whether, for a given factorization, this is the case:

Lemma 1 Assume that the pair (A,W ) is controllable. Then, if the degree deg det Γ =
deg det(s I − A) = K + 1, then Φ and Γ in (4) are right coprime.

We will assume, from now on, that Φ and Γ are right coprime. There are a few
properties of (3) which will be needed.

Remark 3 Since Φ,Γ are right coprime, (s I − A) and Γ (s) have the same—non-
unity—invariant factors; especially, det Γ (s) = det(s I − A), and thus, the zeros of
det Γ are contained in σ(A). Coprimeness also implies that if Γ (λ)ξ = 0 for some
vector ξ ∈ C

r , and λ ∈ C, then Φ(λ)ξ �= 0; therefore, Φ(λ)ξ is in the kernel of
(λI − A).

With some abuse of notation, we say that a polynomial matrix γ generates solutions
to Problem 1 defined by (A,W ) if there exists a polynomial matrix φ such that

(s I − A)φ(s) = Wγ (s) . (5)

In other words, using γ (s) as a polynomial input to the transfer function (s I −A)−1W
the output—φ(s)—is polynomial, as well.

Although the next lemma is essentially the basic starting block of the derivation of
all solutions to an interpolation problem in the form of linear fractional transformation
(cf. [3,4,14]) for the readers convenience we include here a short proof of it.

Lemma 2 Assume that the pair (A,W ) is controllable and γ generates a solution
to Problem 1 defined by (A,W ). Then, there exists a matrix polynomial π(s) such
that γ (s) = Γ (s)π(s) (that is, Γ (s) generates the module of polynomials solving
Problem 1).

Proof The pair (A,W ) is controllable. Thus, (s I − A) and W are left coprime and
according to our assumptionsΦ,Γ in (4) are right coprime. Therefore—using Lemma
6.4-2 in [12]—there exist matrix polynomials X(s),Y (s), X̄(s), Ȳ (s) such that

[
(s I − A) W
X̄(s) −Ȳ (s)

] [
X(s) Φ(s)
Y (s) −Γ (s)

]

=
[
I 0
0 I

]

. (6)
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Thus we can always write

[−φ(s)
γ (s)

]

=
[
X(s) Φ(s)
Y (s) −Γ (s)

] [
(s I − A) W
X̄(s) −Ȳ (s)

] [−φ(s)
γ (s)

]

.

If φ(s), γ (s) satisfy (5), we obtain

[−φ(s)
γ (s)

]

=
[
X(s) Φ(s)
Y (s) −Γ (s)

] [
0

− (
X̄(s)φ(s) + Ȳγ (s)

)
]

,

that is, setting π(s) := X̄(s)φ(s)+ Ȳ (s)γ (s), we obtain γ (s) = Γ (s)π(s), as wanted.
��

The following proposition shows that under some mild conditions there exists a
matrix polynomial solution to Problem 1.

Proposition 1 Consider Problem 1 determined by the triplet (A,U , V ) assuming that
the pair (A, [U , V ]) is controllable.

Then there exists a matrix polynomial β0(s) such that γ0(s) =
[

β0
I

]

provides a

solution to Problem 1 if and only if the pair (A,U ) is controllable. (That is in this
case Q(s) = β0(s)I−1 = β0(s) is a polynomial matrix. )

Proof Consider the coprime factorization of (s I − A)−1[U ,−V ] defined in (3) and
define a partitioned form of Γ :

[
βU (s) βV (s)
αU (s) αV (s)

]

, (7)

corresponding to the partition W = [U ,−V ].
First we show the controllability of the pair (A,U ) is equivalent to the left coprime-

ness of αU and αV . Assume that there exists a scalar s0 ∈ C such that the matrix
[αU (s0), αV (s0)] is not of full row-rank. This implies that there exists a vector η such
that

η∗[αU (s0), α
V (s0)] = 0

and the matrix Γ (s0) is singular. In particular,

[0, η∗]Γ (s0) = 0 .

At the same time, according to Remark 3 the zeros of det Γ (s) are contained in σ(A)

thus s0 is necessarily an eigenvalue ofA. Since according again to Remark 3 the non-
unity invariant factors of s I − A and Γ (s) coincide thus the dimensions of the left
kernel of s0 I −A and that of Γ (s0) are equal. Let us observe that the controllability of
the pair (A, [U ,−V ]) implies taking a basis in the subspace of the left eigenvectors of
Awith eigenvalue s0 their image vectors under the transformation defined by [U ,−V ]
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should be also linearly independent—otherwise there would exist a left eigenvector
of A orthogonal to the columns of [U ,−V ] contradicting to the controllability of
(A, [U ,−V ]). Since the dimensions of the left kernels of s0 I −A and Γ (s0) coincide
and the vector [0, η∗] is in the left kernel of Γ (s0) there exists a vector ξ such that

ξ∗(s0 I − A) = 0 ,

ξ∗[U ,−V ] = [0, η∗] .

In particular, ξ∗U = 0. Thus, the pair (A,U ) is not a controllable pair.
Conversely, if the pair (A,U ) in not controllable, then there exists a left eigenvector

ξ of A for which ξ∗U = 0. Denoting the corresponding eigenvalue by s0 we get that
ξ∗(s0 I − A) = 0, implying that

0 = ξ∗(s0 I − A)Φ(s0) = ξ∗[U ,−V ]Γ (s0) = −ξ∗V [αU (s0), α
V (s0)] .

Since the vector ξ∗[U ,−V ] is nonzero due to the controllability of the pair
(A, [U ,−V ]) we have that ξ∗V �= 0. This implies that the polynomial matrices
[αU and αV are not left coprime.

Next we show that the left coprimeness of αU and αV is equivalent to the existence
of a matrix polynomial β0 such that (I , β0) provides a solution to Problem 1.

Since according to Lemma 2 any solution can be written in the form Γ π thus if
(I , β0) provides a solution then for some matrix polynomial π we have that

Γ π =
[

βU (s) βV (s)
αU (s) αV (s)

] [
πU (s)
πV (s)

]

=
[

β0
I

]

.

The second entry shows that αU and αV are left coprime.
Conversely, if αU , αV are left coprime, then there exist a polynomial pair πU , πV

such that

[αU (s), αV (s)]
[

πU (s)
πV (s)

]

= I .

Introducing the notation

π(s) =
[

πU (s)
πV (s)

]

and

β0(s) = [βU (s), βV (s)]π(s) .

We obtain that
[

β0(s)
I

]

= Γ (s)π(s) .
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Thus

[
β0
I

]

provides a solution to Problem 1, concluding the proof of the proposition.

��
Remark 4 Let us point out the following immediate corollary of the previous Lemma.
If the pair (A,U ) is controllable, then the rank drop of the polynomial matrix Γ (s)
cannot be greater than the number of the columns of U at any s ∈ C.

The following proposition slightly generalizes the argument applied in the proof of
Theorem 3.5 in [3].

Proposition 2 Consider Problem 1 determined by the triplet (A,U , V ) assuming that
the pair (A,U ) is controllable. According to the previous Proposition there exists a

polynomial solution

[
β0
I

]

. Let us consider a right coprime factorization of (s I −
A)−1U = Ψ1(s)Γ1(s)−1.

Then all solutions

[
β(s)
α(s)

]

can be written in the form

[
β(s)
α(s)

]

=
[

Γ1(s)πg(s) + β0(s)α(s)
α(s)

]

for some matrix polynomial πg(s).

In particular, in this case

Q(s) = β(s)α−1(s) = Γ1(s)πg(s)α
−1(s) + β0(s) ,

where β0(s) is a particular polynomial solution (might be called Hermite interpolant),
and (s I − A)−1UΓ1(s) = Ψ1(s) is already a polynomial matrix.

Proof According to Proposition 1 there exists a polynomial matrix π0 such that[
β0(s)
I

]

= Γ (s)π0(s) . The right coprime factorization of (s I − A)−1U =
Ψ1(s)Γ1(s)−1 can be written as

(s I − A)−1UΓ1(s) = (s I − A)−1[U ,−V ]
[

Γ1(s)
0

]

= Ψ1(s)

which is a polynomial; thus, Lemma 2 implies that

[
Γ1(s)
0

]

= Γ (s)π1(s) for some

polynomial π1(s). In other words

[
Γ1(s) β0(s)
0 I

]

= Γ (s) [π1(s), π0(s)] .

Since both Γ and Γ1 were defined by coprime factorizations, we have that det(s I −
A) = det Γ (s) = det Γ1(s). Consequently, det[π1(s), π0(s)] = 1, that is, it has a
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polynomial inverse. Thus—using Lemma 2—if γ (s) =
[

β(s)
α(s)

]

generates solutions

to Problem 1 then there exists a matrix polynomial π(s) =
[

πg(s)
πd(s)

]

such that

[
β(s)
α(s)

]

=
[

Γ1(s) β0(s)
0 I

] [
πg(s)
πd(s)

]

,

concluding the proof of the remark. ��
Although all the ingredients of the recursive algorithm for constructing solutions of

the tangential interpolation problem are quite simple, the details for the multivariate
case are rather cumbersome, and therefore, we start our analysis with the scalar case—
presenting the basic ideas in a simpler form and reverting to the general multivariate
case in Sect. 5. But in order to avoid repetitions the detailed proofs will be given for
the matrix-valued functions.

3 The template problem: scalar interpolation

Weconsider the situationwhen all the interpolation nodes are at the origin. Assume that
we are given the data {v0, v1, . . . , vK } and want to characterize all rational functions
Q(s) = β(s)

α(s) of a given degree (if any exists) such that

Q(s) = β(s)

α(s)
=

K∑

i=0

vi s
i + sK+1Q1(s) , (8)

where Q1(s) is a rational function analytic in 0. We do not presently require that Q(s)
is proper: a method to achieve this condition is thoroughly examined in [18].

Note that the product α(s)Q1(s) should obviously be a polynomial. Thus a slightly
different formulation of the problem is the following.

Problem 2 Find all the pairs (α, β) such that

1

sK+1

(

β(s) − α(s)
K∑

i=0

vi s
i

)

. (9)

is a polynomial.

(These two formulations coincide if α and β are coprime).
A second well-known instance is, given points λ0, . . . λK ∈ C distinct, and values

v0, . . . vK , to find all rational functions Q(s) of a given degree (if any exists) such that

Q(λi ) = β(λi )

α(λi )
= vi i = 0, . . . K . (10)

Again, if we assume α and β coprime, we can rewrite the problem as
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Problem 3 Find all the coprime pairs (α, β) such that

1

s − λi
[β(s) − α(s)vi ] (11)

is a polynomial for all i : 0 ≤ i ≤ K .

Both problems can be written in the same matricial form: in case of (9) define:

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 . . . 0 0

1 0
... 0

. . . 0
...

0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎦

, U =

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

, V =

⎡

⎢
⎢
⎢
⎣

v0
v1
...

vK

⎤

⎥
⎥
⎥
⎦

, (12)

where A is a (K + 1) × (K + 1) matrix and U , V are (K + 1)-dimensional vectors.
For (11), set A := diag{λ1, . . . , λK }, U := [1, 1, . . . , 1]T and V as above.

Both problems are thus immediately seen to be special cases of the

Problem 4 Find all the pairs (α, β) such that G(s)

G(s) = (s I − A)−1(Uβ(s) − Vα(s)) is a polynomial vector. (13)

We will thus focus on the general case (which includes the above examples) of a
given matrixA of dimension (K +1)×(K +1) and vectorsU , V of dimension K +1.

We will assume that the pair (A,U ) is controllable and, to construct recursively
the interpolants, that the matrix A is lower triangular.

Since the recursive algorithm will be formulated using the coefficients of the pair
α, β we need an equivalent formulation of Problem 4.

We introduce the following notation: for any polynomial γ we denote by γ the
column vector of the coefficients—starting with the constant term—of the polyno-
mial γ . (In some cases we will have to increase the dimension of the corresponding
vector, by adding extra zeros as entries. This is in coherence with considering higher
order terms in the polynomial but with zero coefficients.) In case of the polynomi-
als βU (s), βV (s), αU (s), αV (s) we shall use βU ,βV ,αU ,αV for the corresponding
column vectors.

We set U j to be the matrix of dimension (K + 1) × ( j + 1) of the form

U j = [U ,AU ,A2U , . . . ,A jU ] . (14)

Similarly, we set Vr to be the matrix of dimension (K + 1) × (r + 1) of the form

Vr = [V ,AV ,A2V , . . . ,Ar V ] . (15)

Notice that U = U 0 and V = V 0.
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Lemma 3 Let α = ∑
i αi si , β = ∑

i βi si be two polynomials. Consider integers j, r
for which j ≥ degβ, r ≥ degα. Then condition (13) is equivalent to

U jβ = V rα . (16)

Moreover, if α, β have a common factor s − λ0, that is α(s) = (s − λ0)α1(s) and
β(s) = (s − λ0)β1(s), with λ0 /∈ σ(A), then U j−1β1 = V r−1α1.

The proof is deferred to the general case result in Theorem 2

Definition 1 We say that

[
βU βV

αU αV

]

is a fundamental solution to Problem 4 deter-

mined by the data (A,U , V ) if each of its columns are solutions to the Problem 4 and
for any other solution (β, α), there exist polynomials πU , πV such that

[
β

α

]

=
[

βU βV

αU αV

] [
πU

πV

]

.

We saw in Lemma 2 that, if Ψ (s), Γ (s) are coprime, Γ (s) is a fundamental solution.
To construct a coprime factorization (3) from the data, we denote by μ and ν the

controllability indexes of U and V relatively to (A, [U , V ]). (That is, consider the
vectors U , V ,AU ,AV ,A2U ,A2V , . . . in this order. Then μ is the smallest number
for whichAμU can be expressed as a linear combination of its preceding vectors. The
ν is defined similarly.) In view of controllability, μ + ν = K + 1. Then, for suitable
coefficients αU

i , βU
i the identity

μ∑

i=0

βU
i AiU =

μ−1∑

i=0

αU
i Ai V (17)

is satisfied with βU
μ = 1. Similarly, for suitable coefficients αV

i , βV
i the identity

ν∑

i=0

βV
i AiU =

ν∑

i=0

αV
i Ai V (18)

holds with αV
ν = 1.

Lemma 4 Let the polynomials αU (s) and βU (s) be defined as

αU (s) =
μ−1∑

i=0

αU
i s

i and βU (s) =
μ∑

i=0

βU
i si ,

where the coefficients are those in (17); let αV (s), βV (s) be defined similarly from
(18). Then

Γ (s) =
[

βU (s) αV (s)
αU (s) αV (s)

]
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is a fundamental solution to Problem 4.

Proof Let us point out that that for the polynomials constructed above the inequalities

degαU (s) < degβU (s) , degβV ≤ αV (s) .

hold. Thus this restriction gives us a fundamental solution of special type, although it
does not imply uniqueness. For a general fundamental solution these inequalities do
not necessarily hold.

From Lemma 3 we obtain that the coefficients αU
i , αV

i , βU
i , βV

i , i ≥ 0, define
polynomials providing solutions to Problem 4, that is there exists a matrix polynomial
Ψ (s) of size (K + 1) × 2 such that Eq. (3) holds. Since we can assume that βU (s)
and αV (s) are monic, the matrix of the coefficients of the highest column degrees of
Γ (s) is upper triangular, with identity on the diagonal. Since μ + ν = K + 1, the
degree of det Γ (s) is K + 1, that is it coincides with that of det(s I − A). Using (3),
the controllability of the pair (A, [U , V ]) gives in view of Ex. 6.3–19 in Kailath [12]
that Ψ (s) and Γ (s) are right coprime. ��

In order to ensure uniqueness, introduce the following notion:

Definition 2 Aminimal fundamental solution (MF solution) is a fundamental solution
such that

degβU (s) = μ , degαV (s) = ν , βU , αV are monic ;
degβV (s) ≤ min(degβU (s) − 1, degαV (s)) ;
degαU (s) < min(degβU (s), degαV (s)) . (19)

Proposition 3 For any controllable set of data (A,U , V ) there exists a unique MF
solution.

Proof the statement is essentially trivial because Lemmas 3 and 4 show that the MF
solution is nothing else than a basis selection scheme. Another way to see this if, for
example μ > ν, is that the vector AμU can be uniquely expressed in terms of the
columns of

[U , V ,AU ,AV , . . . ,Aν−1U ,Aν−1V ,AνU , . . . ,Aμ−1U ], since the matrix has
full rank (similarly for AνV ). For sake of completeness, we provide a proof in terms
of matrices for the multivariable case in Proposition (4). ��

4 Scalar recursive interpolation

The interest of MF solutions is that its regularity and uniqueness allow for a straight-
forward recursion algorithm which, as we shall see, can be easily generalized to the
multivariable case.

We consider the situation where we have a sequence of nested problems indexed
by k ≤ K , whereAk is lower triangular (k + 1) × (k + 1) andUk and Vk are (k + 1)-
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dimensional vectors. We say that the problems are nested if, for each k,

Ak+1 =
[ Ak 0
ak+1 λk+1

]

, Uk+1 =
[

Uk

uk+1

]

, Vk+1 =
[

Vk
vk+1

]

(20)

and the pair (Ak,Uk) is controllable for k ≤ K . Our goal is to present a recursive
algorithm to compute a minimal degree solution for each k from the solution for k−1.

As in (3), for each k, we can consider right coprime polynomial matrices Γk(s) and
Ψk(s) such that

(s I − Ak)Ψk(s) = [Uk,−Vk]Γk(s) . (21)

Partitioning Γk(s) as Γk :=
[

βU
k βV

k

αU
k , αV

k

]

, the above Eq. (21) becomes

(s I − Ak)Ψk(s) = [Uk,−Vk]
[

βU
k βV

k

αU
k , αV

k

]

. (22)

As in (14) and (15), we can define, for each k, j, r integers, U j
k and V r

k as

U j
k = [Uk,AkUk,A2

kUk, . . . ,A j
kUk] , (23)

Vr
k = [Vk,AkVk,A2

kVk, . . . ,Ar
kVk] . (24)

Let

[
βU
k

αU
k

]

and

[
βV
k

αV
k

]

be the MF solution to the Problem 4 determined by the data

(Ak,Uk, Vk) with controllability indexes μk and νk , that is

[
βU
k

αU
k

]

and

[
βV
k

αV
k

]

span

the kernel two-dimensional kernel of [Uμk
k ,−V νk

k ].
The following remark contains the core idea of the recursion:

Remark 5 The matrix [Uμk
k ,−V νk

k ] has k + 1 rows (of data), k + 3 columns and thus,
in view of controllability, it has a two-dimensional kernel. The recursion adds one
row to this matrix: controllability will imply that its kernel is always one dimensional.
Since it must be contained in the previous kernel (in view of the triangularity ofA), it

can be expressed as a linear combination of

[
βU
k

αU
k

]

and

[
βV
k

αV
k

]

. This is the first step

of the algorithm. To find the appropriate linear combinations the “error terms” should
be considered arising from the solutions obtained in the kk step but applying those for
the next interpolation data. Let us note that the construction of a recursive scheme for
simultaneous left and right interpolation in [14] using Loewner matrix pencils is also
based on the use of similar error terms.

123



14 Mathematics of Control, Signals, and Systems (2021) 33:1–48

The second step consists of adding a column to this extended matrix, so that its
kernel has again dimension two and the property of being a minimal fundamental
solution is preserved, as well.

In view of the above remark, us denote by [uμk
k+1,−v

νk
k+1] (with components of

dimension (μk + 1) and (νk + 1), respectively) the last row of the extended matrix
[Uμk

k+1,−V νk
k+1], that is

Uμk
k+1 =

[
Uμk
k

uμk
k+1

]

, V νk
k+1 =

[
V νk
k

v
νk
k+1

]

(25)

and compute the error terms arising from using the linear combinations obtained in
the kth step for the next interpolation values uk+1, vk+1, as well:

[εUk+1, ε
V
k+1] := [uμk

k+1,−v
νk
k+1]

[
βU
k βV

k

αU
k αV

k

]

=
⎡

⎣
μk∑

j=0

(
βU
k, j uk− j+1 − αU

k, jvk− j+1

)
,

νk∑

j=0

(
βV
k, j uk− j+1 − αV

k, jvk− j+1

)
⎤

⎦ .

(26)

Let us point out that if εUk+1 = 0 then μk+1 = μk while εVk+1 = 0 implies that
νk+1 = νk . In view of controllability, this implies that either εUk+1 or εVk+1 is different
from zero. Furthermore, if μk+1 = μk ≤ νk then εUk+1 = 0 and similarly, if νk+1 =
νk < μk then εVk+1 = 0.

Now, if εUk+1 �= 0, then

[uμk
k+1,−v

νk
k+1]

[
βU
k βV

k

αU
k αV

k

][

− εVk+1

εUk+1

]

= [εUk+1, ε
V
k+1]

⎡

⎣− εVk+1

εUk+1

1

⎤

⎦ = 0 .

The above procedure allows to identify an element in the kernel of [Uμk
k+1, V

νk
k+1], and,

more precisely, if εUk+1 �= 0,

[Uμk
k+1,−V νk

k+1]
(

−εVk+1

εUk+1

[
βU
k

αU
k

]

+
[

βV
k

αV
k

])

= 0 . (27)

Similarly, if εVk+1 �= 0,

[Uμk
k+1,−V νk

k+1]
([

βU
k

αU
k

]

− εUk+1

εVk+1

[
βV
k

αV
k

])

= 0 . (28)
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In view of controllability, at least one of the errors is not zero and thus at least one of
Eqs. (27) and (28) is satisfied, identifying the kernel.

In case both errors εUk+1 and εVk+1 are nonzero, we might have a choice between
these representations of the kernel. In Theorem 1 we give explicitly which one should
be selected, but in order to complete the recursive step, we will need to extend either
Um
k+1 or V

p
k+1 to make the kernel two dimensional and find an extra generating vector

in this kernel. (We consider j , r generic in the next lemma.) So, letU j
k+1 and V r

k+1 be
partitioned as (25). Then

Ak+1U
j
k+1 =

[ Ak 0
ak+1 λk+1

] [
U j
k

umk+1

]

=
[

AkU
j
k

ak+1U
j
k + λk+1u

j
k+1

]

and thus

U j+1
k+1 =

[
Uk+1,Ak+1U

j
k+1

]
=

[
Uk , AkU

j
k

uk+1 , ak+1U
j
k + λk+1u

j
k+1

]

=
[
U j+1
k

u j+1
k+1

]

. (29)

A similar representation holds if we want to extend Vr
k+1 to Vr+1

k+1 . We discuss now
how to handle these extension and, crucially for defining the algorithm, which one to
pick.

Lemma 5 Let U j
k+1,U

j+1
k+1 be partitioned as (25) and let Ak+1 be partitioned as in

(20). Then, for any vector γ of dimension m, it is

u j+1
k+1

([
0
γ

]

− λk+1

[
γ

0

])

= ak+1U
j
k γ . (30)

Similarly,

vr+1
k+1

([
0
γ

]

− λk+1

[
γ

0

])

= ak+1V
r
k γ (31)

for vr+1
k+1 in the partition equivalent to (25) of V

r+1
k+1 .

Proof Notice that, in view of (29),

u j+1
k+1

[
0
γ

]

= (ak+1U
j
k + λk+1u

j
k+1)γ . (32)

On the other hand, from (14), U j+1
k+1 =

[
U j
k+1,A j+1

k+1Uk+1

]
and thus

u j+1
k+1λk+1

[
γ

0

]

= λk+1u
j
k+1γ . (33)

Subtracting (33) from (32) yields the result. The corresponding equality for vr+1
k+1, V

r+1
k+1

is proved similarly. ��
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Notice that the expressions in (30) and (31) do not depend on the last data points
uk+1 and vk+1, respectively, a fact which is crucial to derive Eqs. (34) and (35) below.

We denote by −→x = [0, x0, x1, . . . , xk−1]T the downward shift of the vector x =
[x0, x1, x1, . . . , xk]T . An immediate consequence of Lemma 5 is that, if

[
βU
k

αU
k

]

is in

the kernel of [U j
k ,−V r

k ] and αU
k,r = 0, then

[U j+1
k+1 ,−V r

k+1]

⎛

⎜
⎜
⎝

⎡

⎢
⎣

0
βU
k

−→
α U

k

⎤

⎥
⎦ − λk+1

⎡

⎢
⎢
⎣

βU
k

0

αU
k

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ = 0 . (34)

Similarly, if

[
βV
k

αV
k

]

is in the kernel of [U j
k ,−V r

k ] and βV
k, j = 0, then

[U j
k+1,−V r+1

k+1 ]

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

−→
β V

k

0

αV
k

⎤

⎥
⎥
⎦ − λk+1

⎡

⎢
⎣

βV
k

αV
k
0

⎤

⎥
⎦

⎞

⎟
⎟
⎠ = 0 . (35)

We are now ready to construct an interpolant of (Ak+1,Uk+1, Vk+1). from a min-

imal fundamental solution

[
βU
k (s) βV

k (s)

αU
k (s) αV

k (s)

]

to the problem defined by (Ak,Uk, Vk).

Notice that, if the vector x = [x0, x1, . . . , xk]T represents the coefficients of the
polynomial x(s), then x′ := [0, x0, x1, . . . , xk]T represents the coefficients of sx(s).
Similarly, if the last entry xk of x vanishes, then also −→x := [0, x0, x1, . . . , xk−1]T
represents the coefficients of sx(s).

Lemma 6 Let Γk(s) =
[

βU
k βV

k

αU
k , αV

k

]

with column degrees μk, νk be a minimal funda-

mental solution to (Ak,Uk, Vk) nested in (Ak+1,Uk+1, Vk+1). Let [εUk+1, ε
V
k+1] be as

in (26).
Then, if εUk+1 �= 0,

Γk+1(s) = Γk(s)

⎡

⎣
s − λk+1 , − εVk

εUk

0 , 1

⎤

⎦ (36)
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provides a fundamental solution to (Ak+1,Uk+1, Vk+1) column degrees μk + 1, νk .
Similarly, if εVk+1 �= 0,

Γk+1(s) = Γk(s)

[
1 , 0

− εUk
εVk

, s − λk+1

]

(37)

provides a fundamental solution to (Ak+1,Uk+1, Vk+1)with column degreesμk, νk +
1.

Proof Since Γk(s) is a minimal fundamental solution, the degree of αU
k (s) is smaller

than νk and thus the vector representation of the first column in the identity (36) is

[
βU
k+1

αU
k+1

]

=
⎡

⎢
⎣

0
βU
k

−→
α U

k

⎤

⎥
⎦ − λk+1

⎡

⎢
⎣

βU
k

0
αU
k

⎤

⎥
⎦

which, in view of (34), is in the kernel of [Uμk+1
k ,−V νk

k ], while the vector represen-
tation of the second column in the identity reads as

[
βV
k+1

αV
k+1

]

= −εVk+1

εUk+1

⎡

⎢
⎣

βU
k

0
αU
k

⎤

⎥
⎦ +

⎡

⎣
βV
k
0

αV
k

⎤

⎦

which, in view of (27), is again easily seen to be in the kernel of the matrix
[Uμk+1

k ,−V νk
k ]. Therefore Γk+1(s) is an interpolant of for the problem defined by

(Ak+1,Uk+1, Vk+1) with column degrees μk + 1, νk .
Furthermore, it is a fundamental interpolant: in fact, if Γ̂ (s) is aminimal fundamen-

tal interpolant, there exists a polynomial matrix P(s) such that Γ̂ (s)P(s) = Γk+1(s).
Since the determinants of Γk+1(s) (by construction) and Γ̂ (s) (by definition) are both
χAk+1(s) (χA(s) being the characteristic polynomial ofA), the matrix P(s) is a unit.
A similar reasoning holds for (37), using (28) and (35). ��

So, the recursive step appears to be quite simple. The problem is that we obtain a
fundamental solution which is not minimal. Since the proof of Lemma 6 makes use
of (34) and (35), we need the degree of αU

k (s) to be less than νk or that of βV
k (s) to be

less than μk . There is a small modification of the above procedure which ensures that
this condition is satisfied, making the recursion complete. Notice that if both εUk+1 and
εVk+1 are different from zero then the cases μk ≤ νk and μk > νk should be analyzed
separately.

Theorem 1 Let (Ak,Uk, Vk) be a sequence of nested problems for k ≤ K and let

Γk(s) =
[

βU
k βV

k

αU
k , αV

k

]

be as in (22) and such that (19) are satisfied and let [εUk+1, ε
V
k+1]

be as in (26).
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Then, if εUk+1 �= 0 and either μk ≤ νk or εVk+1 = 0

Γk+1(s) =
[

βU
k+1 βV

k+1

αU
k+1, αV

k+1

]

=
[

βU
k βV

k

αU
k αV

k

]
⎡

⎢
⎣
s − λk+1 − εVk+1[−αU

k ]νk−1

εUk+1
, − εVk+1

εUk+1

[−αU
k ]

νk−1 , 1

⎤

⎥
⎦ ,

(38)

where [α] j denotes the coefficient with index j in the vector α = [α0, . . . , ανk ]T .
Similarly, if εVk+1 �= 0 and either μk > νk or εUk+1 = 0

Γk+1(s) =
[

βU
k+1 βV

k+1

αU
k+1, αV

k+1

]

=
[

βU
k βV

k

αU
k αV

k

]
⎡

⎢
⎣

1 , [−βV
k ]

μk−1

− εUk+1

εVk+1
, s − λk+1 − εUk+1[−βV

k ]
μk−1

εVk+1

⎤

⎥
⎦ .

(39)

In both cases, Γk+1(s) satisfies (19), that is it determines the minimal fundamental
solution.

The proof will be given in Theorem 3, where the multivariable case is treated.
Let us point out that Eq. (38) implies that if εUk+1 �= 0 and μk < νk then

degαU
k (s) < degβU

k (s) < degαV
k (s) and therefore [−αU

k ]
νk−1 = 0, which means

that the polynomials βU
k+1 and αU

k+1 are no longer coprime. Similarly, Eq. (39) implies
that if εVk+1 �= 0 and νk < μk − 1 then βV

k+1 and αV
k+1 will have (s − λk+1) as a

common factor.
Notice that, in the second factor of (38) and (39), the determinant is always (s −

λk+1), as expected.

5 A general minimal degree solution for the tangential interpolation
problem

Let us return to the interpolation Problem 1 on matrix valued functions. Using the
general notation W = [U ,−V ] and, similarly to what was done in the scalar case,
define, relatively to (A,W ), where W = [W1, . . . ,Wr ], the matrices Wωi

i for i =
1, . . . , r as

Wωi
i := [Wi ,AWi , . . . ,Aωi Wi ] for i = 1, . . . , r

and Wω := [Wω1
1 ,Wω2

2 , . . . ,Wωr
r ], where ω := [ω1, . . . , ωr ]. We set κ i to be the

controllability index of Wi in the pair (A,W ), that is, the smallest exponent κ i such
that

Aκ i Wi ∈ span{W κ i

1 , . . . ,W κ i

i−1,W
κ i−1
i ,W κ i−1

i+1 , . . . ,W κ i−1
r } .
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Notice that this implies that the vectors in [W κ1−1
1 ,W κ2−1

2 , . . . ,W κr−1
r ] are linearly

independent. On the other hand, in view of controllability, they span C
K+1 and thus∑r

i=1 κ i = K + 1. We denote by γi, j (s) the (i, j)-th entry of Γ (s) and set, for

j = 1, . . . r , γ j :=

⎡

⎢
⎢
⎢
⎣

γ 1, j
γ 2, j

...

γ r , j

⎤

⎥
⎥
⎥
⎦
, where γ i, j denotes the vector formed by the coefficients

[γi, j ]0, [γi, j ]1, . . . [γi, j ]κ i of the polynomial γi, j (s) (we add zero coefficients of the
higher powers if the actual degree of γi, j (s) is lower than κ i ). That is

γi, j (s) = [1, s, . . . , sκ i ]γ i, j =
κ i∑

k=0

[γi, j ]ksk . (40)

Wenowhave the analogous of Lemma3, showing that amatrix polynomial γ generates
a solution to Problem 1 if and only if its coefficients determine linear dependencies
among the columns of the controllability matrix [W ,AW ,A2W , . . .]:

Theorem 2 Let γi, j (s) = ∑κ i

k=0[γi, j ]ksk for i, j = 1, . . . , r be scalar valued poly-
nomials.

Assume that for the integers ω1, . . . , ωr the inequalities ωi ≥ deg γi, j (s) , i =
1, . . . , r hold.

Then condition (5) is equivalent to

Wωγ j = 0 for j = 1, . . . , r (41)

with the corresponding

φ j (s) =
r∑

i=1

ωi∑

k=0

[γi, j ]k
k−1∑

l=0

(slAk−l−1)Wi (42)

in Eq. (5). Moreover, if γ1, j , . . . , γr , j have a common factor s − s0 that is

γi, j (s) = (s − s0)γ̂i, j (s) ,

i = 1, . . . , r , where s0 /∈ σ(A), then Wω−eγ̂ j = 0, where all the components of the
vector e are equal to 1.
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Proof A straightforward computation gives that:

Wωγ j =
r∑

i=1

Wωi
i γ i, j

=
r∑

i=1

ωi∑

k=0

[γi, j ]kAkWi

=
r∑

i=1

Wiγi, j (s) −
r∑

i=1

ωi∑

k=0

[γi, j ]k(sk I − Ak)Wi

= Wγ j (s) − (s I − A)

r∑

i=1

ωi∑

k=1

[γi, j ]k
k−1∑

l=0

(slAk−l−1)Wi . (43)

Thus, setting φ j (s) as in (42), we immediately get that (41) implies that Wγ j (s) =
(s I − A)φ j (s) for j = 1, . . . r , that is (5) holds.

Conversely, if for some matrix polynomial Φ̃(s), Eq. (5) holds with Γ (s), then
for each column φ̃ j (s), for j = 1, . . . , r , we have, substituting in (43), W pγ i =
(s I −A)

(
φ j (s) − φ̃ j (s)

)
. The term on the left-hand side is constant, while the degree

of the right-hand side—if it is not identically zero—is at least 1. Consequently, identity
(41) should hold.

Suppose now γi, j (s) = (s−s0)γ̂i, j (s), i = 1, . . . , r , with s0 /∈ σ(A). Thus, setting
[γ̂i, j ]−1 = [γ̂i, j ]pi = 0 we can write [γi, j ]k = [γ̂i, j ]k−1 − s0[γ̂i, j ]k . Thus we have
that:

Wωγ j =
r∑

i=1

Wωi
i γ i, j

=
r∑

i=1

ωi∑

k=0

([γ̂i, j ]k−1 − s0[γ̂i, j ]k
)AkWi

=
r∑

i=1

ωi∑

k=0

[γ̂i, j ]k−1AkWi − s0

r∑

i=1

ωi∑

k=0

[γ̂i, j ]kAkWi

=
r∑

i=1

ωi−1∑

k=0

[γ̂i, j ]kAk+1Wi − s0

r∑

i=1

ωi−1∑

k=0

[γ̂i, j ]kAkWi

= (A − s0 I )
r∑

i=1

ωi−1∑

k=0

[γ̂i, j ]kAkWi

= (A − s0 I )Wω−eγ̂ j .

Since (A − s0 I ) is invertible, we reach the desired conclusion. ��
Immediate consequence of the calculation in the previous Theorem is the following

corollary.
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Corollary 1 Under the conditions of Theorem 2 the following representation holds

1

2π i

∫

Δ

(s I − A)−1Wγ j (s)ds = Wωγ j , (44)

where Δ is any simple closed curve with counterclockwise orientation around the
eigenvalues of A.

Proof Introducing the notation

φ j (s) =
r∑

i=1

ωi∑

k=1

[γi, j ]k
k−1∑

l=0

(slAk−l−1)Wi

Equation (43) can be written in the form

Wωγ j = Wγ j (s) − (s I − A)φ j (s) .

Multiplying both sides by (s I − A)−1 and integrating, we obtain:

1

2π i

∫

Δ

(s I − A)−1Wωγ j ds = 1

2π i

∫

Δ

(s I − A)−1Wγ j (s)ds .

Using that 1
2π i

∫
Δ
(s I − A)−1ds = I we get (44). ��

As we have pointed out after Eq. (5) the polynomial matrix γ generates a solution
to Problem 1 if together with φ(s) = (s I − A)−1Wγ (s) form a polynomial input-
output pair. According to Theorem 5 in Forney [7] the column degrees of a minimal
polynomial basis of the polynomial input-output pairs coincide with the controllability
indexes of the pair (A,W ). This connection leads to the following definition.

Definition 3 We say that Γ (s) = [γ1(s), . . . , γr (s)] is a minimal fundamental solu-
tion (MF solution) to the interpolation Problem 1 determined by (A,W ) if there
exists a matrix polynomial Φ such that (4) is satisfied and, for each column γ j (s) =⎡

⎢
⎢
⎢
⎣

γ1, j (s)
γ2, j (s)

...

γr , j (s)

⎤

⎥
⎥
⎥
⎦
of Γ (s) (for j = 1, . . . , r ),

deg γ j, j (s) = κ j , γ j, j (s) is monic
deg γi, j (s) ≤ min(κ i − 1, κ j ) , for 1 ≤ i, j ≤ r , i �= j

(45)

where κ j , j = 1, . . . r are the controllability indexes of (A,W ).

Remark 6 Let us observe that an immediate consequence of the degree constraints in
the MF solution that it will be column reduced. This property plays a crucial role in
the analysis of the minimal possible McMillan degree of the interpolants in [3].
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The following proposition shows that the MF solution is essentially equivalent to a
basis selection scheme corresponding to the controllability indexes of the pair (A,W )

(Cf. Section 6.7.2 in [12]). This statement follows from the more general analysis
presented in [2] which is based on the so-called nice selections defined by Young-
diagrams, but we present here a short proof of it which fits more to our purposes.

Proposition 4 For any controllable set of data (A,W ) there exists a unique MF solu-
tion.

Proof By construction, the set

{W1,AW1, . . . ,Aκ1−1W1,W2,AW2, . . . ,Aκr−1Wr } (46)

constitutes a basis for C
K+1. This basis is uniquely determined by the order of the

columns of W . Thus, for j = 1, . . . , r , there exist unique vectors γ̂ 1, j , . . . , γ̂ r , j of
dimensions κ1, . . . , κr , such that

Aκ j
W j +

r∑

i=1

[Wi ,AWi , . . . ,Aκ i−1Wi ]γ̂ i, j = 0 . (47)

Set now, for j = 1, . . . , r ,

γ j, j :=
[

γ̂ j, j
1

]

γ i, j :=
[

γ̂ i, j
0

]

for j �= i .

Then (47) can be rewritten as:

r∑

i=1

[Wi ,AWi , . . . ,Aκ i Wi ]γ i, j = 0 . (48)

Therefore, in view of Theorem (2), for each j = 1, . . . , r , the vector-polynomial
γ j (s) corresponding to γ 1, j . . . , γ r , j as in (40) provides a solution to Problem 1.

Furthermore, the polynomials γ1, j (s), γ2, j (s), . . . , γr , j (s) associated with the vec-
tors γ j will have degree at most κ i − 1 if i �= j and κ i if i = j . On the other hand, by
construction, for j = 1, . . . , r only the components of (46) with exponent l ≤ κ j are
needed, which means that deg γ i, j (s) ≤ κ j . Thus, the following inequalities hold:

deg γi, j (s)

{
≤ min(κ i − 1, κ j ) if i �= j ,

= κ j if i = j

and γ j, j (s) will be monic. Thus conditions (45) are satisfied. Moreover, for each
column j the degree of its j-th entry is exactly κ j and it is not greater than κ j if i < j
and strictly less than j if i > j . Thus, setting Γ (s) := [γ1(s), γ2(s), . . . , γr (s)], its
column highest degree coefficient matrix is a triangular matrix with the diagonal equal

123



Mathematics of Control, Signals, and Systems (2021) 33:1–48 23

to the identity. Therefore deg det Γ (s) = ∑
j κ

j = K + 1. In particular, det Γ (s) is
not identically zero. (Moreover, Γ is column reduced.)

To prove uniqueness, observe that, if Γ̄ (s) is another solution to (4) which satisfies
(45), then the difference Γ̃ (s) := Γ (s) − Γ̄ (s) is such that, for each j = 1, . . . r„
deg γ̃ j, j (s) < κ j . Thus, in view of (45), it is

max
i :κi≤κ j

deg γ̃i, j (s) ≤ min

(

(κ j − 1), max
i :i �= j,κi≤κ j

(κi − 1)

)

= κ j − 1 < deg γ j, j (s) j = 1, . . . , r . (49)

In particular

deg γ̃ j (s) < deg γ j (s) . (50)

On the other hand, Γ̃ (s) still satisfies (4) and thus each of its columns γ̃ j (s) can be
expressed in terms of the columns of the fundamental solution Γ (s): thus there exists
a polynomial π̃ j (s) such that γ̃ j (s) = Γ (s)π̃ j (s). Since Γ (s) is column reduced, it
has the predictable degree property (see [12, Theorem 6.3-13], that is,

deg γ̃ j (s) = max
l;π̃l, j (s) �=0

{deg γl(s) + deg π̃l, j } (51)

where π̃l, j (s) is the l-th row of π̃ j (s) for l = 1, . . . r .
Let us introduce the notation τ1 = max j κ j . FromEqs. (50) and (51) it is immediate

that π̃i, j = 0, if κi = τ1.
Consequently, the following representation holds:

γ̃i, j =
∑

l:κl<τ1

γi,l π̃l, j . (52)

Let us observe that rearranging the columns (and the rows accordingly) of Γ accord-
ing to the decreasing order of the controllability indexes the highest column degree
coefficients matrix is transformed into an upper triangular matrix with diagonal entries
equal to 1; thus, any of its principal submatrix is of full rank, and thus, the correspond-
ing part of the matrix Γ has the predictable degree property. Reduce now the column
vectors of Γ̃ keeping only those entries γ̃i, j for which κi < τ1. Now, let us introduce
the notation: τ2 = max {κi |κi < τ1}. Since the submatrix of Γ formed by the entries
γi,l for which κi ≤ τ2 and κl ≤ τ2 also has the degree predictable property we have
that

max
i :κi≤τ2

deg γ̃i, j = max
l:κl≤τ2,πl, j �=0

(deg γl + deg π̃l, j ) .

Using again inequality (49) we get that maxi :κi≤τ2 deg γ̃i, j < τ2, consequently π̃l, j =
0, if κl = τ2, for j = 1, . . . , r .
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The argument can be repeated for the matrix obtained from Γ̃ after eliminating
those entries γ̃i, j for which κi < τ2, and so on, finally proving that π̃l, j (s) = 0 for
l, j = 1, . . . , r , thus Γ̃ (s) = 0, achieving the proof. ��
Remark 7 The uniqueness of the solution Γ (s) hinges on both of the conditions in
(45) and thus it relies on the controllability indexes of (A,W ). If Γ ′(s) is another
column-reduced matrix polynomial satisfying only the second condition in (45) then
using Theorem 6.5-4. in [12] we see that Γ

′
(s) can be obtained from Γ (s)multiplying

it from the right by a unimodular matrix; consequently, Lemma 6.3-14. in [12] gives
us that the column degrees of Γ (s) and Γ

′
(s)—after an appropriate permutation of

the columns—coincide.

6 General multivariable recursive interpolation

Similarly to the scalar case, given a controllable pair (A,W ), withA lower triangular
of dimension (K+1)×(K+1) andW := [W1,W2, . . . ,Wr ] of dimension (K+1)×r ,
we can consider a sequence of reduced interpolation problems (Ak,Wk) where Ak is
the submatrix of the first k+1 rows and columns ofA andWk = [W1,k, . . . ,Wr ,k] the
truncation ofW to its first k + 1 rows. According to Lemma 2 this means in particular
to find right coprime polynomial matrices Φk(s), Γk(s) such that

(s I − Ak)Φk = WkΓk(s) . (53)

Again, we can define Wω
j,k := [Wj,k,AkW j,k, . . . ,Aω

k W j,k]. It is immediate to see
that

Wω+1
j,k = [Wj,k,AkW

ω
j,k] = [W p

j,k,Aω+1
k W j,k] (54)

so that, if [x0, . . . , xω]T ∈ kerWω
j,k , both [x0, . . . , xω, 0]T and [0, x0, . . . , xω]T are

in the kernel of Wω+1
j,k .

We can thus consider the sequence of nested (interpolation) problems (Ak,Wk)

where, for each k,

Ak+1 =
[ Ak 0
ak+1 λk+1

]

Wk+1 =
[

Wk

wk+1

]

(55)

and set

Wκk
k := [W κ1k

1,k,W
κ2k
2,k, . . . ,W

κrk
r ,k]

whereW
κ ik
k,i = [Wj,k,AkW j,k, . . . ,Aκ ik

k W j,k], the index κ i
k is the controllability index

of Wj,k in (Ak,Wk) and κk := [κ1
k , . . . , κ

r
k ] as a row vector. Let us point out that

the lower triangular assumption on A implies that the vector formed from the first k
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coordinates of the vector Am
k+1Wj,k+1 is equal to the vector Am

k Wj,k for any m ≥ 0,

j = 1, . . . , r , k ≥ 1, and consequently κ
j
k ≤ κ

j
k+1 for all j = 1, . . . , r , k ≥ 1.

(Let us point out that we assume (Ak,Wk) controllable for each k. Now sinceA is
lower triangular, this can be achieved if for example the first entry of a column of W
and at least one element of each row of A before the diagonal are not zero. Another
possibility is given when the diagonal elements of A are different and nonzero, and
in each row of W there is a nonzero element.)

Comparing the previous inequalities to the identities
∑r

j=1 κ
j
k = k + 1,

∑r
j=1 κ

j
k+1 = k + 2 we obtain that there is only one controllability index which

changes during the step k → k + 1. To locate this let us introduce the following
notation:

For k, j fixed and i = 1, . . . , r let us denote by γ k
i, j a column vector of dimension

κ i
k + 1 defined by the coefficients of the polynomial γ k

i, j (s) (which is the (i, j)th entry
of Γk(s))—extended by extra zeros if necessary—and we set

γ k
j :=

⎡

⎢
⎢
⎢
⎢
⎣

γ k
1, j

γ k
2, j
...

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎦

.

Notice that

Wκk
k γ k

j = 0 for j = 1, . . . , r (56)

(see (48)).
Furthermore, let w

κk
k+1 := [wκ1

k+1, w
κ2
k+1, . . . , w

κr
k+1] denote the last row of the

extended matrix

Wκk
k+1 := [W κ1k

1,k+1,W
κ2k
2,k+1, . . . ,W

κrk
r ,k+1]

where W
κ
j
k
j,k+1 = [Wj,k+1,Ak+1Wj,k+1, . . . ,Aκ ik

k+1Wj,k+1]. Let us observe that due
to the assumption that A is lower triangular we have that

Wκk
k+1 =

[
Wκk

k
w

κk
k+1

]

W
κ
j
k
j,k+1 =

⎡

⎢
⎣

W
κ
j
k
j,k

w
κ
j
k
j,k+1

⎤

⎥
⎦ j = 1, . . . r (57)

and thus, similarly to the scalar case,

Ak+1W
κ
j
k
j,k+1 =

[ Ak 0

ak+1 λk+1

]
⎡

⎢
⎣

W
κ
j
k
j,k

w
κ
j
k
j,k+1

⎤

⎥
⎦ =

⎡

⎢
⎣

AkW
κ
j
k
j,k

ak+1W
κ
j
k
j,k + λk+1w

κ
j
k
j,k+1

⎤

⎥
⎦
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and eventually, for j = 1, . . . , r ,

W
κ
j
k +1
j,k+1 =

[

Wj,k+1,Ak+1W
κ
j
k
j,k+1

]

=
⎡

⎣
Wj,k , AkW

κ
j
k
j,k

w j,k+1 , ak+1W
κ
j
k
j,k + λk+1w

κ
j
k
j,k+1

⎤

⎦ .

(58)

Finally, set

εk+1 = [ε1k+1, ε
2
k+1, . . . , ε

r
k+1] := w

κk
k+1[γ k

1, γ
k
2, . . . , γ

k
r ] . (59)

Let us observe that if ε
j
k+1 = 0 for some j , then κ

j
k+1 = κ

j
k . (The same linear

combination which “worked” for the first k coordinates also gives zero at the last
position.) Notice as well that, since Wκk

k+1 has k + r + 1 columns and k + 2 rows,
its kernel has dimension r − 1, in view of controllability. Thus εk+1 �= 0, since
Wκk

k [γ k
1, γ

k
2, . . . , γ

k
r ] = 0 and [γ k

1, γ
k
2, . . . , γ

k
r ] is of full rank.

The following lemma shows how to locate which controllability index changes
during the step k → k + 1.

Lemma 7 Suppose that (Ak,Wk) has controllability indexes κ1
k , . . . , κ

r
k and

(Ak+1,Wk+1) are as in (55). Let us order the set of controllability indexes κ lk ,
l = 1, . . . , r according to their value and in case some of them are equal then accord-
ing to the index l. Let j be such that κ

j
k is the smallest index (in this ordering) for

which ε
j
k+1 �= 0.

Then κ
j
k+1 = κ

j
k + 1.

Proof For any j ∈ {1, . . . , r} such that ε j
k+1 �= 0, setting

γ̂
k
i := γ k

i − εik+1

ε
j
k+1

γ k
j (60)

we obtain

Wκk
k γ̂

k
i = 0 i �= j (61)

in view of (56), (57) and (59). We claim that the controllability indexes of
(Ak+1,Wk+1) satisfy κ i

k+1 = κ i
k for i �= j . The claim is immediate if εik+1 = 0.

Otherwise, we can write (61) as

Wκk
k γ̂

i
k =

r∑

l=1

W
κlk
l,k+1

(

γ i
l,k − εik+1

ε
j
k+1

γ
j
l,k

)

i �= j

where the highest nonzero component in each γ̂
i
l,k should be the (κ i

k + 1)−st if l ≤ i

and (κ i
k)−th if l > i (both γ i

k and γ
j
k have this property). If κ i

k > κ
j
k the condition
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is automatically satisfied; therefore κ i
k+1 = κ i

k . This is always the case if i < j .

If κ i
k = κ

j
k , then the highest nonzero component of γ i

l,k is the (κ i
k)−th for l > i ,

whereas the highest nonzero component of γ
j
l,k is the (κ

j
k )−th for l > j . In view of

the ordering, it is i > j and, therefore, the condition is satisfied also for γ̂
i
k , proving

the claim.
Since, in viewof controllability, the sumof the controllability indexes has to increase

by 1, the only possibility is κ
j
k+1 = κ

j
k + 1. Thus, the controllability indexes of

(Ak+1,Wk+1) are κ1
k , . . . , κ

j−1
k , κ

j
k + 1, κ j+1

k , . . . , κrk . ��
In the proof of the recursive scheme for the scalar caseLemma6played an important

role which was based onto Lemma 5. The multivariate version of this latter one is
formulated below.

Lemma 8 Let W
κ
j
k
j,k+1 be partitioned as (57) and let Ak+1 be partitioned as in (55).

Then, for any vector γ of dimension κ
j
k + 1, we have that

w
κ
j
k +1
j,k+1

([
0
γ

]

− λk+1

[
γ

0

])

= ak+1W
κ
j
k
j,kγ . (62)

The proof is similar to that of the scalar case in Lemma 5 and it will not be repeated
here.

Again—using the observation that the last entry of the vector γ k
i, j is zero for i �= j ,

an immediate consequence of Lemma 8 is that, if γ k
j ∈ kerWκk

k,i , then

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−→
γ k

1, j
...−→

γ k
j−1, j
0

γ k
j, j−→

γ k
j+1, j
...−→

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− λk+1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ k
1, j
...

γ k
j−1, j,

γ k
j, j
0

γ k
j+1, j
...

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ kerW
κk+eTj
j,k+1 ,

where e j denotes the j th r -dimensional unit vector.
Set furthermore

ρk
i, j :=

{
0 for i = j ;
[γ k

i, j ]κ ik−1 for i �= j
(63)

and ρk
j := [ρk

1, j , . . . ρ
k
r , j ], where, we recall, [γ k

i, j ]κ ik−1 denotes the entry with index

κ i
k − 1 of the κi + 1-dimensional vector [[γ k

i, j ]0, [γ k
i, j ]1, . . . , [γ k

i, j ]κ ik−1, [γ k
i, j ]κ ik , ]

T .

Notice that, in view of (45), ρk
i, j = 0 if κ j < κi − 1.
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Theorem 3 Let (Ak,Wk) be controllable pairs with Ak lower triangular for k ≤ K
and let Γk(s) = [γ k

1 (s), . . . , γ k
r (s)] be as in (53) (for some Φk) and such that (45) are

satisfied (that is, Γk is a MF solution). Define εlk+1 as in (59) for l = 1, . . . , r and let

j denote the index for which κ
j
k+1 = κ

j
k + 1.

Then Γk+1(s) =
[
γ k+1
1 (s), . . . , γ k+1

r (s)
]
defined as

γ k+1
i (s) = γ k

i (s) − εik+1

ε
j
k+1

γ k
j (s) , i �= j (64)

and

γ k+1
j (s) = (s − λk+1)γ

k
j (s) −

r∑

l=0

ρk
l, jγ

k+1
l (s) (65)

is an MF solution for (Ak+1,Wk+1).

Proof Due to the definition of the index j to find the matrix polynomial Γk+1(s) satis-

fying (45) we have to consider special elements in the kernel of [W κ1k
1,k+1,W

κ2k
2,k+1 . . . ,

W
κ
j
k +1
j,k+1, . . . ,W

κrk
r ,k+1]

To this aim, for i �= j , set

γ k+1
i :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ i
1,k
...

γ k
j−1,i

γ k
j,i
0

γ k
j+1,i
...

γ k
r ,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− εik+1

ε
j
k+1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ k
1, j
...

γ k
j−1, j

γ k
j, j
0

γ k
j+1, j
...

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(66)

and, for i = j ,

γ k+1
j :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−→
γ k

1, j
...−→

γ k
j−1, j
0

γ k
j, j−→

γ k
j+1, j
...−→

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− λk+1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ k
1, j
...

γ k
j−1, j

γ k
j, j
0

γ k
j+1, j
...

γ k
r , j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−
r∑

l=0

ρk
l, jγ

k+1
l . (67)
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Clearly, in view of (54), (66) and (67) we have

[W κ1
1,k+1,W

κ2
2,k+1 . . . ,W

κ j+1
j,k+1, . . . ,W

κr
r ,k+1]γ k+1

j = 0 for j = 1, . . . , r . (68)

On the other hand the above recursion is again equivalent to the recursion (64) and
(65) on thematrix polynomialsΓk(s). In fact, let us recall that, if x = [x0, x1, . . . , xk]T
represents the coefficients of the polynomial x(s), then x′ := [0, x0, x1, . . . , xk]T
represents the coefficients of sx(s). Similarly, if the last entry of x vanishes, then
also −→x := [0, x0, x1, . . . , xk−1]T expresses the coefficients of sx(s). Therefore, it is
immediate to see that (64) is the polynomial versions of (66): now notice that, since
Γk(s) is an MF solution, deg γ k

i, j (s) < κi if i �= j , so the last entry of γ k
i, j vanishes

and thus (65) is the polynomial version of (67).
Now using the fact that κ i

k+1 = κ i
k for i �= j and κ

j
k+1 = κ

j
k + 1 and equation (68),

Theorem 2 implies that Γk+1(s) is a solution for the pair (Ak+1,Wk+1).
We have to check that the inequalities in (45) are also satisfied.
Consider first the elements in the l th column for l �= j . If κ lk < κ

j
k or κ lk = κ

j
k and

l < j , then εlk = 0 and thus γ k+1
i,l (s) = γ k

i,l(s) for i = 1, . . . , r , so the conditions in

(45) are obviously satisfied. In particular, γ k+1
l,l (s) ismonic and its degree is κ lk = κ lk+1.

If κ lk > κ
j
k or κ lk = κ

j
k but j > l then

for i �= l

deg γ k+1
i,l (s) = deg

(

γ k
i,l(s) − εlk+1

ε
j
k+1

γ k
i, j (s)

)

≤ min(κ i
k − 1,max(κ lk, κ

j
k ))

= min(κ i
k − 1, κ lk) ≤ min(κ i

k+1 − 1, κ lk+1)

for i = l (45) yields

deg γ k+1
l,l (s) = deg

(

γ k
l,l(s) − εlk+1

ε
j
k+1

γ k
l, j (s)

)

= κ lk = κ lk+1

and furthermore γ k+1
l,l (s) is monic; therefore, for these columns (45) holds.

Consider next the elements in the j th column. For i = 1, . . . , r ,

γ k+1
i, j (s) = (s − λk+1)γ

k
i, j (s) −

r∑

l=0

ρk
l, jγ

k+1
i,l (s) .

If i = j then using the fact that deg γ k
i, j (s) ≤ κ i

k − 1 for i �= j we obtain that

deg γ k+1
j, j (s) = deg sγ k+1

j, j (s) = κ
j
k + 1 = κ

j
k+1 ,

moreover it is monic.
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Now if i �= j then we have to prove that

deg γ k+1
i, j (s) ≤ min

(
κ i
k+1 − 1, κ j

k+1

)
. (69)

If i �= j then deg sγ k
i, j (s) ≤ (κ i

k − 1) + 1 = κ i
k+1 but in the second term for l �= i

deg γ k+1
i,l (s) ≤ κ i

k − 1 while deg γ k+1
i,i (s) = κ i

k , and thus this term has the highest

degree.Moreover γ k+1
i,i (s) ismonic; thus, if deg γ k

i, j (s) = κ i
k−1, then the highest order

term in sγ k
i, j (s) is canceled by the second sum. Consequently, for i = 1, . . . , r , i �= j

deg γ k+1
i, j (s) = deg

⎛

⎝sγ k
i, j (s) −

∑

l �= j

ρk
l, jγ

k+1
i,l (s)

⎞

⎠ ≤ κ i
k − 1 = κ i

k+1 − 1 (70)

On the other hand, since, as we said, ρk
l, j = 0 for l : κ

j
k < κ lk − 1, we can write for

1 ≤ i ≤ r , i �= j

deg sγ k
i, j (s) ≤ deg sγ k

j, j (s) = κ
j
k+1

deg ρk
l, jγ

k+1
i,l (s) ≤ κ lk ≤ κ

j
k + 1 = κ

j
k+1 l �= j

which, together with (70), yields (69).
Let us point out again that the degrees of the columns of Γk+1(s) are κ lk = κ lk+1

for l �= j and κ
j
k+1 = κ

j
k + 1. Thus it has degree

∑r
l=1 κ lk + 1 = k + 2 and therefore

it is minimal. ��

A multivariable recursive algorithm has been developed, for the special case of
interpolating an m × p function F(s) given its coefficients F0, . . . , Fk , in [13]. While
it describes, in a behavioral framework, a clever generalization of [10], it also focuses
only on a particular pair of interpolants; it presents therefore the same problem of
jump in degree when this interpolating pair is not coprime.

6.1 Tangential recursive interpolation algorithm

While the proof of the algorithm is quite involved, its implementation is quite straight-
forward: we need, in fact only to compute (59), (66) and (67).

1. Initializing step: Let i be the first column of W whose first entry is not zero (such
column exists, in view of controllability of (A,W ) and lower triangularity of A)
and set

W0 := [0, . . . , 0, wi
0, λ0w

i
0, w

i+1
0 , . . . , wr

0] ,

κ0 := [0, . . . , 0, i
1, 0, . . . , 0]
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and

γ 0
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

−w
j
0

wi
0

0
0
...

1
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

j + 1

if j > i , γ 0
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

1
0
...

0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

j

i

if j < i , γ 0
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

0
−λ00
1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i
.

2. Recursion step: Repeat while k < K (where K is the number of data):

– Given Wκk
k , γ k

j for j = 1, . . . , r , compute Wκk
k+1 using (57) and εk+1 using

(59). Set i to be the index corresponding to the smallest κ i
k such that εik+1 in

(59) is different from 0. Define, for j = 1, . . . , r , γ k+1
j using (66) and (67).

Define Wκk+1
k+1 using (57) and (58).

– Increase k.

7 Recursive interpolation of a given function—scalar case

In the remaining part of this paper we consider a very special situation, when all the
interpolation nodes are at the origin. We are going to show that this problem exhibit
several interesting properties not present in the general case.

We suppose that the data v0, . . . , vk we consider are derived from the power series
expansion of a given rational function

f (s) = β(s)

α(s)
=

∞∑

k=0

vks
k ,

where we assume that α and β are coprime, α is monic and that α(0) �= 0. We denote
in this section by p and m the degrees of α and β, respectively.

We would like to assess now how the controllability indexes μk and νk—giving the
column degrees of minimal fundamental solutions—increase as the number of data
v0, . . . , vk under consideration increases.

In this special scalar interpolation problem the matrices of the sequence of nested
problems indexed by k, are given as
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Ak =

⎡

⎢
⎢
⎢
⎢
⎣

0 . . . 0 0

1 0
... 0

. . . 0
...

0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎦

, Uk =

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

, Vk =

⎡

⎢
⎢
⎢
⎣

v0
v1
...

vk

⎤

⎥
⎥
⎥
⎦

, (71)

whereAk is lower triangular (k+1)× (k+1) andUk and Vk are (k+1)-dimensional
vectors.

Due to the special structure of the matrix A the equations characterizing the poly-
nomials βU , αU , βV , αV can be written in a simpler form. (Since for the time being
we analyze the properties for a fixed k, we omit the index from the notation.) Thus the
matrixUm = [U ,AU ,A2U , . . . ,AmU ] is the matrix of dimension (k+1)× (m+1)
of the form

Um =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0 1
. . . 0

...
. . .

. . . 0
0 . . . 0 1
... . . . 0
...

. . .
...

0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (72)

Similarly, the matrix V p = [V ,AV ,A2V , . . . ,ApV ] is the matrix of dimension
(k + 1) × (p + 1) of the form

V p =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0 0 . . . 0

v1 v0
. . . 0

...
. . .

. . . 0
vp v1 v0

vp+1 vp−1 . . . v1
...

...

vk−1 vk−2 vk−p−1
vk vk−1 . . . vk−p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (73)

Notice that U = U 0 and V = V 0.
Denoting the controllability indexes of U and V by μ and ν, respectively, we see

that Eq. (16) characterizing the coefficient vectors of the polynomials in the minimal
fundamental solution can be written as finding the kernel of the matrix [Uμ,−V ν],
which for μ ≥ ν can be written as follows:
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[Uμ, − V ν]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . . . . 0 0 −v0 0 . . . . . . 0

0 1 . . . . . . 0 0 −v1 −v0
...

0 0
. . . 0 0

...
. . .

...
...

...
. . .

...
... −v0

0 0 . . . 1 0 . . . 0 −vν −vν−1 . . . −v1 −v0

0 0 . . .
. . . 0

...
...

0 0 . . . 1 0 −vμ−1 −vμ−2 . . . −vμ−ν −vμ−ν−1
0 0 . . . 0 1 −vμ −vμ−1 . . . −vμ−ν+1 −vμ−ν

0 0 . . . 0 0 −vμ+1 −vμ . . . −vμ−ν+2 −vμ−ν+1
...

...
...

...
...

0 0 . . . 0 0 −vk −vk−1 −vk−ν+1 −vk−ν

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

μ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ν

︸ ︷︷ ︸
μ + 1

︸ ︷︷ ︸
ν + 1

.

(74)

Let us point out that to determine μ the second block column should be written as
a linear combination of the columns in the first and third block, while to find ν the
last column should be expressed as a linear combination of all the previous ones. But
the vectors in the first block are the unit vectors, thus for μ the part below the first
horizontal line should be analyzed, for ν that one below the second horizontal line.

Using the special structure of (74) the behavior of the controllability indexes as
k → ∞ is described by the following Lemma.

Lemma 9 Given the rational function f = β
α
define theAk,Uk, Vk matrices as in (71).

Denote byμk, νk the controllability indexes of (Ak , [Uk, Vk]). LetΓk(s) =
[

βU
k βV

k

αU
k αV

k

]

be the minimal fundamental solution of Problem 2 determined by v0, . . . vk , for k ≥ 0.
If degα ≥ degβ, then νk = degα for large enough k, and thusμk = k+1−νk →

∞ (when k → ∞), while if degα < degβ, then μk = degβ when k is large enough,
and νk → ∞ (as k → ∞).

Proof First let us assume that degα ≥ degβ. That is, f is a proper rational function.
In order to find the controllability index νk the last column in (74) should be

expressed as a linear combination of the “previous” ones. But the columns in the
first block part of (74) contains unit vectors this means that we should look after linear
combination between the vectors in the third part—below the second horizontal line.

Now, let us denote by p the degree of α. Then computing from the power series
expansion of f = β

α
the coefficients of sk , k ≥ p + 1, in f (s)α(s) we obtain that

0 = α0vp+l + α1vp+l−1 + · · · + αpvl for l ≥ 1 .
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Since αp �= 0 the coefficient of the polynomial provides a linear combination we are
looking for. Thus, we get if k is large enough then νk ≤ p. Consequently, as k → ∞
the sequence νk remains bounded, so μk → ∞.

At the same time, when we already have that μk > νk then columns in the third
block in the matrix (74) are linearly independent, thus the matrix

⎡

⎢
⎢
⎢
⎣

vνk+1 vνk . . . v2
vνk+2 vνk+1 . . . v3

...
. . .

. . .
...

vk vk−1 . . . vμk

⎤

⎥
⎥
⎥
⎦

(75)

is of full column-rank. Consequently, in this case αV
k = α and νk = degα.

Next consider the case when p = degα < degβ.
In order to find the controllability index μk the second column in (74) should be

expressed as a linear combination of the “previous” ones. But the columns in the first
block part of (74) contains unit vectors this means that we should look after linear
combination expressing the vector in the second column using vectors from the third
block column—but now below the first horizontal line.

Let us denote by m the degree of β. Expressing again the coefficients of sk in
f (s)α(s) but now for k ≥ m we obtain that

βm = α0vm + α1vm−1 + · · · + αpvm−p ,

0 = α0vm+l + α1vm+l−1 + · · · + αpvm+l−p for l ≥ 1 .

Now since βm �= 0 we get that if k is large enough then μk ≤ m. So νk → ∞ as
k → ∞.

If νk > μk , then the columns of the matrix

⎡

⎢
⎢
⎢
⎣

vμk vμk−1 . . . v1
vμk+1 vμk . . . v2

...
. . .

. . .
...

vk vk−1 . . . vνk

⎤

⎥
⎥
⎥
⎦

(76)

are linearly independent and thus in this case αU
k = 1

βp
α and μk = degβ. This

concludes the proof of the Lemma. ��

In the construction of the recursive scheme for interpolation the so-called error
terms εU , εV played an important role.

Let
[
Uμk
k+1,−V νk

k+1

]
be as in (25) and define the error terms arising from the linear

combinations obtained in the kth step but including the next interpolation value vk+1,
as well
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[εUk+1, ε
V
k+1] := [uμk

k+1, −v
νk
k+1]

⎡

⎣
βU
k βV

k

αUk αV
k

⎤

⎦

=
⎡

⎣
μk∑

j=0

(
βU
k, j uk− j+1 − αUk, jvk− j+1

)
,

νk∑

j=0

(
βV
k, j uk− j+1 − αV

k, jvk− j+1

)
⎤

⎦ .

(77)

In general, given two polynomials βk(s), αk(s) of degree μk, νk , respectively, and
the corresponding vectors βk,αk , we can set εk+1 := uμk

k+1βk − v
νk
k+1αk . The repre-

sentation (44) in Corollary 1 implies that

Uμk
k+1βk − V νk

k+1αk = 1

2π i

∫

Δ

(s I − Ak+1)
−1[Uk+1βk(s) − Vk+1αk(s)]ds .

The last row of the vector on the left hand side is εk+1; thus, using that the last row
of (s I −A)−1 in this special interpolation problem is [s−(k+1), s−k, . . . , s−1] we can
write that

εk+1 = 1

2π i

∫

Δ

k+1∑

i=0

s−i−1[uk+1−iβk(s) − vk+1−iαk(s)]ds . (78)

Corollary 2 Suppose βk(s) = sβk−1(s) and αk(s) = sαk−1(s). Then

εk+1 = εk .

Proof From (78), we have:

εk+1 = 1

2π i

∫

Δ

k+1∑

i=0

s−i−1[uk+1−iβk(s) − vk+1−iαk(s)]ds

= 1

2π i

∫

Δ

k+1∑

i=0

s−i−1[uk+1−i sβk−1(s) − vk+1−i sαk−1(s)]ds

= 1

2π i

∫

Δ

k+1∑

i=1

s−i [uk+1−iβk−1(s) − vk+1−iαk−1(s)]ds

+ 1

2π i

∫

Δ

[uk+1βk−1(s) − vk+1αk−1(s)]ds

= 1

2π i

∫

Δ

k∑

i=0

s−i−1[uk−iβk−1(s) − vk−iαk−1(s)]ds = εk .

��
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In the general recursion scheme presented in Theorem 1 the minimal fundamental
solution Γk+1 was defined using Γk . In the present situation—as we are going to see—
it will be natural to consider larger steps. To this end, given k1 < k2 and the associated
minimal fundamental solutions Γk1(s) and Γk2(s), set Γ̃k1,k2(s) := Γ −1

k1
(s)Γk2(s) (it

clearly is a polynomialmatrix). If k2 = k1+1 thenwewrite shortly Γ̃k2(s) = Γ̃k1,k2(s).
In the generic case, for each k, the errors εUk , εVk are both nonzero and, since

μk + νk = k + 1, from Theorem 1 we obtain that μk = νk for k odd and μk = νk + 1
for k even. Graphically, the representation is the following:

�

�

��
��

��
��

��
��

��

��
��

��
��

��
��

��

� �

� �

� �

� �

� �

�

μk

νk

Pattern 1

So, if μk = νk and εUk+1 �= 0, following Theorem 1, we will use (38) to interpolate
also the (k+1)-st data vk+1. If also εVk+2 �= 0, then we can then use (39) to match vk+2.

Notice that, if εVk+1 = 0, then Γ̃k,k+1(s) (the last factor in (38)) is lower triangular. It is
not hard to see that, in this case, degβU

k+1(s) > degβV
k+1+1 and thusβV

k+1,μk+1−1 = 0:

that is, also Γ̃k+1,k+2(s) is lower triangular. In conclusion, if μk = νk and εVk+1 = 0,
then Γk+2(s) and Γk(s) are related by a lower triangular matrix. Similarly, if μk =
νk + 1 and both εVk+1 and εUk+2 are not zero, we can use (39) and (38) to match the
next two data vk+1, vk+2. If εUk+1 = 0, then Γk+2(s) and Γk(s) are related, this time,
by an upper triangular matrix.

What is surprising is that this is true whenever one of the errors is 0, even as we go
astray from the pattern 1, as the next result shows.

Theorem 4 Consider the recursive version of Problem 2 determined by the coefficients
in the Taylor-series expansion of the rational function f (s) considered around the
origin.

(i) Suppose that for some k we have that μk = νk + 1 and εVk+1 = · · · = εVk+l = 0
and εVk+l+1 �= 0.
Let k′ := k + 2l: then μk′ = νk′ + 1 and k′ is the next smallest integer with
this property. Furthermore, the matrix Γ̃k,k′ relating Γk and Γk′ from repeated
iterations of (38) and (39) is lower triangular. That is,

Γk′(s) =
[

βU
k′ βV

k′

αU
k′ , αV

k′

]

=
[

βU
k βV

k

αU
k αV

k

][
sl 0

pl(s) sl

]

= Γk(s)Γ̃k,k′(s) , (79)
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where l = νk′ − νk and pl is suitable polynomial of degree less than l.
(ii) Similarly, suppose μk = νk and εUk+1 = · · · = εUk+l = 0 and εUk+l+1 �= 0.

Let k′ := k + 2l: then μk′ = νk′ and k′ is the next smallest integer with this
property. Moreover, the matrix Γ̃k,k′ relating Γk and Γk′ from repeated iterations
of (38) and (39) is upper triangular. That is,

Γk′(s) =
[

βU
k′ βV

k′

αU
k′ , αV

k′

]

=
[

βU
k βV

k

αU
k αV

k

][
sl pl(s)

0 sl

]

= Γk(s)Γ̃k,k′(s) , (80)

where l = μk′ − μk , where pl is a suitable polynomial of degree no greater than
l.

Proof Since μk = νk + 1 > νk , but εVk+1 = · · · = εVk+l = 0, in accordance with
Theorem 1, we need, in order to obtain Γk,k′ , to use first (38) l times. It is immediate
to verify that each of these factors is lower triangular. Thus also the matrix relating Γk

andΓk+l is lower triangular. Furthermore, during these steps the second controllability
index does not change, that is, νk+l = νk , while the first one in each step increases by
one: μk+l = μk + l.

We claim now that, to obtain Γk′ , we need l iterations of (39) which are also lower
triangular. Since εVk+l+1 �= 0, for the step k + l + 1 we have to use (39). Now the
column degrees of Γk+l are νk + l+1, νk . Therefore, degβU

k+l −degβV
k+l ≥ l+1 and

thus the coefficient βV
k+l,μk+l−1 = 0; consequently, also the last factor in (39) is lower

triangular for this step. Thus, βV
k+l+1(s) = sβV (s)k+l and αV

k+l+1(s) = sαV
k+l(s)

In view of Corollary 2, εVk+l+2 = εVk+l+1. Thus it is different from zero. The same

reasoning can be repeated while Γ̃k+l+ j+1(s) is lower triangular, that is as long as
degβU

k+l+ j − degβV
k+l+ j > 1. This will happen, if μk+l+ j > νk+l+ j + 1. But during

these steps the sequence of μ-s does not change. Thus

μk+l+ j = νk + l + 1 , νk+l+ j = νk + j .

Γ̃k+l+ j+1(s) still will be lower triangular for j = 0, . . . , l −1. In conclusion, Γ̃k,k′(s)
is lower triangular. Since it has determinant 2l, and each column has degree at least l,
it can only have the form described in (79).

Let us point out that using again Corollary 2 for εVk′ we obtain that εVk′+1 �= 0 and

thus μk′+1 = μk′ and νk′+1 = νk′ + 1. But now the factor Γ̃k′+1 is not necessarily
lower triangular.

The second statement can be proven similarly. But in this case the final application
of Corollary 2 gives that μk′+1 = μk′ + 1 and νk′+1 = νk′ again pointing out that now
the polynomial matrix Γ̃k′+1(s) is not necessarily upper triangular. ��

In conclusion, the possible paths the controllability indexes can exhibit are of the
forms:
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The construction and the proof of Theorem 4 is based on Theorem 1 determining
a recursion for the minimal fundamental solutions of Problem 2. The next theorem
is based on a recursion for an appropriate sequence of fundamental (not necessarily
minimal) solutions. This construction gives the possibility of explicitly determining
the positions in the jumps of the degrees in the minimal solutions of the interpola-
tion problem using the form of the given rational function f . The basic idea is that
if for example βV , αV are already given and provide a solution for Problem 2 for
v0, v1, . . . , vK , then to find the corresponding βU , αU which complete the pair to a
minimal solution, a pair of polynomials should be determined in such a way that the
determinant of the corresponding polynomial matrix formed from these polynomial
vectors is equal to sK+1.

In order to show this let us assume that f = β
α
, where degα = p, degβ = m and

α(0) �= 0, and generate a sequence of polynomials using the following recursion:
First let us denote by h1 ≥ 0 the multiplicity of 0 as a possible zero of β and

introduce the notation: β1(s)sh1 = β(s). (That is β1(0) �= 0.) Consider the solutions
of the following equation

α(s) = γ1(s)β1(s) − sh1δ1(s) ,

where γ1 and δ1 are polynomials, deg γ1 ≤ h1, while δ1(0) = 0. Notice that the
coefficients of 1, s, . . . , sh1 in sh1δ1 are zero. Since according to the construction the
constant term in β1 is nonzero, this equation has a unique solution. Furthermore,

deg δ1 ≤ max(degα − h1, degβ1) .
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Let us continue similarly—as in the Euclidean-algorithm—denoting by h2 ≥ 1 the
multiplicity of 0 as the zero of δ1 and introducing the polynomial β2 as

β2(s)s
h2 = δ1(s) ,

solve the equation

β1(s) = γ2(s)β2(s) − sh2δ2(s) ,

where γ2, δ2 are polynomials, deg γ2 ≤ h2 and δ2(0) = 0. In general, if

β j−1(s) = γ j (s)β j (s) − sh j δ j (s) , (81)

where δ j (0) = 0, then denote by h j+1 the multiplicity of 0 as the zero of δ j and set

β j+1(s)s
h j+1 = δ j (s) .

Then γ j+1 and δ j+1 are defined as solutions of

β j (s) = γ j+1(s)β j+1(s) − sh j+1δ j+1(s) ,

where deg γ j+1 ≤ h j+1 and δ j+1(0) = 0. We obtain that

degβ j+1 = deg δ j+1 − h j+1 < deg δ j+1 ≤ max(degβ j−1 − h j , deg β j ).

Consequently, the sequence degβ j , j ≥ 2 is strictly decreasing, so this algorithm
terminates in finite steps. That is, for some r we have that

βr−1(s) = γr (s)βr (s) .

Straightforward computation gives that

β(s)

α(s)
= sh1

γ1(s) − sh1+h2

γ2(s) − sh2+h3

. . .

γr−1(s) − shr−1+hr

γr (s)

.

Now let us define a sequence a polynomial pairs as follows:

[
N0(s)
R0(s)

]

=
[
0
1

]

;
[
N j (s)
R j (s)

]

=
[

0 sh1

−sh1 γ1(s)

]

. . .

[
0 sh j

−sh j γ j (s)

] [
0
1

]

. (82)
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for j = 1, . . . , r . We obtain that

[−sh j N j−1(s) N j (s)
−sh j R j−1(s) R j (s)

]

=
[

0 sh1

−sh1 γ1(s)

]

. . .

[
0 sh j

−sh j γ j (s)

]

. (83)

and

N j (s)

R j (s)
= sh1

γ1(s) − sh1+h2

γ2(s) − sh3

. . .

γ j−1(s) − sh j−1+h j

γ j (s)

.

In particular,

Nr (s)

Rr (s)
= β(s)

α(s)
.

Let us introduce the notation

l j =
j∑

i=1

hi .

For the sake of simplicity we are going to assume that h1 ≥ 1. In this case h1 =
min{h | vh �= 0}.
Let us point out that if h1 = 0 then h2 = min{h ≥ 1 | vh �= 0}, thus the sequence of
l1, l2, . . . essentially remains the same, except the 0 as a first element is added to it.

Theorem 5 Assume that f (s) = β(s)
α(s) , where α(0) �= 0 while β(0) = 0, with the

Taylor-series expansion around the origin

f (s) =
∞∑

j=1

v j s
j .

Apply the construction described above to obtain the polynomials N j , R j for j =
1, . . . , r . Then a fundamental solution for K = 2l j − 1 is given by

[−sh j N j−1 N j

−sh j R j−1 R j

]

. (84)

Furthermore, both controllability indexes μk , νK are equal to l j , and coincide with
the column degrees of this matrix.

Proof Let us note that the assumption β(0) = 0 implies that h1 ≥ 1 and representation
(82) implies that deg R j ≤ l j , deg N j ≤ l j
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First we are going to show by induction according to the number of products in
the representation (82) that the polynomials N j , R j are coprime, and R j (0) �= 0. Let
us observe that since according to the construction β j−1(0) �= 0, β j (0) �= 0 while
δ j (0) = 0 we have from Eq. (81) that γ j (0) �= 0. Thus sh j and γ j are coprime. Now
let us introduce the notation

[
N (2)

j (s)

R(2)
j (s)

]

=
[

0 sh2

−sh2 γ2(s)

]

. . .

[
0 sh j

−sh j γ j (s)

] [
0
1

]

(85)

for j = 2, . . . , r . Let us observe that N (2)
j (0) = 0 while R(2)

j (0) �= 0.
Then N j and R j can be expressed as

N j (s) = sh1R(2)
j (s) ,

R j (s) = −sh1N (2)
j (s) + γ j (s)R

(2)
j (s) ,

where N (2)
j and R(2)

j are coprime using the induction hypothesis, while γ j (0) �= 0

implying that N j and R j are coprime, as well. At the same time, since N (2)
j (0) = 0

we obtain that R j (0) �= 0 using the corresponding induction hypothesis on R(2)
j .

The representation (83) gives that

det

[−sh j+1N j (s) N j+1(s)
−sh j+1R j (s) R j+1(s)

]

= s2 l j+1 . (86)

Consequently,

N j (s)

R j (s)
− N j+1(s)

R j+1(s)
= s2 l j+h j+1

R j (s)R j+1(s)
, (87)

implying the
N j
R j

is a solution of the Interpolation Problem 2 determined by the values
v0 = 0, v1, . . . , vl j+l j+1−1. In particular, the multiplicity of the origin as a zero of
N j (s) is exactly h1.

Notice that the pair sh j N j−1(s), sh j R j−1(s) provides a solution for the Problem 2
determined by the values v0 = 0, v1, . . . , v2l j−1.

Choosing K = 2 l j − 1 we obtain that both columns of the matrix

[−sh j N j−1(s) N j (s)
−sh j R j−1(s) R j (s)

]

provide solutions of the Problem 2 for v0, v1, . . . , vK and the determinant of this
matrix equals to that of the minimal fundamental solution ΓK (s). Thus

ΓK =
[−sh j N j−1(s) N j (s)

−sh j R j−1(s) R j (s)

](

Γ −1
K

[−sh j N j−1(s) N j (s)
−sh j R j−1(s) R j (s)

])−1

,
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where thematrix standing in the brackets is unimodular, thus its inverse is a polynomial
matrix. Consequently, the matrix (84) is a fundamental solution, as well, concluding
the proof of the first part.

Furthermore, since the column degrees of the matrix (83) are no greater than l j
while its determinant is s2 l j , its highest column degree coefficient matrix should
be of full rank and both column degrees should equal to l j . Using Lemma 6.3–14 in
Kailath [12] we obtain that its column degrees and those ofΓK coincide. Thus l j = νK
and μK = K + 1 − νK = νK . ��
Remark 8 In order to get the minimal fundamental solution ΓK from the matrix (84)
the degrees of the (1, 2) and (2, 1) elements should be reduced and the (1, 1) and
(2, 2) elements should be transformed to monic polynomials. Denoting by g j and f j
the coefficients of sl j in R j (s) and N j (s), respectively, Eq. (86) implies that

det

[− f j−1 f j
−g j−1 g j

]

= 1 .

Consequently,

ΓK (s) =
[

βU
K (s) βV

K (s)
αU
K (s) αV

K (s)

]

=
[−sh j N j−1(s) N j (s)

−sh j R j−1(s) R j (s)

] [− f j−1 f j
−g j−1 g j

]−1

=
[−sh j N j−1(s) N j (s)

−sh j R j−1(s) R j (s)

] [
g j − f j
g j−1 − f j−1

]

, (88)

where K = 2 l j − 1.

Now, combining Theorems 4 and 5 we can describe the paths of the controllability
indexes generated by the minimal fundamental solutions to the restricted interpolation
problems generated by the Taylor-series of a given function f . In fact, using the
notations of Theorem 5 the following theorem holds.

Theorem 6 Let introduce the notation k j = 2l j − 1. Then the set

{k j | j ≥ 1}

coincides with the set containing those values when for the recursive version of
Problem 2 determined by the Taylor-series coefficients of the function f = β

α
the

controllability indexes coincide. In particular, μk j = νk j = l j .
Furthermore,

(i) if the coefficient g j of the term sl j in R j is zero, then

μk j+1 = μk j , νk j+1 = νk j + 1

and the path of the pair of controllability indexes evolves according to part (i) of
Theorem 4.
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(ii) if g j �= 0, then

μk j+1 = μk j + 1, νk j+1 = νk j .

If moreover

(a) h j+1 = 1 then in the next step both controllability indexes are equal:

μk j+2 = νk j+2 = l j+1 .

(This is the generic case.)
(b) If g j �= 0 and h j+1 > 1 then the path determined by the controllability indexes

evolves according to part (ii) of Theorem 4.

Proof Theorem 5 implies that μk j = νk j = l j . Analyzing the path behavior of the
controllability indexes we show that the next occasion when they are equal again is
given by l j+1, moreover at the same time we describe the form of the path between
these two points.

From Theorem 5 we have obtained that

βU
k j (s) = −g j s

h j N j−1(s) + g j−1N j (s)

αU
k j (s) = −g j s

h j R j−1(s) + g j−1R j (s) .

It was already pointed out that the pair N j , R j provide solutions to the Problem 2
exactly up to l j + l j+1 − 1. Thus, if the next interpolation value vl j+l j+1 is taken
into consideration there will be a nonzero error term obtained via using this pair of
polynomials. Let us denote this error by ε j . That is,

ε j := u
μl j+l j+1−1

l j+l j+1
N j − v

νl j+l j+1−1

l j+l j+1
R j .

Since h j+1 ≥ 1 and thus l j + l j+1 − 1 ≥ 2l j so the pair N j , R j still interpolates for
the next value v2l j , using Corollary 2 we obtain that

εUk j+1 = −g j−1ε j−1 .

Similar computation gives that

εVk j+1 = f jε j−1 .

Consequently, εUk j+1 = 0 if and only if g j = 0. Theorem 1 implies that in this case

μk j+1 = μk j , and νk j+1 = νk j + 1. But if g j = 0 then the pair βU
k j

, αU
k j

are obtained
from N j , R j viamultiplicationwith a nonzero constant g j−1, thus part ii) of Theorem1
gives that in the present case βU

k j+1 = βU
k j
, αU

k j+1 = αU
k j

providing solutions to the
interpolation problem determined by v0, v1, . . . , vk up to k ≤ 2 l j + h j+1 − 1. Now
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the second part of Theorem 4 gives that for the next h j+1 steps ν remains constant
while μ increases. That is

νk j+h j+1+l = νk j+h j+1 = l j + h j+1 , for l = 0, . . . , h j+1 ,

μk j+h j+1+l = μk j + l = l j + l , for l = 0, . . . , h j+1 .

In particular, μk j+1 = νk j+1 = l j+1 proving that in this case l j+1 is the next value
when the controllability indexes are equal, and also describing the path behavior of
this pair of indexes, concluding the proof of part i).

Now, if g j �= 0, then from Theorem 1 we obtain that μk j+1 = μk j + 1 = l j + 1,
νk j+1 = νk j = l j and

βV
k j+1 = −

εVk j+1

εUk j+1

βU
k j + βV

k j ,

αV
k j+1 = −

εVk j+1

εUk j+1

αU
k j + αV

k j .

Straightforward calculation based on part i) of Theorem 1 gives that

βV
k j+2 = sh j R j−1

(

f j + g j

εVk j+1

εUk j+1

)

− R j

(

f j−1 + g j−1

εVk j+1

εUk j+1

)

,

αV
k j+2 = sh j N j−1

(

f j + g j

εVk j+1

εUk j+1

)

− N j

(

f j−1 + g j−1

εVk j+1

εUk j+1

)

.

Substituting the expressions εUk j+1 = −g j−1ε j−1 and εVk j+1 = f jε j−1 we get that

βV
k j+2 = −R j

(

f j−1 − g j−1
f j
g j

)

= 1

g j
R j ,

αV
k j+2 = −N j

(

f j−1 − g j−1
f j
g j

)

= 1

g j
N j .

Thus if h j+1 = 1 then εVk j+2 �= 0, so Theorem 1 implies that

μk j+2 = μk j+1 = l j + 1 and νk j+2 = νk j+1 + 1 = l j + 1 .

This is the so-called generic case.
But if h j+1 ≥ 2 then εVk j+2 = 0 and the pair N j , R j provides solution to the

interpolation problem up to 2 l j + h j+1 − 1. Theorem 4 implies that after that the
controllability index μ remains constant and ν increases up to the point when they
will be again equal. This happens at k j+1 = 2l j+1 − 1. That is

μk j+1 = νk j+1 = l j+1 ,
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concluding the proof of the theorem. ��
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Appendices

A Example: the Fibonacci sequence

Let us consider the Fibonacci sequence of integers 1, 1, 2, 3, 5, 8, 13, 21, . . . generated
by the recursion v j+1 = v j−1 + v j , with initial condition v0 = 1, v1 = 1. To make
the computations more readable, we use the recursions (36) and (37) and we do not
normalize.

Given Γk(s) =
[

βU
k (s) βV

k (s)

αU
k (s) αV

k (s)

]

, we denote by Γ k the matrix of its coefficients by

Γ k :=
[

βU
k βV

k

αU
k αV

k

]

. So, the initial step is:

[U 1
0 ,−V 0

0 ]Γ 0 =
[
1 0 −1

]
⎡

⎢
⎣

0 1

1 0
0 1

⎤

⎥
⎦ = 0 , Γ0(s) =

[
s 1
0 1

]

with the controllability indexesμ0 = 1, ν0 = 0. Adding one row of data [u1, u0,−v1],
we get

[U 1
1 ,−V 0

1 ]Γ 0 =
[
1 0 −1
0 1 −1

]
⎡

⎣
0 1
1 0
0 1

⎤

⎦ =
[
0 0
1 −1

]

=
[

0 0
εU1 εV1

]

that is, εV1 �= 0 and μ0 > ν0; we can thus increase the second controllability index

ν0. Therefore, multiplying by

[
1
1

]

we obtain an element in the kernel for the first

column. We then add the column −A1V1 =
[

0
−1

]

to get [U 1
1 ,−V 1

1 ] and shift the

second column of Γ 0 to get Γ 1 (the values of indexes are now μ1 = 1, ν1 = 1) and
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by construction

[U 1
1 ,−V 1

1 ]Γ 1 =
[
1 0 −1 0
0 1 −1 −1

]
⎡

⎢
⎢
⎣

1 0
1 1
1 0
0 1

⎤

⎥
⎥
⎦ = 0 , Γ1(s) =

[
s + 1 s
1 s

]

.

The next row of data is [u22,−v22] = [0, 0,−2,−1], and the errors are

[εU2 , εV2 ] = [u22,−v22]Γ 1 = [−2,−1] .

Since εU2 �= 0, and μ1 = ν1 = 1, we can thus set μ2 = μ1 + 1 = 2, ν2 = ν1 = 1,

multiply Γ 1 by

[−1
2

]

and obtain

[U 2
2 ,−V 1

2 ]Γ 2 =
⎡

⎣
1 0 0 −1 0
0 1 0 −1 −1
0 0 1 −2 −1

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 −1
1 1
1 0
0 −1
1 2

⎤

⎥
⎥
⎥
⎥
⎦

= 0 ,

and

Γ̂2(s) =
[
s2 + s s − 1

s 2s − 1

]

.

Now applying Theorem 1 we get that

Γ2(s) = 1

2

[
2s2 + s + 1 s − 1

1 2s − 1

]

.

A similar computation will yield Γ 3 with errors [εU3 , εV3 ] = [−2,−1]. Going
up to Γ 4, it is not hard to see that, for the data {1, 1, 2, 3, 5}, the new data row is
[u34,−v34] = [0, 0, 0,−5,−3,−2] and the error is [−1,−1]. Thus, after some simple
computations we obtain:

[U 3
4 , V 2

4 ]Γ 4 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 −1 0 0
0 1 0 0 −1 −1 0
0 0 1 0 −2 −1 −1
0 0 0 1 −3 −2 −1
0 0 0 0 −5 −3 −2

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1
2 0

−1 0
1 0
0 −1
2 1

−3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 ,

Γ̂4(s) =
[
s3 − s2 + 2s −1
−3s2 + 2s s2 + s − 1

]

.
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Applying again Theorem 1 we get that

Γ4(s) =
[
s3 − s2 + 2s − 3 −1

5s − 3 s2 + s − 1

]

.

Considering the new interpolation value v6 = 8 and thus adding the row [u45,−v35] =
[0, 0, 0, 0,−8,−5,−3], we see that the errors are

[εU5 , εV5 ] = [u45,−v35]Γ 4 = [−1, 0] .

Therefore, we cannot increase the index ν5. We thus have to increase μ5. While the

Fibonacci sequence continues, this yields, for k ≥ 4, Γk+1(s) = Γ4(s)

[
sk−3 0
0 1

]

. If

for some k0 the value vk0+1 is not a Fibonacci number (while all the previous are),
then εVk0+1 �= 0 and we can increase νk0 by multiplying the second column of Γk0(s)
by s. A minimal interpolant will thus now have the degree of the first column of Γk0+1,
which is k0.
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